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Preface to the Third Edition

A First Course in Abstract Algebra introduces groups and commutative rings.
Group theory was invented by E. Galois in the early 1800s, when he used groups
to completely determine when the roots of polynomials can be found by formulas
generalizing the quadratic formula. Nowadays, groups are the precise way to dis-
cuss various types of symmetry, both in geometry and elsewhere. Besides intro-
ducing Galois’ ideas, we also apply groups to some intricate counting problems
as well as to the classification of friezes in the plane. Commutative rings provide
the proper context in which to study number theory as well as many aspects of
the theory of polynomials. For example, generalizations of ideas such as greatest
common divisor and modular arithmetic extend effortlessly to polynomial rings
over fields. Applications include public access codes, finite fields, magic squares,
Latin squares, and calendars. We then consider vector spaces with scalars in ar-
bitrary fields (not just the reals), and this study allows us to solve the classical
Greek problems concerning angle trisection, doubling the cube, squaring the
circle, and construction of regular n-gons. Linear algebra over finite fields is
applied to codes, showing how one can accurately decode messages sent over a
noisy channel (for example, photographs sent to Earth from Mars or from Sat-
urn). Here, one sees finite fields being used in an essential way. In Chapter 5,
we give the classical formulas for the roots of cubic and quartic polynomials,
after which both groups and commutative rings together are used to prove Ga-
lois’ theorem (polynomials whose roots are obtainable by such formulas have
solvable Galois groups) and Abel’s theorem (there is no generalization of these
formulas to polynomials of higher degree). This is only an introduction to Galois
theory; readers wishing to learn more of this beautiful subject will have to see
a more advanced text. For those readers whose appetites have been whetted by
these results, the last two chapters investigate groups and rings further: we prove
the basis theorem for finite abelian groups and the Sylow theorems, and we in-
troduce the study of polynomials in several variables: varieties; Hilbert’s basis

viii



PREFACE TO THE THIRD EDITION ix

theorem, the Nullstellensatz, and algorithmic methods associated with Gröbner
bases.

Let me mention some new features of this edition. I have rewritten the text,
adding more exercises, and trying to make the exposition more smooth. The fol-
lowing changes in format should make the book more convenient to use. Every
exercise explicitly cited elsewhere in the text is marked by an asterisk; moreover,
every citation gives the page number on which the cited exercise appears. Hints
for certain exercises are in a section at the end of the book so that readers may
consider problems on their own before reading hints. One numbering system
enumerates all lemmas, theorems, propositions, corollaries, and examples, so
that finding back references is easy. There are several pages of Special Notation,
giving page numbers where notation is introduced.

Today, abstract algebra is viewed as a challenging course; many bright stu-
dents seem to have inordinate difficulty learning it. Certainly, they must learn
to think in a new way. Axiomatic reasoning may be new to some; others may
be more visually oriented. Some students have never written proofs; others may
have once done so, but their skills have atrophied from lack of use. But none of
these obstacles adequately explains the observed difficulties. After all, the same
obstacles exist in beginning real analysis courses, but most students in these
courses do learn the material, perhaps after some early struggling. However, the
difficulty of standard algebra courses persists, whether groups are taught first,
whether rings are taught first, or whether texts are changed. I believe that a ma-
jor contributing factor to the difficulty in learning abstract algebra is that both
groups and rings are introduced in the first course; as soon as a student begins to
be comfortable with one topic, it is dropped to study the other. Furthermore, if
one leaves group theory or commutative ring theory before significant applica-
tions can be given, then students are left with the false impression that the theory
is either of no real value or, more likely, that it cannot be appreciated until some
future indefinite time. (Imagine a beginning analysis course in which both real
and complex analysis are introduced in one semester.) If algebra is taught as
a one-year (two-semester) course, there is no longer any reason to crowd both
topics into the first course, and a truer, more attractive, picture of algebra is
presented. This option is more practical today than in the past, for the many ap-
plications of abstract algebra have increased the numbers of interested students,
many of whom are working in other disciplines.

I have rewritten this text for two audiences. This new edition can serve as a
text for those who wish to continue teaching the currently popular arrangement
of introducing both groups and rings in the first semester. As usual, one begins
by covering most of Chapter 1, after which one chooses selected parts of Chap-
ters 2 and 3, depending on whether groups or commutative rings are taught first.
Chapters 2 and 3 have been rewritten, and they are now essentially independent
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of one another, so that this book may be used for either order of presentation.
(As an aside, I disagree with the current received wisdom that doing groups first
is more efficient than doing rings first; for example, the present version of Chap-
ter 3 is about the same length as its earlier versions.) There is ample material in
the book so that it can further serve as a text for a sequel course as well.

Let me now address a second audience: those willing to try a new approach.
My own ideas about teaching abstract algebra have changed, and I now think that
a two-semester course in which only one of groups or rings is taught in the first
semester, is best. I recommend a one-year course whose first semester covers
number theory and commutative rings, and whose second semester covers lin-
ear algebra and group theory. In more detail, the first semester should treat the
usual selection of arithmetic theorems in Chapter 1: division algorithm; gcd’s;
euclidean algorithm; unique factorization; congruence; Chinese remainder the-
orem. Continue with Section 2.1: functions; inverse functions; equivalence re-
lations, and then commutative rings in Chapter 3: fraction fields of domains;
generalizations of arithmetic theorems to polynomials; ideals; integers mod m;
isomorphism theorems; splitting fields, existence of finite fields, magic squares,
orthogonal Latin squares. One could instead continue on in Chapter 2, covering
group theory instead of commutative rings, but I think that doing commutative
rings first is more user-friendly. It is natural to pass from

�
to k[x], and one can

watch how the notion of ideal develops from a technique showing that gcd’s are
linear combinations into an important idea.

For the second semester, I recommend beginning with portions of Chapter 4:
linear algebra over arbitrary fields: invariance of dimension; ruler-compass con-
structions; matrices and linear transformations; determinants over commutative
rings. Most of this material can be done quickly if the students have completed
an earlier linear algebra course treating vector spaces over

�
. If time permits,

one can read the section on codes, which culminates with a proof that Reed-
Solomon codes can be decoded. The remainder of the semester should discuss
groups, as in Chapter 2: permutations; symmetries of planar figures; Lagrange’s
theorem; isomorphism theorems; group actions; Burnside counting; and frieze
groups, as in Chapter 6. If there is not ample time to cover codes and frieze
groups, these sections are appropriate special projects for interested students. I
prefer this organization and presentation, and I believe that it is an improvement
over that of standard courses.

Giving the etymology of mathematical terms is rarely done. Let me explain,
with an analogy, why I have included derivations of many terms. There are many
variations of standard poker games and, in my poker group, the dealer announces
the game of his choice by naming it. Now some names are better than others.
For example, “Little Red” is a game in which one’s smallest red card is wild; this
is a good name because it reminds the players of its distinctive feature. On the
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other hand, “Aggravation” is not such a good name, for though it is, indeed, sug-
gestive, the name does not distinguish this particular game from several others.
Most terms in mathematics have been well chosen; there are more red names than
aggravating ones. An example of a good name is even permutation, for a per-
mutation is even if it is a product of an even number of transpositions. Another
example of a good term is the parallelogram law describing vector addition. But
many good names, clear when they were chosen, are now obscure because their
roots are either in another language or in another discipline. The trigonomet-
ric terms tangent and secant are good names for those knowing some Latin, but
they are obscure otherwise (see a discussion of their etymology on page 31). The
term mathematics is obscure only because most of us do not know that it comes
from the classical Greek word meaning “to learn.” The term corollary is doubly
obscure; it comes from the Latin word meaning “flower,” but why should some
theorems be called flowers? A plausible explanation is that it was common, in
ancient Rome, to give flowers as gifts, and so a corollary is a gift bequeathed by
a theorem. The term theorem comes from the Greek word meaning “to watch”
or “to contemplate” (theatre has the same root); it was used by Euclid with its
present meaning. The term lemma comes from the Greek word meaning “taken”
or “received;” it is a statement that is taken for granted (for it has already been
proved) in the course of proving a theorem. I believe that etymology of terms
is worthwhile (and interesting!), for it often aids understanding by removing un-
necessary obscurity.

In addition to thanking again those who helped me with the first two editions,
it is a pleasure to thank George Bergman and Chris Heil for their valuable com-
ments on the second edition. I also thank Iwan Duursma, Robert Friedman, Blair
F. Goodlin, Dieter Koller, Fatma Irem Koprulu, J. Peter May, Leon McCulloh,
Arnold Miller, Brent B. Solie, and John Wetzel.

Joseph J. Rotman
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1
Number Theory

1.1 INDUCTION

There are many styles of proof, and mathematical induction is one of them. We
begin by saying what mathematical induction is not. In the natural sciences,
inductive reasoning is the assertion that a freqently observed phenomenon will
always occur. Thus, one says that the Sun will rise tomorrow morning because,
from the dawn of time, the Sun has risen every morning. This is not a legitimate
kind of proof in mathematics, for even though a phenomenon has been observed
many times, it need not occur forever. However, inductive reasoning is still valu-
able in mathematics, as it is in natural science, because seeing patterns in data
often helps in guessing what may be true in general.

On the other hand, a reasonable guess may not be correct. For example, what
is the maximum number of regions into which

� 3 (3-dimensional space) can be
divided by n planes? Two nonparallel planes can divide

� 3 into 4 regions, and
three planes can divide

� 3 into 8 regions (octants). For smaller n, we note that
a single plane divides

� 3 into 2 regions, while if n = 0, then
� 3 is not divided

at all: there is 1 region. For n = 0, 1, 2, 3, the maximum number of regions is
thus 1, 2, 4, 8, and it is natural to guess that n planes can be chosen to divide

� 3

into 2n regions. But it turns out that any four chosen planes can divide
� 3 into at

most 15 regions!
Before proceeding further, let us make sure that we agree on the meaning of

some standard terms. An integer is one of the numbers 0, 1,−1, 2,−2, 3, . . . ;
the set of all the integers is denoted by

�
(from the German Zahl meaning num-

ber): � = {0, 1,−1, 2,−2, 3, . . .}.
The natural numbers consists of all those integers n for which n ≥ 0:

� = {n in
� : n ≥ 0} = {0, 1, 2, 3, . . .}.

1
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Definition. An integer d is a divisor of an integer n if n = da for some inte-
ger a. An integer n is called prime1 if n ≥ 2 and its only divisors are ±1 and
±n; an integer n is called composite if it is not prime.

If a positive integer n is composite, then it has a factorization n = ab, where
a < n and b < n are positive integers; the inequalities are present to eliminate
the uninteresting factorization n = n × 1. The first few primes are 2, 3, 5, 7,
11, 13, 17, 19, 23, 29, 31, 37, 41, . . .; that this sequence never ends is proved in
Corollary 1.30.

Consider the assertion that

f (n) = n2 − n + 41

is prime for every positive integer n. Evaluating f (n) for n = 1, 2, 3, . . . , 40
gives the numbers

41, 43, 47, 53, 61, 71, 83, 97, 113, 131,

151, 173, 197, 223, 251, 281, 313, 347, 383, 421,

461, 503, 547, 593, 641, 691, 743, 797, 853, 911,

971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

It is tedious, but not very difficult, to show that every one of these numbers is
prime (see Proposition 1.3). Inductive reasoning predicts that all the numbers of
the form f (n) are prime. But the next number, f (41) = 1681, is not prime, for
f (41) = 412 − 41 + 41 = 412, which is obviously composite. Thus, inductive
reasoning is not appropriate for mathematical proofs.

Here is an even more spectacular example (which I first saw in an article by
W. Sierpinski). Recall that perfect squares are numbers of the form n2, where n
is an integer; the first few perfect squares are 0, 1, 4, 9, 16, 25, 36, . . . . For each
n ≥ 1, consider the statement

S(n) : 991n2 + 1 is not a perfect square.

The nth statement, S(n), is true for many n; in fact, the smallest number n for
which S(n) is false is

n = 12, 055, 735, 790, 331, 359, 447, 442, 538, 767

≈ 1.2 × 1028.

The equation m2 = 991n2 + 1 is an example of Pell’s equation—an equation
of the form m2 = pn2 + 1, where p is prime—and there is a way of calcu-
lating all possible solutions of it. An even larger example involves the prime

1One reason the number 1 is not called a prime is that many theorems involving primes
would otherwise be more complicated to state.
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p = 1,000,099; the smallest n for which 1,000,099n2 + 1 is a perfect square
has 1116 digits. The most generous estimate of the age of the Earth is 10 billion
(10,000,000,000) years, or 3.65 × 1012 days, a number insignificant when com-
pared to 1.2 × 1028, let alone 101115. If, starting from the Earth’s very first day,
one verified statement S(n) on the nth day, then there would be today as much
evidence of the general truth of these statements as there is that the Sun will rise
tomorrow morning. And yet some of the statements S(n) are false!

As a final example, let us consider the following statement, known as Gold-
bach’s conjecture: every even number m ≥ 4 is a sum of two primes. No one has
ever found a counterexample to Goldbach’s conjecture, but neither has anyone
ever proved it. At present, the conjecture has been verified for all even numbers
m < 1013, and it has been proved by J.-R. Chen that every sufficiently large even
number m can be written as p + q, where p is prime and q is “almost” a prime;
that is, q is either a prime or a product of two primes. Even with all of this pos-
itive evidence, however, no mathematician will say that Goldbach’s conjecture
must, therefore, be true for all even m.

We have seen what (mathematical) induction is not; let us now discuss what
induction is. Our discussion is based on the following property of the set of
natural numbers (usually called the Well Ordering Principle).

Least Integer Axiom. There is a smallest integer in every nonempty2 subset
C of the natural numbers

�
.

Although this axiom cannot be proved (it arises in analyzing what integers
are), it is certainly plausible. Consider the following procedure: check whether
0 belongs to C; if it does, then 0 is the smallest integer in C . Otherwise, check
whether 1 belongs to C; if it does, then 1 is the smallest integer in C; if not,
check 2. Continue this procedure until one bumps into C; this will occur eventu-
ally because C is nonempty.

Proposition 1.1 (Least Criminal). Let k be a natural number, and let S(k),
S(k + 1), . . . , S(n), . . . be a list of statements. If some of these statements are
false, then there is a first false statement.

Proof. Let C be the set of all those natural numbers n ≥ k for which S(n) is
false; by hypothesis, C is a nonempty subset of

�
. The Least Integer Axiom

provides a smallest integer m in C , and S(m) is the first false statement. •

This seemingly innocuous proposition is useful.

Theorem 1.2. Every integer n ≥ 2 is either a prime or a product of primes.

2Saying that C is nonempty merely means that there is at least one integer in C .
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Proof. Were this not so, there would be “criminals:” there are integers n ≥
2 which are neither primes nor products of primes; a least criminal m is the
smallest such integer. Since m is not a prime, it is composite; there is thus a
factorization m = ab with 2 ≤ a < m and 2 ≤ b < m (since a is an integer,
1 < a implies 2 ≤ a). Since m is the least criminal, both a and b are “honest,”
i.e.,

a = pp′ p′′ · · · and b = qq ′q ′′ · · · ,

where the factors p, p′, p′′, . . . and q, q ′, q ′′. . . . are primes. Therefore,

m = ab = pp′ p′′ · · · qq ′q ′′ · · ·

is a product of (at least two) primes, which is a contradiction.3 •

Proposition 1.3. If m ≥ 2 is a positive integer which is not divisible by any
prime p with p ≤

√
m, then m is a prime.

Proof. If m is not prime, then m = ab, where a < m and b < m are positive
integers. If a >

√
m and b >

√
m, then m = ab >

√
m

√
m = m, a contradic-

tion. Therefore, we may assume that a ≤
√

m. By Theorem 1.2, a is either a
prime or a product of primes, and any (prime) divisor p of a is also a divisor of
m. Thus, if m is not prime, then it has a “small” prime divisor p; i.e., p ≤

√
m.

The contrapositive says that if m has no small prime divisor, then m is prime. •

Proposition 1.3 can be used to show that 991 is a prime. It suffices to check
whether 991 is divisible by some prime p with p ≤

√
991 ≈ 31.48; if 991 is

not divisible by 2, 3, 5, . . . , or 31, then it is prime. There are 11 such primes,
and one checks (by long division) that none of them is a divisor of 991. (One
can check that 1,000,099 is a prime in the same way, but it is a longer enterprise
because its square root is a bit over 1000.) It is also tedious, but not difficult, to
see that the numbers f (n) = n2 − n + 41, for 1 ≤ n ≤ 40, are all prime.

Mathematical induction is a version of least criminal that is more convenient
to use. The key idea is just this: Imagine a stairway to the sky. If its bottom step
is white and if the next step above a white step is also white, then all the steps of
the stairway must be white. (One can trace this idea back to Levi ben Gershon
in 1321. There is an explicit description of induction, cited by Pascal, written
by Francesco Maurolico in 1557.) For example, the statement “2n > n for all

3The contrapositive of an implication “P implies Q” is the implication “(not Q) implies
(not P).” For example, the contrapositive of “If a series

∑
an converges, then limn→∞ an =

0” is “If lim n→∞ an 6= 0, then
∑

an diverges.” If an implication is true, then so is its
contrapositive; conversely, if the contrapositive is true, then so is the original implication. The
strategy of this proof is to prove the contrapositive of the original implication. Although a
statement and its contrapositive are logically equivalent, it is sometimes more convenient to
prove the contrapositive. This method is also called indirect proof or proof by contradiction.
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n ≥ 1” can be regarded as an infinite sequence of statements (a stairway to the
sky):

21 > 1; 22 > 2; 23 > 3; 24 > 4; 25 > 5; · · · .

Certainly, 21 = 2 > 1. If 2100 > 100, then 2101 = 2 × 2100 > 2 × 100 =
100 + 100 > 101. There is nothing magic about the exponent 100; the same
idea shows, having reached any stair, that we can climb up to the next one. This
argument will be formalized in Proposition 1.5.

Theorem 1.4 (Mathematical Induction4). Given statements S(n), one for
each natural number n, suppose that:

(i) Base Step : S(0) is true;
(ii) Inductive Step : if S(n) is true, then S(n + 1) is true.

Then S(n) is true for all natural numbers n.

Proof. We must show that the collection C of all those natural numbers n for
which the statement S(n) is false is empty.

If, on the contrary, C is nonempty, then there is a first false statement S(m).
Since S(0) is true, by (i), we must have m ≥ 1. This implies that m − 1 ≥ 0, and
so there is a statement S(m − 1) [there is no statement S(−1)]. As m is the least
criminal, m − 1 must be honest; that is, S(m − 1) is true. But now (ii) says that
S(m) = S([m − 1] + 1) is true, and this is a contradiction. We conclude that C
is empty and, hence, that all the statements S(n) are true. •

We now show how to use induction.

Proposition 1.5. 2n > n for all integers n ≥ 0.

Proof. The nth statement S(n) is

S(n) : 2n > n.

Two steps are required for induction, corresponding to the two hypotheses in
Theorem 1.4.

Base step. The initial statement

S(0) : 20 > 0

is true, for 20 = 1 > 0.

4Induction, having a Latin root meaning “to lead,” came to mean “prevailing upon to do
something” or “influencing.” This is an apt name here, for the nth statement influences the
(n + 1)st one.
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Inductive step. If S(n) is true, then S(n + 1) is true; that is, using the inductive
hypothesis S(n), we must prove

S(n + 1) : 2n+1 > n + 1.

If 2n > n is true, then multiplying both sides of its inequality by 2 gives the
valid5 inequality:

2n+1 = 2 × 2n > 2n.

Now 2n = n + n ≥ n + 1 (because n ≥ 1), and hence 2n+1 > 2n ≥ n + 1, as
desired.

Having verified both the base step and the inductive step, we conclude that
2n > n for all n ≥ 0. •

Induction is plausible in the same sense that the Least Integer Axiom is plau-
sible. Suppose that a given list S(0), S(1), S(2), . . . of statements has the prop-
erty that S(n + 1) is true whenever S(n) is true. If, in addition, S(0) is true,
then S(1) is true; the truth of S(1) now gives the truth of S(2); the truth of S(2)
now gives the truth of S(3); and so forth. Induction replaces the phrase and so
forth by the inductive step which guarantees, for every n, that there is never an
obstruction in the passage from any statement S(n) to the next one, S(n + 1).

Here are two comments before we give more illustrations of induction. First,
one must verify both the base step and the inductive step; verification of only
one of them is inadequate. For example, consider the statements S(n) : n2 = n.
The base step is true, but one cannot prove the inductive step (of course, these
statements are false for all n > 1). Another example is given by the statements
S(n) : n = n+1. It is easy to see that the inductive step is true: if n = n+1, then
Proposition A.2 says that adding 1 to both sides gives n+1 = (n+1)+1 = n+2,
which is the next statement, S(n + 1). But the base step is false (of course, all
these statements are false).

Second, when first seeing induction, many people suspect that the inductive
step is circular reasoning: one is using S(n), and this is what one wants to prove!
A closer analysis shows that this is not at all what is happening. The inductive
step, by itself, does not prove that S(n + 1) is true. Rather, it says that if S(n)
is true, then S(n + 1) is also true. In other words, the inductive step proves that
the implication “If S(n) is true, then S(n + 1) is true” is correct. The truth of
this implication is not the same thing as the truth of its conclusion. For example,
consider the two statements: “Your grade on every exam is 100%” and “Your
grade in the course is A.” The implication “If all your exams are perfect, then you
will get the highest grade for the course” is true. Unfortunately, this does not say
that it is inevitable that your grade in the course will be A. Our discussion above

5See Proposition A.2 in Appendix A, which gives the first properties of inequalities.
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gives a mathematical example: the implication “If n = n+1, then n+1 = n+2”
is true, but the conclusion “n + 1 = n + 2” is false.

Remark. The Least Integer Axiom is enjoyed not only by
�

, but also by any
of its nonempty subsets Q (indeed, the proof of Proposition 1.1 uses the fact that
the axiom holds for Q = {n in

� : n ≥ 2}). In terms of induction, this says
that the base step can occur at any natural number k, not necessarily at k = 0.
The conclusion, then, is that the statements S(n) are true for all n ≥ k. The
Least Integer Axiom is also enjoyed by the larger set Qm = {n in

� : n ≥ m},
where m is any, possibly negative, integer. If C is a nonempty subset of Qm and
if C ∩ {m,m + 1, . . . ,−1}6 is nonempty, then this finite set contains a smallest
integer, which is the smallest integer in C . If C ∩ {m,m + 1, . . . ,−1} is empty,
then C is actually a nonempty subset of

�
, and the original axiom gives a smallest

number in C . In terms of induction, this says that the base step can occur at any,
possibly negative, integer k [assuming, of course, that there is a kth statement
S(k)]. For example, if one has statements S(−1), S(0), S(1), . . . , then the base
step can occur at n = −1; the conclusion in this case is that the statements S(n)
are true for all n ≥ −1. �

Here is an induction with base step occurring at n = 1.

Proposition 1.6. 1 + 2 + · · · + n = 1
2 n(n + 1) for every integer n ≥ 1.

Proof. The proof is by induction on n ≥ 1.
Base step. If n = 1, then the left side is 1 and the right side is 1

2 1(1+1) = 1,
as desired.

Inductive step. It is always a good idea to write the (n + 1)st statement
S(n + 1) so one can see what has to be proved. Here, we must prove

S(n + 1) : 1 + 2 + · · · + n + (n + 1) = 1
2 (n + 1)(n + 2).

By the inductive hypothesis, i.e., using S(n), the left side is

[1 + 2 + · · · + n] + (n + 1) = 1
2 n(n + 1)+ (n + 1),

and high school algebra shows that 1
2 n(n + 1)+ (n + 1) = 1

2 (n + 1)(n + 2). By
induction, the formula holds for all n ≥ 1. •

There is a story (it probably never happened) told about Gauss as a boy.
One of his teachers asked the students to add up all the numbers from 1 to 100,
thereby hoping to get some time for himself for other tasks. But Gauss quickly

6If C and D are subsets of a set X , then their intersection, denoted by C ∩ D, is the subset
consisting of all those x in X lying in both C and D.
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volunteered that the answer was 5050. He let s denote the sum of all the numbers
from 1 to 100; s = 1+2+· · ·+99+100. Of course, s = 100+99+· · ·+2+1.
Arrange these nicely:

s = 1 + 2 + · · · + 99 + 100

s = 100 + 99 + · · · + 2 + 1

and add:

2s = 101 + 101 + · · · + 101 + 101,

the sum 101 occurring 100 times. We now solve: s = 1
2 (100 × 101) = 5050.

This argument is valid for any number n in place of 100 (and it does not use
induction). Not only does this give a new proof of Proposition 1.6, it also shows
how the formula could have been discovered.7

It is not always the case, in an inductive proof, that the base step is very
simple. In fact, all possibilities can occur: both steps can be easy; both can be
difficult; one is harder than the other.

Proposition 1.7. If we assume ( f g)′ = f ′g + f g′, the product rule for deriva-
tives, then

(xn)′ = nxn−1 for all integers n ≥ 1.

Proof. We proceed by induction on n ≥ 1.
Base step. If n = 1, then we ask whether (x)′ = x0 ≡ 1, the constant

function identically equal to 1. By definition,

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

When f (x) = x , therefore,

(x)′ = lim
h→0

x + h − x

h
= lim

h→0

h

h
= 1.

Inductive step. We must prove that (xn+1)′ = (n + 1)xn. It is permissible
to use the inductive hypothesis, (xn)′ = nxn−1, as well as (x)′ ≡ 1, for the base

7Actually, this formula goes back at least a thousand years (see Exercise 1.10 on page 13).
Alhazen (Ibn al-Haytham) (965-1039), found a geometric way to add

1k + 2k + · · · + nk

for any fixed integer k ≥ 1 [see Exercise 1.11 on page 13].
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step has already been proved. Since xn+1 = xnx , the product rule gives

(xn+1)′ = (xnx)′ = (xn)′x + xn(x)′

= (nxn−1)x + xn1 = (n + 1)xn.

We conclude that (xn)′ = nxn−1 is true for all n ≥ 1. •
Here is an example of an induction whose base step occurs at n = 5. Con-

sider the statements
S(n) : 2n > n2.

This is not true for small values of n: if n = 2 or 4, then there is equality, not
inequality; if n = 3, the left side, 8, is smaller than the right side, 9. However,
S(5) is true, for 32 > 25.

Proposition 1.8. 2n > n2 is true for all integers n ≥ 5.

Proof. We have just checked the base step S(5). In proving

S(n + 1) : 2n+1 > (n + 1)2,

we are allowed to assume that n ≥ 5 (actually, we will need only n ≥ 3 to prove
the inductive step) as well as the inductive hypothesis. Multiply both sides of
2n > n2 by 2 to get

2n+1 = 2 × 2n > 2n2 = n2 + n2 = n2 + nn.

Since n ≥ 5, we have n ≥ 3, and so

nn ≥ 3n = 2n + n ≥ 2n + 1.

Therefore,
2n+1 > n2 + nn ≥ n2 + 2n + 1 = (n + 1)2. •

There is another version of induction, usually called the second form of
induction, that is sometimes more convenient to use.

Definition. The predecessors of a natural number n ≥ 1 are the natural num-
bers k with k < n, namely, 0, 1, 2, . . . , n − 1 (0 has no predecessor).

Theorem 1.9 (Second Form of Induction). Let S(n) be a family of state-
ments, one for each natural number n, and suppose that:

(i) S(0) is true;
(ii) if S(k) is true for all predecessors k of n, then S(n) is itself true.

Then S(n) is true for all natural numbers n.
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Proof. It suffices to show that there are no integers n for which S(n) is false;
that is, the collection C of all positive integers n for which S(n) is false is empty.

If, on the contrary, C is nonempty, then there is a least criminal m: there is
a first false statement S(m). Since S(0) is true, by (i), we must have m ≥ 1. As
m is the least criminal, k must be honest for all k < m; in other words, S(k)
is true for all the predecessors of m. Then, by (ii), S(m) is true, and this is a
contradiction. We conclude that C is empty and, hence, that all the statements
S(n) are true. •

The second form of induction can be used to give a second proof of Theo-
rem 1.2. As with the first form, the base step need not occur at 0.

Theorem 1.10 (= Theorem 1.2). Every integer n ≥ 2 is either a prime or a
product of primes.

Proof. 8 Base step. The statement is true when n = 2 because 2 is a prime.
Inductive step. If n ≥ 2 is a prime, we are done. Otherwise, n = ab, where

2 ≤ a < n and 2 ≤ b < n. As a and b are predecessors of n, each of them is
either prime or a product of primes:

a = pp′ p′′ · · · and b = qq ′q ′′ · · · ,

and so n = pp′ p′′ · · · qq ′q ′′ · · · is a product of (at least two) primes. •

The reason why the second form of induction is more convenient here is that
it is more natural to use S(a) and S(b) than to use S(n − 1); indeed, it is not at
all clear how to use S(n − 1).

Here is a notational remark. We can rephrase the inductive step in the first
form of induction: if S(n − 1) is true, then S(n) is true (we are still saying
that if a statement is true, then so is the next statement). With this rephrasing,
we can now compare the inductive steps of the two forms of induction. Each
wants to prove S(n): the inductive hypothesis of the first form is S(n − 1); the
inductive hypothesis of the second form is any or all of the preceding statements
S(0), S(1), . . . , S(n − 1). Thus, the second form appears to have a stronger
inductive hypothesis. In fact, Exercise 1.21 on page 15 asks you to prove that
both forms of mathematical induction are equivalent.

The next result says that one can always factor out a largest power of 2 from
any integer.

Proposition 1.11. Every integer n ≥ 1 has a unique factorization n = 2km,
where k ≥ 0 and m ≥ 1 is odd.

8The similarity of the proofs of Theorems 1.2 and 1.10 indicates that the second form of
induction is merely a variation of least criminal.



INDUCTION 11

Proof. We use the second form of induction on n ≥ 1 to prove the existence of
k and m; the reader should see that it is more appropriate here than the first form.

Base step. If n = 1, take k = 0 and m = 1.
Inductive step. If n ≥ 1, then n is either odd or even. If n is odd, then take

k = 0 and m = n. If n is even, then n = 2b. Because b < n, it is a predecessor
of n, and so the inductive hypothesis allows us to assume S(b) : b = 2`m, where
` ≥ 0 and m is odd. The desired factorization is n = 2b = 2`+1m.

The word unique means “exactly one.” We prove uniqueness by showing
that if n = 2km = 2t m′, where both k and t are nonnegative and both m and m ′

are odd, then k = t and m = m ′. We may assume that k ≥ t . If k > t , then
canceling 2t from both sides gives 2k−tm = m′. Since k − t > 0, the left side
is even while the right side is odd; this contradiction shows that k = t . We may
thus cancel 2k from both sides, leaving m = m ′. •

The ancient Greeks thought that a rectangular figure is most pleasing to the
eye if its edges a and b are in the proportion

a : b = b : (a + b).

In this case, a(a+b) = b2, so that b2−ab−a2 = 0; that is, (b/a)2−b/a−1 = 0.
The quadratic formula gives b/a = 1

2 (1 ±
√

5). Therefore,

b/a = α = 1
2 (1 +

√
5) or b/a = β = 1

2 (1 −
√

5).

The number α, approximately 1.61803, is called the golden ratio. Since α is a
root of x2 − x − 1, as is β, we have

α2 = α + 1 and β2 = β + 1.

The reason for discussing the golden ratio is that it is intimately related to the
Fibonacci sequence.

Definition. The Fibonacci sequence F0, F1, F2, . . . is defined as follows:

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all integers n ≥ 2.

The Fibonacci sequence begins: 0, 1, 1, 2, 3, 5, 8, 13, . . .

Theorem 1.12. If Fn denotes the nth term of the Fibonacci sequence, then for
all n ≥ 0,

Fn = 1√
5
(αn − βn),

where α = 1
2 (1 +

√
5) and β = 1

2 (1 −
√

5).
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Proof. We are going to use the second form of induction [the second form is
the appropriate induction here, for the equation Fn = Fn−1 + Fn−2 suggests that
proving S(n) will involve not only S(n − 1) but S(n − 2) as well].

Base step. The formula is true for n = 0 : 1√
5
(α0 − β0) = 0 = F0. The

formula is also true for n = 1:
1√
5
(α1 − β1) = 1√

5
(α − β)

= 1√
5

[
1
2 (1 +

√
5)− 1

2 (1 −
√

5)
]

= 1√
5
(
√

5) = 1 = F1.

(We have mentioned both n = 0 and n = 1 because verifying the inductive
hypothesis for Fn requires our using the truth of the statements for both Fn−1
and Fn−2. For example, knowing only that F2 = 1√

5
(α2 − β2) is not enough to

prove that the formula for F3 is true; one also needs the formula for F1.)
Inductive step. If n ≥ 2, then

Fn = Fn−1 + Fn−2

= 1√
5
(αn−1 − βn−1)+ 1√

5
(αn−2 − βn−2)

= 1√
5

[
(αn−1 + αn−2)− (βn−1 + βn−2)

]

= 1√
5

[
αn−2(α + 1)− βn−2(β + 1)

]

= 1√
5

[
αn−2(α2)− βn−2(β2)

]

= 1√
5
(αn − βn),

because α + 1 = α2 and β + 1 = β2. •
It is curious that the integers Fn are expressed in terms of the irrational num-

ber
√

5.

Corollary 1.13. If α = 1
2

(
1 +

√
5
)

, then Fn > αn−2 for all integers n ≥ 3.

Remark. If n = 2, then F2 = 1 = α0, and so there is equality, not inequality.
�

Proof. Base step. If n = 3, then F3 = 2 > α, for α ≈ 1.618.
Inductive step. We must show that Fn+1 > αn−1. By the inductive hypoth-

esis,

Fn+1 = Fn + Fn−1 > αn−2 + αn−3

= αn−3(α + 1) = αn−3α2 = αn−1. •
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One can also use induction to give definitions. For example, we can define
n factorial,9denoted by n!, by induction on n ≥ 0. Define 0! = 1, and if n! is
known, then define

(n + 1)! = n!(n + 1).

One reason for defining 0! = 1 will be apparent in the next section.

EXERCISES

1.1 Find a formula for 1 + 3 + 5 + · · · + (2n − 1), and use mathematical induction to
prove that your formula is correct. (Inductive reasoning is used in mathematics to
help guess what might be true. Once a guess has been made, it must still be proved,
perhaps using mathematical induction, perhaps by some other method.)

1.2 Find a formula for 1 +
∑n

j=1 j ! j , and use induction to prove that your formula is
correct.

*1.3 (i) For any n ≥ 0 and any r 6= 1, prove that

1 + r + r2 + r3 + · · · + rn = (1 − rn+1)/(1 − r).

(ii) Prove that
1 + 2 + 22 + · · · + 2n = 2n+1 − 1.

1.4 Show, for all n ≥ 1, that 10n leaves remainder 1 after dividing by 9.
1.5 Prove that if 0 ≤ a ≤ b, then an ≤ bn for all n ≥ 0.
1.6 Prove that 12 + 22 + · · · + n2 = 1

6 n(n + 1)(2n + 1) = 1
3 n3 + 1

2 n2 + 1
6 n.

1.7 Prove that 13 + 23 + · · · + n3 = 1
4 n4 + 1

2 n3 + 1
4 n2.

1.8 Prove that 14 + 24 + · · · + n4 = 1
5 n5 + 1

2 n4 + 1
3 n3 − 1

30 n.
1.9 (M. Barr) There is a famous anecdote describing a hospital visit of G. H. Hardy

to Ramanujan. Hardy mentioned that the number 1729 of the taxi he had taken to
the hospital was not an interesting number. Ramanujan disagreed, saying that it
is the smallest positive integer that can be written as the sum of two cubes in two
different ways.

(i) Prove that Ramanujan’s statement is true.
(ii) Prove that Ramanujan’s statement is false.

*1.10 Derive the formula for
∑n

i=1 i by computing the area (n + 1)2 of a square with
sides of length n + 1 using Figure 1.1.

*1.11 (i) Derive the formula for
∑n

i=1 i by computing the area n(n + 1) of a rect-
angle with height n + 1 and base n, as pictured in Figure 1.2.

(ii) (Alhazen) For fixed k ≥ 1, use Figure 1.3 to prove

(n + 1)
n∑

i=1

ik =
n∑

i=1

ik+1 +
n∑

i=1

( i∑

p=1

pk
)
.

9The term factor comes from the Latin “to make” or “to contribute”; the term factorial
recalls that n! has many factors.
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Figure 1.3 Alhazan’s Dissection

(iii) Given the formula
∑n

i=1 i = 1
2 n(n+1), use part (ii) to derive the formula

for
∑n

i=1 i2.

1.12 (i) Prove that 2n > n3 for all n ≥ 10.
(ii) Prove that 2n > n4 for all n ≥ 17.
(iii) If k is a natural number, prove that 2n > nk for all n ≥ k2 + 1.

1.13 Around 1350, N. Oresme was able to sum the series
∑∞

n=1 n/2n by dissecting the
region R in Figure 1.4 in two ways. Let An be the vertical rectangle with base 1

2n

and height n, so that area(An) = n/2n , and let Bn be horizontal rectangle with
base 1

2n + 1
2n+1 + · · · and height 1. Prove that

∑∞
n=1 n/2n = 2.

*1.14 Let g1(x), . . . , gn(x) be differentiable functions, and let f (x) be their product:
f (x) = g1(x) · · · gn(x). Prove, for all integers n ≥ 2, that the derivative

f ′(x) =
n∑

i=1

g1(x) · · · gi−1(x)g
′
i (x)gi+1(x) · · · gn(x).
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1
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1
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Figure 1.4 Oresme’s Dissections

1.15 Prove, for every n ∈ � , that (1 + x)n ≥ 1 + nx whenever x ∈ � and 1 + x > 0.
1.16 Prove that every positive integer a has a unique factorization a = 3km, where

k ≥ 0 and m is not a multiple of 3.
1.17 Prove that Fn < 2n for all n ≥ 0, where F0, F1, F2, . . . is the Fibonacci sequence.
1.18 If Fn denotes the nth term of the Fibonacci sequence, prove that

m∑

n=1

Fn = Fm+2 − 1.

1.19 Prove that 4n+1 + 52n−1 is divisible by 21 for all n ≥ 1.
1.20 For any integer n ≥ 2, prove that there are n consecutive composite numbers.

Conclude that the gap between consecutive primes can be arbitrarily large.
*1.21 Prove that the first and second forms of mathematical induction are equivalent; that

is, prove that Theorem 1.4 is true if and only if Theorem 1.9 is true.
*1.22 (Double Induction) Let S(m, n) be a doubly indexed family of statements, one for

each m ≥ 0 and n ≥ 0. Suppose that

(i) S(0, 0) is true;

(ii) if S(m, 0) is true, then S(m + 1, 0) is true;

(iii) if S(m, n) is true for all m, then S(m, n + 1) is true for all m.

Prove that S(m, n) is true for all m ≥ 0 and n ≥ 0.
1.23 Use double induction to prove that

(m + 1)n > mn

for all m, n ≥ 0.
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1.2 BINOMIAL COEFFICIENTS

What is the pattern of the coefficients in the formulas for the powers (1 + x)n of
the binomial 1 + x? The first few such formulas are:

(1 + x)0 = 1

(1 + x)1 = 1 + 1x

(1 + x)2 = 1 + 2x + 1x2

(1 + x)3 = 1 + 3x + 3x2 + 1x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + 1x4.

Figure 1.5, called Pascal’s triangle, after B. Pascal (1623–1662), displays
an arrangement of the first few coefficients. Figure 1.6, a picture from China in

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Figure 1.5

the year 1303, shows that the pattern of coefficients had been recognized long
before Pascal was born.

The expansion of (1 + x)n is an expression of the form

c0 + c1x + c2x2 + · · · + cnxn.

The coefficients cr are called binomial coefficients.10 L. Euler (1707–1783)

10Binomial, coming from the Latin bi, meaning “two,” and nomen, meaning “name” or
“term,” describes expressions of the form a + b. Similarly, trinomial describes expressions of
the form a + b + c, and monomial describes expressions with a single term. The word is used
here because the binomial coefficients arise when expanding powers of the binomial 1 + x .
The word polynomial is a hybrid, coming from the Greek poly meaning “many” and the Latin
nomen; polynomials are certain expressions having many terms.
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Figure 1.6 Pascal’s Triangle, China, ca. 1300



18 NUMBER THEORY CH. 1

introduced the notation
( n

r

)
for them; this symbol evolved into

(n
r

)
, which is

generally accepted nowadays:
(

n

r

)
= coefficient cr of xr in (1 + x)n.

Hence,

(1 + x)n =
n∑

r=0

(
n

r

)
xr .

The number
(n

r

)
is pronounced “n choose r” because it also arises in counting

problems, as we shall see later in this section.
Observe, in Figure 1.5, that an inside number (i.e., not a 1 on the border)

of the (n + 1)th row can be computed by going up to the nth row and adding
the two neighboring numbers above it. For example, the inside numbers in row 4

1 3 3 1

1 4 6 4 1

be computed from row 3 as follows: 4 = 1 + 3, 6 = 3 + 3, and 4 = 3 + 1. Let
us prove that this observation always holds.

Lemma 1.14. For all integers n ≥ 1 and all r with 0 < r < n + 1,
(

n + 1

r

)
=
(

n

r − 1

)
+
(

n

r

)
.

Proof. We must show, for all n ≥ 1, that if

(1 + x)n = c0 + c1x + c2x2 + · · · + cnxn,

then the coefficient of x r in (1 + x)n+1 is cr−1 + cr . Since c0 = 1,

(1 + x)n+1 = (1 + x)(1 + x)n

= (1 + x)n + x(1 + x)n

= (c0 + c1x + c2x2 + · · · + cnxn)

+ x(c0 + c1x + c2x2 + · · · + cnxn)

= (c0 + c1x + c2x2 + · · · + cnxn)

+ c0x + c1x2 + c2x3 + · · · + cnxn+1

= 1 + (c0 + c1)x + (c1 + c2)x
2 + (c2 + c3)x

3 + · · · .
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Thus
(n+1

r

)
, the coefficient of xr in (1 + x)n+1, is

cr−1 + cr =
(

n

r − 1

)
+
(

n

r

)
. •

Proposition 1.15 (Pascal). For all n ≥ 0 and all r with 0 ≤ r ≤ n,
(

n

r

)
=

n!
r !(n − r)!

.

Proof. We prove the proposition by induction on n ≥ 0.
Base step.11 If n = 0, then

(
0

0

)
= 0!/0!0! = 1.

Inductive step. Assuming the formula for
(n

r

)
for all r , we must prove

(
n + 1

r

)
=

(n + 1)!
r !(n + 1 − r)!

.

If r = 0, then
(n+1

0

)
= 1 = (n + 1)!/0!(n + 1 − 0)!; if r = n + 1, then(n+1

n+1

)
= 1 = (n + 1)!/(n + 1)!0!; if 0 < r < n + 1, we use Lemma 1.14:

(
n + 1

r

)
=
(

n

r − 1

)
+
(

n

r

)

=
n!

(r − 1)!(n − r + 1)!
+

n!
r !(n − r)!

=
n!

(r − 1)!(n − r)!

( 1

(n − r + 1)
+

1

r

)

=
n!

(r − 1)!(n − r)!

(r + n − r + 1

r(n − r + 1)

)

=
n!

(r − 1)!(n − r)!

( n + 1

r(n − r + 1)

)

=
(n + 1)!

r !(n + 1 − r)!
. •

Corollary 1.16. For any real number x and for all integers n ≥ 0,

(1 + x)n =
n∑

r=0

(
n

r

)
xr =

n∑

r=0

n!
r !(n − r)!

xr .

11This is one reason why 0! is defined to be 1.
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Proof. The first equation is the definition of the binomial coefficients, and the
second equation replaces

(n
r

)
by the value given in Pascal’s theorem. •

Corollary 1.17 (Binomial Theorem). For all real numbers a and b and for
all integers n ≥ 1,

(a + b)n =
n∑

r=0

(
n

r

)
an−r br =

n∑

r=0

( n!
r !(n − r)!

)
an−r br .

Proof. The result is trivially true when a = 0 (if we agree that 00 = 1). If
a 6= 0, set x = b/a in Corollary 1.16, and observe that

(
1 +

b

a

)n
=
(a + b

a

)n
=
(a + b)n

an
.

Therefore,

(a + b)n = an
(

1 +
b

a

)n
= an

n∑

r=0

(
n

r

)
br

ar
=

n∑

r=0

(
n

r

)
an−r br . •

Remark. The binomial theorem can be proved without first proving Corol-
lary 1.16; just prove the formula for (a + b)n by induction on n ≥ 0. We have
chosen the proof above for clearer exposition. �

Here is a combinatorial interpretation of the binomial coefficients. Given a
set X , an r-subset is a subset of X with exactly r elements. If X has n elements,
denote the number of its r -subsets by

[n, r ];

that is, [n, r ] is the number of ways one can choose r things from a box of n
things.

We compute [n, r ] by considering a related question. Given an “alphabet”
with n (distinct) letters and a number r with 1 ≤ r ≤ n, an r-anagram is a
sequence of r of these letters with no repetitions. For example, the 2-anagrams
on the alphabet a, b, c are

ab, ba, ac, ca, bc, cb

(note that aa, bb, cc are not on this list). How many r -anagrams are there on an
alphabet with n letters? We count the number of such anagrams in two ways.

(1) There are n choices for the first letter; since no letter is repeated, there
are only n −1 choices for the second letter, only n −2 choices for the third letter,
and so forth. Thus, the number of r -anagrams is

n(n − 1)(n − 2) · · · (n − [r − 1]) = n(n − 1)(n − 2) · · · (n − r + 1).
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Note the special case n = r : the number of n-anagrams on n letters is n!.
(2) Here is a second way to count these anagrams. First choose an r -subset

of the alphabet (consisting of r letters); there are [n, r ] ways to do this, for this
is exactly what the symbol [n, r ] means. For each chosen r -subset, there are r !
ways to arrange the r letters in it (this is the special case of our first count when
n = r ). The number of r -anagrams is thus

r ![n, r ].

We conclude that

r ![n, r ] = n(n − 1)(n − 2) · · · (n − r + 1),

from which it follows, by Pascal’s formula, that

[n, r ] = n(n − 1)(n − 2) · · · (n − r + 1)/r ! =
(

n

r

)
.

This is why the binomial coefficient
(n

r

)
is often pronounced as “n choose r .”

As an example, how many ways are there to choose 2 hats from a closet
containing 14 different hats? (One of my friends does not like the phrasing of
this question. After all, one can choose 2 hats with one’s left hand, with one’s
right hand, with one’s teeth, . . . ; but I continue the evil tradition.) The answer is(14

2

)
, and Pascal’s formula allows us to compute this as (14 × 13)/2 = 91.

Our first interpretation of the binomial coefficients
(n

r

)
was algebraic; that

is, as coefficients of polynomials which can be calculated by Pascal’s formula;
our second interpretation is combinatorial; that is, as n choose r . Quite often,
each interpretation can be used to prove a desired result. For example, here is a
combinatorial proof of Lemma 1.14. Let X be a set with n + 1 elements, and

let us color one of its elements red and the other n elements blue. Now
(n+1

r

)
is the number of r -subsets of X . There are two possibilities for an r -subset Y :
either it contains the red element or it is all blue. If Y contains the red element,
then Y consists of the red element and r − 1 blue elements, and so the number of
such Y is the same as the number of all blue (r −1)-subsets, namely,

( n
r−1

)
. The

other possibility is that Y is all blue, and there are
(n

r

)
such r -subsets. Therefore,(n+1

r

)
=
( n

r−1

)
+
(n

r

)
, as desired.

We are now going to apply the binomial theorem to trigonometry, but we
begin by reviewing properties of the complex numbers. Recall that the modulus
|z| of a complex number z = a + ib is defined to be

|z| =
√

a2 + b2.

If we identify a complex number z = a + ib with the point (a, b) in the plane,
then its modulus |z| is the distance from z to the origin. It follows that every
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complex number z of modulus 1 corresponds to a point on the unit circle, and
so it has coordinates (cos θ, sin θ) for some angle θ (in the right triangle O P A
in Figure 1.7, we have cos θ = |O A|/|O P| = |O A|, because |O P| = 1, and
sin θ = |P A|/|O P| = |P A|).

(a, b)

(1, 0)

r = |z|

=  z

P = (cos   , sin  )

AO

Figure 1.7 (a, b) = r(cos θ + i sin θ)

Proposition 1.18 (Polar Decomposition). Every complex number z has a fac-
torization

z = r(cos θ + i sin θ),

where r = |z| ≥ 0 and 0 ≤ θ < 2π.

Proof. If z = 0, then |z| = 0 and any choice of θ works. If z = a+bi 6= 0, then
|z| 6= 0. Now z/|z| = a/|z| + ib/|z| has modulus 1, for (a/|z|)2 + (b/|z|)2 =
(a2 + b2)/|z|2 = 1. Therefore, there is an angle θ with

z

|z|
= cos θ + i sin θ,

and so z = |z|(cos θ + i sin θ) = r(cos θ + i sin θ). •

If z = a + ib = r(cos θ + i sin θ), then (r, θ) are the polar coordinates12 of
z; this is the reason Proposition 1.18 is called the polar decomposition of z.

The trigonometric addition formulas for cos(θ + ψ) and sin(θ + ψ) have a
lovely translation in the language of complex numbers.

12A pole is an axis about which rotation occurs. For example, the axis of the Earth has
endpoints the North and South Poles. Here, we take the pole to be the z-axis (perpendicular
to the plane).
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Proposition 1.19 (Addition Theorem). If

z = cos θ + i sin θ and w = cosψ + i sinψ,

then

zw = cos(θ + ψ)+ i sin(θ + ψ).

Proof.

zw = (cos θ + i sin θ)(cosψ + i sinψ)

= (cos θ cosψ − sin θ sinψ)+ i(sin θ cosψ + cos θ sinψ).

The trigonometric addition formulas show that

zw = cos(θ + ψ)+ i sin(θ + ψ). •

The addition theorem gives a geometric interpretation of complex multipli-
cation: if z = r(cos θ + i sin θ) and w = s(cosψ + i sinψ), then

zw = rs[cos(θ + ψ)+ i sin(θ + ψ)],

and the polar coordinates of zw are

(rs, θ + ψ).

Corollary 1.20. If z and w are complex numbers, then

|zw| = |z| |w|.

Proof. If the polar decompositions of z and w are z = r(cos θ + i sin θ) and
w = s(cosψ+i sinψ), respectively, then we have just seen that |z| = r , |w| = s,
and |zw| = rs. •

It follows from this corollary that if z and w lie on the unit circle, then their
product zw also lies on the unit circle.

In 1707, A. De Moivre (1667–1754) proved the following elegant result.

Theorem 1.21 (De Moivre). For every real number x and every positive inte-
ger n,

cos(nx)+ i sin(nx) = (cos x + i sin x)n.
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Proof. We prove De Moivre’s theorem by induction on n ≥ 1. The base step
n = 1 is obviously true. For the inductive step,

(cos x + i sin x)n+1 = (cos x + i sin x)n(cos x + i sin x)

= [cos(nx)+ i sin(nx)](cos x + i sin x)

(inductive hypothesis)

= cos(nx + x)+ i sin(nx + x)

(addition formula)

= cos([n + 1]x)+ i sin([n + 1]x). •

Example 1.22.
Let us find the value of (cos 3◦ + i sin 3◦)40. By De Moivre’s theorem,

(cos 3◦ + i sin 3◦)40 = cos 120◦ + i sin 120◦ = − 1
2 + i

√
3

2 . �

Here are the double and triple angle formulas.

Corollary 1.23.

(i) cos(2x) = cos2 x − sin2 x = 2 cos2 x − 1

sin(2x) = 2 sin x cos x .

(ii) cos(3x) = cos3 x − 3 cos x sin2 x = 4 cos3 x − 3 cos x

sin(3x) = 3 cos2 x sin x − sin3 x = 3 sin x − 4 sin3 x .

Proof.
(i)

cos(2x)+ i sin(2x) = (cos x + i sin x)2

= cos2 x + 2i sin x cos x + i2 sin2 x

= cos2 x − sin2 x + i(2 sin x cos x).

Equating real and imaginary parts gives both double angle formulas.

(ii) De Moivre’s theorem gives

cos(3x)+ i sin(3x) = (cos x + i sin x)3

= cos3 x + 3i cos2 x sin x + 3i2 cos x sin2 x + i3 sin3 x

= cos3 x − 3 cos x sin2 x + i(3 cos2 x sin x − sin3 x).

Equality of the real parts gives cos(3x) = cos3 x − 3 cos x sin2 x ; the second
formula for cos(3x) follows by replacing sin2 x by 1 − cos2 x . Equality of the
imaginary parts gives sin(3x) = 3 cos2 x sin x − sin3 x = 3 sin x − 4 sin3 x ; the
second formula arises by replacing cos2 x by 1 − sin2 x . •
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Corollary 1.23 will be generalized in Proposition 1.24. If f2(x) = 2x2 − 1,
then

cos(2x) = 2 cos2 x − 1 = f2(cos x),

and if f3(x) = 4x3 − 3x , then

cos(3x) = 4 cos3 x − 3 cos x = f3(cos x).

Proposition 1.24. For all n ≥ 1, there is a polynomial fn(x) having all coeffi-
cients integers such that

cos(nx) = fn(cos x).

Proof. By De Moivre’s theorem,

cos(nx)+ i sin(nx) = (cos x + i sin x)n

=
n∑

r=0

(
n

r

)
(cos x)n−r(i sin x)r .

The real part of the left side, cos(nx), must be equal to the real part of the right
side. Now i r is real if and only if13 r is even, and so

cos(nx) =
n∑

r even

(
n

r

)
(cos x)n−r(i sin x)r .

If r = 2k, then i r = i2k = (−1)k , and

cos(nx) =
bn/2c∑

k=0

(−1)k
(

n

2k

)
(cos x)n−2k sin2k x

(bn/2c denotes the largest integer m with m ≤ n/2).14 But sin2k x = (sin2 x)k =
(1 − cos2 x)k , which is a polynomial in cos x . This completes the proof. •

It is not difficult to show that fn(x) begins with 2n−1xn . A sine version of
Proposition 1.24 can be found in Exercise 1.31 on page 33.

13The converse of an implication “If P is true, then Q is true” is the implication “If Q is
true, then P is true.” An implication may be true without its converse being true. For example,
“If a = b, then a 2 = b2.” The phrase if and only if means that both the statement and its
converse are true.

14bxc, called the floor of x or the greatest integer in x , is the largest integer m with m ≤ x .
For example, b3c = 3 and bπc = 3.
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We are now going to present a beautiful formula discovered by Euler, but we
begin by recalling some power series formulas from calculus to see how it arises.
For every real number x ,

ex = 1 + x +
x2

2!
+ · · · +

xn

n!
+ · · · ,

cos x = 1 −
x2

2!
+

x4

4!
− · · · +

(−1)nx2n

(2n)!
+ · · · ,

and

sin x = x −
x3

3!
+

x5

5!
− · · · +

(−1)nx2n+1

(2n + 1)!
+ · · · .

One can define convergence of any power series
∑∞

n=0 cnzn , where z and cn
are complex numbers, and one can show that the series

1 + z +
z2

2!
+ · · · +

zn

n!
+ · · ·

converges for every complex number z; the complex exponential ez is defined
to be the sum of this series.

Euler’s Theorem. For all real numbers x ,

ei x = cos x + i sin x .

Proof. (Sketch) Now

ei x = 1 + i x +
(i x)2

2!
+ · · · +

(i x)n

n!
+ · · · .

As n varies over 0, 1, 2, 3, . . ., the powers of i repeat every four steps: that is,
in takes values

1, i,−1,−i, 1, i,−1,−i, 1, . . . .

Thus, the even powers of i x do not involve i , whereas the odd powers do. Col-
lecting terms, one has ei x = even terms + odd terms, where

even terms = 1 +
(i x)2

2!
+
(i x)4

4!
+ · · ·

= 1 −
x2

2!
+

x4

4!
− · · · = cos x
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and

odd terms = i x +
(i x)3

3!
+
(i x)5

5!
+ · · · .

= i
(

x −
x3

3!
+

x5

5!
− · · ·

)
= i sin x .

Therefore, ei x = cos x + i sin x . •
It is said that Euler was especially pleased with the equation

eπ i = −1;

indeed, this formula is inscribed on his tombstone.
As a consequence of Euler’s theorem, the polar decomposition can be rewrit-

ten in exponential form: Every complex number z has a factorization

z = reiθ ,

where r ≥ 0 and 0 ≤ θ < 2π .
The addition theorem and De Moivre’s theorem can be restated in complex

exponential form. The first becomes

ei x eiy = ei(x+y);

the second becomes
(ei x)n = einx .

Definition. If n ≥ 1 is an integer, then an nth root of unity is a complex number
ζ with ζ n = 1.

Corollary 1.25. Every nth root of unity ζ is equal to

e2π ik/n = cos(2πk/n)+ i sin(2πk/n),

for some k with 0 ≤ k ≤ n − 1.

Proof. If ζ = cos(2π/n) + i sin(2π/n), then De Moivre’s theorem, Theo-
rem 1.21, gives

ζ n = [cos(2π/n)+ i sin(2π/n)]n

= cos(n2π/n)+ i sin(n2π/n)

= cos(2π)+ i sin(2π)

= 1,
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so that ζ is an nth root of unity. Finally, if k is an integer, then ζ n = 1 implies
(ζ k)n = (ζ n)k = 1k = 1, and so ζ k = cos(2πk/n) + i sin(2πk/n) is also an
nth root of unity.

Conversely, assume that ζ is an nth root of unity. By the polar decom-
position, Proposition 1.18, we have ζ = cos θ + i sin θ (because |ζ | = 1).
By De Moivre’s theorem, 1 = ζ n = cos nθ + i sin nθ . Since cos θ = 1 if
and only if θ = 2kπ for some integer k, we have nθ = 2kπ ; that is, ζ =
cos(2kπ/n)+ i sin(2kπ/n). It is clear that we may choose k so that 0 ≤ k < n
because cos x is periodic with period 2π . •

Corollary 1.20 states that |zw| = |z| |w| for any complex numbers z and w.
It follows that if ζ is an nth root of unity, then 1 = |ζ n | = |ζ |n , so that |ζ | = 1
and ζ lies on the unit circle. Given a positive integer n, let θ = 2π/n and let
ζ = eiθ . The polar coordinates of ζ are (1, θ), the polar coordinates of ζ 2 are
(1, 2θ), the polar coordinates of ζ 3 are (1, 3θ),. . . , the polar coordinates of ζ n−1

are (1, (n −1)θ), and the polar coordinates of ζ n = 1 are (1, nθ) = (1, 0). Thus,
the nth roots of unity are evenly spaced around the unit circle. Figure 1.8 shows
the 8th roots of unity (here, θ = 2π/8 = π/4).

i

1

− i

−1

(−1 + i) (1 + i)

(−1 − i) (1 − i)


√12

√12 √12

√12

Figure 1.8 8th Roots of Unity

Just as there are two square roots of a number a, namely,
√

a and −
√

a, there
are n different nth roots of a, namely, e2π ik/n n

√
a for k = 0, 1, . . . , n − 1. For

example, the cube roots of unity are 1,

ζ = cos 120◦ + i sin 120◦ = − 1
2 + i

√
3

2

and
ζ 2 = cos 240◦ + i sin 240◦ = − 1

2 − i
√

3
2 .

There are 3 cube roots of 2, namely, 3
√

2, ζ 3
√

2, and ζ 2 3
√

2.
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Every nth root of unity is, of course, a root of the polynomial x n − 1. There-
fore,

xn − 1 =
∏

ζ n=1

(x − ζ ).

If ζ is an nth root of unity, and if n is the smallest positive integer for which
ζ n = 1, we say that ζ is a primitive n th root of unity. For example, ζ = e2π i/n

is a primitive nth root of unity. Now i is an 8th root of unity, for i 8 = 1; it is not
a primitive 8th root of unity, but it is a primitive 4th root of unity.

Lemma 1.26. Let ζ be a primitive dth root of unity. If ζ n = 1, then d must be
a divisor of n.

Proof. By long division, n/d = q + r/d , where q and r are natural numbers
and 0 ≤ r/d < 1; that is, n = qd + r , where 0 ≤ r < d . But

1 = ζ n = ζ qd+r = ζ qdζ r = ζ r ,

because ζ qd = (ζ d )q = 1. If r 6= 0, we contradict d being the smallest exponent
for which ζ d = 1. Hence, n = qd , as claimed. •

Definition. If d is a positive integer, then the dth cyclotomic15 polynomial is
defined by

8d (x) =
∏
(x − ζ ),

where ζ ranges over all the primitive dth roots of unity.

In Proposition 3.47, we will prove that all the coefficients of 8d (x) are inte-
gers.

The following result is almost obvious.

Proposition 1.27. For every integer n ≥ 1,

xn − 1 =
∏

d|n
8d (x),

where d ranges over all the positive divisors d of n [in particular, 81(x) and
8n(x) occur].

15The roots of xn − 1 are the nth roots of unity: 1, ζ, ζ 2, . . . , ζ n−1, where ζ = e2π i/n =
cos(2π/n)+ i sin(2π/n). Now these roots divide the unit circle {ζ ∈ � : |z| = 1} into n equal
arcs (see Figure 1.8). This explains the term cyclotomic, for its Greek origin means “circle
splitting.”
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Proof. In light of Corollary 1.25, the proposition follows by collecting, for each
divisor d of n, all terms in the equation xn − 1 =

∏
(x − ζ ) with ζ a primitive

dth root of unity. •

For example, if p is a prime, then x p − 1 = 81(x)8p(x). Since 81(x) =
x − 1, it follows that

8p(x) = x p−1 + x p−2 + · · · + x + 1.

Definition. The Euler φ-function is the degree of the nth cyclotomic polyno-
mial:

φ(n) = deg(8n(x)).

In Proposition 1.39, we will give another description of the Euler φ-function
that does not depend on roots of unity.

Corollary 1.28. For every integer n ≥ 1, we have

n =
∑

d|n
φ(d).

Proof. Note that φ(n) is the degree of 8n(x), and use the fact that the degree
of a product of polynomials is the sum of the degrees of the factors. •

Where do the names of the trigonometric functions come from? The cir-

O

A B

C

E

D

1

Figure 1.9 Etymology of
Trigonometric Names

cle in Figure 1.9 is the unit circle, and so the coordinates of the point A are
(cosα, sinα); that is, |O D| = cosα and |AD| = sinα. The reader may show
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that |BC| = tanα (the Latin word tangere means “to touch,” and a tangent is
a line which touches the circle in only one point), and that |O B| = secα (the
Latin word secare means “to cut,” and a secant is a line that cuts a circle). The
complement of an acute angle α is 90◦ − α, and so the name cosine arises from
that of sine because of the identity cosα = sin(90◦ − α).

The reason for the term sine is more amusing. We see in Figure 1.9 that

sinα = |AD| = 1
2 |AE |;

that is, sinα is half the length of the chord AE . The fifth century Indian mathe-
matician Aryabhata called the sine ardha-jya (half chord) in Sanskrit, which was
later abbreviated to jya. A few centuries later, books in Arabic transliterated jya
as jiba. In Arabic script, there are letters and diacritical marks; roughly speak-
ing, the letters correspond to our consonants, while the diacritical marks corre-
spond to our vowels. It is customary to suppress diacritical marks in writing;
for example, the Arabic version of jiba is written jb (using Arabic characters,
of course). Now jiba, having no other meaning in Arabic, eventually evolved
into jaib, which is an Arabic word, meaning “bosom of a dress” (a fine word, but
having absolutely nothing to do with half-chord). Finally, Gherardo of Cremona,
ca. 1150, translated jaib into its Latin equivalent, sinus. And this is why sine is
so called, for sinus means bosom!

As long as we are discussing etymology, why is a root so called? Just as
the Greeks called the bottom side of a triangle its base (as in the area formula
1
2 altitude × base), they also called the bottom side of a square its base. A natural
question for the Greeks was: Given a square of area A, what is the length of its
side? Of course, the answer is

√
A. Were we inventing a word for

√
A, we might

have called it the base of A or the side of A. Similarly, consider the analogous
three-dimensional question: given a cube of volume V , what is the length of its
edge? The answer 3

√
V might be called the cube base of V , and

√
A might then

be called the square base of A. Why, then, do we call these numbers cube root
and square root? What has any of this to do with plants?

Since tracing the etymology of words is not a simple matter, we only suggest
the following explanation. Through about the fourth and fifth centuries, most
mathematics was written in Greek, but, by the fifth century, India had become
a center of mathematics, and important mathematical texts were also written in
Sanskrit. The Sanskrit term for square root is pada. Both Sanskrit and Greek are
Indo-European languages, and the Sanskrit word pada is a cognate of the Greek
word podos; both mean base in the sense of the foot of a pillar or, as above, the
bottom of a square. In both languages, however, there is a secondary meaning:
the root of a plant. In translating from Sanskrit, Arab mathematicians chose the
secondary meaning, perhaps in error (Arabic is not an Indo-European language),
perhaps for some unknown reason. For example, the influential book by al-
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Khwarizmi, Al-jabr w’al muqabala,16 which appeared in the year 830, used the
Arabic word jidhr, meaning root of a plant. (The word algebra is a European
version of the first word in the title of this book; the author’s name has also
come into the English language as the word algorithm.) This mistranslation has
since been handed down through the centuries; the term jidhr became standard
in Arabic mathematical writings, and European translations from Arabic into
Latin used the word radix (meaning root, as in radish or radical). The notation
r2 for

√
2 occurs in European writings from about the twelfth century (but the

square root symbol did not arise from the letter r ; it evolved from an old dot
notation). However, there was a competing notation in use at the same time, for
some scholars who translated directly from the Greek denoted

√
2 by l2, where

l abbreviates the Latin word latus, meaning side. Finally, with the invention of
logarithms in the 1500s, r won out over l, for the notation l2 was then commonly
used to denote log 2. The passage from square root to cube root to the root
of a polynomial equation other than x2 − a and x3 − a is a natural enough
generalization. Thus, as pleasant as it would be, there seems to be no botanical
connection with roots of equations.

EXERCISES

1.24 Prove that the binomial theorem holds for complex numbers: if u and v are com-
plex numbers, then

(u + v)n =
n∑

r=0

(
n

r

)
un−rvr .

*1.25 Show that the binomial coefficients are “symmetric”:
(

n

r

)
=
(

n

n − r

)

for all r with 0 ≤ r ≤ n.
*1.26 Show, for every n, that the sum of the binomial coefficients is 2n :

(
n

0

)
+
(

n

1

)
+
(

n

2

)
+ · · · +

(
n

n

)
= 2n .

1.27 (i) Show, for every n ≥ 1, that the “alternating sum” of the binomial coeffi-
cients is zero:

(
n

0

)
−
(

n

1

)
+
(

n

2

)
− · · · + (−1)n

(
n

n

)
= 0.

16One can translate this title from Arabic, but the words already had a technical meaning:
both jabr and muqabala refer to certain operations akin to subtracting the same number from
both sides of an equation.
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(ii) Use part (i) to prove, for a given n, that the sum of all the binomial co-
efficients

(n
r

)
with r even is equal to the sum of all those

(n
r

)
with r

odd.
1.28 Prove that if n ≥ 2, then

n∑

r=1

(−1)r−1r

(
n

r

)
= 0.

*1.29 If 0 ≤ r ≤ n, prove that (
n

r

)
=

n

r

(
n − 1

r − 1

)
.

1.30 Let ε1, . . . , εn be complex numbers with |ε j | = 1 for all j , where n ≥ 2.
(i) Prove that

∣∣∣
n∑

j=1

ε j

∣∣∣ ≤
n∑

j=1

∣∣ε j
∣∣ = n.

(ii) Prove that there is equality,

∣∣∣
n∑

j=1

ε j

∣∣∣ = n,

if and only if all the ε j are equal.
*1.31 For all odd n ≥ 1, prove that there is a polynomial gn(x), all of whose coefficients

are integers, such that
sin(nx) = gn(sin x).

1.32 (Star of David) Prove, for all n > r ≥ 1, that
(

n − 1

r − 1

)(
n

r + 1

)(
n + 1

r

)
=
(

n − 1

r

)(
n

r − 1

)(
n + 1

r + 1

)
.

(n−1
r−1

)

UUUUUUUUUUUUUUUUUUUUUUUUU

(n−1
r

)

( n
r−1

)

iiiiiiiiiiiiiiiiiiiiiiiii

UUUUUUUUUUUUUUUUUUUUUUUUU

(n
r

) ( n
r+1

)

(n+1
r

)

iiiiiiiiiiiiiiiiiiiiiiiii (n+1
r+1

)

1.33 (i) What is the coefficient of x16 in (1 + x)20?
(ii) How many ways are there to choose 4 colors from a palette containing

paints of 20 different colors?
1.34 Give at least two different proofs that a set X with n elements has exactly 2n sub-

sets.
1.35 A weekly lottery asks you to select 5 different numbers between 1 and 45. At the

week’s end, 5 such numbers are drawn at random, and you win the jackpot if all
your numbers match the drawn numbers. What is your chance of winning?
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Definition. Define the n th derivative f(n)(x) of a function f (x) inductively: set f (0)(x) =
f (x) and, if n ≥ 0, define f(n+1)(x) = ( f (n))′(x).

1.36 Assume that “term-by-term” differentiation holds for power series: if f (x) = c 0 +
c1x + c2x2 + · · · + cn xn + · · · , then the power series for the derivative f ′(x) is

f ′(x) = c1 + 2c2x + 3c3x2 + · · · + ncn xn−1 + · · · .

(i) Prove that f (0) = c0.
(ii) Prove, for all n ≥ 0, that

f (n)(x) = n!cn + (n + 1)!cn+1x + x2gn(x),

where gn(x) is some power series .
(iii) Prove that cn = f (n)(x)(0)/n! for all n ≥ 0. (Of course, this is Taylor’s

formula.)
*1.37 (Leibniz) A function f : � → � is called a C∞-function if it has an nth derivative

f (n)(x) for every n ≥ 0. Prove that if f and g are C∞-functions, then

( f g)(n)(x) =
n∑

k=0

(
n

k

)
f (k)(x) · g(n−k)(x).

1.38 (i) If z = a + ib 6= 0, prove that

1

z
=

a

a2 + b2 − i
b

a2 + b2 .

(ii) If z lies on the unit circle, prove that z−1 = z.
1.39 Find

√
i .

*1.40 (i) If z = r [cos θ + i sin θ ], show that

w = n
√

r [cos(θ/n)+ i sin(θ/n)]

is an nth root of z, where r ≥ 0.
(ii) Show that every nth root of z has the form ζ kw, where ζ is a primitive

nth root of unity and k = 0, 1, 2, . . . , n − 1.

1.41 (i) Find
√

8 + 15i .
(ii) Find all the fourth roots of 8 + 15i .

1.3 GREATEST COMMON DIVISORS

This is an appropriate time to introduce notation for some popular sets of num-
bers other than

�
(denoting the integers) and

�
(denoting the natural numbers).

�
= the set of all rational numbers (or fractions), that is, all numbers of the form

a/b, where a and b are integers and b 6= 0 (after the word quotient)
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� = the set of all real numbers
�

= the set of all complex numbers

Long division involves dividing an integer b by a nonzero integer a, giving

b

a
= q +

r

a
,

where q is an integer and 0 ≤ r/a < 1. We clear denominators to get a statement
wholly in

�
.

Theorem 1.29 (Division Algorithm). Given integers a and b with a 6= 0,
there exist unique integers q and r with

b = qa + r and 0 ≤ r < |a|.

Proof. We will prove the theorem in the special case in which a > 0 and b ≥ 0;
Exercise 1.42 on page 51 asks the reader to complete the proof. Long division
involves finding the largest integer q with qa ≤ b, which is the same thing as
finding the smallest nonnegative integer of the form b − qa. We formalize this.

The set C of all nonnegative integers of the form b − na, where n ≥ 0, is
not empty because it contains b = b − 0a (we are assuming that b ≥ 0). By the
Least Integer Axiom, C contains a smallest element, say, r = b − qa (for some
q ≥ 0); of course, r ≥ 0, by its definition. If r ≥ a, then

b − (q + 1)a = b − qa − a = r − a ≥ 0.

Hence, r−a = b−(q+1)a is an element of C that is smaller than r , contradicting
r being the smallest integer in C . Therefore, 0 ≤ r < a.

It remains to prove the uniqueness of q and r . Suppose that b = qa + r =
q ′a + r ′, where 0 ≤ r, r ′ < a, so that

(q − q ′)a = r ′ − r.

We may assume that r ′ ≥ r , so that r ′ − r ≥ 0 and hence q − q ′ ≥ 0. If q 6= q ′,
then q − q ′ ≥ 1 (for q − q ′ is an integer); thus, since a > 0,

(q − q ′)a ≥ a.

On the other hand, since r ′ < a, Proposition A.2 gives

r ′ − r < a − r ≤ a.

Therefore, (q − q ′)a ≥ a and r ′ − r < a, contradicting the given equation
(q − q ′)a = r ′ − r . We conclude that q = q ′ and hence r = r ′. •
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Definition. If a and b are integers with a 6= 0, then the integers q and r oc-
curring in the division algorithm are called the quotient and the remainderafter
dividing b by a.

For example, there are only two possible remainders after dividing by 2,
namely, 0 and 1. A number m is even if the remainder is 0; m is odd if the
remainder is 1. Thus, either m = 2q or m = 2q + 1.

Warning! The division algorithm makes sense, in particular, when b is neg-
ative. A careless person may assume that b and −b leave the same remainder
after dividing by a, and this is usually false. For example, let us divide 60 and
−60 by 7.

60 = 7 · 8 + 4 and − 60 = 7 · (−9)+ 3.

Thus, the remainders after dividing 60 and −60 by 7 are different (see Exer-
cise 1.77 on page 71).

The next result shows that there is no largest prime.

Corollary 1.30. There are infinitely many primes.

Proof. (Euclid) Suppose, on the contrary, that there are only finitely many
primes. If p1, p2, . . . , pk is the complete list of all the primes, define M =
(p1 · · · pk)+1. By Theorem 1.2, M is either a prime or a product of primes. But
M is neither a prime (M > pi for every i ) nor does it have any prime divisor
pi , for dividing M by pi gives remainder 1 and not 0. For example, dividing
M by p1 gives M = p1(p2 · · · pk) + 1, so that the quotient and remainder are
q = p2 · · · pk and r = 1; dividing M by p2 gives M = p2(p1 p3 · · · pk)+ 1, so
that q = p1 p3 · · · pk and r = 1; and so forth. The assumption that there are only
finitely many primes leads to a contradiction, and so there must be an infinite
number of them. •

An algorithm solving a problem is a set of directions which gives the correct
answer after a finite number of steps, never at any stage leaving the user in doubt
as to what to do next. The division algorithm is an algorithm in this sense: one
starts with a and b and ends with q and r . The appendix at the end of the book
treats algorithms more formally, using pseudocodes, which are general directions
that can easily be translated into a programming language. For example, here is
a pseudocode for the division algorithm.

1: Input: b ≥ a > 0
2: Output: q, r
3: q := 0; r := b
4: WHILE r ≥ a DO
5: r := r − a
6: q := q + 1
7: END WHILE
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Definition. If a and b are integers, then a is a divisor of b if there is an integer
d with b = ad (synonyms are a divides b and also b is a multiple of a). We
denote this by

a | b.

Note that 3 | 6, because 6 = 3×2, but that 3 � 5 (that is, 3 does not divide 5):
even though 5 = 3 × 5

3 , the fraction 5
3 is not an integer. The numbers ±1 and ±b

are divisors of any integer b. We always have b | 0 (because 0 = b × 0); on the
other hand, if 0 | b, then b = 0 (because there is some d with b = 0 × d = 0).

If a and b are integers with a 6= 0, then a is a divisor of b if and only if the
remainder r given by the division algorithm is 0. If a is a divisor of b, then the
remainder r given by the division algorithm is 0; conversely, if the remainder r
is 0, then a is a divisor of b.

Definition. A common divisor of integers a and b is an integer c with c | a and
c | b. The greatest common divisor of a and b, denoted by gcd(a, b) [or, more
briefly, by (a, b)], is defined by

gcd(a, b) =
{

0 if a = 0 = b

the largest common divisor of a and b otherwise.

The notation (a, b) for the gcd is, obviously, the same notation used for the
ordered pair. The reader should have no difficulty understanding the intended
meaning from the context in which the symbol occurs.

If a and m are positive integers with a | m, say, m = ab, we claim that
a ≤ m. Since 0 < b, we have 1 ≤ b, because b is an integer, and so a ≤ ab = m.
It follows that gcd’s always exist.

If c is a common divisor of a and b, then so is −c. Since one of ±c is
nonnegative, the gcd is always nonnegative. It is easy to check that if at least one
of a and b is nonzero, then (a, b) > 0.

Proposition 1.31. If p is a prime and b is any integer, then

(p, b) =
{

p if p | b

1 otherwise.

Proof. A common divisor c of p and a is, of course, a divisor of p. But the
only positive divisors of p are p and 1, and so (p, a) = p or 1; it is p if p | a,
and it is 1 otherwise. •
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Definition. A linear combination of integers a and b is an integer of the form

sa + tb,

where s and t are integers.

The next result is one of the most useful properties of gcd’s.

Theorem 1.32. If a and b are integers, then gcd(a, b) is a linear combination
of a and b.

Proof. We may assume that at least one of a and b is not zero (otherwise, the
gcd is 0 and the result is obvious). Consider the set I of all the linear combina-
tions:

I = {sa + tb : s, t in
� }.

Both a and b are in I (take s = 1 and t = 0 or vice versa). It follows that I
contains positive integers (if a 6= 0, then I contains ±a), and hence the set P of
all those positive integers that lie in I is nonempty. By the Least Integer Axiom,
P contains a smallest positive integer, say, d , which we claim is the gcd.

Since d is in I , it is a linear combination of a and b: there are integers s and
t with

d = sa + tb.

Let us show that d is a common divisor by trying to divide each of a and b
by d . The division algorithm gives a = qd + r , where 0 ≤ r < d . If r > 0, then

r = a − qd = a − q(sa + tb) = (1 − qs)a + (−qt)b is in P,

contradicting d being the smallest element of P . Hence r = 0 and d | a; a
similar argument shows that d | b.

Finally, if c is a common divisor of a and b, then a = ca ′ and b = cb′, so
that c divides d , for d = sa + tb = c(sa′ + tb′). But if c | d , then |c| ≤ d , and
so d is the gcd of a and b. •

If d = gcd(a, b) and if c is a common divisor of a and b, then c ≤ d . The
next theorem shows that more is true: c | d for every common divisor c.

Corollary 1.33. Let a and b be integers. A nonnegative common divisor d is
their gcd if and only if c | d for every common divisor c.

Proof. Necessity (i.e., the implication ⇒) That every common divisor c of a
and b is a divisor of d = sa + tb, has already been proved at the end of the proof
of Theorem 1.32.

Sufficiency (i.e., the implication ⇐) Let d denote the gcd of a and b, and let
d ′ be a nonnegative common divisor divisible by every common divisor c. Thus,
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d ′ ≤ d , because c ≤ d is for every common divisor c. On the other hand, d itself
is a common divisor, and so d | d ′, by hypothesis. Hence, d ≤ d ′, and so d = d ′.

•

The proof of Theorem 1.32 contains an idea that will be used again.

Corollary 1.34. Let I be a subset of
�

such that

(i) 0 is in I ;
(ii) if a and b are in I , then a − b is in I ;

(iii) if a is in I and q is in
�

, then qa is in I .

Then there is a nonnegative integer d in I with I consisting precisely of all the
multiples of d.

Proof. If I consists of only the single integer 0, take d = 0. If I contains a
nonzero integer a, then (−1)a = −a is in I , by (iii). Thus, I contains ±a, one
of which is positive. By the Least Integer Axiom, I contains a smallest positive
integer; call it d .

We claim that every element a in I is a multiple of d . The division algorithm
gives integers q and r with a = qd + r , where 0 ≤ r < d . Since d is in I , so is
qd , by (iii), and so (ii) gives r = a − qd in I . But r < d , the smallest positive
element of I , and so r = 0; thus, a is a multiple of d . •

The next result is of great interest, for it gives one of the most important
characterizations of prime numbers. Euclid’s lemma is used frequently (at least
ten times in this chapter alone), and an analog of it for irreducible polynomials
is equally important. Looking further ahead, this lemma motivates the notion of
prime ideal.

Theorem 1.35 (Euclid’s Lemma). If p is a prime and p | ab, then p | a or
p | b. More generally, if a prime p divides a product a1a2 · · · an , then it must
divide at least one of the factors ai . Conversely, if m ≥ 2 is an integer such that
m | ab always implies m | a or m | b, then m is a prime.

Proof. Assume that p � a; that is, p does not divide a; we must show that
p | b. Now the gcd (p, a) = 1, by Proposition 1.31. By Theorem 1.32, there are
integers s and t with 1 = sp + ta, and so

b = spb + tab.

Since p | ab, we have ab = pc for some integer c, so that b = spb + tpc =
p(sb + tc) and p | b. The second statement now follows easily by induction on
n ≥ 2.
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We prove the contrapositive: if m is composite, then there is a product ab
divisible by m, yet neither factor is divisible by m. Since m is composite, m =
ab, where a < m and b < m. Thus, m divides ab, but m divides neither factor
(if m | a, then m ≤ a). •

Here is a concrete illustration showing that Euclid’s lemma is not true in
general: 6 | 12 = 4 × 3, but 6 � 4 and 6 � 3.

Proposition 1.36. If p is a prime, then p |
(

p

j

)
for 0 < j < p.

Proof. Recall that
(

p

j

)
=

p!
j !(p − j )!

=
p(p − 1) · · · (p − j + 1)

j !
.

Cross multiplying gives

j !
(

p

j

)
= p(p − 1) · · · (p − j + 1),

so that p | j !
( p

j

)
. If p | j !, then Euclid’s lemma says that p would have to divide

some factor 1, 2, . . . , j of j !. Since 0 < j < p, each factor of j ! is strictly less
than p, and so p is not a divisor of any of them. Therefore, p � j !. As p | j !

(p
j

)
,

Euclid’s lemma now shows that p must divide
(p

j

)
. •

Notice that the assumption that p is prime is needed; for example,
(4

2

)
= 6,

but 4 � 6.

Definition. Call integers a and b relatively prime if their gcd is 1.

Thus, a and b are relatively prime if their only common divisors are ±1;
moreover, 1 is a linear combination of a and b. For example, 2 and 3 are rela-
tively prime, as are 8 and 15.

Here is a generalization of Euclid’s lemma having the same proof.

Corollary 1.37. Let a, b, and c be integers. If c and a are relatively prime and
if c | ab, then c | b.

Proof. By hypothesis, ab = cd for some integer d . There are integers s and t
with 1 = sc + ta, and so b = scb + tab = scb + tcd = c(sb + td). •

We see that it is important to know proofs: Corollary 1.37 does not follow
from the statement of Euclid’s lemma, but it does follow from its proof.
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Definition. An expression a/b for a rational number (where a and b are inte-
gers) is in lowest terms if a and b are relatively prime.

Lemma 1.38. Every nonzero rational number r has an expression in lowest
terms.

Proof. Since r is rational, r = a/b for integers a and b. If d = (a, b), then
a = a′d , b = b′d , and a/b = a′d/b′d = a′/b′. But (a′, b′) = 1, for if d ′ > 1
is a common divisor of a′ and b′, then d ′d > d is a larger common divisor of a
and b. •

Here is a description of the Euler φ-function that does not mention cyclo-
tomic polynomials.

Proposition 1.39. If n ≥ 1 is an integer, then φ(n) is the number of integers k
with 1 ≤ k ≤ n and (k, n) = 1.

Proof. It suffices to prove that e2π ik/n is a primitive nth root of unity if and
only if k and n are relatively prime.

If k and n are not relatively prime, then n = dr and k = ds, where d , r ,
and s are integers, and d > 1; it follows that r < n. Hence, k

n = ds
dr = s

r , so
that (e2π ik/n)r = (e2π is/r)r = 1, and hence e2π ik/n is not a primitive nth root of
unity.

Conversely, suppose that ζ = e2π ik/n is not a primitive nth root of unity.
Lemma 1.26 says that ζ must be a dth root of unity for some divisor d of n with
d < n; that is, there is 1 ≤ m ≤ d with

ζ = e2π ik/n = e2π im/d = e2π imr/dr = e2π imr/n.

Since both k and mr are in the range between 1 and n, it follows that k = mr (if
0 ≤ x, y < 1 and e2π i x = e2π iy , then x = y); that is, r is a divisor of k and of n,
and so k and n are not relatively prime. •

Proposition 1.40.
√

2 is irrational.

Proof. Suppose, on the contrary, that
√

2 is rational; that is,
√

2 = a/b. We
may assume that a/b is in lowest terms; that is, (a, b) = 1. Squaring, a2 = 2b2.
By Euclid’s lemma17, 2 | a, so that 2m = a, hence 4m2 = a2 = 2b2, and
2m2 = b2. Euclid’s lemma now gives 2 | b, contradicting (a, b) = 1. •

17This proof can be made more elementary; one needs only Proposition 1.11.
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This last result is significant in the history of mathematics. The ancient
Greeks defined number to mean positive integer, while (positive) rational num-
bers were viewed as “ratios” a : b (which we can interpret as fractions a/b).
That

√
2 is irrational was a shock to the Pythagoreans (around 600 BC), for it

told them that
√

2 could not be defined in terms of numbers (positive integers)
alone. On the other hand, they knew that the diagonal of a square having sides
of length 1 has length

√
2. Thus, there is no numerical solution to the equation

x2 = 2, but there is a geometric solution. By the time of Euclid, (around 325 BC),
this problem was resolved by splitting mathematics into two different disciplines:
algebra and geometry. This resolution is probably one of the main reasons that
the golden age of classical mathematics declined in Europe after the rise of the
Roman Empire. For example, there were geometric ways of viewing addition,
subtraction, multiplication, and division of segments (see Theorem 4.46), but it
was virtually impossible to do any algebra. A sophisticated geometric argument
(due to Eudoxus and given in Euclid’s Elements) was needed to prove the version
of cross-multiplication saying that if a : b = c : d , then a : c = b : d .

We quote van der Waerden, Science Awakening, page 125:

Nowadays we say that the length of the diagonal is the “irrational
number”

√
2, and we feel superior to the poor Greeks who “did

not know irrationals.” But the Greeks knew irrational ratios very well
. . . That they did not consider

√
2 as a number was not a result of

ignorance, but of strict adherence to the definition of number. Arith-
mos means quantity, therefore whole number. Their logical rigor did
not even allow them to admit fractions; they replaced them by ratios
of integers.

For the Babylonians, every segment and every area simply repre-
sented a number . . . When they could not determine a square root
exactly, they calmly accepted an approximation. Engineers and nat-
ural scientists have always done this. But the Greeks were concerned
with exact knowledge, with “the diagonal itself,” as Plato expresses
it, not with an acceptable approximation.

In the domain of numbers (positive integers), the equation x 2 = 2
cannot be solved, not even in that of ratios of numbers. But it is
solvable in the domain of segments; indeed the diagonal of the unit
square is a solution. Consequently, in order to obtain exact solutions
of quadratic equations, we have to pass from the domain of num-
bers (positive integers) to that of geometric magnitudes. Geometric
algebra is valid also for irrational segments and is nevertheless an
exact science. It is therefore logical necessity, not the mere delight
in the visible, which compelled the Pythagoreans to transmute their
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algebra into a geometric form.

Even though the Greek definition of number is no longer popular, their di-
chotomy still persists. For example, almost all American high schools teach one
year of algebra followed by one year of geometry, instead of two years in which
both subjects are developed together. The problem of defining number has arisen
several times since the classical Greek era. In the 1500s, mathematicians had to
deal with negative numbers and with complex numbers (see our discussion of
cubic polynomials in Chapter 5); the description of real numbers generally ac-
cepted today dates from the late 1800s. There are echos of ancient Athens in our
time. L. Kronecker (1823–1891) wrote,

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Men-
schenwerk.

God created the integers; everything else is the work of Man. Even today some
logicians argue for a new definition of number.

Our discussion of gcd’s is incomplete. What is the gcd (12327, 2409)? To
ask the question another way, is the expression 2409/12327 in lowest terms? The
next result not only enables one to compute gcd’s efficiently, it also allows one
to compute integers s and t expressing the gcd as a linear combination18. Before
giving the theorem, consider the following example. Since (2, 3) = 1, there are
integers s and t with 1 = 2s + 3t . A moment’s thought gives s = −1 and t = 1;
but another moment’s thought gives s = 2 and t = −1. We conclude that the
coefficients s and t expressing the gcd as a linear combination are not uniquely
determined. The algorithm below, however, always picks out a particular pair of
coefficients.

Theorem 1.41 (Euclidean Algorithm). Let a and b be positive integers. There
is an algorithm that finds the gcd d = (a, b), and there is an algorithm that finds
a pair of integers s and t with d = sa + tb.

Remark. The general case for arbitrary a and b follows from this, for (a, b) =
(|a|, |b|). �

Proof. The idea is to keep repeating the division algorithm (we will show where
this idea comes from after the proof is completed). Let us set b = r0 and a = r1.

18Every positive integer is a product of primes, and this is used, in Proposition 1.52, to
compute gcd’s. However, finding prime factorizations of large numbers is notoriously difficult;
indeed, it is the basic reason why public key cryptography is secure.
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Repeated application of the division algorithm gives integers qi , positive integers
ri , and equations:

b = q1a + r2, r2 < a

a = r1 = q2r2 + r3, r3 < r2

r2 = q3r3 + r4, r4 < r3

...
...

rn−3 = qn−2rn−2 + rn−1, rn−1 < rn−2

rn−2 = qn−1rn−1 + rn, rn < rn−1

rn−1 = qnrn

(remember that all q j and r j are explicitly known from the division algorithm).
Notice that there is a last remainder; the procedure stops because the remainders
form a strictly decreasing sequence of nonnegative integers (indeed, the number
of steps needed is less than a. Proposition 1.43 gives a smaller bound on the
number of steps).

We use Corollary 1.33 to show that the last remainder d = rn is the gcd. Let
us rewrite the top equations of the euclidean algorithm without subscripts.

b = qa + r

a = q ′r + s.

If c is a common divisor of a and b, then the first equation shows that c | r .
Going down to the second equation, we now know that c | a and c | r , and
so c | s. Continuing down the list, we see that c divides every remainder; in
particular, c | d .

Let us now rewrite the bottom equations of the euclidean algorithm without
subscripts.

f = ug + h

g = u′h + k

h = u′′k + d

k = vd.

Going from the bottom up, we have d | k and d | d , so that d | h; going up again,
d | h and d | k imply d | g. Working upwards ultimately gives d | a and d | b.
We conclude that d is a common divisor. But d = (a, b) because we saw, in the
preceding paragraph, that if c is any common divisor, then c | d .

We now find s and t , again working from the bottom up. Rewrite the equa-
tion h = u′′k + d as d = h − u′′k. Substituting in the next equation above,

d = h − u′′k = h − u′′(g − u′h) = (1 + u′′u′)h − u′′g,
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so that d is a linear combination of g and h. Continue this procedure, replacing
h by f − ug, and so on, until d is written as a linear combination of a and b. •

We say that n is the number of steps in the Euclidean algorithm, for one does
not know whether rn in the (n − 1)st step rn−2 = qn−1rn−1 + rn is the gcd until
the division algorithm is applied to rn−1 and rn .

Example 1.42.
Find (326, 78), express it as a linear combination of 326 and 78, and write
78/326 in lowest terms.

326 = 4 × 78 + 14 (1)

78 = 5 × 14 + 8 (2)

14 = 1 × 8 + 6 (3)

8 = 1 × 6 + 2 (4)

6 = 3 × 2 . (5)

The Euclidean algorithm gives (326, 78)= 2.
We now express 2 as a linear combination of 326 and 78, working from the

bottom up using the equations above.

2 = 8 − 1 6 by Eq.(4)

= 8 − 1
(

14 − 1 8
)

by Eq.(3)

= 2 8 − 1 14

= 2
(

78 − 5 14
)

− 1 14 by Eq.(2)

= 2 78 − 11 14

= 2 78 − 11
(

326 − 4 78
)

by Eq.(1)

= 46 78 − 11 326 ;

thus, s = 46 and t = −11.
Dividing numerator and denominator by the gcd, namely, 2, gives 78/326 =

39/163, and the last expression is in lowest terms. �

The Greek terms for the Euclidean algorithm are antanairesis or anthy-
phairesis, either of which may be freely translated as “back and forth subtrac-
tion.” Exercise 1.56 on page 52 says that (b, a) = (b − a, a). If b − a ≥ a,
repeat to get (b, a) = (b − a, a) = (b − 2a, a). Keep subtracting until a pair a
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and b − qa (for some q) is reached with b − qa < a. Thus, if r = b − qa, where
0 ≤ r < a, then

(b, a) = (b − a, a) = (b − 2a, a) = · · · = (b − qa, a) = (r, a).

Now change direction: repeat the procedure beginning with the pair (r, a) =
(a, r), for a > r ; eventually one reaches (d, 0) = d .

For example, antanairesis computes the gcd (326, 78) as follows:

(326, 78) = (248, 78)= (170, 78)= (92, 78) = (14, 78).

So far, we have been subtracting 78 from the other larger numbers. At this point,
we now subtract 14 (this is the reciprocal aspect of antanairesis), for 78 > 14.

(78, 14) = (64, 14) = (50, 14) = (36, 14) = (22, 14) = (8, 14).

Again we change direction:

(14, 8) = (6, 8).

Change direction once again to get (8, 6) = (2, 6), and change direction one last
time to get

(6, 2) = (4, 2) = (2, 2) = (0, 2) = 2.

Thus, gcd (326, 78) = 2.
The division algorithm (which is just iterated subtraction!) is a more efficient

way of performing antanairesis. There are four subtractions in the passage from
(326, 78) to (14, 78); the division algorithm expresses this as

326 = 4 × 78 + 14.

There are then five subtractions in the passage from (78, 14) to (8, 14); the divi-
sion algorithm expresses this as

78 = 5 × 14 + 8.

There is one subtraction in the passage from (14, 8) to (6, 8):

14 = 1 × 8 + 6.

There is one subtraction in the passage from (8, 6) to (2, 6):

8 = 1 × 6 + 2,

and there are three subtractions from (6, 2) to (0, 2) = 2:

6 = 3 × 2.

These are the steps in the Euclidean algorithm.
The Euclidean algorithm was one of the first algorithms for which an explicit

bound on the number of its steps in a computation was given. The proof of this
involves the Fibonacci sequence

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for all n ≥ 2.
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Proposition 1.43 (Lamé’s19 Theorem). Let b ≥ a be positive integers, and
let δ(a) be the number of digits in the decimal expression of a. If n is the number
of steps in the Euclidean algorithm computing the gcd (b, a), then

n ≤ 5δ(a).

Proof. Let us denote b by r0 and a by r1 in the equations of the euclidean
algorithm on page 44, so that every equation there has the form

r j = r j+1q j+1 + r j+2

except the last one, which is
rn−1 = rnqn.

Note that qn ≥ 2: if qn ≤ 1, then rn−1 ≤ qnrn−1 = rn , contradicting rn < rn−1.
Similarly, all q1, q2, . . . , qn−1 ≥ 1: otherwise q j = 0 for some j ≤ n − 1, and
r j−1 = r j+1, contradicting the strict inequalities rn < rn−1 < · · · < r1 = b.

Now
rn ≥ 1 = F2

and, since qn ≥ 2,

rn−1 = rnqn ≥ 2rn ≥ 2F2 ≥ 2 = F3.

More generally, let us prove, by induction on j ≥ 0, that

rn− j ≥ F j+2.

The inductive step is

rn− j−1 = rn− j qn− j + rn− j+1

≥ rn− j + rn− j+1 (since qn− j ≥ 1)

≥ F j+2 + F j+1 = F j+3.

We conclude that a = r1 = rn−(n−1) ≥ Fn−1+2 = Fn+1. By Corollary 1.13,
Fn+1 > αn−1, where α = 1

2 (1 +
√

5), and so

a > αn−1.

19This is an example in which a theorem’s name is not that of its discoverer. Lamé’s proof
appeared in 1844. The earliest estimate for the number of steps in the Euclidean algorithm can
be found in a rare book by Simon Jacob, published around 1564. There were also estimates
by T. F. de Lagny in 1733, A-A-L Reynaud in 1821, E. Léger in 1837, and P-J-E Finck in
1841. (This earlier work is described in articles of P. Shallit and P. Schreiber, respectively, in
the journal Historica Mathematica.)
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Now log10 α ≈ log10(1.62) ≈ .208 > 1
5 , so that

log10 a > (n − 1) log10 α > (n − 1)/5;

that is,
n − 1 < 5 log10 a < 5δ(a),

because δ(a) = blog10 ac + 1, and so n ≤ 5δ(a) because δ(a), hence 5δ(a), is
an integer. •

For example, Lam é’s theorem guarantees there are at most 10 steps needed
to compute (326, 78) (actually, there are 5 steps).

The usual notation for the integer 5754 is an abbreviation of

5 × 103 + 7 × 102 + 5 × 10 + 4.

The next result shows that there is nothing special about the number 10; any
integer b ≥ 2 can be used instead of 10.

Proposition 1.44. If b ≥ 2 is an integer, then every positive integer m has an
expression in base b: there are integers di with 0 ≤ di < b such that

m = dkbk + dk−1bk−1 + · · · + d0;

moreover, this expression is unique if dk 6= 0.

Remark. The numbers dk, . . . , d0 are called the b-adic digits of m. �

Proof. Let m be a positive integer; since b ≥ 2, there are powers of b larger
than m. We prove, by induction on k ≥ 0, that if bk ≤ m < bk+1, then m has an
expression

m = dkbk + dk−1bk−1 + · · · + d0

in base b.
If k = 0, then 1 = b0 ≤ m < b1 = b, and we may define d0 = m. If k > 0,

then the division algorithm gives integers dk and r with m = dkbk + r , where
0 ≤ r < bk . Notice that dk < b (lest m ≥ bk+1) and 0 < dk (lest m < bk).
If r = 0, define d0 = · · · = dk−1 = 0, and m = dkbk is an expression in base
b. If r > 0, then the inductive hypothesis shows that r and, hence, m has an
expression in base b.

Before proving uniqueness of the b-adic digits di , we first observe that if
0 ≤ di < b for all i , then

k∑

i=0

di b
i < bk+1 : (6)
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k∑

i=0

di b
i ≤

k∑

i=0

(b − 1)bi =
k∑

i=0

bi+1 −
k∑

i=0

bi = bk+1 − 1 < bk+1.

We now prove, by induction on k ≥ 0, that if bk ≤ m < bk+1, then the
b-adic digits di in the expression m =

∑k
i=0 di bi are uniquely determined by m.

Let m =
∑k

i=0 di bi =
∑k

i=0 ci bi , where 0 ≤ di < b and 0 ≤ ci < b for all i .
Subtracting, we obtain

0 =
k∑

i=0

(di − ci )b
i .

Eliminate any zero coefficients, and transpose all negative coefficients di − ci , if
any, to obtain an equation in which all coefficients are positive and in which the
index sets I and J are disjoint:

L =
∑

i in I

(di − ci )b
i =

∑

j in J

(c j − d j )b
j = R.

Let p be the largest index in I and let q be the largest index in J . Since I
and J are disjoint, we may assume that q < p. As the left side L involves b p

with a nonzero coefficient, we have L ≥ b p; but Eq. (6) shows that the right
side R < bq+1 ≤ b p, a contradiction. Therefore, the b-adic digits are uniquely
determined. •

Example 1.45.
Let us follow the steps in the proof of Proposition 1.44 to write 12345 in base 7.
First write the powers of 7 until 12345 is exceeded: 7; 72 = 49; 73 = 343;
74 = 2401; 75 = 16807. Repeated use of the division algorithm gives

12345 = 5 × 74 + 340 and 340 < 74 = 2401;
340 = 0 × 73 + 340 and 340 < 73 = 343;
340 = 6 × 72 + 46 and 46 < 72 = 49;

46 = 6 × 7 + 4 and 4 < 7;
4 = 4 × 1.

The 7-adic digits of 12345 are thus 50664.
In short, the first 7-adic digit (on the left) is the quotient q (here, it is 5) after

dividing by 7k , where 7k ≤ m < 7k+1. The second digit is the quotient after
dividing the remainder m − q7k by 7k−1. And so on; the 7-adic digits are the
successive quotients. �
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The most popular bases are b = 10 (giving everyday decimal digits), b = 2
(giving binary digits, useful because a computer can interpret 1 as “on” and 0 as
“off”), and b = 16 (hexadecimal, also for computers), but let us see that other
bases can also be useful.

Example 1.46.
Here is a problem of Bachet de M éziriac from 1624. A merchant had a 40-pound
weight that broke into 4 pieces. When the pieces were weighed, it was found that
each piece was a whole number of pounds and that the four pieces could be used
to weigh every integral weight between 1 and 40 pounds. What were the weights
of the pieces?

Weighing means using a balance scale having two pans, with weights being
put on either pan. Thus, given weights of 1 and 3 pounds, one can weigh a
2-pound weight � by putting 1 and � on one pan and 3 on the other pan.

A solution to Bachet’s problem is 1, 3, 9, 27. If � denotes a given integral
weight, let us write the weights on one pan to the left of the semicolon and the
weights on the other pan to the right of the semicolon. The number in bold-
face is the weight of � . The reader should note that Proposition 1.44 gives the
uniqueness of the weights used in the pans.

1 1 ; � 9 9 ; �
2 3 ; 1, � 10 9, 1 ; �
3 3 ; � 11 9, 3 ; 1, �
4 3, 1 ; � 12 9, 3 ; �
5 9 ; 3, 1, � 13 9, 3, 1 ; �
6 9 ; 3, � 14 27 ; 9, 3, 1, �
7 9, 1 ; 3, � 15 27 ; 9, 3, �
8 9 ; 1, �

The reader may complete this table for � ≤ 40. �

Example 1.47.
Given a balance scale, the weight (as an integral number of pounds) of any person
weighing at most 364 pounds can be found using only six lead weights.

We begin by proving that every positive integer m can be written

m = ek3k + ek−13k−1 + · · · + 3e1 + e0,

where ei = −1, 0, or 1.
The idea is to modify the 3-adic expansion

m = dk3k + dk−13k−1 + · · · + 3d1 + d0.
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where di = 0, 1, 2, by “carrying.” If d0 = 0 or 1, set e0 = d0 and leave d1 alone.
If d0 = 2, set e0 = −1, and replace d1 by d1 + 1 (we have merely substituted
3 − 1 for 2). Now 1 ≤ d1 + 1 ≤ 3. If d1 + 1 = 1, set e1 = 1, and leave d2 alone;
if d1 +1 = 2, set e1 = −1, and replace d2 by d2 +1; if d1 +1 = 3, define e1 = 0
and replace d2 by d2 +1. Continue in this way (the ultimate expansion of m may
begin with either ek3k or ek+13k+1). Here is a table of the first few numbers in
this new expansion (let us write 1̄ instead of −1).

1 1 9 100
2 11̄ 10 101
3 10 11 111̄
4 11 12 110
5 11̄1̄ 13 111
6 11̄0 14 11̄1̄1̄
7 11̄1 15 11̄1̄0
8 101̄

The reader should now understand Example 1.46. If � weighs m pounds,
write m =

∑
ei 3i , where ei = 1, 0, or −1, and then transpose those terms

having negative coefficients. Those weights with ei = −1 go on the pan with � ,
while those weights with ei = 1 go on the other pan.

The solution to the current weighing problem involves choosing as weights
1, 3, 9, 27, 81, and 243 pounds. One can find the weight of anyone under 365
pounds, because 1 + 3 + 9 + 27 + 81 = 364. �

EXERCISES

*1.42 Given integers a and b (possibly negative) with a 6= 0, prove that there exist unique
integers q and r with b = qa + r and 0 ≤ r < |a|.

1.43 Prove that
√

2 is irrational using Proposition 1.11 instead of Euclid’s lemma.
1.44 Let p1, p2, p3, . . . be the list of the primes in ascending order: p1 = 2, p2 = 3,

p3 = 5, . . . Define fk = p1 p2 · · · pk + 1 for k ≥ 1. Find the smallest k for which
fk is not a prime.

*1.45 Prove that if d and d ′ are nonzero integers, each of which divides the other, then
d ′ = ±d .

1.46 If ζ is a root of unity, prove that there is a positive integer d with ζ d = 1 such that
whenever ζ k = 1, then d | k.

1.47 Show that every positive integer m can be written as a sum of distinct powers of 2;
show, moreover, that there is only one way in which m can so be written.

1.48 Find the b-adic digits of 1000 for b = 2, 3, 4, 5, and 20.
*1.49 (i) Prove that if n is squarefree (i.e., n > 1 and n is not divisible by the

square of any prime), then
√

n is irrational.

(ii) Prove that 3
√

2 is irrational.
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1.50 (i) Find the gcd d = (12327, 2409), find integers s and t with d = 12327s +
2409t , and put the fraction 2409/12327 in lowest terms.

(ii) Find the gcd d = (7563, 526), and express it as a linear combination of
7563 and 526.

(iii) Find gcd d = (7404621, 73122) and write it as a linear combination; that
is, find integers s and t with d = 7404621s + 73122t .

*1.51 Let a and b be integers, and let sa + tb = 1 for s, t in � . Prove that a and b are
relatively prime.

1.52 If d = (a, b), prove that a/d and b/d are relatively prime.
*1.53 Prove that if (r,m) = 1 = (r ′,m), then (rr ′,m) = 1.

1.54 Assume that d = sa+tb is a linear combination of integers a and b. Find infinitely
many pairs of integers (sk, tk) with

d = ska + tkb.

*1.55 If a and b are relatively prime and if each divides an integer n, then their product
ab also divides n.

*1.56 Prove, for any (possibly negative) integers a and b, that (b, a) = (b − a, a).
1.57 If a > 0, prove that a(b, c) = (ab, ac). [One must assume that a > 0 lest a(b, c)

be negative.]
1.58 Prove that the following pseudocode implements the Euclidean algorithm.

Input: a, b
Output: d
d := b; s := a
WHILE s > 0 DO

rem := remainder after dividing d by s
d := s
s := rem

END WHILE

1.59 If Fn denotes the nth term of the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . ., prove,
for all n ≥ 1, that Fn+1 and Fn are relatively prime.

Definition. A common divisor of integers a1, a2, . . . , an is an integer c with c | ai
for all i ; the largest of the common divisors, denoted by (a1, a2, . . . , an), is called the
greatest common divisor.

*1.60 (i) Show that if d is the greatest common divisor of a1, a2, . . . , an , then
d =

∑
ti ai , where ti is in � for 1 ≤ i ≤ n.

(ii) Prove that if c is a common divisor of a1, a2, . . . , an , then c | d .
1.61 (i) Show that (a, b, c), the gcd of a, b, c, is equal to (a, (b, c)).

(ii) Compute (120, 168, 328).
1.62 A Pythagorean triple is a triple (a, b, c) of positive integers for which

a2 + b2 = c2;
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it is called primitive if the gcd (a, b, c) = 1.
(i) Consider a complex number z = q + i p, where q > p are positive

integers. Prove that

(q2 − p2, 2qp, q2 + p2)

is a Pythagorean triple by showing that |z2| = |z|2. [One can prove that
every primitive Pythagorean triple (a, b, c) is of this type.]

(ii) Show that the Pythagorean triple (9, 12, 15) (which is not primitive) is
not of the type given in part (i).

(iii) Using a calculator which can find square roots but which can display only
8 digits, prove that

(19597501, 28397460, 34503301)

is a Pythagorean triple by finding q and p.

1.4 THE FUNDAMENTAL THEOREM OF ARITHMETIC

We have already seen, in Theorem 1.2, that every integer a ≥ 2 is either a prime
or a product of primes. We are now going to generalize Proposition 1.11 by
showing that the primes in such a factorization and the number of times each of
them occurs are uniquely determined by a.

Theorem 1.48 (Fundamental Theorem of Arithmetic). Every integer a ≥ 2
is a prime or a product of primes. Moreover, if a has factorizations

a = p1 · · · pm and a = q1 · · · qn,

where the p’s and q’s are primes, then n = m and the q’s may be reindexed so
that qi = pi for all i .

Proof. We prove the theorem by induction on `, the larger of m and n.
Base step. If ` = 1, then the given equation is a = p1 = q1, and the result

is obvious.
Inductive step. The equation gives pm | q1 · · · qn . By Theorem 1.35, Eu-

clid’s lemma, there is some i with pm | qi . But qi , being a prime, has no positive
divisors other than 1 and itself, so that qi = pm . Reindexing, we may assume
that qn = pm . Canceling, we have p1 · · · pm−1 = q1 · · · qn−1. By the inductive
hypothesis, n −1 = m −1 and the q’s may be reindexed so that qi = pi for all i .

•
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Corollary 1.49. If a ≥ 2 is an integer, then there are distinct primes pi , unique
up to indexing, and unique integers ei > 0 with

a = pe1
1 · · · pen

n .

Proof. Just collect like terms in a prime factorization. •

The uniqueness in the Fundamental Theorem of Arithmetic says that the
exponents e1, . . . , en in the prime factorization a = pe1

1 · · · pen
n are well-defined

integers determined by a.
It is sometimes convenient to allow factorizations pe1

1 · · · pen
n having some

zero exponents, for this device allows us to use the same primes when factoring
two given numbers. For example, 168 = 233171 and 60 = 223151 may be
rewritten as 168 = 23315071 and 60 = 22315170.

Corollary 1.50. Every positive rational number r 6= 1 has a unique factoriza-
tion

r = pg1
1 · · · pgn

n

where the pi are distinct primes and the gi are nonzero integers. Moreover, r is
an integer if and only if gi > 0 for all i .

Proof. There are positive integers a and b with r = a/b. If a = pe1
1 · · · pen

n

and b = p f1
1 · · · p fn

n , then r = pg1
1 · · · pgn

n , where gi = ei − fi (we may assume
that the same primes appear in both factorizations by allowing zero exponents).
The desired factorization is obtained if one deletes those factors pgi

i , if any, with
gi = 0.

Suppose there were another such factorization

r = ph1
1 · · · phn

n

(by allowing zero exponents, we may again assume that the same primes occur
in each factorization). Suppose that g j 6= h j for some j ; reindexing if necessary,
we may assume that j = 1 and that g1 > h1. Therefore,

pg1−h1
1 pg2

2 · · · pgn
n = ph2

2 · · · phn
n .

This is an equation of rational numbers, for some of the exponents may be nega-
tive. Cross-multiplying gives an equation in

�
whose left side involves the prime

p1 and whose right side does not; this contradicts the fundamental theorem of
arithmetic.

If all the exponents in the factorization of r are positive, then r is an integer
because it is a product of integers. Conversely, if r is an integer, then it has a
prime factorization in which all exponents are positive. •
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Lemma 1.51. Let positive integers a and b have prime factorizations

a = pe1
1 · · · pen

n and b = p f1
1 · · · p fn

n ,

where ei , fi ≥ 0 for all i . Then a | b if and only if ei ≤ fi for all i .

Proof. If ei ≤ fi for all i , then b = ac, where c = p f1−e1
1 · · · p fn−en

n . The
number c is an integer because fi − ei ≥ 0 for all i . Therefore, a | b.

Conversely, if b = ac, let the prime factorization of c be c = pg1
1 · · · pgn

n ,
where gi ≥ 0 for all i . It follows from the Fundamental Theorem of Arithmetic
that ei + gi = fi for all i , and so fi − ei = gi ≥ 0 for all i . •

Definition. A common multiple of a, b is an integer m with a | m and b | m.
The least common multiple, denoted by lcm(a, b) (or, more briefly, by [a, b]),
is the smallest positive common multiple if all a, b 6= 0, and it is 0 otherwise.

More generally, if n ≥ 2, a common multiple of a1, a2, . . . , an is an integer
m with ai | m for all i . The least common multiple, denoted by [a1, a2, . . . , an],
is the smallest positive common multiple if all ai 6= 0, and it is 0 otherwise.

We can now give a new description of gcd’s.

Proposition 1.52. Let a = pe1
1 · · · pen

n and let b = p f1
1 · · · p fn

n , where ei , fi ≥ 0
for all i ; define

mi = min{ei , fi} and Mi = max{ei , fi }.

Then

gcd(a, b) = pm1
1 · · · pmn

n and lcm(a, b) = pM1
1 · · · pMn

n .

Proof. Define d = pm1
1 · · · pmn

n . Lemma 1.51 shows that d is a (positive) com-
mon divisor of a and b; moreover, if c is any (positive) common divisor, then
c = pg1

1 · · · pgn
n , where 0 ≤ gi ≤ min{ei , fi} = mi for all i . Therefore, c | d .

A similar argument shows that D = pM1
1 · · · pMn

n is a common multiple that
divides every other such. •

For small numbers a and b, using their prime factorizations is a more effi-
cient way to compute their gcd than using the Euclidean algorithm. For example,
since 168 = 23315071 and 60 = 22315170, we have (168, 60) = 22315070 = 12
and [168, 60] = 23315171 = 840. As we mentioned when we introduced the
Euclidean algorithm, finding the prime factorization of a large integer is very
inefficient.
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Proposition 1.53. If a and b are positive integers, then

lcm(a, b) gcd(a, b) = ab.

Proof. The result follows from Proposition 1.52 if one uses the identity

mi + Mi = ei + fi ,

where mi = min{ei , fi } and Mi = max{ei , fi }. •
Of course, this proposition allows us to compute the lcm as ab/(a, b).

EXERCISES

1.63 (i) Find gcd(210, 48) using factorizations into primes.
(ii) Find gcd(1234, 5678).

*1.64 (i) Prove that an integer m ≥ 2 is a perfect square if and only if each of its
prime factors occurs an even number of times.

(ii) Prove that if m is a positive integer for which
√

m is rational, then m is
a perfect square. Conclude that if m is not a perfect square, then

√
m is

irrational.
1.65 If a and b are positive integers with (a, b) = 1, and if ab is a square, prove that

both a and b are squares.
*1.66 Let n = pr m, where p is a prime not dividing an integer m ≥ 1. Prove that

p � ( n
pr

)
.

1.67 Definition. If p is a prime, define the p-adic norm of a rational number a as
follows: ‖0‖p = 0; if a 6= 0, then a = pe pe1

1 · · · pen
n , where p, p1, . . . , pn are

distinct primes, and we set ‖a‖p = p−e .

(i) For all rationals a and b, prove that

‖ab‖p = ‖a‖p‖b‖p and ‖a + b‖p ≤ max{‖a‖p, ‖b‖p}.

(ii) Define δp(a, b) = ‖a − b‖p .
(i) For all rationals a, b, prove δp(a, b) ≥ 0 and δp(a, b) = 0 if and

only if a = b;
(ii) For all rationals a, b, prove that δp(a, b) = δp(b, a);
(iii) For all rationals a, b, c, prove δp(a, b) ≤ δp(a, c)+ δp(c, b).

(iii) If a and b are integers and pn | (a − b), then δp(a, b) ≤ p−n . (Thus, a
and b are “close” if a − b is divisible by a “large” power of n.)

1.68 Let a and b be in � . Prove that if δp(a, b) ≤ p−n , then a and b have the same first
n p-adic digits, d0, . . . , dn−1.

1.69 Prove that an integer M ≥ 0 is the lcm of a1, a2, . . . , an if and only if it is a
common multiple of a1, a2, . . . , an which divides every other common multiple.

*1.70 (i) Give another proof of Proposition 1.53, [a, b](a, b) = |ab|, without using
the Fundamental Theorem of Arithmetic.

(ii) Find [1371, 123].
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1.5 CONGRUENCES

When first learning long division, one emphasizes the quotient q; the remainder
r is merely the fragment left over. There is now going to be a shift in viewpoint:
we are interested in whether or not a given number b is a multiple of a number
a, but we are not so interested in which multiple it may be. Hence, from now on,
we will emphasize the remainder.

Two integers a and b are said to have the same parity if they are both even or
both odd. If a and b have the same parity, then a − b is even: this is surely true if
a and b are both even; if a and b are both odd, then a = 2m +1, b = 2n +1, and
a − b = 2(m − n) is even. Conversely, if a − b is even, then we cannot have one
of them even and the other odd lest a − b be odd. The next definition generalizes
this notion of parity, letting any positive integer m play the role of 2.

Definition. If m ≥ 0 is fixed, then integers a and b are congruent modulo m,
denoted by

a ≡ b mod m,

if m | (a − b).

Usually, one assumes that the modulus m ≥ 2 because the cases m = 0 and
m = 1 are not very interesting: if a and b are integers, then a ≡ b mod 0 if and
only if 0 | (a − b), that is, a = b, and so congruence mod 0 is ordinary equality.
The congruence a ≡ b mod 1 is true for every pair of integers a and b because
1 | (a − b) always. Hence, every two integers are congruent mod 1.

The word “modulo” is usually abbreviated to “mod.” The Latin root of this
word means a standard of measure. Thus, the term modular unit is used today
in architecture: a fixed length m is chosen, say, m = 1 foot, and plans are drawn
so that the dimensions of every window, door, wall, etc., are integral multiples
of m.

If a and b are positive integers, then a ≡ b mod 10 if and only if they have
the same last digit; more generally, a ≡ b mod 10n if and only if they have same
last n digits. For example, 526 ≡ 1926 mod 100.

London time is 6 hours later than Chicago time. What time is it in London if
it is 10:00 A.M. in Chicago? Since clocks are set up with 12 hour cycles, this is
really a problem about congruence mod 12. To solve it, note that

10 + 6 = 16 ≡ 4 mod 12,

and so it is 4:00 P.M. in London.
The next theorem shows that congruence mod m behaves very much like

equality.
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Proposition 1.54. If m ≥ 0 is a fixed integer, then for all integers a, b, c,

(i) a ≡ a mod m;

(ii) if a ≡ b mod m, then b ≡ a mod m;

(iii) if a ≡ b mod m and b ≡ c mod m, then a ≡ c mod m.

Remark. (i) says that congruence is reflexive, (ii) says it is symmetric, and (iii)
says it is transitive. �

Proof.
(i) Since m | (a − a) = 0, we have a ≡ a mod m.
(ii) If m | (a − b), then m | −(a − b) = b − a and so b ≡ a mod m.
(iii) If m | (a − b) and m | (b − c), then m | [(a − b)+ (b − c)] = a − c, and so
a ≡ c mod m. •

We now generalize the observation that a ≡ 0 mod m if and only if m | a.

Proposition 1.55. Let m ≥ 0 be a fixed integer.

(i) If a = qm + r , then a ≡ r mod m.

(ii) If 0 ≤ r ′ < r < m, then r and r ′ are not congruent mod m; in symbols,
r 6≡ r ′ mod m.

(iii) a ≡ b mod m if and only if a and b leave the same remainder after dividing
by m.

Proof.
(i) The equation a − r = qm (from the division algorithm a = qm + r ) shows
that m | (a − r).
(ii) If r ≡ r ′ mod m, then m | (r − r ′) and m ≤ r − r ′. But r − r ′ ≤ r < m,
a contradiction.
(iii) If a = qm + r and b = q ′m + r ′, where 0 ≤ r < m and 0 ≤ r ′ < m, then
a − b = (q − q ′)m + (r − r ′); that is,

a − b ≡ r − r ′ mod m.

Therefore, if a ≡ b mod m, then a − b ≡ 0 mod m, hence r − r ′ ≡ 0 mod m,
and r ≡ r ′ mod m; by (ii), r = r ′.

Conversely, if r = r ′, then a = qm + r and b = q ′m + r , so that a − b =
(q ′ − q)m and a ≡ b mod m. •

Corollary 1.56. Given m ≥ 2, every integer a is congruent mod m to exactly
one of 0, 1, . . . ,m − 1.
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Proof. The division algorithm says that a ≡ r mod m, where 0 ≤ r < m;
that is, r is an integer on the list 0, 1,. . . , m − 1. If a were congruent to two
integers on the list, say, r and r ′, then r ≡ r ′ mod m, contradicting part (ii) of
Proposition 1.55. Therefore, a is congruent to a unique such r . •

We know that every integer a is either even or odd; that is, a has the form
2k or 1 + 2k. We now see that if m ≥ 2, then every integer a has exactly one of
the forms km = 0 + km, 1 + km, 2 + km, . . . , (m − 1)+ km; thus, congruence
mod m generalizes the even/odd dichotomy from m = 2 to m ≥ 2. Notice how
we continue to focus on the remainder in the division algorithm and not upon the
quotient.

Congruence is compatible with addition and multiplication.

Proposition 1.57. Let m ≥ 0 be a fixed integer.

(i) If ai ≡ a′
i mod m for i = 1, 2, . . . , n, then

a1 + · · · + an ≡ a′
1 + · · · + a′

n mod m.

In particular, if a ≡ a′ mod m and b ≡ b′ mod m, then

a + b ≡ a′ + b′ mod m.

(ii) If ai ≡ a′
i mod m for i = 1, 2, . . . , n, then

a1 · · · an ≡ a′
1 · · · a′

n mod m.

In particular, if a ≡ a′ mod m and b ≡ b′ mod m, then

ab ≡ a′b′ mod m.

(iii) If a ≡ b mod m, then an ≡ bn mod m for all n ≥ 1.

Proof.
(i) The proof is by induction on n ≥ 2. For the base step, if m | (a − a ′) and
m | (b − b′), then m | (a − a′ + b − b′) = (a + b) − (a′ + b′). Therefore,
a + b ≡ a′ + b′ mod m. The proof of the inductive step is routine.
(ii) The proof is by induction on n ≥ 2. For the base step, we must show that if
m | (a − a′) and m | (b − b′), then m | (ab − a′b′), and this follows from the
identity

ab − a′b′ = (ab − a′b)+ (a′b − a′b′)

= (a − a′)b + a′(b − b′).

Therefore, ab ≡ a′b′ mod m. The proof of the inductive step is routine.
(iii) This is the special case of (ii) when ai = a and a′

i = b for all i . •
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Let us repeat a warning given on page 36. A number and its negative usually
have different remainders after being divided by a number m. For example,
60 = 7 · 8 + 4 and −60 = 7 · (−9)+ 3. In terms of congruences,

60 ≡ 4 mod 7 while − 60 ≡ 3 mod 7.

In light of Proposition 1.55(i), if the remainder after dividing b by m is r and the
remainder after dividing −b by m is s, then b ≡ r mod m and −b ≡ s mod m.
Therefore, Proposition 1.57(i) gives

r + s ≡ b − b ≡ 0 mod m.

Thus, r + s = m, for 0 ≤ r, s < m. For example, we have just seen that the
remainders after dividing 60 and −60 by 7 are 4 and 3, respectively. If both a and
−a have the same remainder r after dividing by m, then −r ≡ r mod m; that is,
2r ≡ 0 mod m. Exercise 1.77 on page 71 asks you to solve this last congruence.

The next example shows how one can use congruences. In each case, the
key idea is to solve a problem by replacing numbers by their remainders.

Example 1.58.

(i) Prove that if a is in
�

, then a2 ≡ 0, 1, or 4 mod 8.

If a is an integer, then a ≡ r mod 8, where 0 ≤ r ≤ 7; moreover, by
Proposition 1.57(iii), a2 ≡ r2 mod 8, and so it suffices to look at the squares of
the remainders.

r 0 1 2 3 4 5 6 7

r2 0 1 4 9 16 25 36 49

r2 mod 8 0 1 4 1 0 1 4 1

Table 1.1. Squares mod 8

We see in Table 1.1 that only 0, 1, or 4 can be a remainder after dividing a perfect
square by 8.

(ii) Prove that n = 1003456789 is not a perfect square.

Since 1000 = 8 · 125, we have 1000 ≡ 0 mod 8, and so

1003456789 = 1003456 · 1000 + 789 ≡ 789 mod 8.

Dividing 789 by 8 leaves remainder 5; that is, n ≡ 5 mod 8. Were n a perfect
square, then n ≡ 0, 1, or 4 mod 8.
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(iii) If m and n are positive integers, are there any perfect squares of the form
3m + 3n + 1?

Again, let us look at remainders mod 8. Now 32 = 9 ≡ 1 mod 8, and so we
can evaluate 3m mod 8 as follows: if m = 2k, then 3m = 32k = 9k ≡ 1 mod 8;
if m = 2k + 1, then 3m = 32k+1 = 9k · 3 ≡ 3 mod 8. Thus,

3m ≡
{

1 mod 8 if m is even;
3 mod 8 if m is odd.

Replacing numbers by their remainders after dividing by 8, we have the follow-
ing possibilities for the remainder of 3m + 3n + 1, depending on the parities of
m and n:

3 + 1 + 1 ≡ 5 mod 8

3 + 3 + 1 ≡ 7 mod 8

1 + 1 + 1 ≡ 3 mod 8

1 + 3 + 1 ≡ 5 mod 8.

In no case is the remainder 0, 1, or 4, and so no number of the form 3m + 3n + 1
can be a perfect square, by part (i). �

Every positive integer is congruent to either 0, 1, or 2 mod 3; hence, if p 6= 3
is a prime, then either p ≡ 1 mod 3 or p ≡ 2 mod 3. For example, 7, 13, and 19
are congruent to 1 mod 3, while 2, 5, 11, and 17 ≡ 2 mod 3. The next theorem
is another illustration of the fact that a proof of one theorem may be adapted to
prove another theorem.

Proposition 1.59. There are infinitely many primes p with p ≡ 2 mod 3.

Remark. This proposition is a special case of a beautiful theorem of Dirichlet
about primes in arithmetic progressions: If a, b in

�
are relatively prime, then

there are infinitely many primes of the form a +bn. In this proposition, we show
that there are infinitely many primes of the form 2 + 3n. Even though the proof
of this special case is not difficult, the proof of Dirichlet’s theorem uses complex
analysis and it is deep. �

Proof. We mimic Euclid’s proof that there are infinitely many primes. Suppose,
on the contrary, that there are only finitely many primes congruent to 2 mod 3;
let them be p1, . . . , ps . Consider the number

m = 1 + p2
1 · · · p2

s .

Now pi ≡ 2 mod 3 implies p2
i ≡ 4 ≡ 1 mod 3, and so m ≡ 1 + 1 = 2 mod 3.

Since m > pi for all i , the number m is not prime, for it is not one of the pi .
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Actually, none of the pi divide m: if we define Q i = p2
1 · · · p2

i−1 pi p2
i+1 · · · p2

s ,
then the uniqueness part of the division algorithm coupled with the equation
m = pi Qi + 1 shows that m leaves remainder 1 after dividing by pi . Hence,
the prime factorization of m is m = q1 · · · qt , where, for each j , either q j = 3
or q j ≡ 1 mod 3. Thus, m = q1 · · · qt ≡ 0 mod 3 or m = q1 · · · qt ≡ 1 mod 3,
contradicting m ≡ 2 mod 3. •

The next result shows how congruence can simplify complicated expres-
sions.

Proposition 1.60. If p is a prime and a and b are integers, then

(a + b)p ≡ a p + b p mod p.

Proof. The binomial theorem gives

(a + b)p = a p + b p +
p−1∑

r=1

(
p

r

)
a p−rbr .

But Proposition 1.36 gives
( p

r

)
≡ 0 mod p for 0 < r < p, and so Proposi-

tion 1.57 gives (a + b)p ≡ a p + b p mod p. •

Theorem 1.61 (Fermat).

(i) If p is a prime, then
a p ≡ a mod p

for every a in
�

.

(ii) If p is a prime, then
a pk ≡ a mod p

for every a in
�

and every integer k ≥ 1.

Proof.
(i) Assume first that a ≥ 0; we proceed by induction on a. The base step a = 0
is plainly true. For the inductive step, observe that

(a + 1)p ≡ a p + 1 mod p,

by Proposition 1.60. The inductive hypothesis gives a p ≡ a mod p, and so
(a + 1)p ≡ a p + 1 ≡ a + 1 mod p, as desired.

Now consider −a, where a ≥ 0. If p = 2, then −a ≡ a; hence, (−a)2 =
a2 ≡ a ≡ −a mod 2. If p is an odd prime, then (−a)p = (−1)pa p ≡
(−1)pa ≡ −a mod p, as desired.
(ii) A straightforward induction on k ≥ 1; the base step is part (i). •
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Corollary 1.62. A positive integer a is divisible by 3 if and only if the sum of
its (decimal) digits is divisible by 3.

Proof. If the decimal form of a is dk . . .d1d0, then

a = dk10k + · · · + d110 + d0.

Now 10 ≡ 1 mod 3, so that Proposition 1.57(iii) gives 10i ≡ 1i = 1 mod 3 for
all i ; thus Proposition 1.57(i) gives a ≡ dk + · · · + d1 + d0 mod m. Therefore, a
is divisible by 3 if and only if a ≡ 0 mod 3 if and only if dk + · · · + d1 + d0 ≡
0 mod 3. •

Remark. Since 10 ≡ 1 mod 9, the same result holds if we replace 3 by 9 (it is
often called casting out 9’s): a positive integer a is divisible by 9 if and only if
the sum of its (decimal) digits is divisible by 9. �

Corollary 1.63. Let p be a prime and let n be a positive integer. If m ≥ 0 and
if 6 is the sum of the p-adic digits of m, then

nm ≡ n6 mod p.

Proof. Let m = dk pk + · · · + d1 p + d0 be the expression of m in base p.
By Fermat’s theorem, Theorem 1.61(ii), n pi ≡ n mod p for all i ; thus, ndi pi =
(ndi )pi ≡ ndi mod p. Therefore,

nm = ndk pk+···+d1 p+d0

= ndk pk
ndk−1 pk−1 · · · nd1 pnd0

≡ ndk ndk−1 · · · nd1nd0 mod p

≡ ndk+···+d1+d0 mod p

≡ n6 mod p. •

Example 1.64.
What is the remainder after dividing 312345 by 7? By Example 1.45, the 7-adic
digits of 12345 are 50664. Therefore, 312345 ≡ 321 mod 7 (because 5 + 0 + 6 +
6 + 4 = 21). The 7-adic digits of 21 are 30 (because 21 = 3 × 7), and so 321 ≡
33 mod 7 (because 3 + 0 = 3). We conclude that 312345 ≡ 33 = 27 ≡ 6 mod 7.

�

Theorem 1.65. If (a,m) = 1, then, for every integer b, the congruence

ax ≡ b mod m

can be solved for x; in fact, x = sb, where sa ≡ 1 mod m. Moreover, any two
solutions are congruent mod m.
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Remark. We consider the case (a,m) 6= 1 in Exercise 1.82 on page 71. �

Proof. Since (a,m) = 1, there is an integer s with as ≡ 1 mod m (because
there is a linear combination 1 = sa + tm). It follows that b = sab + tmb and
asb ≡ b mod m, so that x = sb is a solution. (Note that Proposition 1.55(i)
allows us to take s with 1 ≤ s < m.)

If y is another solution, then ax ≡ ay mod m, and so m | a(x − y). Since
(a,m) = 1, Corollary 1.37 gives m | (x − y); that is, x ≡ y mod m. •

Corollary 1.66. If p is prime, the congruence ax ≡ b mod p is always solvable
if a is not divisible by p.

Proof. Since p is a prime, p � a implies (a, p) = 1. •

Example 1.67.
When (a,m) = 1, Theorem 1.65 says that the solutions to ax ≡ b mod m are
precisely those integers of the form sb + km for k in

�
, where sa ≡ 1 mod m;

that is, where sa + tm = 1. Thus, s can always be found by the Euclidean
algorithm. However, when m is small, it is easier to find such an integer s by
trying each of ra = 2a, 3a, . . . , (m − 1)a in turn, at each step checking whether
ra ≡ 1 mod m.

For example, let us find all the solutions to

2x ≡ 9 mod 13.

Considering the products 2 · 2, 3 · 2, 4 · 2, . . . mod 13 quickly leads to 7 × 2 =
14 ≡ 1 mod 13; that is, s = 7 and x = 7 · 9 = 63 ≡ 11 mod 13. Therefore,

x ≡ 11 mod 13.

Thus, the solutions are . . . ,−15,−2, 11, 24, . . .. �

Example 1.68.
Find all the solutions to 51x ≡ 10 mod 94.

Since 94 is large, seeking an integer s with 51s ≡ 1 mod 94, as in Exam-
ple 1.67, can be tedious. The Euclidean algorithm gives 1 = −35 · 51 + 19 · 94,
and so s = −35. Therefore, the solutions consist of all those numbers congruent
to (−35)× 10 mod 94; that is, numbers of the form −350 + 94k. �

There are problems solved in ancient Chinese manuscripts that involve
simultaneous congruences with relatively prime moduli.
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Theorem 1.69 (Chinese Remainder Theorem). If m and m ′ are relatively
prime, then the two congruences

x ≡ b mod m

x ≡ b′ mod m′

have a common solution, and any two solutions are congruent mod mm ′.

Proof. Every solution of the first congruence has the form x = b + km for
some integer k; hence, we must find k such that b + km ≡ b′ mod m′; that is,
km ≡ b′ − b mod m′. Since (m,m ′) = 1, however, Theorem 1.65 applies at
once to show that such an integer k does exist.

If y is another common solution, then both m and m ′ divide x − y; by Exer-
cise 1.55 on page 52, mm ′ | (x − y), and so x ≡ y mod mm ′. •

Example 1.70.
Find all the solutions to the simultaneous congruences

x ≡ 7 mod 8

x ≡ 11 mod 15.

Every solution to the first congruence has the form

x = 7 + 8k,

for some integer k. Substituting, x = 7 + 8k ≡ 11 mod 15, so that

8k ≡ 4 mod 15.

But 2 · 8 = 16 ≡ 1 mod 15, so that multiplying by 2 gives

16k ≡ k ≡ 8 mod 15.

We conclude that x = 7 + 8 · 8 = 71 is a solution, and the Chinese Remainder
Theorem says that every solution has the form 71 + 120n for n in

�
. �

Example 1.71.
Solve the simultaneous congruences

x ≡ 2 mod 5

3x ≡ 5 mod 13.

Every solution to the first congruence has the form x = 5k + 2 for k in
�

.
Substituting into the second congruence, we have

3(5k + 2) ≡ 5 mod 13.
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Therefore,

15k + 6 ≡ 5 mod 13

2k ≡ −1 mod 13.

Now 7 × 2 ≡ 1 mod 13, and so multiplying by 7 gives

k ≡ −7 ≡ 6 mod 13.

By the Chinese Remainder Theorem, all the simultaneous solutions x have the
form

x ≡ 5k + 2 ≡ 5 · 6 + 2 = 32 mod 65;
that is, the solutions are

. . . ,−98,−33, 32, 97, 162, . . . . �

Example 1.72 (A Mayan Calendar).
A congruence arises whenever there is cyclic behavior. For example, suppose we
choose some particular Sunday as time zero and enumerate all the days according
to the time elapsed since then. Every date now corresponds to some integer
(which is negative if it occurred before time zero), and, given two dates t1 and
t2, we ask for the number x = t2 − t1 of days from one to the other. If, for
example, t1 falls on a Thursday and t2 falls on a Tuesday, then t1 ≡ 4 mod 7 and
t2 ≡ 2 mod 7, and so x = t2 − t1 = −2 ≡ 5 mod 7. Thus, x = 7k + 5 for
some k.

About 2500 years ago, the Maya of Central America and Mexico developed
three calendars (each having a different use). Their religious calendar, called
tzolkin, consisted of 20 “months,” each having 13 days (so that the tzolkin “year”
had 260 days). The months were

1. Imix 6. Cimi 11. Chuen 16. Cib
2. Ik 7. Manik 12. Eb 17. Caban
3. Akbal 8. Lamat 13. Ben 18. Etznab
4. Kan 9. Muluc 14. Ix 19. Cauac
5. Chicchan 10. Oc 15. Men 20. Ahau

Let us describe a tzolkin date by an ordered pair {m, d}, where 1 ≤ m ≤ 20
and 1 ≤ d ≤ 13 (thus, m denotes the month and d denotes the day). Instead
of enumerating as we do (so that Imix 1 is followed by Imix 2, then by Imix 3,
and so forth), the Maya let both month and day cycle simultaneously; that is, the
days proceed as follows:

Imix 1, Ik 2, Akbal 3,. . . , Ben 13, Ix 1, Men 2,. . . ,
Cauac 6, Ahau 7, Imix 8, Ik 9,. . . .
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We now ask how many days have elapsed between Oc 11 and Etznab 5.
More generally, let us find the number x of days that have elapsed from tzolkin
{m, d} to tzolkin {m ′, d ′}. As we remarked at the beginning of this example, the
cyclic behavior of the days gives the congruence

x ≡ d ′ − d mod 13

(e.g., there are 13 days between Imix 1 and Ix 1; here, x ≡ 0 mod 13), while the
cyclic behavior of the months gives the congruence

x ≡ m′ − m mod 20

(e.g., there are 20 days between Imix 1 and Imix 8; here, x ≡ 0 mod 20). To
answer the original question, Oc 11 corresponds to the ordered pair {10, 11} and
Etznab 5 corresponds to {18, 5}. The simultaneous congruences are thus

x ≡ −6 mod 13

x ≡ 8 mod 20.

Since (13, 20) = 1, we can solve this system as in the proof of the Chinese
Remainder Theorem. The first congruence gives

x = 13k − 6,

and the second gives
13k − 6 ≡ 8 mod 20;

that is,
13k ≡ 14 mod 20.

Since 13 × 17 = 221 ≡ 1 mod 20,20 we have k ≡ 17 × 14 mod 20, that is,

k ≡ 18 mod 20,

and so the Chinese Remainder Theorem gives

x = 13k − 6 ≡ 13 × 18 − 6 ≡ 228 mod 260.

It is not clear whether Oc 11 precedes Etznab 5 in a given year (one must look).
If it does, then there are 228 days between them; otherwise, there are 32 =
260 − 228 days between them. �

20One finds 17 either by trying each number between 1 and 19 or by using the Euclidean
algorithm.



68 NUMBER THEORY CH. 1

Example 1.73 (Public Key Cryptography).
In a war between A and B, spies for A learn of a surprise attack being planned
by B, and so they must send an urgent message back home. If B learns that its
plans are known to A, it will, of course, change them, and so A’s spies put the
message in code before sending it.

It is no problem to convert a message in English into a number. Make a list
of the 52 English letters (lower case and upper case) together with a space and
the 11 punctuation marks

, . ; : ! ? - ’ " ( )

In all, there are 64 symbols. Assign a two-digit number to each symbol. For
example,

a 7→ 01, . . . , z 7→ 26,A 7→ 27, . . . ,Z 7→ 52

space 7→ 53, . 7→ 54, , 7→ 55, . . . , ( 7→ 63, ) 7→ 64.

A cipher is a code in which distinct letters in the original message are replaced
by distinct symbols. It is not difficult to decode any cipher; indeed, many news-
papers print daily cryptograms to entertain their readers. In the cipher we have
just described, “I love you.” is encoded

I love you. = 3553121522055325152154.

Notice that each coded message in this cipher has an even number of digits, and
so decoding, converting the number into English, is a simple matter. Thus,

3553121522055325152154 = (35)(53)(12)(15)(22)(05)(53)(25)(15)(21)(54)

= I love you.

What makes a good code? If a message is a natural number x (and this is
no loss in generality), we need a way to encode x (in a fairly routine way so as
to avoid introducing any errors into the coded message), and we need a (fairly
routine) method for the recipient to decode the message. Of utmost importance
is security: an unauthorized reader of the (coded) message should not be able
to decode it. An ingenious way to find a code with these properties, now called
RSA public key cryptography, was found in 1978 by R. Rivest, A. Shamir, and
L. Adleman; they received the 2002 Turing Award for their discovery.

Given natural numbers N, s, and t , suppose that x st ≡ x mod N for every
natural number x . We can encode any natural number x < N as [x s]N , the
remainder of x s mod N , and we can decode this if we know the number t , for

(x s)t = x st ≡ x mod N .
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It remains to find numbers N, s, and t satisfying the several criteria for a good
code.

I : Ease of Encoding and Decoding.

Suppose that N has d (decimal) digits. It is enough to show how to encode
a number x with at most d digits, for we can subdivide a longer number into
blocks each having at most d digits. An efficient computation of x s mod N is
based on the fact that computing x2 mod N is an easy task for a computer. Since
computing x2i

is just computing i squares, this, too, is an easy task. Now write
the exponent s in base 2, so that computing x s is the same as multiplying several
squares. If m = 2i + 2 j + · · · + 2z , then xm = x2i+2 j +···+2z = x2i

x2 j · · · x2z
.

In short, computers can encode a message in this way with no difficulty.
Decoding involves computing (x s)t mod N , and this is also an easy task

(assuming t is known) if, as above, we write t in base 2.

II : Constructing N and m = st.

Choose distinct primes p and q, both congruent to 2 mod 3, and define N =
pq. If m ≥ p, then

xm = xm−px p ≡ xm−px = xm−(p−1) mod p,

by Fermat’s theorem. If m − (p − 1) ≥ p, we may repeat this, continuing until
we have

xm−(p−1) = xm−(p−1)−px p

≡ xm−(p−1)−px

= xm−2(p−1)

...

≡ xm−h(p−1) mod p,

where h is the largest integer for which m − h(p − 1) ≥ 0. But this is just the
division algorithm: m = h(p − 1)+ r , where r is the remainder after dividing
m by p − 1. Hence, for all x ,

xm ≡ xr mod p.

Therefore, if m ≡ 1 mod (p − 1), then

xm ≡ x mod p for all x .

Similarly, if m ≡ 1 mod (q − 1), then xm ≡ x mod (q − 1) for all x . Therefore,
if m is chosen such that

m ≡ 1 mod (p − 1)(q − 1),
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then xm ≡ x mod p and xm ≡ x mod q; that is, p | (xm − x) and q | (xm − x).
As p and q are distinct primes, they are relatively prime, and so pq | (x m − x),
by Exercise 1.55 on page 52. Since N = pq, we have shown that if m ≡ 1
mod(p − 1)(q − 1), then

xm ≡ x mod N for all x .

It remains to find such a number m and a factorization m = st . We claim that
there is a factorization with s = 3. Let us first show that

(
3, (p − 1)(q − 1)

)
=

1. Since p ≡ 2 mod 3 and q ≡ 2 mod 3, we have p − 1 ≡ 1 mod 3 and
q −1 ≡ 1 mod 3; hence, (p −1)(q −1) ≡ 1 mod 3, so that 3 and (p −1)(q −1)
are relatively prime [Proposition 1.31]. Thus, there are integers t and u with
1 = 3t + (p − 1)(q − 1)u, so that 3t ≡ 1 mod (p − 1)(q − 1). To sum up,
x3t ≡ x mod N for all x with this choice of t . Choosing m = 3t completes the
construction of the ingredients of the code.

III : Security.

Since 3t ≡ 1 mod (p − 1)(q − 1), he who knows the factorization N = pq
knows the number (p − 1)(q − 1), and hence he can find t using the Euclidean
algorithm. Unauthorized readers may know N , but without knowing its factor-
ization, they do not know t and, hence, they cannot decode. This is why this
code is secure today. For example, if both p and q have about 200 digits (and,
for technical reasons, they are not too close together), then the fastest existing
computers need two or three months to factor N . By Proposition 1.59, there are
plenty of primes congruent to 2 mod 3, and so we may choose a different pair of
primes p and q every month, say, thereby stymying the enemy. �

EXERCISES

1.71 Find all the integers x which are solutions to each of the following congruences:
(i) 3x ≡ 2 mod 5.
(ii) 7x ≡ 4 mod 10.
(iii) 243x + 17 ≡ 101 mod 725.
(iv) 4x + 3 ≡ 4 mod 5.
(v) 6x + 3 ≡ 4 mod 10.
(vi) 6x + 3 ≡ 1 mod 10.

1.72 Let m be a positive integer, and let m ′ be an integer obtained from m by rearranging
its (decimal) digits (e.g., take m = 314159 and m ′ = 539114). Prove that m − m ′

is a multiple of 9.
1.73 Prove that a positive integer n is divisible by 11 if and only if the alternating sum of

its digits is divisible by 11 (if the digits of a are dk . . . d2d1d0, then their alternating
sum is d0 − d1 + d2 − · · · ).
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1.74 What is the remainder after dividing 10100 by 7? (The huge number 10100 is called
a googol 21 in children’s stories.)

*1.75 (i) Prove that 10q + r is divisible by 7 if and only if q − 2r is divisible by 7.
(ii) Given an integer a with decimal digits dkdk−1 . . . d0, define

a′ = dkdk−1 · · · d1 − 2d0.

Show that a is divisible by 7 if and only if some one of a ′, a′′, a′′′,. . . is
divisible by 7. (For example, if a = 65464, then a ′ = 6546 − 8 = 6538,
a′′ = 653 − 16 = 637, and a′′′ = 63 − 14 = 49; we conclude that 65464
is divisible by 7.)

*1.76 (i) Show that 1000 ≡ −1 mod 7.
(ii) Show that if a = r0 + 1000r1 + 10002r2 + · · · , then a is divisible by 7 if

and only if r0 − r1 + r2 − · · · is divisible by 7.

Remark. Exercises 1.75 and 1.76 combine to give an efficient way to determine whether
large numbers are divisible by 7. If a = 33456789123987, for example, then a ≡
0 mod 7 if and only if 987−123+789−456+33 = 1230 ≡ 0 mod 7. By Exercise 1.75
on page 71, 1230 ≡ 123 ≡ 6 mod 7, and so a is not divisible by 7. �

*1.77 For a given positive integer m, find all integers r with 0 < r < m such that
2r ≡ 0 mod m.

1.78 Prove that there are no integers x , y, and z such that

x2 + y2 + z2 = 999.

1.79 Prove that there is no perfect square a2 whose last two digits are 35.
1.80 If x is an odd number not divisible by 3, prove that x 2 ≡ 1 mod 24.

*1.81 Prove that if p is a prime and if a2 ≡ 1 mod p, then a ≡ ±1 mod p.
*1.82 Consider the congruence ax ≡ b mod m when gcd(a,m) = d . Show that

ax ≡ b mod m has a solution if and only if d | b.
1.83 Solve the congruence x2 ≡ 1 mod 21.
1.84 Solve the simultaneous congruences:

(i) x ≡ 2 mod 5 and 3x ≡ 1 mod 8;
(ii) 3x ≡ 2 mod 5 and 2x ≡ 1 mod 3.

1.85 How many days are there between Akbal 13 and Muluc 8 in the Mayan tzolkin
calendar?

1.86 (i) Show that (a + b)n ≡ an + bn mod 2 for all a and b and for all n ≥ 1.
(ii) Show that (a + b)2 6≡ a2 + b2 mod 3.

1.87 On a desert island, five men and a monkey gather coconuts all day, then sleep. The
first man awakens and decides to take his share. He divides the coconuts into five
equal shares, with one coconut left over. He gives the extra one to the monkey,
hides his share, and goes to sleep. Later, the second man awakens and takes his

21This word was invented by a 9-year-old boy when his uncle asked him to think up a name
for the number 1 followed by a hundred zeros. At the same time, the boy suggested googolplex
for a 1 followed by a googol zeros.
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fifth from the remaining pile; he too finds one extra and gives it to the monkey.
Each of the remaining three men does likewise in turn. Find the minimum number
of coconuts originally present.

1.6 DATES AND DAYS

Congruences can be used to determine on which day of the week a given date
falls. For example, on what day of the week was July 4, 1776?

A year is the amount of time it takes the Earth to make one complete orbit
around the Sun; a day is the amount of time it takes the Earth to make a complete
rotation about the axis through its north and south poles. There is no reason
why the number of days in a year should be an integer, and it is not; a year is
approximately 365.2422 days long. In 46 B.C., Julius Caesar (and his scientific
advisors) compensated for this by creating the Julian calendar, containing a leap
year every 4 years; that is, every fourth year has an extra day, namely, February
29, and so it contains 366 days (a common year is a year that is not a leap year).
This would be fine if the year were exactly 365.25 days long, but it has the effect
of making the year 365.25 − 365.2422 = .0078 days (about 11 minutes and 14
seconds) too long. After 128 years, a full day was added to the calendar; that is,
the Julian calendar overcounted the number of days. In the year 1582, the vernal
equinox (the Spring day on which there are exactly 12 hours of daylight and 12
hours of night) occurred on March 11 instead of on March 21. Pope Gregory XIII
(and his scientific advisors) then installed the Gregorian calendar by erasing 10
days that year; the day after October 4, 1582 was October 15, 1582, and this
caused confusion and fear among the people. The Gregorian calendar modified
the Julian calendar as follows. Call a year y ending in 00 a century year. If
a year y is not a century year, then it is a leap year if it is divisible by 4; if y
is a century year, it is a leap year only if it is divisible by 400. For example,
1900 is not a leap year, but 2000 is a leap year. The Gregorian calendar is the
one in common use today, but it was not uniformly adopted throughout Europe.
For example, the British did not accept it until 1752, when 11 days were erased,
and the Russians did not accept it until 1918, when 13 days were erased (thus,
the Russians called their 1917 revolution the October Revolution, even though it
occurred in November of the Gregorian calendar).

The true number of days in 400 years is about

400 × 365.2422 = 146096.88 days.

In this period, the Julian calendar has

400 × 365 + 100 = 146, 100 days,
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while the Gregorian calendar has 146,097 days (it eliminated 3 leap years from
this time period). Thus, the Julian calendar gains about 3.12 days every 400
years, while the Gregorian calendar gains only 0.12 days (about 2 hours and 53
minutes).

A little arithmetic shows that there are 1628 years from 46 B.C. to 1582.
The Julian calendar overcounts one day every 128 years, and so it overcounted
13 days in this period (for 13 × 128 = 1662). Why didn’t Gregory have to erase
13 days? The Council of Nicaea, meeting in the year 325, defined Easter as the
first Sunday strictly after the Paschal full moon, which is the first full moon on
or after the vernal equinox. The vernal equinox in 325 fell on March 21, and the
Synod of Whitby, in 664, officially defined the vernal equinox to be March 21.
The discrepancy observed in 1582 was thus the result of only 1257 = 1582−325
years of the Julian calendar: approximately 10 days.

Let us now seek a calendar formula. For easier calculation, we choose 0000
as our reference year, even though there was no year zero! Assign a number to
each day of the week, according to the following scheme:

Sun Mon Tues Wed Thurs Fri Sat
0 1 2 3 4 5 6

In particular, March 1, 0000, has some number a, where 0 ≤ a ≤ 6. In the next
year 0001, March 1 has number a + 1 (mod 7), for 365 days have elapsed from
March 1, 0000, to March 1, 0001, and

365 = 52 × 7 + 1 ≡ 1 mod 7.

Similarly, March 1, 0002, has number a + 2, and March 1, 0003, has number
a + 3. However, March 1, 0004, has number a + 5, for February 29, 0004, fell
between March 1, 0003, and March 1, 0004, and so 366 ≡ 2 mod 7 days had
elapsed since the previous March 1. We see, therefore, that every common year
adds 1 to the previous number for March 1, while each leap year adds 2. Thus,
if March 1, 0000, has number a, then the number a ′ of March 1, year y, is

a′ ≡ a + y + L mod 7,

where L is the number of leap years from year 0000 to year y. To compute L ,
count all those years divisible by 4, then throw away all the century years, and
then put back those century years that are leap years. Thus,

L = b y/4c − b y/100c + by/400c,

where bxc denotes the greatest integer in x . Therefore, we have

a′ ≡ a + y + L

≡ a + y + by/4c − b y/100c + by/400c mod 7.
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We can actually find a′ by looking at a calendar. Since March 1, 1994, fell on a
Tuesday,

2 ≡ a + 1994 + b1994/4c − b1994/100c + b1994/400c
≡ a + 1994 + 498 − 19 + 4 mod 7,

and so
a ≡ −2475 ≡ −4 ≡ 3 mod 7

(that is, March 1, year 0000, fell on Wednesday). One can now determine the
day of the week on which March 1 will fall in any year y > 0, namely, the day
corresponding to

3 + y + b y/4c − b y/100c + by/400c mod 7.

There is a reason we have been discussing March 1. Had Julius Caesar de-
creed that the extra day of a leap year be December 32 instead of February 29,
life would have been simpler.22 Let us now analyze February 28. For example,
suppose that February 28, 1600, has number b. As 1600 is a leap year, February
29, 1600, occurs between February 28, 1600, and February 28, 1601; hence, 366
days have elapsed between these two February 28’s, so that February 28, 1601,
has number b + 2. February 28, 1602, has number b + 3, February 28, 1603, has
number b + 4, February 28, 1604, has number b + 5, but February 28, 1605, has
number b + 7 (for there was a February 29 in 1604).

Let us compare the pattern of behavior of February 28, 1600, namely, b,
b + 2, b + 3, b + 4, b + 5, b + 7, . . . , with that of some date in 1599. If May
26, 1599, has number c, then May 26, 1600, has number c + 2, for February
29, 1600, comes between these two May 26’s, and so there are 366 ≡ 2 mod 7
intervening days. The numbers of the next few May 26’s, beginning with May
26, 1601, are c + 3, c + 4, c + 5, c + 7. We see that the pattern of the days
for February 28, starting in 1600, is exactly the same as the pattern of the days
for May 26, starting in 1599; indeed, the same is true for any date in January or
February. Thus, the pattern of the days for any date in January or February of a
year y is the same as the pattern for a date occurring in the preceding year y − 1:

22Actually, March 1 was the first day of the year in the old Roman calendar. This explains
why the leap day was added onto February and not onto some other month. It also explains
why months 9, 10, 11, and 12, namely, September, October, November, and December, are so
named; originally, they were months 7, 8, 9, and 10.

George Washington’s birthday, in the Gregorian calendar, is February 22, 1732. But the
Gregorian calendar was not introduced in the British colonies until 1752. Thus, his original
birthday was February 11. But New Year’s Day was also changed from March 1 to January 1,
so that February, which had been in 1731, was regarded, after the calendar change, as being
in 1732. George Washington used to joke that not only did his birthday change, but so did his
birth year.
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a year preceding a leap year adds 2 to the number for such a date, whereas all
other years add 1. Therefore, we revert to the ancient calendar by making New
Year’s Day fall on March 1; any date in January or February is treated as if it had
occurred in the previous year.

How do we find the day corresponding to a date other than March 1? Since
March 1, 0000, has number 3 (as we have seen above), April 1, 0000, has number
6, for March has 31 days and 3 + 31 ≡ 6 mod 7. Since April has 30 days, May
1, 0000, has number 6 + 30 ≡ 1 mod 7. Here is the table giving the number of
the first day of each month in year 0000:

March 1, 0000, has number 3
April 1 6
May 1 1
June 1 4
July 1 6
August 1 2
September 1 5
October 1 0
November 1 3
December 1 5
January 1 1
February 1 4

Remember that we are pretending that March is month 1, April is month 2, etc.
Let us denote these numbers by 1 + j (m), where j (m), for m = 1, 2, . . . , 12, is
defined by

j (m) : 2, 5, 0, 3, 5, 1, 4, 6, 2, 4, 0, 3.

It follows that month m, day 1, year y, has number

1 + j (m)+ g(y) mod 7,

where
g(y) = y + b y/4c − b y/100c + by/400c.

Proposition 1.74 (Calendar23 Formula). The date with month m, day d,
year y has number

d + j (m)+ g(y) mod 7,

where
j (m) = 2, 5, 0, 3, 5, 1, 4, 6, 2, 4, 0, 3,

23The word calendar comes from the Greek “to call,” which evolved into the Latin for the
first day of a month (when accounts were due).



76 NUMBER THEORY CH. 1

(March corresponds to m = 1, April to m = 2,. . . , February to m = 12) and

g(y) = y + b y/4c − b y/100c + by/400c,

provided that dates in January and February are treated as having occurred in
the previous year.

Proof. The number mod 7 corresponding to month m, day 1, year y, is
1 + j (m) + g(y). It follows that 2 + j (m) + g(y) corresponds to month m,
day 2, year y, and, more generally, that d + j (m)+ g(y) corresponds to month
m, day d , year y. •

Example 1.75.
Let us use the calendar formula to find the day of the week on which July 4,
1776, fell. Here m = 5, d = 4, and y = 1776. Substituting in the formula, we
obtain the number

4 + 5 + 1776 + 444 − 17 + 4 = 2216 ≡ 4 mod 7;

therefore, July 4, 1776, fell on a Thursday. �

Most of us need paper and pencil (or a calculator) to use the calendar formula
in the theorem. Here are some ways to simplify the formula so that one can do
the calculation in one’s head and amaze one’s friends.

One mnemonic for j (m) is given by

j (m) = b2.6m − 0.2c, where 1 ≤ m ≤ 12.

Another mnemonic for j (m) is the sentence:

My Uncle Charles has eaten a cold supper; he eats nothing hot.

2 5 (7 ≡ 0) 3 5 1 4 6 2 4 (7 ≡ 0) 3

Corollary 1.76. The date with month m, day d, year y = 100C + N, where
0 ≤ N ≤ 99, has number

d + j (m)+ N + bN/4c + bC/4c − 2C mod 7,

provided that dates in January and February are treated as having occurred in
the previous year.
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Proof. If we write a year y = 100C + N , where 0 ≤ N ≤ 99, then

y = 100C + N ≡ 2C + N mod 7,

b y/4c = 25C + bN/4c ≡ 4C + bN/4c mod 7,

b y/100c = C, and b y/400c = bC/4c.

Therefore,

y + b y/4c − b y/100c + by/400c ≡ N + 5C + bN/4c + bC/4c mod 7

≡ N + bN/4c + bC/4c − 2C mod 7. •

This formula is simpler than the first one. For example, the number corre-
sponding to July 4, 1776, is now obtained as

4 + 5 + 76 + 19 + 4 − 34 = 74 ≡ 4 mod 7,

agreeing with our previous calculation in Example 1.75. The reader may now
discover the day of his or her birth.

Example 1.77.
The birthday of Amalia, the grandmother of Danny and Ella, is December 5,
1906; on what day of the week was she born?

If A is the number of the day, then

A ≡ 5 + 4 + 6 + b6/4c + b19/4c − 38

≡ −18 mod 7

≡ 3 mod 7.

Amalia was born on a Wednesday. �

Does every year y contain a Friday 13? We have

5 ≡ 13 + j (m)+ g(y) mod 7.

The question is answered positively if the numbers j (m), as m varies from 1
through 12, give all the remainders 0 through 6 mod 7. And this is what happens.
The sequence of remainders mod 7 is

2, 5, 0 , 3 , 5 , 1 , 4 , 6 , 2 , 4, 0, 3.

Indeed, we see that there must be a Friday 13 occurring between May and
November. No number occurs three times on the list, but it is possible that there
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are three Friday 13’s in a year because January and February are viewed as hav-
ing occurred in the previous year; for example, there were three Friday 13s in
1987 (see Exercise 1.91 on page 79). Of course, we may replace Friday by any
other day of the week, and we may replace 13 by any number between 1 and 28.

J. H. Conway has found an even simpler calendar formula. In his system, he
calls doomsday of a year that day of the week on which the last day of February
occurs. For example, doomsday 1900, corresponding to February 28, 1900 (1900
is not a leap year), is Wednesday = 3, while doomsday 2000, corresponding to
February 29, 2000, is Tuesday = 2, as we know from Corollary 1.76.

Knowing the doomsday of a century year 100C , one can find the doomsday
of any other year y = 100C + N in that century, as follows. Since 100C is
a century year, the number of leap years from 100C to y does not involve the
Gregorian alteration. Thus, if D is doomsday 100C (of course, 0 ≤ D ≤ 6),
then doomsday 100C + N is congruent to

D + N + bN/4c mod 7.

For example, since doomsday 1900 is Wednesday = 3, we see that doomsday
1994 is Monday = 1, for

3 + 94 + 23 = 120 ≡ 1 mod 7.

Proposition 1.78 (Conway). Let D be doomsday 100C, and let 0 ≤ N ≤ 99.
If N = 12q + r , where 0 ≤ r < 12, then the formula for doomsday 100C + N is

D + q + r + br/4c mod 7.

Proof.

Doomsday (100C + N) ≡ D + N + bN/4c
≡ D + 12q + r + b(12q + r)/4c
≡ D + 15q + r + br/4c
≡ D + q + r + br/4c mod 7. •

For example, 94 = 12 × 7 + 10, so that doomsday 1994 is 3 + 7 + 10 + 2 ≡
1 mod 7; that is, doomsday 1994 is Monday, as we saw above.

Once one knows doomsday of a particular year, one can use various tricks
(e.g., my Uncle Charles) to pass from doomsday to any other day in the year.
Conway observes that some other dates falling on the same day of the week as
the doomsday are

April 4, June 6, August 8, October 10, December 12,

May 9, July 11, September 5, and November 7;
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it is easier to remember these dates using the notation

4/4, 6/6, 8/8, 10/10, 12/12, and 5/9, 7/11, 9/5, and 11/7,

where m/d denotes month/day (we now return to the usual counting having Jan-
uary as the first month: 1 = January). Since doomsday corresponds to the last
day of February, we are now within a few weeks of any date in the calendar, and
we can easily interpolate to find the desired day.

EXERCISES

1.88 A suspect said that he had spent the Easter holiday April 21, 1893, with his ailing
mother; Sherlock Holmes challenged his veracity at once. How could the great
detective have been so certain?

1.89 How many times in 1900 did the first day of the month fall on a Tuesday?
1.90 On what day of the week did February 29, 1896, fall? Conclude from your method

of solution that no extra fuss is needed to find leap days.
*1.91 (i) Show that 1987 had three Friday 13’s.

(ii) Show, for any year y > 0, that g(y)− g(y − 1) = 1 or 2, where g(y) =
y + b y/4c − by/100c + b y/400c.

(iii) Can there be a year with exactly one Friday 13?



2
Groups I

Group theory was invented by E. Galois (1811–1832) in order to solve one
of the premiere mathematical problems of his day: when can the roots of a poly-
nomial be found by some generalization of the quadratic formula? Since Galois
(who was killed in a duel when he was only 20 years old), group theory has found
many other applications. For example, we shall give a new proof of Fermat’s the-
orem (if p is prime, then a p ≡ a mod p), and this proof will then be adapted
to prove a theorem of Euler: if m ≥ 2, then aφ(m) ≡ 1 mod m, where φ(m) is
the Euler φ-function. We will also use groups to solve counting problems such
as: How many different bracelets having 10 beads can be assembled from a pile
containing 10 red beads, 10 white beads, and 10 blue beads? In Chapter 6, we
will illustrate the fact that groups are a precise way to describe symmetry by
classifying all possible friezes.

2.1 SOME SET THEORY

We are going to study algebraic systems called groups, which involve objects
that can be “multiplied” and rings, which involve objects that can be multiplied
and added. There are interesting examples of these systems whose elements
are functions, but, more importantly, certain functions (called homomorphisms)
arise in comparing such systems. This section contains definitions and basic
properties of functions, but the reader may skim this section now and return to it
later when necessary.

A set X is a collection of elements (numbers, points, herring, etc.); one writes

x ∈ X

to denote x belonging to X . The terms set, element, and belongs to are undefined
terms (there have to be such in any language), and they are used so that a set is

80
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determined by the elements in it.1 Thus, we define two sets X and Y to be equal,
denoted by

X = Y,

if they are comprised of exactly the same elements: for every element x , we have
x ∈ X if and only if x ∈ Y .

A subset of a set X is a set S each of whose elements also belongs to X : if
s ∈ S, then s ∈ X . One denotes S being a subset of X by

S ⊆ X;

synonyms for this are S is contained in X and S is included in X . Note that
X ⊆ X is always true; we say that a subset S of X is a proper subset of X ,
denoted by S � X , if S ⊆ X and S 6= X . It follows from the definitions that two
sets X and Y are equal if and only if each is a subset of the other:

X = Y if and only if X ⊆ Y and Y ⊆ X.

Because of this remark, many proofs showing that two sets are equal break into
two parts, each half showing that one of the sets is a subset of the other. For
example, let

X = {a ∈ � : a ≥ 0} and Y = {r 2 : r ∈ � }.

If a ∈ X , then a ≥ 0 and a = r 2, where r =
√

a; hence, a ∈ Y and X ⊆ Y .
For the reverse inclusion, choose r 2 ∈ Y . If r ≥ 0, then r2 ≥ 0; if r < 0, then
r = −s, where s > 0, and r2 = (−1)2s2 = s2 ≥ 0. In either case, r 2 ≥ 0 and
r2 ∈ X . Therefore, Y ⊆ X , and so X = Y .

Definition. The empty set is the set
�

having no elements.

We claim, for every set X , that
� ⊆ X . The negation of “If s ∈ �

, then
s ∈ X” is “There exists s ∈ �

with s /∈ X ;” as there is no s ∈ �
, however,

this cannot be true. It follows that there is a unique empty set, for if
�

1 were a
second such, then

� ⊆ �
1 and, similarly,

�
1 ⊆ �

. Therefore,
� = �

1

Here are some ways to create new sets from old.

Definition. If X and Y are subsets of a set Z , then their intersection is the set

X ∩ Y = {z ∈ Z : z ∈ X and z ∈ Y }.
1There are some rules governing the usage of ∈; for example, x ∈ a ∈ x is always a false

statement.
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XX

Y Y

Figure 2.1 X ∩ Y X ∪ Y

More generally, if {Ai : i ∈ I } is any, possibly infinite, family of subsets of a set
Z , then their intersection is

⋂

i∈I

Ai = {z ∈ Z : z ∈ Ai for all i ∈ I }.

It is clear that X ∩ Y ⊆ X and X ∩ Y ⊆ Y . In fact, the intersection is
the largest such subset: if S ⊆ X and S ⊆ Y , then S ⊆ X ∩ Y . Similarly,⋂

i∈I Ai ⊆ A j for all j ∈ I .

Definition. If X and Y are subsets of a set Z , then their union is the set

X ∪ Y = {z ∈ Z : z ∈ X or z ∈ Y }.

More generally, if {Ai : i ∈ I } is any, possibly infinite, family of subsets of a set
Z , then their union is

⋃

i∈I

Ai = {z ∈ Z : z ∈ Ai for some i ∈ I }.

It is clear that X ⊆ X ∪ Y and Y ⊆ X ∪ Y . In fact, the union is the smallest
such subset: if X ⊆ S and Y ⊆ S, then X ∪ Y ⊆ S. Similarly, A j ⊆

⋃
i∈I Ai

for all j ∈ I .

Definition. If X and Y are sets, then their difference is the set

X − Y = {x ∈ X : x /∈ Y }.

The difference Y − X has a similar definition and, of course, Y − X and X − Y
need not be equal.

In particular, if X is a subset of a set Z , then its complement in Z is the set

X ′ = Z − X = {z ∈ Z : z /∈ X}.
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Y

X

Figure 2.2 X − Y

Y

X

Figure 2.3 Y − X

It is clear that X ′ is disjoint from X ; that is, there is no element z ∈ Z lying
in both X and X ′, so that X ∩ X ′ = �

. (Thus, the empty set
�

is needed to
guarantee that the intersection of two subsets A and B always be a subset; that
is, A ∩ B should always be defined.) In fact, X ′ is the largest subset of Z disjoint
from X : if S ⊆ Z and S ∩ X = �

, then S ⊆ X ′.

Functions

The idea of a function occurs in calculus (and earlier); examples are x 2, sin x ,√
x , 1/x , x + 1, ex , etc. Calculus books define a function f (x) as a “rule” that

assigns, to each number a, exactly one number, namely, f (a). Thus, the squaring
function assigns the number 81 to the number 9; the square root function assigns
the number 3 to the number 9. Notice that there are two candidates for

√
9,

namely, 3 and −3. In order that there be exactly one number assigned to 9, one
must select one of the two possible values ±3; everyone has agreed that

√
x ≥ 0

whenever x ≥ 0, and so this agreement implies that
√

x is a function.
The calculus definition of function is certainly in the right spirit, but it has a

defect: what is a rule? To ask this question another way, when are two rules the
same? For example, consider the functions

f (x) = (x + 1)2 and g(x) = x2 + 2x + 1.

Is f (x) = g(x)? The evaluation procedures are certainly different: for example,
f (6) = (6+1)2 = 72, while g(6) = 62 +2 ·6+1 = 36+12+1. Since the term
rule has not been defined, it is ambiguous, and our question cannot be answered.
Surely the calculus description is inadequate if one cannot decide whether these
two functions are equal.

To find a reasonable definition, let us return to examples of what we seek
to define. Each of the functions x2, sin x , etc., has a graph, namely, the subset
of the plane consisting of all those points of the form (a, f (a)). For example,



84 GROUPS I CH. 2

the graph of f (x) = x2 is the parabola consisting of all the points of the form
(a, a2).

A graph is a concrete thing, and the upcoming formal definition of a function
amounts to saying that a function is its graph. The informal calculus definition
of a function as a rule remains, but we will have avoided the problem of saying
what a rule is. In order to give the definition, we first need an analog of the plane
(for we will want to use functions f (x) whose argument x does not vary over
numbers).

Definition. If X and Y are (not necessarily distinct) sets, then their cartesian2

product X × Y is the set of all ordered pairs (x, y), where x ∈ X and y ∈ Y .

The plane is
� × �

.
The only thing one needs to know about ordered pairs is that

(x, y) = (x ′, y′) if and only if x = x ′ and y = y′

(see Exercise 2.4 on page 101).
Observe that if X and Y are finite sets, say, |X | = m and |Y | = n (we denote

the number of elements in a finite set X by |X |), then |X × Y | = mn.

Definition. Let X and Y be (not necessarily distinct) sets. A function f from
X to Y , denoted by

f : X → Y,

is a subset f ⊆ X × Y such that, for each a ∈ X , there is a unique b ∈ Y with
(a, b) ∈ f .

For each a ∈ X , the unique element b ∈ Y for which (a, b) ∈ f is called the
value of f at a, and b is denoted by f (a). Thus, f consists of all those points in
X × Y of the form (a, f (a)). When f : � → �

, then f is the graph of f (x).

Example 2.1.

(i) The identity function on a set X , denoted by 1X : X → X , is defined by
1X (x) = x for every x ∈ X [when X = �

, the graph of the identity
function is the 45◦ line through the origin consisting of all those points in
the plane of the form (a, a)].

(ii) Constant functions: If y0 ∈ Y , then f (x) = y0 for all x ∈ X (when
X = � = Y , then the graph of a constant function is a horizontal line). �

2This term honors R. Descartes, one of the founders of analytic geometry.
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From now on, we depart from the calculus notation; we denote a function by
f and not by f (x); the latter notation is reserved for the value of f at an element
x (there are a few exceptions; we will continue to write the familiar functions,
e.g., polynomials, sin x, ex ,

√
x, log x , as usual). Here are some more words.

If f : X → Y , call X the domain of f , call Y the target (or codomain) of f ,
and define the image (or range) of f , denoted by im f , to be the subset of Y
consisting of all the values of f . When we say that X is the domain of a function
f : X → Y , we mean that f (x) is defined for every x ∈ X . For example, the
domain of sin x is

�
, its target is usually

�
, and its image is [−1, 1]. The domain

of 1/x is the set of all nonzero reals and its image is also the nonzero reals; the
domain of the square root function is the set

� ≥ = {x ∈ � : x ≥ 0} of all
nonnegative reals and its image is also

� ≥ .

Definition. Functions f : X → Y and g : X ′ → Y ′ are equal if X = X ′,
Y = Y ′, and the subsets f ⊆ X × Y and g ⊆ X ′ × Y ′ are equal.

A function f : X → Y has three ingredients: its domain X , its target Y ,
and its graph, and we are saying that two functions are equal if and only if they
have the same domains, the same targets, and the same graphs. It is plain that
the domain and the graph are essential parts of a function, and some reasons for
caring about the target are given in a remark at the end of this section.

Definition. If f : X → Y is a function, and if S is a subset of X , then the
restriction of f to S is the function f |S : S → Y defined by ( f |S)(s) = f (s)
for all s ∈ S.

If S is a subset of a set X , define the inclusion i : S → X to be the function
defined by i(s) = s for all s ∈ S.

If S is a proper subset of X , then the inclusion i is not the identity function
1S because its target is X , not S; it is not the identity function 1X because its
domain is S, not X . If S is a proper subset of X , then f |S 6= f because they
have different domains.

Proposition 2.2. Let f : X → Y and g : X ′ → Y ′ be functions. Then f = g if
and only if X = X ′, Y = Y ′, and f (a) = g(a) for every a ∈ X.

Remark. This proposition resolves the problem raised by the ambiguous term
rule. If f , g : � → �

are given by f (x) = (x + 1)2 and g(x) = x2 + 2x + 1,
then f = g because f (a) = g(a) for every number a. �

Proof. Assume that f = g. Functions are subsets of X × Y , and so f = g
means that each of f and g is a subset of the other (informally, we are saying
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that f and g have the same graph). If a ∈ X and (a, f (a)) ∈ f = g, then
(a, f (a)) ∈ g. But there is only one ordered pair in g with first coordinate a,
namely, (a, g(a)) [because the definition of function says that g gives a unique
value to a]. Therefore, (a, f (a)) = (a, g(a)), and equality of ordered pairs gives
f (a) = g(a), as desired.

Conversely, assume that f (a) = g(a) for every a ∈ X . To see that f = g,
it suffices to show that f ⊆ g and g ⊆ f . Each element of f has the form
(a, f (a)). Since f (a) = g(a), we have (a, f (a)) = (a, g(a)), and hence
(a, f (a)) ∈ g. Therefore, f ⊆ g. The reverse inclusion g ⊆ f is proved
similarly. •

Let us make the contrapositive explicit: if f, g : X → Y are functions that
disagree at even one point, i.e., if there is some a ∈ X with f (a) 6= g(a), then
f 6= g.

We continue to regard a function f as a rule sending x ∈ X to f (x) ∈ Y , but
the precise definition is now available whenever we need it, as in Proposition 2.2.
However, to reinforce our wanting to regard functions f : X → Y as dynamic
things sending points in X to points in Y , we often write

f : x 7→ y

instead of f (x) = y. For example, we may write f : x 7→ x 2 instead of f (x) =
x2, and we may describe the identity function by x 7→ x for all x .

Example 2.3.
Our definitions allow us to treat a degenerate case. If X is a set, what are the
functions X → �

? Note first that an element of X × �
is an ordered pair (x, y)

with x ∈ X and y ∈ �
; since there is no y ∈ �

, there are no such ordered
pairs, and so X × � = �

. Now a function X → �
is a subset of X × �

of a
certain type; but X × � = �

, so there is only one subset, namely
�

, and hence
at most one function, namely, f = �

. The definition of function X → �
says

that, for each x ∈ X , there exists a unique y ∈ �
with (x, y) ∈ f . If X 6= �

,
then there exists x ∈ X for which no such y exists (there are no elements y at
all in

�
), and so f is not a function. Thus, if X 6= �

, there are no functions
from X to

�
. On the other hand, if X = �

, we claim that f = �
is a function.

Otherwise, the negation of the statement “ f is a function” would be true: “there
exists x ∈ �

, etc.” We need not go on; since
�

has no elements in it, there is
no way to complete the sentence so that it is a true statement. We conclude that
f = �

is a function
� → �

, and we declare it to be the identity function 1 � .
�

There is a name for functions whose image is equal to the whole target.
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Definition. A function f : X → Y is surjective (or onto) if

im f = Y.

Thus, f is surjective if, for each y ∈ Y , there is some x ∈ X (probably
depending on y) with y = f (x).

Example 2.4.

(i) Of course, identity functions are surjections.

(ii) The sine function
� → �

is not surjective, for its image is [−1, 1] which
is a proper subset of its target

�
.

(iii) The functions x2 : � → �
and ex : � → �

have target
�

. Now im x2

consists of the nonnegative reals and im ex consists of the positive reals, so
that neither x2 nor ex is surjective.

(iv) Let f : � → �
be defined by

f (a) = 6a + 4.

To see whether f is a surjection, we ask whether every b ∈ �
has the form

b = f (a) for some a; that is, given b, can one find a so that

6a + 4 = b?

One can always solve this equation for a, obtaining a = 1
6 (b − 4). There-

fore, f is a surjection.

(v) Let f : � −
{ 3

2

}
→ �

be defined by

f (a) =
6a + 4

2a − 3
.

To see whether f is a surjection, we seek a solution a for a given b: can
we always solve

6a + 4

2a − 3
= b?

This leads to the equation a(6 − 2b) = −3b − 4, which can be solved for
a if 6 − 2b 6= 0 [note that (−3b − 4)/(6 − 2b) 6= 3/2]. On the other
hand, it suggests that there is no solution when b = 3 and, indeed, there is
not: if (6a + 4)/(2a − 3) = 3, cross multiplying gives the false equation
6a + 4 = 6a − 9. Thus, 3 /∈ im f , and f is not a surjection. �
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Instead of saying that the values of a function f are unique, one sometimes
says that f is single-valued. For example, if

� ≥ denotes the set of nonnegative
reals, then √ : � ≥ → � ≥ is a function because we have agreed that

√
a ≥ 0 for

every positive number a. On the other hand, f (a) = ±
√

a is not single-valued,
and hence it is not a function.

The simplest way to verify whether an alleged function f is single-valued is
to phrase uniqueness of values as an implication:

if a = a′, then f (a) = f (a′).

Does the formula g
( a

b

)
= ab define a function g :

�
→

�
? There are many

ways to write a fraction; since 1
2 = 3

6 , we see that g
( 1

2

)
= 1 · 2 6= 3 · 6 = g

(
3
6

)
,

and so g is not a function. Had we said that the formula g
( a

b

)
= ab holds

whenever a
b is in lowest terms, then g would be a function.

The formula f
( a

b

)
= 3 a

b does define a function f :
�

→
�

, for it is single-

valued: if a
b = a′

b′ , we show that

( a
b

)
= 3 a

b = 3 a′
b′ = f

( a′
b′
)
.

Now a
b = a′

b′ gives ab′ = a′b, so that 3ab′ = 3a′b and 3 a
b = 3 a′

b′ . Thus, f is a
bona fide function.

The following definition gives another important property a function may
have.

Definition. A function f : X → Y is injective (or one-to-one) if, whenever
a and a′ are distinct elements of X , then f (a) 6= f (a ′). Equivalently, (the
contrapositive states that) f is injective if, for every pair a, a ′ ∈ X , we have

f (a) = f (a′) implies a = a′.

The reader should note that being injective is the converse of being single-
valued: f is single-valued if a = a′ implies f (a) = f (a′); f is injective if
f (a) = f (a′) implies a = a′.

Most functions are neither injective nor surjective. For example, the squaring
function f : � → �

, defined by f (x) = x2, is neither.

Example 2.5.

(i) Identity functions 1X are injective.
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(ii) Let f : � −
{ 3

2

}
→ �

be defined by

f (a) =
6a + 4

2a − 3
.

To check whether f is injective, suppose that f (a) = f (b):

6a + 4

2a − 3
=

6b + 4

2b − 3
.

Cross multiplying yields

12ab + 8b − 18a − 12 = 12ab + 8a − 18b − 12,

which simplifies to 26a = 26b and hence a = b. We conclude that f is
injective. (We saw, in Example 2.4(v), that f is not surjective.)

(iii) Consider f : � → �
given by f (x) = x2 − 2x − 3. If we try to check

whether f is an injection by looking at the consequences of f (a) = f (b),
as in part (ii), we arrive at the equation a2−2a = b2−2b; it is not instantly
clear whether this forces a = b. Instead, we seek the roots of f (x), which
are 3 and −1. It follows that f is not injective, for f (3) = 0 = f (−1);
thus, there are two distinct numbers having the same value. �

Sometimes there is a way of combining two functions to form another func-
tion, their composite.

Definition. If f : X → Y and g : Y → Z are functions (the target of f is the
domain of g), then their composite, denoted by g ◦ f , is the function X → Z
given by

g ◦ f : x 7→ g( f (x));

that is, first evaluate f on x and then evaluate g on f (x).

Composition is thus a two-step process: x 7→ f (x) 7→ g( f (x)). For exam-
ple, the function h : � → �

, defined by h(x) = ecos x , is the composite g ◦ f ,
where f (x) = cos x and g(x) = ex . This factorization is plain as soon as one
tries to evaluate, say, h(π); one must first evaluate f (π) = cosπ = −1 and then
evaluate g( f (π)) = g(−1) = e−1 in order to evaluate h(π). The chain rule in
calculus is a formula for computing the derivative (g ◦ f )′ in terms of g′ and f ′:

(g ◦ f )′(x) = g′( f (x)) · f ′(x).

If f : � → �
and g : � → �

are functions, then g ◦ f : � → �
is defined,

but f ◦ g is not defined [for target(g) = � 6= � = domain( f )]. Even when
f : X → Y and g : Y → X , so that both composites g ◦ f and f ◦ g are defined,
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these composites need not be equal. For example, define f , g : � → �
by

f : n 7→ n2 and g : n 7→ 3n; then g ◦ f : 2 7→ g(4) = 12 and f ◦ g : 2 7→
f (6) = 36. Hence, g ◦ f 6= f ◦ g.

Given a set X , let

�
(X) = {all functions X → X}.

The composite of two functions in
�
(X) is always defined, and it is, again, a

function in
�
(X). As we have just seen, composition is not commutative; that

is, f ◦g and g◦ f need not be equal. Let us now show that composition is always
associative.

Lemma 2.6. Composition of functions is associative: if

f : X → Y, g : Y → Z , and h : Z → W

are functions, then
h ◦ (g ◦ f ) = (h ◦ g) ◦ f.

Proof. We show that the value of either composite on an element a ∈ X is just
w = h(g( f (a))). If x ∈ X , then

h ◦ (g ◦ f ) : x 7→ (g ◦ f )(x) = g( f (x)) 7→ h(g( f (x))) = w,

and
(h ◦ g) ◦ f : x 7→ f (x) 7→ (h ◦ g)( f (x)) = h(g( f (x))) = w.

It follows from Proposition 2.2 that the composites are equal. •

In light of this lemma, we need not write parentheses: the notation h ◦ g ◦ f
is unambiguous.

The next result implies that the identity function 1X behaves for composition
in

�
(X) just as the number one does for multiplication of numbers.

Lemma 2.7. If f : X → Y , then 1Y ◦ f = f = f ◦ 1X .

Proof. If x ∈ X , then

1Y ◦ f : x 7→ f (x) 7→ f (x)

and
f ◦ 1X : x 7→ x 7→ f (x). •

Are there “reciprocals” in
�
(X); that is, are there any functions f for which

there is g ∈ �
(X) with f ◦ g = 1X and g ◦ f = 1X ?
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Definition. A function f : X → Y is bijective (or is a one-one correspondence)
if it is both injective and surjective.

Example 2.8.

(i) Identity functions are always bijections.

(ii) Let X = {1, 2, 3} and define f : X → X by

f (1) = 2, f (2) = 3, f (3) = 1.

It is easy to see that f is a bijection. �

We can draw a picture of a function in the special case when X and Y are
finite sets. Let X = {1, 2, 3, 4, 5}, let Y = {a, b, c, d, e}, and define f : X → Y
by

f (1) = b; f (2) = e; f (3) = a; f (4) = b; f (5) = c.

1

2

3

4

5

a

b

c

d

e

X Y

Figure 2.4 A Function

We see that f is not injective because f (1) = b = f (4), and f is not
surjective because there is no x ∈ X with f (x) = d . Can one reverse the arrows
to get a function g : Y → X? There are two reasons why one cannot. First, there
is no arrow going to d , and so g(d) is not defined. Second, what is g(b)? Is
it 1 or 4? The first problem is that the domain of g is not all of Y , and it arises
because f is not surjective; the second problem is that g is not single-valued, and
it arises because f is not injective (this reflects the fact that being single-valued
is the converse of being injective). Therefore, neither problem arises when f is
a bijection.
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Definition. A function f : X → Y has an inverse if there exists a function
g : Y → X with both composites g ◦ f and f ◦ g being identity functions.

We do not say that every function f has an inverse; on the contrary, we have
just analyzed the reasons why most functions do not have an inverse. Notice that
if an inverse function g does exist, then it “reverses the arrows” in Figure 2.4.
If f (a) = y, then there is an arrow from a to y. Now g ◦ f being the identity
says that a = (g ◦ f )(a) = g( f (a)) = g(y); therefore g : y 7→ a, and so the
picture of g is obtained from the picture of f by reversing arrows. If f twists
something, then its inverse g untwists it.

Lemma 2.9. If f : X → Y and g : Y → X are functions such that g ◦ f = 1X ,
then f is injective and g is surjective.

Proof. Suppose that f (a) = f (a′); apply g to obtain g( f (a)) = g( f (a′));
that is, a = a′ [because g( f (a)) = a], and so f is injective. If x ∈ X , then
x = g( f (x)), so that x ∈ im g; hence g is surjective. •

Lemma 2.10. A function f : X → Y has an inverse g : Y → X if and only if
it is a bijection.

Proof. If f has an inverse g, then Lemma 2.9 shows that f is injective and
surjective, for both composites g ◦ f and f ◦ g are identities.

Assume that f is a bijection. Let y ∈ Y . Since f is surjective, there is
some a ∈ X with f (a) = y; since f is injective, this element a is unique.
Defining g(y) = a thus gives a (single-valued) function whose domain is Y [g
merely “reverses arrows:” since f (a) = y, there is an arrow from a to y, and
the reversed arrow goes from y to a]. It is plain that g is the inverse of f ; that is,
f (g(y)) = f (a) = y for all y ∈ Y and g( f (a)) = g(y) = a for all a ∈ X . •

Notation. The inverse of a bijection f is denoted by f −1 (Exercise 2.8 on
page 101 says that a function cannot have two inverses). This is the same notation
used for inverse trigonometric functions in calculus; e.g., sin−1 x = arcsin x
satisfies sin(arcsin(x)) = x and arcsin(sin(x)) = x . Of course, sin−1 does not
denote the reciprocal 1/ sin x , which is csc x .

Example 2.11.
Here is an example of two functions f and g whose composite g ◦ f is the
identity but whose composite f ◦ g is not the identity; thus, f and g are not
inverse functions.
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Define f , g : � → �
as follows:

f (n) = n + 1;

g(n) =
{

0 if n = 0

n − 1 if n ≥ 1.

The composite g ◦ f = 1 � , for g( f (n)) = g(n + 1) = n (because n + 1 ≥ 1).
On the other hand, f ◦ g 6= 1 � because f (g(0)) = f (0) = 1 6= 0. �

Example 2.12.
If a is a real number, then multiplication by a is the functionµa : � → �

defined
by r 7→ ar for all r ∈ �

. If a 6= 0, then µa is a bijection; its inverse function is
division by a, namely, δa : � → �

, defined by r 7→ 1
a r ; of course, δa = µ1/a . If

a = 0, however, then µa = µ0 is the constant function µ0 : r 7→ 0 for all r ∈ �
,

which has no inverse function because it is not a bijection. �

Two strategies are now available to determine whether a given function is a
bijection: use the definitions of injective and surjective, or find an inverse. For
example, if

� + denotes the positive real numbers, let us show that the exponen-
tial function f : � → � + , defined by f (x) = ex =

∑
xn/n!, is a bijection. A

direct proof that f is an injection would require showing that if ea = eb, then
a = b; a direct proof showing that f is surjective would involve showing that
every positive real number c has the form ea for some a. It is simplest to use the
(natural) logarithm g(y) = log y. The usual formulas elog y = y and log ex = x
say that both composites f ◦g and g◦ f are identities, and so f and g are inverse
functions. Therefore, f is a bijection, for it has an inverse.

Let us summarize the results of this subsection.

Proposition 2.13. If the set of all the bijections from a set X to itself is denoted
by SX , then composition of functions satisfies the following properties:

(i) if f , g ∈ SX , then f ◦ g ∈ SX ;

(ii) h ◦ (g ◦ f ) = (h ◦ g) ◦ f for all f, g, h ∈ SX ;

(iii) the identity 1X lies in SX , and 1X ◦ f = f = f ◦ 1X for every f ∈ SX ;

(iv) for every f ∈ SX , there is g ∈ SX with g ◦ f = 1X = f ◦ g.

Proof. We have merely restated results of Exercise 2.13(ii) on page 102, Lem-
mas 2.6, 2.7, and 2.10. •

Remark. Here is one interesting use of bijections. It is easy to prove (see
Exercise 2.11 on page 101) that two finite sets X and Y have the same number
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of elements if and only if there is a bijection f : X → Y . This suggests the
following definition, due to G. Cantor (1845–1918).

Definition. Two (possibly infinite) sets X and Y have the same number of
elements, denoted by |X | = |Y |, if there exists a bijection f : X → Y .

For example, a set X is called countable if either X is finite or X has the same
number of elements as the natural numbers

�
. If X is infinite and countable,

then there is a bijection f : � → X ; that is, there is a list x0, x1, x2, . . ., with
no repetitions, of all the elements of X , where xn = f (n) for all n ∈ �

. Cantor
proved that

�
is uncountable; that is,

�
is not countable. Thus, there are different

sizes of infinity (in fact, there are infinitely many different sizes of infinity).
The difference in size can be useful. For example, one calls a real number z
algebraic if it is a root of some polynomial f (x) = q0 + q1x + · · · + qnxn ,
all of whose coefficients q0, q1, . . . , qn are rational; one calls z transcendental
if it is not algebraic. Of course, every rational r is algebraic, for it is a root of
x − r . But irrational algebraic numbers do exist; for example,

√
2 is algebraic,

being a root of x2 − 2. Are there any transcendental numbers? One can prove
that there are only countably many algebraic numbers, and so it follows from
Cantor’s theorem, the uncountability of

�
, that there exist (many) transcendental

numbers. �

Remark. Why should we care about the target of a function when its image
is more important? As a practical matter, when first defining a function, one
usually does not know its image. For example, let f : � → �

be defined by

f (x) = |x |e−x 5
√

x2 + sin2 x .

We must analyze f to find its image, and this is no small task. But if targets have
to be images, then we could not even write down f : X → Y without having first
found the image of f . Thus, targets are convenient to use.

Part of the definition of equality of functions is that their targets are equal;
changing the target changes the function. Suppose we do not do this. Consider a
function f : X → Y that is not surjective, let Y ′ = im f , and define g : X → Y ′

by g(x) = f (x) for all x ∈ X . The functions f and g have the same domain
and the same values (i.e., the same graph); they differ only in their targets. Now
g is surjective. Had we decided that targets are not a necessary ingredient in the
definition of a function, then we would not be able to distinguish between f ,
which is not surjective, and g, which is. It would then follow that every function
is a surjection (this would not shake the foundations of mathematics, but it would
force us into using cumbersome circumlocutions). �
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If X and Y are sets, then a function f : X → Y defines a “forward motion,”
direct image, carrying subsets of X into subsets of Y : if S ⊆ X , then

f (S) = {y ∈ Y : y = f (s) for some s ∈ S}.

One calls f (S) the direct image of S. A function f also defines a “backward
motion,” inverse image, carrying subsets of Y into subsets of X : if W ⊆ Y , then

f −1(W ) = {x ∈ X : f (x) ∈ W }.

We are not assuming that f is a bijection, and so f −1 does not mean the inverse
function in this context (after all, we are not assuming that f is a bijection).
Here, f −1(W ) means all those elements in X , if any, which f sends into W .
One calls f −1(W ) the inverse image of W .

In Exercise 2.15 on page 102, it is shown that direct image preserves unions:
if f : X → Y and if {Si : i ∈ I } is a family of subsets of X , then f (

⋃
i∈I Si) =⋃

i∈I f (Si). On the other hand, f (S1 ∩ S2) 6= f (S1) ∩ f (S2) is possible. Ex-
ercise 2.16 on page 102 shows that inverse image is better behaved than direct
image.

Proposition 2.14. Let X and Y be sets, and let f : X → Y be a function.

(i) If T ⊆ S are subsets of X, then f (T ) ⊆ f (S), and if U ⊆ V are subsets
of Y , then f −1(U ) ⊆ f −1(V ).

(ii) If U ⊆ Y , then f f −1(U ) ⊆ U ; if f is a surjection, then f f −1(U ) = U.

(iii) If S ⊆ X, then S ⊆ f −1 f (S), but strict inequality is possible.

Proof.
(i) If y ∈ f (T ), then y = f (t) for some t ∈ T . But t ∈ S, because T ⊆ S, and
so f (t) ∈ f (S). Therefore, f (T ) ⊆ f (S). The other inclusion is proved just as
easily.
(ii) If a ∈ f f −1(U ), then a = f (x ′) for some x ′ ∈ f −1(U ); this says that
a = f (x ′) ∈ U . We prove the reverse inclusion when f is surjective. If u ∈ U ,
then there is x ∈ X with f (x) = u; hence, x ∈ f −1(U ), and so u = f (x) ∈
f f −1(U ).
(iii) If s ∈ S, then f (s) ∈ f (S), and so s ∈ f −1 f (s) ⊆ f −1(S).

To see that there may be strict inequality, let f : � → S1, where S1 is the unit
circle, be defined by f (x) = e2π i x . If A = {0}, then f (A) = {1} and

f −1 f (A) = f −1 f ({0}) = f −1({1} = ���
A. •

Corollary 2.15. If f : X → Y is a surjection, then B 7→ f −1(B) is an injec-
tion � (Y ) → � (X), where � (Y ) denotes the family of all the subsets of Y .
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Proof. If B,C ⊆ Y and f −1(B) = f −1(C), then Proposition 2.14(ii) gives

B = f f −1(B) = f f −1(C) = C. •

Equivalence Relations

We are going to define the important notion of equivalence relation, but we begin
with the general notion of relation.

Definition. Given sets X and Y , a relation from X to Y is a subset R of X ×Y ;
if X = Y , then we say that R is a relation on X . One usually writes x Ry instead
of (x, y) ∈ R.

Here is a concrete example. Certainly, ≤ should be a relation on
�

; to see
that it is, define the relation

R = {(x, y) ∈ � × � : (x, y) lies on or above the line y = x}.

The reader should check that x ≤ y if and only if (x, y) ∈ R.

Example 2.16.

(i) Every function f : X → Y is a relation from X to Y .

(ii) Equality is a relation on any set X .

(iii) Congruence mod m is a relation on
�

. �

Definition. A relation x ≡ y on a set X is

reflexive if x ≡ x for all x ∈ X;
symmetric if x ≡ y implies y ≡ x for all x, y ∈ X;
transitive if x ≡ y and y ≡ z imply x ≡ z for all x, y, z ∈ X.

A relation that has all three properties– reflexivity, symmetry, and transitivity– is
called an equivalence relation.

Example 2.17.

(i) Ordinary equality is an equivalence relation on any set.

(ii) If m ≥ 0, then Proposition 1.54 says that x ≡ y mod m is an equivalence
relation on X = �

.



SOME SET THEORY 97

(iii) Let X = {(a, b) ∈ � × � : b 6= 0}, and define a relation ≡ on X by
cross-multiplication:

(a, b) ≡ (c, d) if ad = bc.

We claim that ≡ is an equivalence relation. Verification of reflexivity and
symmetry is easy. For transitivity, assume that (a, b) ≡ (c, d) and (c, d) ≡
(e, f ). Now ad = bc gives ad f = bcf , and c f = de gives bc f = bde;
thus, ad f = bde. We may cancel the nonzero integer d to get a f = be;
that is, (a, b) ≡ (e, f ).

(iv) In calculus, equivalence relations are implicit in the discussion of vectors.
An arrow from a point P to a point Q can be denoted by the ordered pair
(P, Q); call P its foot and Q its head. An equivalence relation on arrows
can be defined by saying that (P, Q) ≡ (P ′, Q′) if these arrows have the
same length and the same direction. More precisely, (P, Q) ≡ (P ′, Q′)
if the quadrilateral obtained by joining P to P ′ and Q to Q′ is a paral-
lelogram [this definition is incomplete, for one must also relate collinear
arrows as well as “degenerate” arrows (P, P)]. Note that direction of an
arrow from P to Q is important; if P 6= Q, then (P, Q) 6≡ (Q, P). �

An equivalence relation on a set X yields a family of subsets of X .

Definition. Let ≡ be an equivalence relation on a set X . If a ∈ X , the equiva-
lence class of a, denoted by [a], is defined by

[a] = {x ∈ X : x ≡ a} ⊆ X.

We now display equivalence classes arising from the equivalence relations
given above.

Example 2.18.

(i) Let ≡ be equality on a set X . If a ∈ X , then [a] = {a}, the subset having
only one element, namely, a. After all, if x = a, then x and a are equal!

(ii) Consider the relation of congruence mod m on
�

, and let a ∈ �
. The

congruence class of a is defined by

{x ∈ � : x = a + km where k ∈ � }.

On the other hand, the equivalence class of a is, by definition,

{x ∈ � : x ≡ a mod m}.

Since x ≡ a mod m if and only if x = a + km for some k ∈ �
, these two

subsets coincide; that is, the equivalence class [a] is the congruence class.
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(iii) The equivalence class of (a, b) under cross-multiplication, where a, b ∈ �
and b 6= 0, is

[(a, b)] = {(c, d) : ad = bc}.

If we denote [(a, b)] by a/b, then this equivalence class is precisely the
fraction usually denoted by a/b. After all, it is plain that (1, 2) 6= (2, 4),
but [(1, 2)] = [(2, 4)]; that is, 1/2 = 2/4.

(iv) An equivalence class [(P, Q)] of arrows, as in Example 2.17(iv), is called
a vector; we denote it by [(P, Q)] = −→

P Q. �

It is instructive to compare rational numbers and vectors, for both are defined
as equivalence classes. Every rational a/b has a “favorite” name – its expression
in lowest terms; every vector has a favorite name – an arrow (O, Q) with its foot
at the origin. Working with fractions in lowest terms is not always convenient;
for example, even if both a/b and c/d are in lowest terms, their sum (ad+bc)/bd
may not be in lowest terms. Vector addition is defined by the parallelogram law
(see Figure 2.5):

−→
O P + −−→

O Q = −→
O R, where O, P , Q, and R are the vertices

of a parallelogram. But
−−→
O Q = −→

P R, because (O, Q) ≡ (P, R), and it is more
natural to write

−→
O P + −−→

O Q = −→
O P + −→

P R = −→
O R.

O

P

R

Q

Figure 2.5 Parallelogram Law

Lemma 2.19. If ≡ is an equivalence relation on a set X, then x ≡ y if and
only if [x] = [y].

Proof. Assume that x ≡ y. If z ∈ [x], then z ≡ x , and so transitivity gives
z ≡ y; hence [x] ⊆ [y]. By symmetry, y ≡ x , and this gives the reverse
inclusion [y] ⊆ [x]. Thus, [x] = [y].

Conversely, if [x] = [y], then x ∈ [x], by reflexivity, and so x ∈ [x] = [y].
Therefore, x ≡ y. •
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In words, this lemma says that one can replace equivalence by honest equal-
ity at the cost of replacing elements by their equivalence classes.

Here is a set-theoretic idea that we shall show is intimately involved with
equivalence relations.

Definition. A family � of nonempty subsets of a set X is called pairwise dis-
joint if, for all A, B ∈ � , either A = B or A ∩ B = �

.
A partition of a set X is a family of nonempty pairwise disjoint subsets,

called blocks, whose union is all of X .

Notice that if X is a finite set and A1, A2, . . . , An is a partition of X , then

|X | = |A1| + |A2| + · · · + |An|.

We are now going to prove that equivalence relations and partitions are
merely different views of the same thing.

Proposition 2.20. If ≡ is an equivalence relation on a set X, then the equiva-
lence classes form a partition of X. Conversely, given a partition � of X, there
is an equivalence relation on X whose equivalence classes are the blocks in � .

Proof. Assume that an equivalence relation ≡ on X is given. Each x ∈ X lies
in the equivalence class [x] because ≡ is reflexive; it follows that the equivalence
classes are nonempty subsets whose union is X . To prove pairwise disjointness,
assume that a ∈ [x] ∩ [y], so that a ≡ x and a ≡ y. By symmetry, x ≡ a,
and so transitivity gives x ≡ y. Therefore, [x] = [y], by the lemma, and so the
equivalence classes form a partition of X .

Conversely, let � be a partition of X . If x, y ∈ X , define x ≡ y if there is
A ∈ � with x ∈ A and y ∈ A. It is plain that ≡ is reflexive and symmetric. To
see that ≡ is transitive, assume that x ≡ y and y ≡ z; that is, there are A, B ∈ �
with x , y ∈ A and y, z ∈ B. Since y ∈ A∩ B, pairwise disjointness gives A = B
and so x , z ∈ A; that is, x ≡ z. We have shown that ≡ is an equivalence relation.

It remains to show that the equivalence classes are the subsets in � . If x ∈ X ,
then x ∈ A for some A ∈ � . By definition of ≡, if y ∈ A, then y ≡ x
and y ∈ [x]; hence, A ⊆ [x]. For the reverse inclusion, let z ∈ [x], so that
z ≡ x . There is some B with x ∈ B and z ∈ B; thus, x ∈ A ∩ B. By pairwise
disjointness, A = B, so that z ∈ A, and [x] ⊆ A. Hence, [x] = A. •

Example 2.21.

(i) If ≡ is the identity relation on a set X , then the blocks are the 1-point
subsets of X .
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(ii) If X = {(a, b) ∈ � × � : b 6= 0}, then the equivalence class of (a, b) [of
the equivalence relation given by cross-multiplication] is the fraction a/b.
Thus, 1/2 is the class of (a, 2a) for all nonzero a ∈ �

. �

Given an equivalence relation on a set X , it is a common practice to con-
struct the set X̃ whose elements are the equivalence classes [x] of elements
x ∈ X . For example, if X = {(a, b) ∈ � × � : b 6= 0}, then X̃ =

�
.

Does the formula f (a/b) = a + b define a function f :
�

→ �
; that is, is f

single-valued? The formula does define a relation from
�

to
�

, but it does not
define a function; for example, 1/2 = 2/4, but f (1/2) = 3 6= 6 = f (2/4).
Thus, f is not single-valued, and it does not define a function (older texts of-
ten call f a multiple-valued function). The value f (a/b) depends on the choice
of name a/b. In contrast, addition of rationals, α :

�
×

�
→

�
, given by

(a/b) + (c/d) = (ad + bd)/bd , does define a function. Even though the for-
mula for α appears to depend on the choices of name for a/b and c/d , it is
actually independent of such choices. The reader can prove that if a/b = a ′/b′

and c/d = c′/d ′, then (ad + bc)/bd = (a′d ′ + b′c′)/b′d ′. When the values of
a supposed function f appear to depend on choices (for example, if the value
f ([x]) seems to depend on the choice of representative x), then one is obliged to
prove independence of choices before declaring that f is a (single-valued) func-
tion. Checking whether an alleged function f with domain X̃ is single-valued is
often described as checking that f is well-defined.

EXERCISES

2.1 If A and B are subsets of a set X , prove that A − B = A ∩ B ′, where B ′ = X − B
is the complement of B .

*2.2 Let A and B be subsets of a set X . Prove the de Morgan laws :

(A ∪ B)′ = A′ ∩ B ′ and (A ∩ B)′ = A′ ∪ B ′,

where A′ = X − A denotes the complement of A.
*2.3 If A and B are subsets of a set X , define their symmetric difference by

A + B = (A − B) ∪ (B − A).

(i) Prove that A + B = (A ∪ B)− (A ∩ B).
(ii) Prove that A + A = �
(iii) Prove that A + � = A.
(iv) Prove that A + (B + C) = (A + B)+ C.
(v) Prove that A ∩ (B + C) = (A ∩ B)+ (A ∩ C).
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A B

Figure 2.6 Symmetric Difference

A B

C

Figure 2.7 Associativity

*2.4 Let A and B be sets, and let a ∈ A and b ∈ B . Define their ordered pair as follows:

(a, b) = {a, {a, b}}.

If a′ ∈ A and b′ ∈ B , prove that (a′, b′) = (a, b) if and only if a ′ = a and b′ = b.
2.5 Let 1 = {(x, x) : x ∈ � }; thus, 1 is the line in the plane which passes through the

origin and which makes an angle of 45◦ with the x-axis.
(i) If P = (a, b) is a point in the plane with a 6= b, prove that 1 is the

perpendicular bisector of the segment P P ′ having endpoints P = (a, b)
and P ′ = (b, a).

(ii) If f : � → � is a bijection whose graph consists of certain points (a, b)
[of course, b = f (a)], prove that the graph of f −1 is

{(b, a) : (a, b) ∈ f }.

*2.6 Let X and Y be sets, and let f : X → Y be a function.
(i) If S is a subset of X , prove that the restriction f |S is equal to the com-

posite f ◦ i , where i : S → X is the inclusion map.
(ii) If im f = A ⊆ Y , prove that there exists a surjection f ′ : X → A with

f = j f ′, where j : A → Y is the inclusion.
2.7 If f : X → Y has an inverse g, show that g is a bijection.

*2.8 Show that if f : X → Y is a bijection, then it has exactly one inverse.
2.9 Show that f : � → � , defined by f (x) = 3x + 5, is a bijection, and find its

inverse.
2.10 Determine whether f : � × � → � , given by

f (a/b, c/d) = (a + c)/(b + d)

is a function.
*2.11 Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be finite sets, where the xi are distinct

and the y j are distinct. Show that there is a bijection f : X → Y if and only if
|X | = |Y |; that is, m = n.
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*2.12 (Pigeonhole Principle)
(i) If X and Y are finite sets with the same number of elements, show that

the following conditions are equivalent for a function f : X → Y :

(i) f is injective;

(ii) f is bijective;

(iii) f is surjective.

(ii) Suppose there are 11 pigeons, each sitting is some pigeonhole. If there
are only 10 pigeonholes, prove that there is a hole containing more than
one pigeon.

*2.13 Let f : X → Y and g : Y → Z be functions.
(i) If both f and g are injective, prove that g ◦ f is injective.
(ii) If both f and g are surjective, prove that g ◦ f is surjective.

(iii) If both f and g are bijective, prove that g ◦ f is bijective.
(iv) If g ◦ f is a bijection, prove that f is an injection and g is a surjection.

2.14 (i) If f : (−π/2, π/2) → � is defined by a 7→ tan a, then f has an inverse
function g; indeed, g = arctan.

(ii) Show that each of arcsin x and arccos x is an inverse function (of sin x
and cos x , respectively) as defined in this section. (Domains and targets
must be chosen with care.)

*2.15 (i) Let f : X → Y be a function, and let {Si : i ∈ I } be a family of subsets
of X . Prove that

f
(⋃

i∈I

Si

)
=
⋃

i∈I

f (Si ).

(ii) If S1 and S2 are subsets of a set X , and if f : X → Y is a function,
prove that f (S1 ∩ S2) ⊆ f (S1) ∩ f (S2). Give an example in which
f (S1 ∩ S2) 6= f (S1) ∩ f (S2).

(iii) If S1 and S2 are subsets of a set X , and if f : X → Y is an injection,
prove that f (S1 ∩ S2) = f (S1) ∩ f (S2).

*2.16 Let f : X → Y be a function.
(i) If Bi ⊆ Y is a family of subsets of Y , prove that

f −1
(⋃

i

Bi

)
=
⋃

i

f −1(Bi ) and f −1
(⋂

i

Bi

)
=
⋂

i

f −1(Bi ).

(ii) If B ⊆ Y , prove that f −1(B ′) = f −1(B)′, where B ′ denotes the comple-
ment of B .

2.17 Let f : X → Y be a function. Define a relation on X by x ≡ x′ if f (x) = f (x ′).
Prove that ≡ is an equivalence relation. If x ∈ X and f (x) = y, the equivalence
class [x] is usually denoted by f −1(y), the inverse image of {y}.

2.18 Let X = {rock, paper, scissors}. Recall the game whose rules are: paper dominates
rock, rock dominates scissors, and scissors dominates paper. Draw a subset of
X × X showing that domination is a relation on X .
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2.2 PERMUTATIONS

In high school mathematics, the words permutation and arrangement are used
interchangeably, if the word arrangement is used at all. We draw a distinction
between them.

Definition. A permutation of a set X is a bijection α : X → X . If X is a
finite set and |X | = n, then an arrangement of X is a list x1, x2, . . . , xn with no
repetitions of all the elements of X .

Given an arrangement x1, x2, . . . , xn , define f : {1, 2, . . . , n} → X by f (i) =
xi ; thus, the list x1, x2, . . . , xn displays the values of f . That there are no rep-
etitions on the list says that f is injective, for i 6= j implies xi = f (i) 6=
f ( j ) = x j ; that every x ∈ X occurs on the list says that f is surjective. Thus,
an arrangement of X defines a bijection f : {1, 2, . . . , n} → X .

For example, there are six arrangements of X = {a, b, c}:

abc; acb; bac; bca; cab; cba.

All we can do with such lists is count their number, and there are exactly n!
arrangements of an n-element set X .

If X = {1, 2, . . . , n}, then a permutation α : X → X gives the list α(1) =
i1, α(2) = i2, . . . , α(n) = in . We can use a two-rowed notation to denote this
permutation: if α( j ) is the j th item on the list, then

α =
(

1 2 . . . j . . . n
α(1) α(2) . . . α( j ) . . . α(n)

)
.

Informally, arrangements (lists) and permutations (bijections) are simply differ-
ent ways of describing the same thing. The advantage of viewing permutations
as bijections, rather than as lists, is that they can now be composed and, by Ex-
ercise 2.13(ii) on page 102, their composite is also a permutation.

The results in this section first appeared in an article of Cauchy in 1815.

Definition. The family of all the permutations of a set X , denoted by SX , is
called the symmetric group on X . When X = {1, 2, . . . , n}, SX is usually de-
noted by Sn, and it is called the symmetric group on n letters.

Notice that composition in S3 is not commutative. If

α =
(

1 2 3
2 3 1

)
and β =

(
1 2 3
2 1 3

)
,
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then their composites3 are

α ◦ β =
(

1 2 3
3 2 1

)
and β ◦ α =

(
1 2 3
1 3 2

)
,

so that α ◦ β 6= β ◦ α [for example, α ◦ β: 1 7→ α(β(1)) = α(2) = 3 while
β ◦ α : 1 7→ 2 7→ 1].

On the other hand, some permutations do commute; for example,
(

1 2 3 4
2 1 3 4

)
and

(
1 2 3 4
1 2 4 3

)

commute, as the reader may check.
Composition in SX satisfies the cancellation law:

if γ ◦ α = γ ◦ β, then α = β.

To see this,

α = 1X ◦ α
= (γ−1 ◦ γ ) ◦ α
= γ−1 ◦ (γ ◦ α)
= γ−1 ◦ (γ ◦ β)
= (γ−1 ◦ γ ) ◦ β
= 1X ◦ β = β.

A similar argument shows that

α ◦ γ = β ◦ γ implies α = β.

Aside from being cumbersome, there is a major problem with the two-rowed
notation for permutations. It hides the answers to elementary questions such
as: is the square of a permutation the identity? what is the smallest positive
integer m so that the mth power of a permutation is the identity? can one factor
a permutation into simpler permutations? The special permutations introduced
below will remedy this defect.

Let us first simplify notation by writing βα instead of β ◦ α and (1) instead
of 1X .

3There are authors who multiply permutations differently, so that their α ◦ β is our β ◦ α.
This is a consequence of their putting “functions on the right:” instead of writing α(i) as we
do, they write (i)α. Consider the composite of permutations α and β in which we first apply
β and then apply α. We write i 7→ β(i) 7→ α(β(i)). In the right-sided notation, i 7→ (i)β 7→
((i)β)α. Thus, the notational switch causes a switch in the order of multiplication.
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Definition. If α ∈ Sn and i ∈ {1, 2, . . . , n}, then α fixes i if α(i) = i , and α
moves i if α(i) 6= i .

Definition. Let i1, i2, . . . , ir be distinct integers in {1, 2, . . . , n}. If α ∈ Sn
fixes the other integers (if any) and if

α(i1) = i2, α(i2) = i3, . . . , α(ir−1) = ir , α(ir) = i1,

then α is called an r-cycle. One also says that α is a cycle of length r .

A 2-cycle interchanges i1 and i2 and fixes everything else; 2-cycles are also
called transpositions. A 1-cycle is the identity, for it fixes every i ; thus, all
1-cycles are equal: (i) = (1) for all i .

Consider the permutation

α =
(

1 2 3 4 5
4 3 1 5 2

)
.

The two-rowed notation does not help us recognize that α is, in fact, a 5-cycle:
α(1) = 4, α(4) = 5, α(5) = 2, α(2) = 3, and α(3) = 1. We now introduce new
notation: an r -cycle α, as in the definition, shall be denoted by

α = (i1 i2 . . . ir ).

For example, the 5-cycle α above will be written α = (1 4 5 2 3). The reader
may check that

(
1 2 3 4
2 3 4 1

)
= (1 2 3 4),

(
1 2 3 4 5
5 1 4 2 3

)
= (1 5 3 4 2),

and
(

1 2 3 4 5
2 3 1 4 5

)
= (1 2 3).

Notice that

β =
(

1 2 3 4
2 1 4 3

)

is not a cycle; in fact, β = (1 2)(3 4). The term cycle comes from the Greek
word for circle. One can picture the cycle (i1 i2 . . . ir ) as a clockwise rotation
of the circle (see Figure 2.8). Any i j can be taken as the “starting point,” and so
there are r different cycle notations for any r -cycle:

(i1 i2 . . . ir ) = (i2 i3 . . . ir i1) = · · · = (ir i1 i2 . . . ir−1).
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ir

i1

i2

i3

.
.

.

.
.
.

Figure 2.8 A Cycle as a Rotation

Figure 2.9 is a page from Cauchy’s 1815 paper in which he introduces the
calculus of permutations. Notice that his notation for a cycle is a circle.

Let us now give an algorithm to factor a permutation into a product of cycles.
For example, take

α =
(

1 2 3 4 5 6 7 8 9
6 4 7 2 5 1 8 9 3

)
.

Begin by writing “(1.” Now α : 1 7→ 6, so write “(1 6.” Next, α : 6 7→ 1, and so
the parentheses close: α begins “(1 6).” The first number not having appeared is
2, and so we write “(1 6)(2.” Now α : 2 7→ 4, so we write “(1 6)(2 4.” Since
α : 4 7→ 2, the parentheses close once again, and we write “(1 6)(2 4).” The
smallest remaining number is 3; now 3 7→ 7, 7 7→ 8, 8 7→ 9, and 9 7→ 3; this
gives the 4-cycle (3 7 8 9). Finally, α(5) = 5; we claim that

α = (1 6)(2 4)(3 7 8 9)(5).

Since multiplication in Sn is composition of functions, our claim is that

α(i) = [(1 6)(2 4)(3 7 8 9)(5)](i)

for every i between 1 and n (after all, two functions f and g are equal if and
only if f (i) = g(i) for every i in their common domain). The right side is the
composite βγ δ, where β = (1 6), γ = (2 4), and δ = (3 7 8 9) (actually, there
is also the 1-cycle (5), which we may ignore when we are evaluating, for (5) is
the identity function). Now α(1) = 6; multiplication of permutations views the
permutations as functions and then takes their composite. For example, if i = 1,
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Figure 2.9

A. Cauchy, M émoire sur le nombre des valeurs qu’une fonction peut
acqu érir lorsqu’on y permute de toutes les manieères possibles les

quantit és qu’elle renferme
J. de l’École Poly., XVIIe Cahier, Tome X (1815), pp. 1–28

From: Oeuvres Completes d’Augustin Cauchy, II Serie, Tome I,
Gauthier-Villars, Paris, 1905.
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then

βγ δ(1) = β(γ (δ(1)))

= β(γ (1)) δ fixes 1

= β(1) γ fixes 1

= 6.

In Proposition 2.24, we will give a more satisfactory proof that α has been fac-
tored as a product of cycles.

Factorizations into cycles are very convenient for multiplication of permuta-
tions. For example, in S5, let us simplify the product

σ = (1 2)(1 3 4 2 5)(2 5 1 3)

by displaying the “partial outputs” of the algorithm: σ : 1 7→ 3 7→ 4 7→ 4, so
that σ begins (1 4. Next, σ : 4 7→ 4 7→ 2 7→ 1; hence, σ begins (1 4). The
smallest number not yet considered is 2, and σ : 2 7→ 5 7→ 1 7→ 2; thus, σ
fixes 2, and σ begins (1 4)(2). The smallest number not yet considered is 3, and
σ : 3 7→ 2 7→ 5 7→ 5. Finally, σ : 5 7→ 1 7→ 3 7→ 3, and we conclude that

σ = (1 4)(2)(3 5).

In the factorization of a permutation into cycles, given by the algorithm
above, one notes that the family of cycles is disjoint in the following sense.

Definition. Two permutations α, β ∈ Sn are disjoint if every i moved by one
is fixed by the other: if α(i) 6= i , then β(i) = i , and if β( j ) 6= j , then α( j ) = j .
A family β1 . . . , βt of permutations is disjoint if each pair of them is disjoint.

Consider the special case of cycles. If α = (i1 i2 . . . ir ) and β =
( j1 j2 . . . js), then any k in the intersection {i1, i2, . . . , ir } ∩ { j1, j2, . . . , js}
is moved by both α and β. Thus, it is easy to see that two cycles are disjoint
if and only if {i1, i2, . . . , ir } ∩ { j1, j2, . . . , js} = �

; that is, {i1, i2, . . . , ir} and
{ j1, j2, . . . , js} are disjoint sets.

When permutations α and β are disjoint, there are exactly three distinct pos-
sibilities for a number i : it is moved by α, it is moved by β, or it is moved by
neither (that is, it is fixed by both).

Lemma 2.22. Disjoint permutations α, β ∈ Sn commute.

Proof. It suffices to prove that if 1 ≤ i ≤ n, then αβ(i) = βα(i). If β moves
i , say, β(i) = j 6= i , then β also moves j [otherwise, β( j ) = j and β(i) = j
contradicts β’s being an injection]; since α and β are disjoint, α(i) = i and
α( j ) = j . Hence βα(i) = j = αβ(i). A similar argument shows that αβ(i) =
βα(i) if α moves i . The last possibility is that neither α nor β moves i ; in this
case, αβ(i) = i = βα(i). Therefore, αβ = βα, by Proposition 2.2. •
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In particular, disjoint cycles commute.
It is possible for permutations that are not disjoint to commute; for example,

the reader may check that (1 2 3)(4 5) and (1 3 2)(6 7) do commute. An
even simpler example arises from a permutation commuting with its powers:
αα2 = α2α.

Lemma 2.23. Let X = {1, 2, . . . , n}, let α ∈ SX = Sn, and, if i1 ∈ X, define
i j for all j ≥ 1 by induction: i j+1 = α(i j ). Write Y = {i j : j ≥ 1}, and let Y ′

be the complement of Y .

(i) If α moves i1, then there is r > 1 with i1, . . . , ir all distinct and with
ir+1 = α(ir ) = i1.

(ii) α(Y ) = Y and α(Y ′) = Y ′.

Proof.
(i) Since X is finite, there is a smallest r > 1 with i1, . . . , ir all distinct, but with
ir+1 = α(ir ) ∈ {i1, . . . , ir}; that is, α(ir ) = i j for 1 ≤ j ≤ r . If j > 1, then
α(ir ) = i j = α(i j−1). But α is an injection, so that ir = i j−1, contradicting
i1, . . . , ir all being distinct. Therefore, α(ir ) = i1.
(ii) It is obvious that α(Y ) ⊆ Y , for if i j ∈ Y , then α(i j ) = i j+1 ∈ Y . If
k ∈ Y ′, then either α(k) ∈ Y or α(k) ∈ Y ′, for Y ′ is the complement of Y , and
so X = Y ∪ Y ′. If α(k) ∈ Y , then α(k) = i j = α(i j−1) for some j (by part (i),
this is even true for i j = i1). Since α is injective, k = i j−1 ∈ Y , contradicting
Y ∩ Y ′ = �

. Therefore, α(Y ′) ⊆ Y ′.
We now show that the inclusions α(Y ) ⊆ Y and α(Y ′) ⊆ Y ′ are actually

equalities. Now α(X) = α(Y ∪ Y ′) = α(Y ) ∪ α(Y ′), and this is a disjoint union
because α is an injection. But α(Y ) ⊆ Y gives |α(Y )| ≤ |Y |, and α(Y ′) ⊆ Y ′

gives |α(Y ′)| ≤ |Y ′|. If either of these inequalities is strict, then |α(X)| < |X |.
But α(X) = X , because α is a surjection, and this is a contradiction. •

The argument in the proof of Lemma 2.23(i) will be used again.

Proposition 2.24. Every permutation α ∈ Sn is either a cycle or a product of
disjoint cycles.

Proof. The proof is by induction on the number k ≥ 0 of points moved by α.
The base step k = 0 is true, for α is now the identity, which is a 1-cycle.

If k > 0, let i1 be a point moved by α. As in Lemma 2.23, define Y =
{i1, . . . , ir }, where i1, . . . , ir are all distinct, α(i j ) = i j+1 for j < r , and α(ir ) =
i1. Let σ ∈ SX be the r -cycle (i1 i2 i3 . . . ir ), so that σ fixes each point, if any,
in the complement Y ′ of Y . If r = n, then α = σ . If r < n, then α(Y ′) = Y ′,
as in the lemma. Define α′ = ασ−1; we claim that α′ and σ are disjoint. If σ
moves i , then i = i j ∈ Y . But α′(i j ) = ασ−1(i j ) = α(i j−1) = i j ; that is, α′
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fixes i j . Suppose that α′ moves k. We have just seen that k /∈ Y , so that we may
assume that k ∈ Y ′; but, by definition, σ fixes every k ∈ Y ′. Therefore, α = α′σ
is a factorization into disjoint permutations. The number of points moved by
α′ is k − r < k, and so the inductive hypothesis gives α′ = β1 · · ·βt , where
β1, . . . , βt are disjoint cycles. Therefore, α = α′σ = β1 · · ·βtσ is a product of
disjoint cycles, as desired. •

We have just proved that the output of the algorithm on page 106 is always a
product of disjoint cycles.

Usually one suppresses the 1-cycles in this factorization [for 1-cycles equal
the identity (1)]. However, a factorization of α containing one 1-cycle for each i
fixed by α, if any, will arise several times in the sequel.

Definition. A complete factorization of a permutation α is a factorization of α
into disjoint cycles that contains one 1-cycle (i) for every i fixed by α.

The factorization algorithm always yields a complete factorization. For ex-
ample, if

α =
(

1 2 3 4 5
1 3 4 2 5

)
,

then the algorithm gives α = (1)(2 3 4)(5), which is a complete factorization.
However, if one suppresses 1-cycles, the factorizations

α = (2 3 4) = (1)(2 3 4) = (2 3 4)(5)

are not complete factorizations. In a complete factorization α = β1 · · ·βt , every
symbol i between 1 and n occurs in exactly one of the β’s.

There is a relation between an r -cycle β and its powers βk , where βk denotes
the composite of β with itself k times. We modify notation a bit for the next
observation; write β = (i0 i1 . . . ir−1). Note that i1 = β(i0), i2 = β(i1) =
β(β(i0)) = β2(i0), i3 = β(i2) = β(β2(i0)) = β3(i0), and, for all k ≤ r − 1,

ik = βk(i0). (1)

Since β(ir−1) = i0, it is easy to see that the equation ik = βk(i0) holds if
subscripts j in the notation i j are taken mod r .

Lemma 2.25.

(i) Let α = βδ be a factorization into disjoint permutations. If β moves i ,
then αk(i) = βk(i) for all k ≥ 1.

(ii) If β and γ are cycles both of which move i = i0, and if βk(i) = γ k(i) for
all k ≥ 1, then β = γ .
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Remark. The hypothesis in (ii) does not assume that the cycles β and γ have
the same length, but this is part of the conclusion. �

Proof.
(i) Since β moves i , disjointness implies that δ fixes i ; indeed, every power of
δ fixes i . Now β and δ commute, by Lemma 2.22, and so Exercise 2.27(i) on
page 121 gives (βδ)k(i) = βk(δk(i)) = βk(i), as desired.
(ii) By Eq. (1), if β = (i0 i1 . . . ir−1), then ik = βk(i0) for all k < r − 1.
Similarly, if γ = (i0 j1 . . . js−1), then jk = γ k(i0) for k < s − 1. We may
assume that r ≤ s, so that i1 = j1, . . . , ir−1 = jr−1. Since jr = γ r (i0) =
βr (i0) = i0, it follows that s − 1 = r − 1 and jk = ik for all k. Therefore,
β = (i0 i1 . . . ir−1) = γ . •

The next theorem is an analog of the fundamental theorem of arithmetic.

Theorem 2.26. Let α ∈ Sn and let α = β1 · · · βt be a complete factorization
into disjoint cycles. This factorization is unique except for the order in which the
cycles occur.

Proof. Let α = γ1 · · · γs be a second complete factorization of α into disjoint
cycles. Since every complete factorization of α has exactly one 1-cycle for each
i fixed by α, it suffices to prove, by induction on `, the larger of t and s, that the
cycles of length> 1 are uniquely determined by α.

The base step is true, for when ` = 1, the hypothesis is β1 = α = γ1.
To prove the inductive step, note first that if βt moves i = i0, then βk

t (i0) =
αk(i0) for all k ≥ 1, by Lemma 2.25(i). Now some γ j must move i0; since
disjoint cycles commute, we may re-index so that γs moves i0. As in the first
paragraph, γ k

s (i0) = αk(i0) for all k. It follows from Lemma 2.25(ii) that
βt = γs , and the cancellation law on page 104 gives β1 · · · βt−1 = γ1 · · · γs−1.
By the inductive hypothesis, s = t and the γ ’s can be reindexed so that γ1 =
β1, . . . , γt−1 = βt−1. •

Every permutation is a bijection; how do we find its inverse? In Figure 2.8,
the pictorial representation of a cycle β as a clockwise rotation of a circle, the
inverse β−1 is just a counterclockwise rotation.

Proposition 2.27.

(i) The inverse of the cycle α = (i1 i2 . . . ir ) is the cycle (ir ir−1 . . . i1):

(i1 i2 . . . ir )
−1 = (ir ir−1 . . . i1).

(ii) If γ ∈ Sn and γ = β1 · · ·βk , then

γ−1 = β−1
k · · ·β−1

1



112 GROUPS I CH. 2

(note that the order of the factors in γ−1 has been reversed).

Proof.
(i) If α ∈ Sn, we show that both composites are equal to (1). Now the composite
(i1 i2 . . . ir )(ir ir−1 . . . i1) fixes each integer between 1 and n, if any, other
than i1, . . . , ir . The composite also sends i1 7→ ir 7→ i1 while it acts on i j , for
j ≥ 2, by i j 7→ i j−1 7→ i j . Thus, each integer between 1 and n is fixed by the
composite, and so it is (1). A similar argument proves that the composite in the
other order is also equal to (1), from which it follows that

(i1 i2 . . . ir )
−1 = (ir ir−1 . . . i1).

(ii) The proof is by induction on k ≥ 2. For the base step k = 2, we have

(β1β2)(β
−1
2 β−1

1 ) = β1(β2β
−1
2 )β−1

1 = β1β
−1
1 = (1).

Similarly, (β−1
2 β−1

1 )(β1β2) = (1).
For the inductive step, let δ = β1 · · ·βk , so that β1 · · · βkβk+1 = δβk+1. Then

(β1 · · ·βkβk+1)
−1 = (δβk+1)

−1

= β−1
k+1δ

−1

= β−1
k+1(β1 · · · βk)

−1

= β−1
k+1β

−1
k · · ·β−1

1 . •

Thus, (1 2 3 4)−1 = (4 3 2 1) = (1 4 3 2) and (1 2)−1 = (2 1) = (1 2)
(every transposition is equal to its own inverse).

Example 2.28.
The result in Proposition 2.27 holds, in particular, if the factors are disjoint cycles
(in which case the reversal of the order of the factors is unnecessary because they
commute with one another, by Lemma 2.22). Thus, if

α =
(

1 2 3 4 5 6 7 8 9
6 4 7 2 5 1 8 9 3

)
,

then α = (1 6)(2 4)(3 7 8 9)(5) and

α−1 = (5)(9 8 7 3)(4 2)(6 1)

= (1 6)(2 4)(3 9 8 7). �

Definition. Two permutations α, β ∈ Sn have the same cycle structure if their
complete factorizations have the same number of r -cycles for each r ≥ 1.
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According to Exercise 2.21 on page 120, there are

(1/r)[n(n − 1) · · · (n − r + 1)]

r -cycles in Sn. This formula can be used to count the number of permutations
having any given cycle structure if one is careful about factorizations having
several cycles of the same length. For example, the number of permutations in
S4 with cycle structure (a b)(c d) is

1
2

[
1
2 (4 × 3)

]
× [ 1

2 (2 × 1)] = 3,

the extra factor 1
2 occurring so that we do not count (a b)(c d) = (c d)(a b)

twice. Similarly, the number of permutations in Sn of the form (a b)(c d)(e f )
is

1

3!23
[n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)]

(see Exercise 2.21 on page 120).

Example 2.29.

Cycle Structure Number
(1) 1
(1 2) 6
(1 2 3) 8
(1 2 3 4) 6
(1 2)(3 4) 3

24

Table 2.1. Permutations in S4 �

Example 2.30.

Cycle Structure Number
(1) 1
(1 2) 10
(1 2 3) 20
(1 2 3 4) 30
(1 2 3 4 5) 24
(1 2)(3 4 5) 20
(1 2)(3 4) 15

120

Table 2.2. Permutations in S5 �



114 GROUPS I CH. 2

After a lemma, we present a computational aid.

Lemma 2.31. Let α, γ ∈ Sn. For all i , if γ : i → j , then αγα−1 : α(i) → α( j ).

Proof.
αγα−1(α(i)) = αγ (i) = α( j ). •

Proposition 2.32. If γ, α ∈ Sn, then αγα−1 has the same cycle structure as γ .
In more detail, if the complete factorization of γ is

γ = β1β2 · · · (i j . . . ) · · ·βt ,

then αγα−1 is the permutation σ which is obtained from γ by applying α to the
symbols in the cycles of γ .

Remark. For example, if γ = (1 3)(2 4 7)(5)(6) and α = (2 5 6)(1 4 3), then

αγα−1 = (α1 α3)(α2 α4 α7)(α5)(α6) = (4 1)(5 3 7)(6)(2). �

Proof. If γ fixes i , then Lemma 2.31 shows that σ fixes α(i). Assume that
γ moves a symbol i , say, γ (i) = j , so that one of the cycles in the complete
factorization of γ is

(i j . . . ).

By the definition of σ , one of its cycles is

(α(i) α( j ) . . . );

that is, σ : α(i) 7→ α( j ). But Lemma 2.31 says that αγα−1 : α(i) 7→ α( j ), so
that σ and αγα−1 agree on all numbers of the form α(i). But every k ∈ X has
the form k = α(i), because α : X → X is a surjection, and so σ = αγα−1. •

Proposition 2.33. If γ, γ ′ ∈ Sn, then γ and γ ′ have the same cycle structure if
and only only if there exists α ∈ Sn with γ ′ = αγα−1.

Proof. Sufficiency has just been proved, in Proposition 2.32.
Conversely, assume that γ and γ ′ have the same cycle structure; that is, γ =

β1 · · · βt and γ ′ = σ1 · · ·σt are complete factorizations with βλ and σλ having
the same length for all λ ≤ t . Let βλ = (iλ1 , . . . , iλr(λ)) and σλ = ( jλ1 , . . . , jλr(λ)).
Define

α(iλ1 ) = jλ1 , α(iλ2 ) = jλ2 , . . . , α(iλr(λ)) = jλr(λ),

for all λ. Since β1 · · ·βt is a complete factorization, every i ∈ X = {1, . . . , n}
occurs in exactly one βλ; hence, α(i) is defined for every i ∈ X , and α : X → X
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is a (single-valued) function. Since every j ∈ X occurs in some σλ, because
σ1 · · · σt is a complete factorization, it follows that α is surjective. By Exer-
cise 2.12 on page 102, α is a bijection, and so α ∈ Sn. Proposition 2.32 says that
αγα−1 has the same cycle structure as γ and the λth cycle, for each λ, is

(
α(iλ1 ) α(i

λ
2 ) . . . α(i

λ
r(λ))

)
= σλ.

Therefore, αγα−1 = γ ′. •

Example 2.34.
If

γ = (1 2 3)(4 5)(6) and γ ′ = (2 5 6)(3 1)(4),

then γ ′ = αγα−1, where

α =
(

1 2 3 4 5 6
2 5 6 3 1 4

)
= (1 2 5)(3 6 4).

Note that there are other choices for α as well. �

Here is another useful factorization of a permutation.

Proposition 2.35. If n ≥ 2, then every α ∈ Sn is a product of transpositions.

Proof. Of course, (1) = (1 2)(1 2) is a product of transpositions, as is every
transposition: (i j ) = (i j )(1 2)(1 2). By Proposition 2.24, it suffices to factor
an r -cycle β into a product of transpositions. This is done as follows. If r = 1,
then β is the identity, and β = (1 2)(1 2). If r ≥ 2, then

β = (1 2 . . . r) = (1 r)(1 r − 1) · · · (1 3)(1 2).

[One checks that this is an equality by evaluating each side. For example, the
left side β sends 1 7→ 2; each of (1 r), (1 r − 1), . . . , (1 3) fixes 2, and so the
right side also sends 1 7→ 2.] •

Every permutation can thus be realized as a sequence of interchanges. Such a
factorization is not as nice as the factorization into disjoint cycles. First of all, the
transpositions occurring need not commute: (1 2 3) = (1 3)(1 2) 6= (1 2)(1 3);
second, neither the factors themselves nor the number of factors are uniquely
determined. For example, here are some factorizations of (1 2 3) in S4:

(1 2 3) = (1 3)(1 2)

= (2 3)(1 3)

= (1 3)(4 2)(1 2)(1 4)

= (1 3)(4 2)(1 2)(1 4)(2 3)(2 3).
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Is there any uniqueness at all in such a factorization? We now prove that the
parity of the number of factors is the same for all factorizations of a permuta-
tion α; that is, the number of transpositions is always even or always odd [as is
suggested by the factorizations of α = (1 2 3) displayed above].

Example 2.36.
The 15-puzzle consists of a starting position, which is a 4 × 4 array of the num-
bers between 1 and 15 and a symbol # (which we interpret as “blank”), and
simple moves. For example, consider the starting position shown below.

3 15 4 12
10 11 1 8
2 5 13 9
6 7 14 #

A simple move interchanges the blank with a symbol adjacent to it; for example,
there are two beginning simple moves for this starting position: either inter-
change # and 14 or interchange # and 9. One wins the game if, after a sequence
of simple moves, the starting position is transformed into the standard array 1, 2,
3, . . ., 15, #.

To analyze this game, note that the given array is really a permutation α of
{1, 2, . . . , 15, #}; that is, α ∈ S16. More precisely, if the spaces are labeled 1
through 15, #, then α(i) is the symbol occupying the i th square. For example,
the starting position given above is

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #
3 15 4 12 10 11 1 8 2 5 13 9 6 7 14 #

)
.

Each simple move is a special kind of transposition, namely, one that moves #.
Moreover, performing a simple move (corresponding to a special transposition
τ ) from a position (corresponding to a permutation β) yields a new position
corresponding to the permutation τβ. For example, if α is the position above
and τ is the transposition interchanging 14 and #, then τα(#) = τ(#) = 14
and τα(15) = τ(14) = #, while τα(i) = i for all other i . That is, the new
configuration has all the numbers in their original positions except for 14 and #
being interchanged. Therefore, to win the game, one needs special transpositions
τ1, τ2, . . . , τm so that

τm · · · τ2τ1α = (1).

It turns out that there are some choices of α for which the game can be won, but
there are others for which it cannot be won, as we shall see in Example 2.42. �

The following discussion will enable us to analyze the 15-game.
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Lemma 2.37. If k, ` ≥ 0 and the letters a, b, ci , d j are all distinct, then

(a b)(a c1 . . . ck b d1 . . . d`) = (a c1 . . . ck)(b d1 . . . d`)

and
(a b)(a c1 . . . ck)(b d1 . . . d`) = (a c1 . . . ck b d1 . . . d`).

Proof. The left side of the first asserted equation sends

a 7→ c1 7→ c1;
ci 7→ ci+1 7→ ci+1 if i < k;
ck 7→ b 7→ a;
b 7→ d1 7→ d1;

d j 7→ d j+1 7→ d j+1 if j < `;
d` 7→ a 7→ b.

Similar evaluation of the right side shows that both permutations agree on a, b,
and all ci , d j . Since each side fixes all other numbers in {1, 2, . . . , n}, if any,
both sides are equal.

For the second equation, reverse the first equation,

(a c1 . . . ck)(b d1 . . . d`) = (a b)(a c1 . . . ck b d1 . . . d`),

and multiply both sides on the left by (a b):

(a b)(a c1 . . . ck)(b d1 . . . d`) = (a b)(a b))(a c1 . . . ck b d1 . . . d`)

= (a c1 . . . ck b d1 . . . d`). •

An illustration of the lemma is

(1 2)(1 3 4 2 5 6 7) = (1 3 4)(2 5 6 7).

Definition. If α ∈ Sn and α = β1 · · ·βt is a complete factorization into disjoint
cycles, then signum4 α is defined by

sgn(α) = (−1)n−t .

Theorem 2.26 shows that sgn is a (single-valued) function, for the number
t is uniquely determined by α. If ε is a 1-cycle, then sgn(ε) = 1, for t = n
and (−1)0 = 1. If τ is a transposition, then it moves two numbers, and it fixes
each of the n − 2 other numbers; therefore, t = 1 + (n − 2) = n − 1, and so
sgn(τ) = (−1)n−(n−1) = −1.

4Signum is the Latin word for “mark” or “token”; of course, it has become the word sign.
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Lemma 2.38. If α, τ ∈ Sn, where τ is a transposition, then

sgn(τα) = − sgn(α).

Proof. Let α = β1 · · · βt be a complete factorization of α into disjoint cycles,
and let τ = (a b). If a and b occur in the same β, say, in β1, then β1 =
(a c1 . . . ck b d1 . . . d`), where k, ` ≥ 0. By Lemma 2.37,

τβ1 = (a c1 . . . ck)(b d1 . . .d`).

This is a complete factorization of τα = (τβ1)β2 · · ·βt , for the cycles in it are
pairwise disjoint and every number in {1, 2, . . . , n} occurs in exactly one cycle.
Thus, τβ has t + 1 cycles, for τβ1 splits into two disjoint cycles. Therefore,
sgn(τα) = (−1)n−(t+1) = − sgn(α).

The other possibility is that a and b occur in different cycles, say, β1 =
(a c1 . . . ck) and β2 = (b d1 . . .d`), where k, ` ≥ 0. But τα = (τβ1β2)β3 · · · βt ,
and Lemma 2.37 gives

τβ1β2 = (a c1 . . . ck b d1 . . . d`).

Therefore τα has a complete factorization with t − 1 cycles, and so sgn(τα) =
(−1)n−(t−1) = − sgn(α), as desired. •

Theorem 2.39. For all α, β ∈ Sn,

sgn(αβ) = sgn(α) sgn(β).

Proof. Assume that α ∈ Sn is given and that α has a factorization as a product
of m transpositions: α = τ1 · · · τm . We prove, by induction on m, that sgn(αβ) =
sgn(α) sgn(β) for every β ∈ Sn. The base step m = 1 is precisely Lemma 2.38,
for m = 1 says that α is a transposition. If m > 1, then the inductive hypothesis
applies to τ2 · · · τm , and so

sgn(αβ) = sgn(τ1 · · · τmβ)

= − sgn(τ2 · · · τmβ) (Lemma 2.38)

= − sgn(τ2 · · · τm) sgn(β) (by induction)

= sgn(τ1 · · · τm) sgn(β) (Lemma 2.38)

= sgn(α) sgn(β). •

It follows by induction on k ≥ 2 that

sgn(α1α2 · · ·αk) = sgn(α1) sgn(α2) · · · sgn(αk).
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Definition. A permutation α ∈ Sn is even if sgn(α) = 1, and α is odd if
sgn(α) = −1. We say that α and β have the same parity if both are even or both
are odd.

Let us return to factorizations of a permutation into a product of transposi-
tions. We saw on page 116 that there are many such factorizations of a permu-
tation, and the only common feature of these different factorizations appeared to
be the parity of the number of factors. To prove this apparent statement, one must
show that a permutation cannot be a product of an even number of transpositions
as well as a product of an odd number of transpositions.

Theorem 2.40.

(i) Let α ∈ Sn. If α is even, then α is a product of an even number of transpo-
sitions, and if α is odd, then α is a product of an odd number of transposi-
tions.

(ii) If α = τ1 · · · τq = τ ′
1 · · · τ ′

p are factorizations into transpositions, then q
and p have the same parity.

Proof.
(i) If α = τ1 · · · τq is a factorization of α into transpositions, then Theorem 2.39
gives sgn(α) = sgn(τ1) · · · sgn(τq) = (−1)q , for we know that every transposi-
tion is odd. Therefore, if α is even; that is, if sgn(α) = 1, then q is even, while
if α is odd; that is, if sgn(α) = −1, then q is odd.
(ii) If there were two factorizations of α, one into an odd number of transpo-
sitions and the other into an even number of transpositions, then sgn(α) would
have two different values. •

Corollary 2.41. Let α, β ∈ Sn. If α and β have the same parity, then αβ is
even, while if α and β have distinct parity, then αβ is odd.

Proof. If sgn(α) = (−1)q and sgn(β) = (−1)p, then Theorem 2.39 gives
sgn(αβ) = (−1)q+p, and the result follows. •

We return to the 15-game.

Example 2.42.
An analysis of the 15-puzzle in Example 2.36 shows that if α ∈ S16 is the starting
position, then the game can be won if and only if α is an even permutation that
fixes #. For a proof of this, we refer the reader to McCoy and Janusz, Introduction
to Modern Algebra. The proof in one direction is fairly clear, however. The blank
# starts in position 16. Each simple move takes # up, down, left, or right. Thus,
the total number m of moves is u +d + l +r , where u is the number of up moves,
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etc. If # is to return home, each one of these must be undone: there must be the
same number of up moves as down moves, i.e., u = d , and the same number of
left moves as right moves, i.e., r = l. Thus, the total number of moves is even:
m = 2u + 2r . That is, if τm · · · τ1α = (1), then m is even; hence, α = τ1 · · · τm
(because τ−1 = τ for every transposition τ ), and so α is an even permutation.
Armed with this theorem, one sees that the starting position α in Example 2.36
is, in cycle notation,

α = (1 3 4 12 9 2 15 14 7)(5 10)(6 11 13)(8)(#),

where (8) and (#) are 1-cycles. Now sgn(α) = (−1)16−5 = −1, so that α is an
odd permutation; therefore, the game starting with α cannot be won. �

EXERCISES

*2.19 Find sgn(α) and α−1, where

α =
(

1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
.

2.20 If σ ∈ Sn fixes some j , where 1 ≤ j ≤ n (that is, σ( j ) = j ), define σ′ ∈ SX ∼=
Sn−1 (where X = {1, . . . , ĵ , . . . , n}) by σ ′(i) = σ(i) for all i 6= j . Prove that

sgn(σ ′) = sgn(σ ).

*2.21 (i) If 1 < r ≤ n, prove that there are

1
r [n(n − 1) · · · (n − r + 1)]

r -cycles in Sn .
(ii) If kr ≤ n, where 1 < r ≤ n, prove that the number of α ∈ Sn , where α is

a product of k disjoint r -cycles, is

1
k!

1
rk [n(n − 1) · · · (n − kr + 1).]

*2.22 (i) If α is an r -cycle, show that αr = (1).
(ii) If α is an r -cycle, show that r is the smallest positive integer k such that

αk = (1).
2.23 Show that an r -cycle is an even permutation if and only if r is odd.
2.24 Given X = {1, 2, . . . , n}, let us call a permutation τ of X an adjacency if it is a

transposition of the form (i i + 1) for i < n. If i < j , prove that (i j ) is a product
of an odd number of adjacencies.

*2.25 Define f : {0, 1, 2, . . . , 10} → {0, 1, 2, . . . , 10} by

f (n) = the remainder after dividing 4n2 − 3n7 by 11.

(i) Show that f is a permutation.
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(ii) Compute the parity of f .
(iii) Compute the inverse of f .

2.26 (i) A permutation α ∈ Sn is regular if either α has no fixed points and it is
the product of disjoint cycles of the same length, or α = (1). Prove that
α is regular if and only if α is a power of an n-cycle.

(ii) Prove that if α is an r -cycle, then αk is a product of (r, k) disjoint cycles,
each of length r/(r, k).

(iii) If p is a prime, prove that every power of a p-cycle is either a p-cycle
or (1).

(iv) How many regular permutations are there in S5? How many regular per-
mutations are there in S8?

*2.27 (i) Prove that if α and β are (not necessarily disjoint) permutations that com-
mute, then (αβ)k = αkβk for all k ≥ 1.

(ii) Give an example of two permutations α and β for which (αβ)2 6= α2β2.
*2.28 (i) Prove, for all i , that α ∈ Sn moves i if and only if α−1 moves i .

(ii) Prove that if α, β ∈ Sn are disjoint and if αβ = (1), then α = (1) and
β = (1).

*2.29 If n ≥ 2, prove that the number of even permutations in Sn is 1
2 n!.

2.30 Give an example of α, β , γ ∈ S5, none of which is the identity (1), with αβ = βα

and αγ = γ α, but with βγ 6= γβ .
*2.31 If n ≥ 3, show that if α ∈ Sn commutes with every β ∈ Sn , then α = (1).

2.3 GROUPS

Generalizations of the quadratic formula for finding the roots of cubic and quartic
polynomials were discovered in the early 1500s. Over the next three centuries,
many tried to find analogous formulas for the roots of higher-degree polynomi-
als, but in 1824, N. H. Abel (1802–1829) proved that there is no such formula
giving the roots of the general polynomial of degree 5. In 1831, E. Galois (1811–
1832) completely solved this problem by finding precisely which polynomials,
of arbitrary degree, admit such a formula for their roots. His fundamental idea
involved his invention of the idea of group. Since Galois’s time, groups have
arisen in many other areas of mathematics, for they are also the way to describe
the notion of symmetry, as we will see later in this section and also in Chapter 6.

The essence of a “product” is that two things are combined to form a third
thing of the same kind. For example, ordinary multiplication, addition, and sub-
traction combine two numbers to give another number, while composition com-
bines two permutations to give another permutation.

Definition. A (binary) operation on a set G is a function

∗: G × G → G.
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In more detail, an operation assigns an element ∗(x, y) in G to each ordered
pair (x, y) of elements in G. It is more natural to write x ∗ y instead of ∗(x, y);
thus, composition of functions is the function ( f, g) 7→ g ◦ f , while multipli-
cation, addition, and subtraction are, respectively, the functions (x, y) 7→ x y,
(x, y) 7→ x + y, and (x, y) 7→ x − y. The examples of composition and sub-
traction show why we want ordered pairs, for x ∗ y and y ∗ x may be distinct.
As any function, an operation is single-valued; when one says this explicitly, it
is usually called the law of substitution:

If x = x ′ and y = y′, then x ∗ y = x ′ ∗ y′.

Definition. A group is a set G equipped with an operation ∗ and a special
element e ∈ G, called the identity, such that

(i) the associative law holds: for every a, b, c ∈ G,

a ∗ (b ∗ c) = (a ∗ b) ∗ c;

(ii) e ∗ a = a for all a ∈ G;

(iii) for every a ∈ G, there is a′ ∈ G with a′ ∗ a = e.

By Proposition 2.13, the set SX of all permutations of a set X , with compo-
sition as the operation and 1X as the identity, is a group (the symmetric group
on X ).

We are now at the precise point when algebra becomes abstract algebra. In
contrast to the concrete group Sn consisting of all the permutations of the set X =
{1, 2, . . . , n} under composition, we will be proving general results about groups
without specifying either their elements or their operation. Thus, products of
elements are not explicitly computable but are, instead, merely subject to certain
rules. It will be seen that this approach is quite fruitful, for theorems now apply
to many different groups, and it is more efficient to prove theorems once for all
instead of proving them anew for each group encountered. For example, the next
proposition and three lemmas give properties that hold in every group G. In
addition to this obvious economy, it is often simpler to work with the “abstract”
viewpoint even when dealing with a particular concrete group. For example, we
will see that certain properties of Sn are simpler to treat without recognizing that
the elements in question are permutations (see Example 2.52).

Definition. A group G is called abelian5 if it satisfies the commutative law:
x ∗ y = y ∗ x holds for every x , y ∈ G.

5This term honors N. H. Abel who proved a theorem, in 1827, equivalent to there being
a formula for the roots of a polynomial if its Galois group is commutative. This theorem is
virtually forgotten today, because it was superseded by a theorem of Galois around 1830.
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The groups Sn, for n ≥ 3, are not abelian because (1 2) and (1 3) are
elements of Sn that do not commute: (1 2)(1 3) = (1 3 2) and (1 3)(1 2) =
(1 2 3).

We prove some basic facts before giving more examples of groups.
How does one multiply three numbers? Given the expression 2 × 3 × 4,

for example, one can first multiply 2 × 3 = 6, and then multiply 6 × 4 = 24.
Alternatively, one can first multiply 3 × 4 = 12 and then multiply 2 × 12 = 24;
of course, the two answers agree because multiplication of numbers is associa-
tive. Not all operations are associative, however. For example, subtraction is not
associative: if c 6= 0, then

a − (b − c) 6= (a − b)− c.

More generally, how does one multiply three elements a ∗ b ∗ c? Since one can
only multiply two elements, there is a choice: multiply b∗c to get a new element
of G, and now multiply this new element by a to obtain a ∗ (b ∗ c); or, one
can multiply a ∗ b and then multiply this new element by c to obtain (a ∗ b) ∗ c.
Associativity says that both products are the same, a∗(b∗c) = (a∗b)∗c, and so it
is unambiguous to write a∗b∗c without parentheses. The next lemma shows that
some associativity carries over to products with four factors (that associativity
allows us to dispense with parentheses for all products having n ≥ 3 factors is
proved in Theorem 2.49).

Lemma 2.43. If ∗ is an associative operation on a set G, then

(a ∗ b) ∗ (c ∗ d) = [a ∗ (b ∗ c)] ∗ d

for all a, b, c, d ∈ G

Proof. If we write g = a ∗ b, then (a ∗ b)∗ (c ∗ d) = g ∗ (c ∗ d) = (g ∗ c)∗ d =
[(a ∗ b) ∗ c] ∗ d = [a ∗ (b ∗ c)] ∗ d . •

Lemma 2.44. If G is a group and a ∈ G satisfies a ∗ a = a, then a = e.

Proof. There is a′ ∈ G with a′ ∗ a = e. Multiplying both sides on the left by a ′

gives a′ ∗ (a ∗ a) = a′ ∗ a. The right side is e, and the left side is a ′ ∗ (a ∗ a) =
(a′ ∗ a) ∗ a = e ∗ a = a, and so a = e. •

Proposition 2.45. Let G be a group with operation ∗ and identity e.

(i) a ∗ a′ = e for all a ∈ G.

(ii) a ∗ e = a for all a ∈ G.

(iii) If e0 ∈ G satisfies e0 ∗ a = a for all a ∈ G, then e0 = e.
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(iv) Let a ∈ G. If b ∈ G satisfies b ∗ a = e, then b = a ′.

Proof.
(i) We know that a′ ∗ a = e, and we now show that a ∗ a′ = e. By Lemma 2.43,

(a ∗ a′) ∗ (a ∗ a′) = [a ∗ (a′ ∗ a)] ∗ a′

= (a ∗ e) ∗ a′

= a ∗ (e ∗ a′)

= a ∗ a′.

By Lemma 2.44, a ∗ a′ = e.
(ii) We use part (i).

a ∗ e = a ∗ (a′ ∗ a) = (a ∗ a′) ∗ a = e ∗ a = a.

Therefore, a ∗ e = a.
(iii) We now prove that a group has a unique identity element; that is, no other
element in G shares its defining property e ∗ a = a for all a ∈ G. If e0 ∗ a = a
for all a ∈ G, then we have, in particular, e0 ∗ e0 = e0. By Lemma 2.44, e0 = e.
(iv) In part (i), we proved that if a ′ ∗ a = e, then a ∗ a′ = e. Now

b = b ∗ e = b ∗ (a ∗ a′)

= (b ∗ a) ∗ a′) = e ∗ a′ = a′. •

In light of part (iii) of the proposition, for each a ∈ G, there is exactly one
element a′ ∈ G with a′ ∗ a = e.

Definition. If G is a group and a ∈ G, then the unique element a ′ ∈ G such
that a′ ∗ a = e is called the inverse of a, and it is denoted by a−1.

Here are three more properties holding in all groups.

Lemma 2.46. Let G be a group.

(i) The cancellation laws hold: if a, b, x ∈ G, and either x ∗ a = x ∗ b or
a ∗ x = b ∗ x, then a = b.

(ii) (a−1)−1 = a for all a ∈ G.

(iii) If a, b ∈ G, then
(a ∗ b)−1 = b−1 ∗ a−1.

More generally, for all n ≥ 2,

(a1 ∗ a2 ∗ · · · ∗ an)
−1 = a−1

n ∗ · · · ∗ a−1
2 ∗ a−1

1 .



GROUPS 125

Proof.
(i)

a = e ∗ a = (x−1 ∗ x) ∗ a = x−1 ∗ (x ∗ a)

= x−1 ∗ (x ∗ b) = (x−1 ∗ x) ∗ b = e ∗ b = b.

A similar proof, using x ∗ x−1 = e, works when x is on the right.
(ii) By Proposition 2.45(i), we have a ∗ a−1 = e. But uniqueness of inverses,
Proposition 2.45(iv), says that (a−1)−1 is the unique x ∈ G such that x∗a−1 = e.
Therefore, (a−1)−1 = a.
(iii) By Lemma 2.43,

(a ∗ b) ∗ (b−1 ∗ a−1) = [a ∗ (b ∗ b−1)] ∗ a−1 = (a ∗ e) ∗ a−1 = a ∗ a−1 = e.

Hence, (a ∗ b)−1 = b−1 ∗ a−1, by Proposition 2.45(iv). The second statement
follows by induction on n ≥ 2. •

In the proofs just given, we have been very careful about justifying every
step and displaying all parentheses, for we are only beginning to learn the ideas
of group theory. As one becomes more adept, however, the need for explicitly
writing all such details lessens. This does not mean that one is allowed to become
careless; it only means that one is growing. Of course, you must always be
prepared to supply omitted details if your proof is challenged.

From now on, we will usually denote the product a ∗ b in a group by ab (we
have already abbreviated α ◦ β to αβ in symmetric groups), and we will denote
the identity by 1 instead of by e. When a group is abelian, however, we will
often use additive notation. Here is the definition of group written in additive
notation.

An additive group is a set G equipped with an operation + and an identity
element 0 ∈ G such that

(i) a + (b + c) = (a + b)+ c for every a, b, c ∈ G;

(ii) 0 + a = a for all a ∈ G;

(iii) for every a ∈ G, there is −a ∈ G with (−a)+ a = 0.

Note that the inverse of a, in additive notation, is written −a instead of a−1.
We now give too many examples of groups (and there are more!). Glance

over the list and choose several that look interesting to you.

Example 2.47.
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(i) We remind the reader that SX , the set of all permutations of a set X , is a
group under composition. In particular, Sn, the set of all permutations of
X = {1, 2, . . . , n}, is a group.

(ii) The set
�

of all integers is an additive abelian group with a∗b = a+b, with
identity e = 0, and with the inverse of an integer n being −n. Similarly,
one can see that

�
,

�
, and

�
are additive abelian groups.

(iii) The set
� × of all nonzero rationals is an abelian group, where ∗ is ordinary

multiplication, the number 1 is the identity, and the inverse of r ∈
� × is

1/r . Similarly,
� × is a multiplicative abelian group. We show, in the next

example, that
� × is also a multiplicative group.

Note that
� × is not a group, for none of its elements (aside from ±1)

has a multiplicative inverse in
� ×.

(iv) The nonzero complex numbers
� × form an abelian group under multi-

plication. It is easy to see that multiplication is an associative operation
and that 1 is the identity. Here is the simplest way to find inverses. If
z = a + ib ∈

�
, where a, b ∈ �

, define its complex conjugate z = a − ib.
Note that zz = a2 + b2, so that z 6= 0 if and only if zz 6= 0. If z 6= 0, then

z−1 = 1/z = z/zz = (a/zz)− (b/zz)i.

(v) The circle S1 of radius 1 with center the origin can be made into a mul-
tiplicative abelian group if we regard its points as complex numbers of
modulus 1. The circle group is defined by

S1 = {z ∈
�

: |z| = 1},

where the operation is multiplication of complex numbers; that this is an
operation on S1 follows from Corollary 1.20. Of course, complex multi-
plication is associative, the identity is 1 (which has modulus 1), and the
inverse of any complex number of modulus 1 is its complex conjugate,
which also has modulus 1. Therefore, S1 is a group. Even though S1 is an
abelian group, we still write it multiplicatively, for it would be confusing
to write it additively.

(vi) For any positive integer n, let

0n =
{
ζ k : 0 ≤ k < n

}

be the set of all the nth roots of unity, where

ζ = e2π i/n = cos(2π/n)+ i sin(2π/n).

The reader may use De Moivre’s theorem to see that 0n is an abelian group
with operation multiplication of complex numbers; moreover, the inverse
of any root of unity is its complex conjugate.
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(vii) The plane
� × �

is an additive abelian group with operation vector addi-
tion; that is, if v = (x, y) and v′ = (x ′, y′), then v + v′ = (x + x ′, y + y′).
The identity is the origin O = (0, 0), and the inverse of v = (x, y) is
−v = (−x,−y).

(viii) The parity group � has two elements, the words “even” and “odd,” with
operation

even + even = even = odd + odd

and
even + odd = odd = odd + even.

The reader may show that � is an abelian group.

(ix) Let X be a set. Recall that if A and B are subsets of X , then their symmetric
difference is A+ B = (A− B)∪ (B− A) (symmetric difference is pictured
in Figure 2.6). The Boolean group

�
(X ) [named after the logician G.

Boole (1815–1864)] is the family of all the subsets of X equipped with
addition given by symmetric difference.

It is plain that A + B = B + A, so that symmetric difference is com-
mutative. The identity is

�
, the empty set, and the inverse of A is A itself,

for A + A = �
. (See Exercise 2.3 on page 100.) Thus,

�
(X) is an abelian

group. �

Example 2.48.

(i) A (2 × 2 real) matrix6 A is

A =
[

a c
b d

]
,

where a, b, c, d ∈ �
. If

B =
[
w y
x z

]
,

then the product AB is defined by

AB =
[

a c
b d

][
w y
x z

]
=
[

aw + cx ay + cz
bw + dx by + dz

]
.

6The word matrix (derived from the word meaning “mother”) means “womb” in Latin;
more generally, it means something that contains the essence of a thing. Its mathematical
usage arises because a 2 × 2 matrix, which is an array of four numbers, completely describes
a certain type of function � 2 → � 2 called a linear transformation (more generally, larger
matrices contain the essence of linear transformations between higher-dimensional spaces).
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The elements a, b, c, d are called the entries of A. Call (a, c) the first row
of A and call (b, d) the second row; call (a, b) the first column of A and
call (c, d) the second column. Thus, each entry of the product AB is a dot
product of a row of A with a column of B. The determinant of A, denoted
by det(A), is the number ad − bc, and a matrix A is called nonsingular if
det(A) 6= 0. The reader may calculate that

det(AB) = det(A) det(B),

from which it follows that the product of nonsingular matrices is itself
nonsingular. The set GL(2,

�
) of all nonsingular matrices, with operation

matrix multiplication, is a (nonabelian) group, called the 2×2 real general
linear group: the identity is the identity matrix

I =
[

1 0
0 1

]

and the inverse of a nonsingular matrix A is

A−1 =
[

d/1 −c/1
−b/1 a/1

]
,

where 1 = ad − bc = det(A). (The proof of associativity is routine,
though tedious; a “clean” proof of associativity can be given once one
knows the relation between matrices and linear transformations [see Corol-
lary 4.71].)

(ii) The previous example can be modified in two ways. First, we may allow
the entries to lie in

�
or in

�
, giving the groups GL(2,

�
) or GL(2,

�
). We

may even allow the entries to be in
�

, in which case GL(2,
�
) is defined

to be the set of all such matrices with determinant ±1 (one wants all the
entries of A−1 to be in

�
). For readers familiar with linear algebra, all

nonsingular n × n matrices form a group GL(n,
�
) under multiplication.

(iii) All special 7 orthogonal matrices, that is, all matrices of the form

A =
[

cosα − sinα
sinα cosα

]
,

form a group denoted by SO(2,
�
), called the 2 × 2 special orthogonal

group. Let us show that matrix multiplication is an operation on SO(2,
�
).

The product [
cosα − sinα
sin α cosα

][
cosβ − sinβ
sinβ cosβ

]

7The adjective special applied to a matrix usually means that its determinant is 1.
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is [
cosα cosβ − sinα sinβ −[cosα sin β + sinα cosβ]
sinα cosβ + cosα sinβ cosα cosβ − sinα sin β

]
.

The addition theorem for sine and cosine shows that this product is again
a special orthogonal matrix, for it is

[
cos(α + β) − sin(α + β)

sin(α + β) cos(α + β)

]
.

In fact, this calculation shows that SO(2,
�
) is abelian. It is clear that

the identity matrix is special orthogonal, and we let the reader check that
the inverse of a special orthogonal matrix (which exists because special
orthogonal matrices have determinant 1) is also special orthogonal.

In Exercise 2.67 on page 166, we will see that SO(2,
�
) is a disguised

version of the circle group S1, and that this group consists of all the rota-
tions of the plane about the origin.

(iv) The affine 8 group Aff(1,
�
) consists of all functions

� → �
(called affine

maps) of the form
fa,b(x) = ax + b,

where a and b are fixed real numbers with a 6= 0. Let us check that
Aff(1,

�
) is a group under composition. If fc,d(x) = cx + d , then

fa,b fc,d (x) = fa,b(cx + d)

= a(cx + d)+ b

= acx + (ad + b)

= fac,ad+b(x).

Since ac 6= 0, the composite is an affine map. The identity function
1� : � → �

is an affine map (1 � = f1,0), while the inverse of fa,b is
easily seen to be fa−1,−a−1b. The reader should note that this composition
is reminiscent of matrix multiplication.

[
a b
0 1

][
c d
0 1

]
=
[

ac ad + b
0 1

]
.

Similarly, replacing
�

by
�

gives the group Aff(1,
�
), and replacing

�
by�

gives the group Aff(1,
�
). �

8Projective geometry involves enlarging the plane (and higher-dimensional spaces) by ad-
joining “points at infinity.” The enlarged plane is called the projective plane, and the original
plane is called an affine plane. Affine functions are special functions between affine planes.
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The following discussion is technical, and it can be skipped as long as the
reader is aware of the statement of Theorem 2.49. Informally, this theorem says
that if an operation is associative, then no parentheses are needed in products
involving n ≥ 3 factors.

An n-expression is an n-tuple (a1, a2, . . . , an) ∈ G × · · · × G (n factors),
and it yields many elements of G by the following procedure. Choose two adja-
cent a’s, multiply them, and obtain an (n − 1)-expression: the new product just
formed and n − 2 original a’s. In this shorter new expression, choose two adja-
cent factors (either an original pair or an original one together with the new prod-
uct from the first step) and multiply them. Repeat until a 2-expression (W, X)
is reached; now multiply and obtain the element W X in G. Call W X an ulti-
mate product derived from the original expression. For example, consider the 4-
expression (a, b, c, d). Let us multiply ab, obtaining the 3-expression (ab, c, d).
We may now choose either adjacent pair ab, c or c, d; in either case, multiply
these and obtain 2-expressions ((ab)c, d) or (ab, cd). The elements in either
of these last expressions can now be multiplied to give the ultimate products
[(ab)c]d or (ab)(cd). Other ultimate products derived from (a, b, c, d) arise by
multiplying bc or cd as the first step, yielding (a, bc, d) or (a, b, cd). To say that
an operation is associative is to say that the two ultimate products arising from
3-expressions (a, b, c) are equal. It is not obvious, even when an operation is
associative, whether all the ultimate products derived from a longer expression
are equal.

Definition. An n-expression (a1, a2, . . . , an) needs no parentheses if all ulti-
mate products derived from it are equal; that is, no matter what choices are made
of adjacent factors to multiply, all the resulting products in G are equal.

Theorem 2.49 (Generalized Associativity). If n ≥ 3, then every n-expression
(a1, a2, . . . , an) in a group G needs no parentheses.

Remark. Note that neither the identity element nor inverses will be used in the
proof. Thus, the hypothesis of the theorem can be weakened by assuming that G
is only a semigroup; that is, G is a nonempty set equipped with an associative
binary operation. �

Proof. The proof is by (the second form of) induction. The base step n = 3
follows from associativity. For the inductive step, consider 2-expressions of G
obtained from an n-expression (a1, a2, . . . , an) after two series of choices:

(W, X) = (a1 · · · ai , ai+1 · · · an) and (Y, Z) = (a1 · · · a j , a j+1 · · · an).

We must prove that W X = Y Z in G. By induction, each of the elements W =
a1 · · · ai , X = ai+1 · · · an , Y = a1 · · · a j , and Z = a j+1 · · · an, is the (one
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and only!) ultimate product from m-expressions with m < n. Without loss of
generality, we may assume that i ≤ j . If i = j , then the inductive hypothesis
gives W = Y and X = Z in G, and so W X = Y Z , as desired.

We may now assume that i < j . Let A be the ultimate product from the
i -expression (a1, . . . , ai), let B be the ultimate product from the expression
(ai+1, . . . , a j ), and let C be the ultimate product from the expression a j+1 · · · an .
The group elements A, B, and C are unambiguously defined, for the inductive
hypothesis says that each of the shorter expressions yields only one ultimate
product. Now W = A, for both are ultimate products from the i -expression
(a1, . . . , ai ), Z = C [both are ultimate products from the (n − j )-expression
(a j+1, . . . , an)], X = BC [both are ultimate products from the (n−i)-expression
(ai+1, . . . , an)], and Y = AB [both are ultimate products from the j -expression
(a1, . . . , a j )]. We conclude that W X = A(BC) and Y Z = (AB)C , and so
associativity, the base step n = 3, gives W X = Y Z , as desired. •

Definition. If G is a group and if a ∈ G, define the powers9 an, for n ≥ 1,
inductively:

a1 = a and an+1 = aan.

Define a0 = 1 and, if n is a positive integer, define

a−n = (a−1)n.

We let the reader prove that (a−1)n = (an)−1; this is a special case of the equa-
tion in Lemma 2.46(iii).

There is a hidden complication here. The first and second powers are fine:
a1 = a and a2 = aa. There are two possible cubes: we have defined a3 =
aa2 = a(aa), but there is another reasonable contender: (aa)a = a2a. If one
assumes associativity, then these are equal:

a3 = aa2 = a(aa) = (aa)a = a2a.

Generalized associativity shows that all powers of an elements are unambigu-
ously defined.

9The terminology x square and x cube for x2 and x3 is, of course, geometric in origin.
Usage of the word power in this context goes back to Euclid, who wrote, “The power of a
line is the square of the same line” (from the first English translation of Euclid, in 1570, by
H. Billingsley). “Power” was the standard European rendition of the Greek dunamis (from
which dynamo derives). However, contemporaries of Euclid, e.g., Aristotle and Plato, often
used dunamis to mean amplification, and this seems to be a more appropriate translation, for
Euclid was probably thinking of a 1-dimensional line sweeping out a 2-dimensional square. (I
thank Donna Shalev for informing me of the classical usage of dunamis.)
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Corollary 2.50. If G is a group, if a ∈ G, and if m, n ≥ 1, then

am+n = aman and (am)n = amn.

Proof. Both am+n and aman arise from the expression having m+n factors each
equal to a; in the second instance, both (am)n and amn arise from the expression
having mn factors each equal to a. •

It follows that any two powers of an element a in a group commute:

aman = am+n = an+m = anam.

The proofs of the various statements in the next proposition, while straight-
forward, are not short.

Proposition 2.51 (Laws of Exponents). Let G be a group, let a, b ∈ G, and
let m and n be (not necessarily positive) integers.

(i) If a and b commute, then (ab)n = anbn.

(ii) (an)m = amn .

(iii) aman = am+n.

Proof. Exercises for the reader. •
The notation an is the natural way to denote a∗a∗· · ·∗a if a appears n times.

However, if the operation is +, then it is more natural to denote a + a + · · · + a
by na. Let G be a group written additively; if a, b ∈ G and m and n are (not
necessarily positive) integers, then Proposition 2.51 is usually rewritten:

(i) n(a + b) = na + nb.

(ii) m(na) = (mn)a.

(iii) ma + na = (m + n)a.

Example 2.52.
Suppose a deck of cards is shuffled, so that the order of the cards has changed
from 1, 2, 3, 4, . . . , 52 to 2, 1, 4, 3, . . . , 52, 51. If we shuffle again in the same
way, then the cards return to their original order. But a similar thing happens for
any permutation α of the 52 cards: if one repeats α sufficiently often, the deck is
eventually restored to its original order. One way to see this uses our knowledge
of permutations. Write α as a product of disjoint cycles, say, α = β1β2 · · · βt ,
where βi is an ri -cycle. Now βri

i = (1) for every i , by Exercise 2.22 on page 120,
and so βk

i = (1), where k = r1 · · · rt . Since disjoint cycles commute, Exer-
cise 2.27 on page 121 gives

αk = (β1 · · ·βt )
k = βk

1 · · · βk
t = (1).
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Here is a more general result with a simpler proof (abstract algebra can be
easier than algebra): if G is a finite group and a ∈ G, then ak = 1 for some
k ≥ 1. We use the argument in Lemma 2.23(i). Consider the sequence

1, a, a2, . . . , an, . . . .

Since G is finite, there must be a repetition occurring in this sequence: there are
integers m > n with am = an , and hence 1 = ama−n = am−n. We have shown
that there is some positive power of a equal to 1. Our original argument that
αk = (1) for a permutation α of 52 cards is not worthless, for Proposition 2.54
will show that we may choose k to be the lcm(r1, . . . , rt ). �

Definition. Let G be a group and let a ∈ G. If ak = 1 for some k ≥ 1, then the
smallest such exponent k ≥ 1 is called the order of a; if no such power exists,
then one says that a has infinite order.

The argument given in Example 2.52 shows that every element in a finite
group has finite order. In any group G, the identity has order 1, and it is the only
element in G of order 1; an element has order 2 if and only if it is not the identity
and it is equal to its own inverse. The matrix A =

[
1 1
0 1

]
in the group GL(2,

�
)

has infinite order, for Ak =
[

1 k
0 1

]
6=
[

1 0
0 1

]
for all k ≥ 1.

Lemma 2.53. Let G be a group and assume that a ∈ G has finite order k. If
an = 1, then k | n. In fact, {n ∈ � : an = 1} is the set of all the multiples of k.

Proof. It is easy to see that I = {n ∈ � : an = 1} ⊆ �
satisfies the hypotheses

of Corollary 1.34.

(i): 0 ∈ I because a0 = 1.
(ii): If n,m ∈ I , then an = 1 and am = 1, so that an−m = ana−m = 1; hence,
n − m ∈ I .
(iii): If n ∈ I and q ∈ �

, then an = 1 and aqn = (an)q = 1; hence, qn ∈ I .

Therefore, I consists of all the multiples of k, where k is the smallest positive
integer in I . But the smallest positive k in I is, by definition, the order of a.
Therefore, if an = 1, then n ∈ I , and so n is a multiple of k. •

What is the order of a permutation in Sn?

Proposition 2.54. Let α ∈ Sn.

(i) If α is an r-cycle, then α has order r .

(ii) If α = β1 · · ·βt is a product of disjoint ri -cycles βi , then α has order
m = lcm(r1, . . . , rt ).
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(iii) If p is a prime, then α has order p if and only if it is a p-cycle or a product
of disjoint p-cycles.

Proof.
(i) This is Exercise 2.22(i) on page 120.
(ii) Each βi has order ri , by (i). Suppose that αM = (1). Since the βi commute,
(1) = αM = (β1 · · ·βt )

M = βM
1 · · ·βM

t . By Exercise 2.28(ii) on page 121,
disjointness of the β’s implies that βM

i = (1) for each i , so that Lemma 2.53
gives ri | M for all i ; that is, M is a common multiple of r1, . . . , rt . But if
m = lcm(r1, . . . , rt ), then it is easy to see that αm = (1). Hence, α has order m.
(iii) Write α as a product of disjoint cycles and use (ii). •

For example, a permutation in Sn has order 2 if and only if it is either a
transposition or a product of disjoint transpositions.

We can now augment the table in Example 2.30.

Cycle Structure Number Order Parity
(1) 1 1 Even
(1 2) 10 2 Odd
(1 2 3) 20 3 Even
(1 2 3 4) 30 4 Odd
(1 2 3 4 5) 24 5 Even
(1 2)(3 4 5) 20 6 Odd
(1 2)(3 4) 15 2 Even

120

Table 2.3. Permutations in S5

Symmetry

We now present a connection between groups and symmetry. What do we mean
when we say that an isosceles triangle 1 is symmetric? Figure 2.10 shows
1 = 1ABC with its base AB on the x-axis and with the y-axis being the
perpendicular-bisector of AB. Close your eyes; let 1 be reflected in the y-axis
(so that the vertices A and B are interchanged); open your eyes. You cannot tell
that 1 has been reflected; that is, 1 is symmetric about the y-axis. On the other
hand, if 1 were reflected in the x-axis, then it would be obvious, once your eyes
are reopened, that a reflection had taken place; that is, 1 is not symmetric about
the x-axis. Reflection is a special kind of isometry.
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A

C

B

Figure 2.10 Isosceles Triangle

Definition. An isometry of the plane is a function ϕ : � 2 → � 2 that is distance
preserving: for all points P = (a, b) and Q = (c, d) in

� 2 ,

‖ϕ(P)− ϕ(Q)‖ = ‖P − Q‖,

where ‖P − Q‖ =
√
(a − c)2 + (b − d)2 is the distance from P to Q.

Let P · Q denote the dot product:

P · Q = ac + bd.

Now

(P − Q) · (P − Q) = P · P − 2(P · Q)+ Q · Q

= (a2 + b2)− 2(ac + bd)+ (c2 + d2)

= (a2 − 2ac + c2)+ (b2 − 2bd + d2)

= (a − c)2 + (b − d)2

= ‖P − Q‖2.

It follows that every isometry ϕ preserves dot products:

ϕ(P) · ϕ(Q) = P · Q,

because

ϕ(P) · ϕ(Q) = ‖ϕ(P)− ϕ(Q)‖2 = ‖P − Q‖2 = P · Q.

Recall the formula giving the geometric interpretation of the dot product:

P · Q = ‖P‖ ‖Q‖ cos θ,
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where θ is the angle between P and Q. It follows that every isometry preserves
angles. In particular, P and Q are orthogonal if and only if P · Q = 0, and
so isometries preserve perpendicularity. Conversely, if ϕ preserves dot products,
that is, if ϕ(P) ·ϕ(Q) = P · Q, then the formula (P − Q) · (P − Q) = ‖P − Q‖2

shows that ϕ is an isometry.
We denote the set of all isometries of the plane by Isom(

� 2 ); its subset
consisting of all those isometries ϕ with ϕ(O) = O is called the orthogonal
group of the plane, and it is denoted by O2(

�
). We will see, in Proposition 2.59,

that both Isom(
� 2 ) and O2(

�
) are groups under composition.

We introduce some notation to help us analyze isometries.

Notation. If P and Q are distinct points in the plane, let L[P, Q] denote the line
they determine, and let PQ denote the line segment with endpoints P and Q.

Here are some examples of isometries.

Example 2.55.

(i) Given an angle θ , rotation Rθ about the origin O is defined as follows:
Rθ (O) = O; if P 6= O, draw the line segment P O in Figure 2.11, rotate
it θ (counterclockwise if θ is positive, clockwise if θ is negative) to O P ′,
and define Rθ (P) = P ′. Of course, one can rotate about any point in the
plane.

P'=R (P)

P
O

Figure 2.11 Rotation

P

L

.   (P) = P'
L

Figure 2.12 Reflection

(ii) Reflection ρ` in a line `, called its axis, fixes each point in `; if P /∈ `, then
ρ`(P) = P ′, as in Figure 2.12 (` is the perpendicular-bisector of P P ′). If
one pretends that the axis ` is a mirror, then P ′ is the mirror image of P .
Now ρ` ∈ Isom(

� 2 ); if ` passes through the origin, then ρ` ∈ O2(
�
).
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(iii) Given a point V, translation10 by V is the function τV : � 2 → � 2 defined
by τV (U ) = U + V . Translations lie in Isom(

� 2 ); a translation τV fixes
the origin if and only if V = O, so that the identity is the only translation
which is also a rotation. �

Lemma 2.56. If ϕ is an isometry of the plane, then distinct points P, Q, R in� 2 are collinear if and only if ϕ(P), ϕ(Q), ϕ(R) are collinear.

Proof. Suppose that P, Q, R are collinear. Choose notation so that R is be-
tween P and Q; hence, ‖P − Q‖ = ‖P − R‖ + ‖R − Q‖. If ϕ(P), ϕ(Q), ϕ(R)
are not collinear, then they are the vertices of a triangle. The triangle inequality
gives

‖ϕ(P)− ϕ(Q)‖ < ‖ϕ(P)− ϕ(R)‖ + ‖ϕ(R) − ϕ(Q)‖,

contradicting ϕ preserving distance. A similar argument proves the converse. If
P, Q, R are not collinear, then they are the vertices of a triangle. If ϕ(P), ϕ(Q),
ϕ(R) are collinear, then the strict inequality displayed above now becomes an
equality, contradicting ϕ preserving distance. •

Every isometry ϕ is an injection. If P 6= Q, then ‖P − Q‖ 6= 0, so that
‖ϕ(P)− ϕ(Q)‖ = ‖P − Q‖ 6= 0; hence, ϕ(P) 6= ϕ(Q). It is less obvious that
isometries are surjections, but we will soon see that they are.

Proposition 2.57. Every rotation ϕ fixing the origin is a linear transformation.

Proof. Let Cd = {Q ∈ � 2 : ‖Q − 0‖ = d} be the circle of radius d > 0 having
center 0. We claim that ϕ(Cd) ⊆ Cd . If P ∈ Cd , then ‖P − 0‖ = d; since ϕ
preserves distance, d = ‖ϕ(P)− ϕ(0)‖ = ‖ϕ(P)− 0‖; thus, ϕ(P) ∈ Cd .

Let P 6= O be a point in
� 2 , and let r ∈ �

. If ‖P − O‖ = p, then
‖r P − O‖ = |r |p. Hence, r P ∈ L[O, P] ∩ C|r|p , where C|r|p is the circle
with center O and radius |r |p. Since ϕ preserves collinearity, by Lemma 2.56,
ϕ(L[O, P] ∩ C|r|p) ⊆ L[O, ϕ(P)] ∩ C|r|p; that is, ϕ(r P) = ±rϕ(P) (for a line
intersects a circle in at most two points).

If we eliminate the possibility ϕ(r P) = −rϕ(P), then we can conclude that
ϕ(r P) = rϕ(P). In case r > 0, the origin O lies between −r P and P , and so
the distance from −r P to P is r p + p. On the other hand, the distance from
r P to P is |r p − p| (if r > 1, the distance is r p − p; if 0 < r < 1, then the
distance is p − pr ). But r + r p 6= |r p − p|, and so ϕ(r P) 6= −rϕ(P) (because
ϕ preserves distance). A similar argument works in case r < 0.

10The word translation comes from the Latin word meaning “to transfer.” It usually means
passing from one language to another, but here it means a special way of moving each point
to another.
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It remains to prove that ϕ(P + Q) = ϕ(P)+ϕ(Q). If O, P, Q are collinear,
then choose a point U on the line L[O, P] whose distance to the origin is 1.
Thus, P = pU , Q = qU , and P + Q = (p + q)U . The points O = ϕ(O),
ϕ(U ), ϕ(P), ϕ(Q) are collinear. Since ϕ preserves scalar multiplication, we
have

ϕ(P)+ ϕ(Q) = ϕ(pU )+ ϕ(qU )

= pϕ(U )+ qϕ(U )

= (p + q)ϕ(U )

= ϕ((p + q)U )

= ϕ(P + Q).

O

P

Q

 P+Q

Figure 2.13 Translation

If O, P, Q are not collinear, then P + Q is given by the parallelogram law:
P + Q is the point S such that O, P, Q, S are the vertices of a parallelogram.
Since ϕ preserves distance, the points O = ϕ(U ), ϕ(P), ϕ(Q), ϕ(S) are the
vertices of a parallelogram, and so ϕ(S) = ϕ(P)+ ϕ(Q). But S = P + Q, and
so ϕ(P + Q) = ϕ(P)+ ϕ(Q), as desired. •

Corollary 2.58. Every isometry ϕ : � 2 → � 2 is a bijection, and every isometry
fixing 0 is a nonsingular linear transformation.

Proof. Let us first assume that ϕ fixes the origin: ϕ(0) = 0. By Proposi-
tion 2.57, ϕ is a linear transformation. Since ϕ is injective, P = ϕ(e1), Q =
ϕ(e2) is a basis of

� 2 , where e1 = (1, 0), e2 = (0, 1) is the standard basis of
� 2 .

It follows that the functionψ : � 2 → � 2 , defined byψ : a P +bQ 7→ ae1 +be2,
is a (single-valued) function, and that ψ and ϕ are inverse functions. Therefore,
ϕ is a bijection, and hence it is nonsingular.

Suppose that ϕ is any isometry, so that ϕ(0) = U . Now τ−U ◦ ϕ : 0 7→
U 7→ 0, so that τ−U ◦ ϕ = θ , where θ is a nonsingular linear transformation.
Therefore, ϕ = τU ◦ θ is a bijection, being the composite of bijections. •
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We will study Isom(
� 2 ) more carefully in Chapter 6. In particular, we will

see that all isometries are either rotations, reflections, translations, or a fourth
type, glide-reflections.

Definition. The orthogonal group O2(
�
) is the set of all isometries of the

plane which fix the origin.

Proposition 2.59. Both Isom(
� 2 ) and O2(

�
) are groups under composition.

Proof. We show that Isom(
� 2 ) is a group. Clearly, 1 � is an isometry, so that

1 � ∈ Isom(
� 2 ). Let ϕ′ and ϕ be isometries. For all points P and Q, we have

‖(ϕ′ϕ)(P))− (ϕ′ϕ)(Q))‖ = ‖ϕ′(ϕ(P))− ϕ′(ϕ(Q))‖
= ‖ϕ(P)− ϕ(Q)‖
= ‖P − Q‖,

and so ϕ′ϕ is also an isometry; that is, composition is an operation on Isom(
� 2 ).

If ϕ ∈ Isom(
� 2 ), then ϕ is a bijection, by Corollary 2.58, and so it has an inverse

ϕ−1. Now ϕ−1 is also an isometry:

‖P − Q‖ = ‖ϕ(ϕ−1(P))− ϕ(ϕ−1(Q))‖ = ‖ϕ−1(P)− ϕ−1(Q)‖.

Therefore, Isom(
� 2 ) is a group, for composition of functions is always associa-

tive, by Lemma 2.6.
The reader may adapt this proof to show that O2(

�
) is also a group. •

Corollary 2.60. If O, P, Q are noncollinear points, and if ϕ and ψ are isome-
tries of the plane such that ϕ(P) = ψ(P) and ϕ(Q) = ψ(Q), then ϕ = ψ .

Proof. Since O, P, Q are noncollinear points, the list P, Q is linearly inde-
pendent in the vector space

� 2 . Since dim(
� 2 ) = 2, this is a basis [see Corol-

lary 4.24(ii)], and any two linear transformations that agree on a basis are equal
(see Corollary 4.62). •

Let us return to symmetry.

Example 2.61.
If 1 is a triangle with vertices P , Q, U and if ϕ is an isometry, then ϕ(1) is the
triangle with vertices ϕ(P), ϕ(Q), ϕ(U ). If we assume further that ϕ(1) = 1,
then ϕ permutes the vertices P , Q, U (see Figure 2.14). Assume that the center
of 1 is O. If 1 is isosceles (with equal sides PQ and PU), and if ρ` is the
reflection with axis ` = L[O, P], then ρ`(1) = 1 (we can thus describe ρ`
by the transposition (Q U ), for it fixes P and interchanges Q and U ); on the
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other hand, if 1 is not isosceles, then ρ`′(1) 6= 1, where `′ = L[O, Q]. If 1
is equilateral, then ρ`′′(1) = 1, where `′′ = L[O,U ] and ρ`′′(1) = 1 [we can
describe these reflections by the transpositions (P U ) and (P Q), respectively];
these reflections do not carry 1 into itself when 1 is only isosceles. Moreover,

P

QU

P

Q U

P

QU

Figure 2.14 Equilateral, Isosceles, Scalene

the rotation about O by 120◦ and 240◦ also carry 1 into itself [these rotations
can be described by the 3-cycles (P Q U ) and (P U Q)]. We see that an
equilateral triangle is “more symmetric” than an isosceles triangle, and that an
isosceles triangle is “more symmetric” than a triangle1 that is not even isosceles
[for such a triangle, ϕ(1) = 1 implies that ϕ = 1]. �

Definition. The symmetry group 6(�) of a figure � in the plane is the set of
all isometries ϕ of the plane with ϕ(�) = �. The elements of 6(�) are called
symmetries of �.

It is straightforward to see that 6(�) is always a group.

Example 2.62.

(i) A regular 3-gon π3 is an equilateral triangle, and |6(π3)| = 6, as we saw
in the previous example.

(ii) Let π4 be a square (a regular 4-gon) having vertices {v0, v1, v2, v3}; draw
π4 in the plane so that its center is at the origin O and its sides are parallel
to the axes. It is easy to see that every ϕ ∈ 6(π4) permutes the vertices;
indeed, a symmetry ϕ of π4 is determined by {ϕ(vi ) : 0 ≤ i ≤ 3}, and so
there are at most 24 = 4! possible symmetries. Not every permutation in
S4 arises from a symmetry of π4, however. If vi and v j are adjacent, then
‖vi − v j ‖ = 1, but ‖v0 − v2‖ =

√
2 = ‖v1 − v3‖; it follows that ϕ must

preserve adjacency (for isometries preserve distance). There are only eight
symmetries of π4 (this is proved in Theorem 2.63). Aside from the identity
and the three rotations about O by 90◦, 180◦, and 270◦, there are four
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reflections, respectively, with axes L[v0, v2], L[v1, v3], the x-axis, and the
y-axis. The group6(π4) is called the dihedral group with 8 elements, and
it is denoted by D8.

v

v

v

v

0 1

23

O

Figure 2.15 Symmetries of π4

v

v

v

v

0

1

23

Ov4

Figure 2.16 Symmetries of π5

(iii) The symmetry group 6(π5) of a regular pentagon π5 having vertices
v0, . . . , v4 and center O has 10 elements: the rotations about the origin
by (72 j )◦, where 0 ≤ j ≤ 4, as well as the reflections with axes L[O, vk ]
for 0 ≤ k ≤ 4 (Theorem 2.63 shows that there are no other symmetries).
The symmetry group6(π5) is called the dihedral group with 10 elements,
and it is denoted by D10. �

The symmetry group 6(πn) of a regular polygon πn with center at O and
vertices v0, v1, . . . , vn−1 is called the dihedral 11group D2n . However, we give
a definition that does not depend on geometry.

Definition. A group D2n with exactly 2n elements is called a dihedral group
if it contains an element a of order n and an element b of order 2 such that
bab = a−1.

If n = 2, then a dihedral group D4 is abelian; if n ≥ 3, then D2n is not
abelian. Exercise 2.62 on page 166 shows that there is essentially only one dihe-
dral group with 2n elements (more precisely, any two such are isomorphic).

11F. Klein was investigating those finite groups occurring as subgroups of the group of
isometries of � 3 . Some of these occur as symmetry groups of regular polyhedra [from the
Greek poly meaning “many” and hedron meaning “two-dimensional side.” He invented a
degenerate polyhedron that he called a dihedron, from the Greek word di meaning “two,”
which consists of two congruent regular polygons of zero thickness pasted together. The
symmetry group of a dihedron is thus called a dihedral group
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Theorem 2.63. The symmetry group6(πn) of a regular n-gon πn is a dihedral
group with 2n elements.

Proof. Let πn have vertices v0, . . . , vn−1 and center O. Define a to be the
rotation about O by (360/n)◦

a(vi ) =
{
vi+1 if 0 ≤ i < n − 1

v0 if i = n − 1.

It is clear that a has order n. Define b to be the reflection with axis L[O, v0];
thus,

b(vi ) =
{
v0 if i = 0

vn−i if 1 ≤ i ≤ n − 1.

It is clear that b has order 2. There are n distinct symmetries 1, a, a2, . . . , an−1

(because a has order n), and b, ab, a2b, . . . , an−1b are all distinct as well (by
the cancellation law). If as = ar b, where 0 ≤ r ≤ n − 1 and s = 0, 1, then
as(vi ) = arb(vi ) for all i . Now as(v0) = vs while ar b(v0) = vr−1; hence,
s = r − 1. If i = 1, then ar−1(v1) = vr+1 while arb(v1) = vr−1. Therefore,
as 6= ar b for all r, s, and we have exhibited 2n distinct symmetries in 6(πn).

We now show that there are no other symmetries of πn . We may assume
that πn has its center O at the origin, and so every symmetry ϕ fixes O; that is,
ϕ is a linear transformation (by Proposition 2.57). The vertices adjacent to v0,
namely, v1 and vn−1, are the closest vertices to v0; that is, if 2 ≤ i ≤ n − 2,
then ‖vi − v0‖ > ‖v1 − v0‖. Therefore, if ϕ(v0) = v j , then ϕ(v1) = v j+1 or
ϕ(v1) = v j−1. In the first case, a j (v0) = ϕ(v0) and a j (v1) = ϕ(v1), so that
Corollary 2.60 gives ϕ = a j . In the second case, a j b(v0) = v j and a j b(v1) =
v j−1, and Corollary 2.60 gives ϕ = a j b. Therefore, |6(πn)| = 2n.

We have shown that 6(πn) is a group with exactly 2n elements and which
contains elements a and b of orders n and 2, respectively. It remains to show that
bab = a−1. By Corollary 2.60, it suffices to evaluate each of these on v0 and v1.
But bab(v0) = vn−1 = a−1(v0) and bab(v1) = v0 = a−1(v1). •

Symmetry arises in calculus when describing figures in the plane. We quote
from Edwards and Penny, Calculus and Analytic Geometry, 3d ed., 1990, p. 456,
as they describe different kinds of symmetry that might be enjoyed by a curve
with equation f (x, y) = 0.

(i) Symmetry about the x-axis: the equation of the curve is unaltered when y
is replaced by −y.

(ii) Symmetry about the y-axis: the equation of the curve is unaltered when x
is replaced by −x .
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(iii) Symmetry with respect to the origin: the equation of the curve is unaltered
when x is replaced by −x and y is replaced by −y.

(iv) Symmetry about the 45◦ line y = x : the equation is unaltered when x and
y are interchanged.

In our language, their first symmetry is ρx , reflection with axis x-axis, the
second is ρy , reflection with axis y-axis, the third is R180, rotation by 180◦, and
the fourth is ρL , where L is the 45◦ line. One can now say when a function
of two variables has symmetry. For example, a function f (x, y) has the first
type of symmetry if f (x, y) = f (x,−y). In this case, the graph 0 of the equa-
tion f (x, y) = 0 [consisting of all the points (a, b) for which f (a, b) = 0] is
symmetric about the x-axis, for (a, b) ∈ 0 implies (a,−b) ∈ 0.

EXERCISES

2.32 (i) Compute the order, inverse, and parity of

α = (1 2)(4 3)(1 3 5 4 2)(1 5)(1 3)(2 3).

(ii) What are the respective orders of the permutations in Exercises 2.19 and
2.25 on page 120?

2.33 (i) How many elements of order 2 are there in S5 and in S6?
(ii) How many elements of order 2 are there in Sn?

*2.34 Let y be a group element of order m; if m = pt for some prime p, prove that y t

has order p.
*2.35 Let G be a group and let a ∈ G have order pk for some prime p, where k ≥ 1.

Prove that if there is x ∈ G with x p = a, then the order of x is p2k, and hence x
has larger order than a.

2.36 Let G = GL(2, � ), and let

A =
[

0 −1
1 0

]
and B =

[
0 1

−1 1

]
.

Show that A4 = I = B6, but that (AB)n 6= I for all n > 0. Conclude that AB can
have infinite order even though both factors A and B have finite order (this cannot
happen in a finite group).

2.37 (i) Prove, by induction on k ≥ 1, that

[
cos θ − sin θ
sin θ cos θ

]k

=
[

cos kθ − sin kθ
sin kθ cos kθ

]
.

(ii) Find all the elements of finite order in S O(2, � ), the special orthogonal
group [see Example 2.48(iii)].

*2.38 If G is a group in which x2 = 1 for every x ∈ G , prove that G must be abelian.
[The Boolean groups � (X ) of Example 2.47(ix) are such groups.]



144 GROUPS I CH. 2

2.39 Let G be a finite group in which every element has a square root; that is, for each
x ∈ G , there exists y ∈ G with y2 = x . Prove that every element in G has a unique
square root.

*2.40 If G is a group with an even number of elements, prove that the number of elements
in G of order 2 is odd. In particular, G must contain an element of order 2.

2.41 What is the largest order of an element in Sn , where n = 1, 2, . . . , 10?
*2.42 The stochastic12 group 6(2, � ) consists of all those matrices in GL(2, � ) whose

column sums are 1; that is, 6(2, � ) consists of all the nonsingular matrices
[ a c

b d

]

with a + b = 1 = c + d . [There are also stochastic groups 6(2, � ) and 6(2, � ).]
Prove that the product of two stochastic matrices is again stochastic, and that the

inverse of a stochastic matrix is stochastic.
2.43 Show that the symmetry group 6(C) of a circle C is infinite.

*2.44 Prove that every element in a dihedral group D2n has a unique factorization of the
form ai b j , where 0 ≤ i < n and j = 0 or 1.

2.45 Let e1 = (1, 0) and e2 = (0, 1), If ϕ is an isometry of the plane fixing O , let
ϕ(e1) = (a, b), ϕ(e2) = (c, d), and let A =

[ a c
b d

]
. Prove that det(A) = ±1.

2.4 SUBGROUPS AND LAGRANGE’S THEOREM

A subgroup of a group G is a subset which is a group under the same opera-
tion as in G. The following definition will help to make this last phrase precise.

Definition. Let ∗ be an operation on a set G, and let S ⊆ G be a subset. We
say that S is closed under ∗ if x ∗ y ∈ S for all x, y ∈ S.

The operation on a group G is a function ∗: G × G → G. If S ⊆ G, then
S × S ⊆ G × G, and to say that S is closed under the operation ∗ means that
∗(S × S) ⊆ S. For example, the subset

�
of the additive group

�
of rational

numbers is closed under +. However, if
� × is the multiplicative group of nonzero

rational numbers, then
� × is closed under multiplication, but it is not closed

under + (for example, 2 and −2 lie in
� × , but their sum −2 + 2 = 0 /∈

� × ).

Definition. A subset H of a group G is a subgroup if

(i) 1 ∈ H ;

(ii) if x , y ∈ H , then x y ∈ H ; that is, H is closed under ∗;

(iii) if x ∈ H , then x−1 ∈ H .

12The term stochastic comes from the Greek word meaning “to guess.” Its mathematical
usage occurs in statistics, and stochastic matrices first arose in the study of certain statistical
problems.
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We write H ≤ G to denote H being a subgroup of a group G. Observe
that {1} and G are always subgroups of a group G, where {1} denotes the subset
consisting of the single element 1. We call a subgroup H of G proper if H 6= G,
and we write H < G. We call a subgroup H of G nontrivial if H 6= {1}. More
interesting examples of subgroups will be given below.

Proposition 2.64. Every subgroup H ≤ G of a group G is itself a group.

Proof. Axiom (ii) (in the definition of subgroup) shows that H is closed under
the operation of G; that is, H has an operation (namely, the restriction of the
operation ∗: G × G → G to H × H ⊆ G × G). This operation is associative:
since the equation (x y)z = x(yz) holds for all x, y, z ∈ G, it holds, in particular,
for all x, y, z ∈ H . Finally, axiom (i) gives the identity, and axiom (iii) gives
inverses. •

It is quicker to check that a subset H of a group G is a subgroup (and hence
that it is a group in its own right) than to verify the group axioms for H , for as-
sociativity is inherited from the operation on G and hence it need not be verified
again.

Example 2.65.

(i) Recall that Isom(
� 2 ) is the group of all isometries of the plane. The sub-

set O2(
�
), consisting of all isometries fixing the origin, is a subgroup of

Isom(
� 2 ). If � ⊆ � 2 , then the symmetry group 6(�) is also a subgroup

of Isom(
� 2 ). If the center of gravity of � exists and is at the origin, then

6(�) ≤ O2(
�
).

(ii) The four permutations

V =
{
(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

}

form a group, because V is a subgroup of S4 : (1) ∈ V; α2 = (1) for each
α ∈ V, and so α−1 = α ∈ V; the product of any two distinct permutations
in V − {(1)} is the third one. One calls V the four-group (or the Klein
group) (V abbreviates the original German term Vierergruppe).

Consider what verifying associativity a(bc) = (ab)c would involve:
there are 4 choices for each of a, b, and c, and so there are 43 = 64
equations to be checked. Of course, we may assume that none is (1),
leaving us with only 33 = 27 equations but, plainly, proving V is a group
by showing it is a subgroup of S4 is obviously the best way to proceed.

(iii) If
� 2 is the plane considered as an (additive) abelian group, then any line

L through the origin is a subgroup. The easiest way to see this is to choose
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a point (a, b) on L and then note that L consists of all the scalar multiples
(ra, rb). The reader may now verify that the axioms in the definition of
subgroup do hold for L . �

One can shorten the list of items needed to verify that a subset is, in fact, a
subgroup.

Proposition 2.66. A subset H of a group G is a subgroup if and only if H is
nonempty and, whenever x, y ∈ H, then x y−1 ∈ H.

Proof. If H is a subgroup, then it is nonempty, for 1 ∈ H . If x, y ∈ H , then
y−1 ∈ H , by part (iii) of the definition, and so x y−1 ∈ H , by part (ii).

Conversely, assume that H is a subset satisfying the new condition. Since
H is nonempty, it contains some element, say, h. Taking x = h = y, we see
that 1 = hh−1 ∈ H , and so part (i) holds. If y ∈ H , then set x = 1 (which we
can now do because 1 ∈ H ), giving y−1 = 1y−1 ∈ H , and so part (iii) holds.
Finally, we know that (y−1)−1 = y, by Lemma 2.46. Hence, if x, y ∈ H , then
y−1 ∈ H , and so x y = x(y−1)−1 ∈ H . Therefore, H is a subgroup of G. •

Since every subgroup contains 1, one may replace the hypothesis “H is
nonempty” in Proposition 2.66 by “1 ∈ H .”

Note that if the operation in G is addition, then the condition in the proposi-
tion is that H is a nonempty subset such that x, y ∈ H implies x − y ∈ H .

For Galois, a group was just a subset H of Sn that is closed under composi-
tion; that is, if α, β ∈ H , then αβ ∈ H . A. Cayley, in 1854, was the first to define
an abstract group, mentioning associativity, inverses, and identity explicitly.

Proposition 2.67. A nonempty subset H of a finite group G is a subgroup if and
only if H is closed under the operation of G; that is, if a, b ∈ H, then ab ∈ H.
In particular, a nonempty subset of Sn is a subgroup if and only if it is closed
under composition.

Proof. Every subgroup is nonempty, by axiom (i) in the definition of subgroup,
and it is closed, by axiom (ii).

Conversely, assume that H is a nonempty subset of G closed under the oper-
ation on G; thus, axiom (ii) holds. It follows that H contains all the powers of its
elements. In particular, there is some element a ∈ H , because H is nonempty,
and an ∈ H for all n ≥ 1. As we saw in Example 2.52, every element in G has
finite order: there is an integer m with am = 1; hence 1 ∈ H and axiom (i) holds.
Finally, if h ∈ H and hm = 1, then h−1 = hm−1 (for hhm−1 = 1 = hm−1h), so
that h−1 ∈ H and axiom (iii) holds. Therefore, H is a subgroup of G. •
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This last proposition can be false when G is an infinite group. For example,
the subset

�
of the additive group

�
is closed under +, but it is not a subgroup

of
�

.

Example 2.68.
The subset An of Sn, consisting of all the even permutations, is a subgroup be-
cause it is closed under multiplication: even ◦ even = even. This subgroup of
Sn is called the alternating13 group on n letters, and it is denoted by An . �

Definition. If G is a group and a ∈ G, write

〈a〉 = {an : n ∈ � } = {all powers of a};

〈a〉 is called the cyclic subgroup of G generated by a.
A group G is called cyclic if there is some a ∈ G with G = 〈a〉; in this case

a is called a generator of G.

It is easy to see that 〈a〉 is, in fact, a subgroup: 1 = a0 ∈ 〈a〉; anam =
an+m ∈ 〈a〉; a−1 ∈ 〈a〉. Example 2.47(vi) shows, for every n ≥ 1, that the mul-
tiplicative group 0n of all nth roots of unity is a cyclic group with the primitive
nth root of unity ζ = e2π i/n as a generator.

A cyclic group can have several different generators. For example, 〈a〉 =
〈a−1〉.

Proposition 2.69. If G = 〈a〉 is a cyclic group of order n, then ak is a generator
of G if and only if gcd(k, n) = 1.

Proof. If ak is a generator, then a ∈ 〈ak〉, so there is s with a = aks. Hence,
aks−1 = 1, so that Lemma 2.53 shows that n | (ks −1); that is, there is an integer
t with ks − 1 = tn, or sk − tn = 1. Hence, (k, n) = 1, by Exercise 1.51 on
page 52.

Conversely, if 1 = sk + tn, then a = ask+tn = ask (because atn = 1), and
so a ∈ 〈ak〉. Hence G = 〈a〉 ≤ 〈ak〉, and so G = 〈ak〉. •

13The alternating group first arose in studying polynomials. If

f (x) = (x − u1)(x − u2) · · · (x − un),

then the number D =
∏

i< j (ui − u j ) changes sign if one permutes the roots: if α is a
permutation of {u1, u2, . . . , un}, then it is easy to see that

∏
i< j [α(ui ) − α(u j )] = ±D.

Thus, the sign of the product alternates as various permutations α are applied to its factors.
The sign does not change for those α in the alternating group.



148 GROUPS I CH. 2

Corollary 2.70. The number of generators of a cyclic group of order n is φ(n).

Proof. This follows at once from the Propositions 2.69 and 1.39. •

Proposition 2.71. Every subgroup S of a cyclic group G = 〈a〉 is itself cyclic.
In fact, am is a generator of S, where m is the smallest positive integer with
am ∈ S.

Proof. We may assume that S is nontrivial; that is, S 6= {1}, for the proposition
is obviously true when S = {1}. Let I = {m ∈ � : am ∈ S}; it is easy to check
that I satisfies the conditions in Corollary 1.34. (i): 0 ∈ I , for a0 = 1 ∈ S.
(ii): If m, n ∈ I , then am, an ∈ S, and so ama−n = am−n ∈ S; hence, m −n ∈ I .
(iii): If m ∈ I and i ∈ �

, then am ∈ S, and so (am)i = aim ∈ S; hence,
im ∈ I . Since S 6= {1}, there is some 1 6= aq ∈ S; thus, q ∈ I and I 6= {0}.
By Corollary 1.34, if k is the smallest positive integer in I , then k | m for every
minI . We claim that 〈ak〉 = S. Clearly, 〈ak〉 ≤ S. For the reverse inclusion,
take s ∈ S. Now s = am for some m, so that m ∈ I and m = k` for some `.
Therefore, s = am = ak` ∈ 〈ak〉. •

Proposition 2.78 will give a number-theoretic interpretation of this last result.

Proposition 2.72. Let G be a finite group and let a ∈ G. Then the order of a
is the number of elements in 〈a〉.

Proof. We will use the idea in Lemma 2.23. Since G is finite, there is an
integer k ≥ 1 with 1, a, a2, . . . , ak−1 consisting of k distinct elements, while
1, a, a2, . . . , ak has a repetition; hence ak ∈ {1, a, a2, . . . , ak−1}; that is, ak =
ai for some i with 0 ≤ i < k. If i ≥ 1, then ak−i = 1, contradicting the original
list having no repetitions. Therefore, ak = a0 = 1, and k is the order of a (being
the smallest positive such k).

If H = {1, a, a2, . . . , ak−1}, then |H | = k; it suffices to show that H = 〈a〉.
Clearly, H ⊆ 〈a〉. For the reverse inclusion, take a i ∈ 〈a〉. By the division
algorithm, i = qk + r , where 0 ≤ r < k. Hence ai = aqk+r = aqkar =
(ak)qar = ar ∈ H ; this gives 〈a〉 ⊆ H , and so 〈a〉 = H . •

Definition. If G is a finite group, then the number of elements in G, denoted
by |G|, is called the order of G.

The word “order” is used in two senses: the order of an element a ∈ G and
the order |G| of a group G. Proposition 2.72 shows that the order of a group
element a is equal to |〈a〉|.

The following characterization of finite cyclic groups will be used to prove
Theorem 3.122 showing that the multiplicative group of a finite field is cyclic.
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Proposition 2.73. A group G of order n is cyclic if and only if, for each divisor
d of n, there is at most one cyclic subgroup of order d.

Proof. Suppose that G = 〈a〉 is a cyclic group of order n. We claim that 〈an/d〉
has order d . Clearly, (an/d)d = an = 1, and it suffices to show that d is the
smallest such positive integer. If (an/d)r = 1, then n | (n/d)r , by Lemma 2.53.
Hence, there is some integer s with (n/d)r = ns, so that r = ds and r ≥ d .

To prove uniqueness, let C be a subgroup of G of order d; by Proposi-
tion 2.71, the subgroup C is cyclic, say, C = 〈x〉. Now x = am has order d ,
so that 1 = (xm)d . Hence, n | md , by Lemma 2.53, and so md = nk for some
integer k. Therefore, x = am = (an/d)k , so that C = 〈x〉 ⊆ 〈an/d〉. Since both
subgroups have the same order, however, it follows that C = 〈an/d〉.

Conversely, define a relation on a group G by a ≡ b if 〈a〉 = 〈b〉. It is easy
to see that this is an equivalence relation and that the equivalence class [a] of
a ∈ G consists of all the generators of C = 〈a〉. Thus, we denote [a] by gen(C),
and

G =
⋃

C cyclic

gen(C).

Hence, n = |G| =
∑

C |gen(C)|, where the sum is over all the cyclic subgroups
of G. But Corollary 2.70 gives |gen(C)| = φ(|C|). By hypothesis, G has at
most one (cyclic) subgroup of any order, so that

n =
∑

C

|gen(C)| ≤
∑

d|n
φ(d) = n,

the last equality being Corollary 1.28. Therefore, for each divisor d of n, there
must be a cyclic subgroup C of order d contributing φ(d) to

∑
C |gen(C)|. In

particular, there must be a cyclic subgroup C of order n, and so G is cyclic. •
Here is a way of constructing a new subgroup from given ones.

Proposition 2.74. The intersection
⋂

i∈I Hi of any family of subgroups of a
group G is again a subgroup of G. In particular, if H and K are subgroups of
G, then H ∩ K is a subgroup of G.

Proof. Let D =
⋂

i∈I Hi ; we prove that D is a subgroup by verifying each of
the parts in the definition. Note first that D 6= �

because 1 ∈ D since 1 ∈ Hi for
all i . If x ∈ D, then x got into D by being in each Hi ; as each Hi is a subgroup,
x−1 ∈ Hi for all i , and so x−1 ∈ D. Finally, if x, y ∈ D, then both x and y lie
in every Hi , hence their product x y lies in every Hi , and so x y ∈ D. •

Corollary 2.75. If X is a subset of a group G, then there is a subgroup 〈X〉 of
G containing X that is smallest in the sense that 〈X〉 ≤ H for every subgroup
H of G which contains X.
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Proof. First of all, note that there exist subgroups of G which contain X ; for
example, G itself contains X . Define 〈X〉 =

⋂
X⊆H H , the intersection of all

the subgroups H of G which contain X . By Proposition 2.74, 〈X〉 is a subgroup
of G; of course, 〈X〉 contains X because every H contains X . Finally, if H is
any subgroup containing X , then H is one of the subgroups whose intersection
is 〈X〉; that is, 〈X〉 ≤ H . •

Note that there is no restriction on the subset X in the last corollary; in
particular, X = �

is allowed. Since the empty set is a subset of every set, we
have

� ⊆ H for every subgroup H of G. Thus, 〈 � 〉 is the intersection of all the
subgroups of G, one of which is {1}, and so 〈 � 〉 = {1}.

Definition. If X is a subset of a group G, then 〈X〉 is called the subgroup
generated by X .

Example 2.76.

(i) If G = 〈a〉 is a cyclic group with generator a, then G is generated by the
subset X = {a}.

(ii) The symmetry group 6(πn) of a regular n-gon πn is generated by a, b,
where a is a rotation about the origin by (360/n)◦ and b is a reflection (see
Theorem 2.63). These generators satisfy the conditions an = 1, b2 = 1,
and bab = a−1, and 6(πn) is a dihedral group D2n . �

The next proposition gives a more concrete description of the subgroup gen-
erated by a subset.

Definition. Let X be a nonempty subset of a group G. Then a word on X is
either the identity element or an element of G of the form w = x e1

1 xe2
2 · · · xen

n ,
where n ≥ 1, xi ∈ X for all i , and ei = ±1 for all i .

Proposition 2.77. If X is a nonempty subset of a group G, then 〈X〉 is the set
of all the words on X.

Proof. We begin by showing that W , the set of all words on X , is a sub-
group of G. By definition, 1 ∈ W . If w,w′ ∈ W , then w = xe1

1 xe2
2 · · · xen

n

and w′ = y f1
1 y f2

2 · · · y fm
m , where y j ∈ X and f j = ±1. Hence, ww′ =

xe1
1 xe2

2 · · · xen
n y f1

1 y f2
2 · · · y fm

m , which is a word on X , and so ww′ ∈ W . Finally,

(w)−1 = x−en
n x

−en−1
n−1 · · · x−e1

1 ∈ W . Thus, X is a subgroup of G, and it clearly
contains every element of X . We conclude that 〈X〉 ≤ W . For the reverse in-
equality, we show that if S is any subgroup of G containing X , then S contains
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every word on X . But this is obvious: since S is it a subgroup, it contain x e

whenever x ∈ X and e = ±1, and it contains all possible products of such
elements. Therefore, W ≤ S for all such S, and so W ≤

⋂
S = 〈X〉. •

Proposition 2.78. Let a and b be integers and let A = 〈a〉 and B = 〈b〉 be the
cyclic subgroups of

�
they generate.

(i) If A + B is defined to be {a + b : a ∈ A and b ∈ B}, then A + B = 〈d〉,
where d = gcd(a, b).

(ii) A ∩ B = 〈m〉, where m = lcm(a, b).

Proof.
(i) It is straightforward to check that A + B is a subgroup of

�
(in fact, A + B is

precisely the set of all the linear combinations of a and b). By Proposition 2.71,
the subgroup A + B is cyclic: A + B = 〈d〉, where d can be chosen to be the
smallest non-negative number in A + B. Thus, d is a common divisor of a and
b, and it is the smallest such; that is, d = gcd(a, b).
(ii) If c ∈ A ∩ B, then c ∈ A and a | c; similarly, if c ∈ A ∩ B, then c ∈ B
and b | c. Thus, every element in A ∩ B is a common multiple of a and b.
Conversely, every common multiple lies in the intersection. By Proposition 2.71,
the subgroup A ∩ B is cyclic: A ∩ B = 〈m〉, where m can be chosen to be the
smallest non-negative number in A ∩ B. Therefore, m is the smallest common
multiple; that is, m = lcm(a, b). •

Perhaps the most fundamental fact about subgroups H of a finite group G is
that their orders are constrained. Certainly, we have |H | ≤ |G|, but it turns out
that |H | must be a divisor of |G|. To prove this, we introduce the notion of coset.

Definition. If H is a subgroup of a group G and a ∈ G, then the coset14 a H is
the subset a H of G, where

a H = {ah : h ∈ H}.

Of course, a = a1 ∈ a H . Cosets are usually not subgroups. For example,
if a /∈ H , then 1 /∈ a H (otherwise 1 = ah for some h ∈ H , and this gives the
contradiction a = h−1 ∈ H ).

If we use the ∗ notation for the operation in a group G, then we denote the
coset a H by a ∗ H , where

a ∗ H = {a ∗ h : h ∈ H.}
14The cosets just defined are often called left cosets; there are also right cosets of H ,

namely, subsets of the form Ha = {ha : h ∈ H}; these arise in further study of groups,
but we shall work almost exclusively with (left) cosets.
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In particular, if the operation is addition, then the coset is denoted by

a + H = {a + h : h ∈ H}.

Example 2.79.

(i) Consider the plane
� 2 as an (additive) abelian group and let ` be a line

through the origin O (see Figure 2.17 on page 152); as in Example 2.65(iii),
the line ` is a subgroup of

� 2 . If β ∈ � 2 , then the coset β + ` is the line
`′ containing β which is parallel to `, for if rα ∈ `, then the parallelogram
law gives β + rα ∈ `′.

r 

 + r 
+

O

Figure 2.17 The Coset β + `

(ii) If G = S3 and H = 〈(1 2)〉, there are exactly three cosets of H , namely:

H = {(1), (1 2)} = (1 2)H,

(1 3)H = {(1 3), (1 2 3)} = (1 2 3)H,

(2 3)H = {(2 3), (1 3 2)} = (1 3 2)H,

each of which has size 2. �

Observe, in our examples, that different cosets of a given subgroup do not
overlap.

If H is a subgroup of a group G, then the relation on G, defined by

a ≡ b if a−1b ∈ H,

is an equivalence relation on G. If a ∈ G, then a−1a = 1 ∈ H , and a ≡ a;
hence, ≡ is reflexive. If a ≡ b, then a−1b ∈ H ; since subgroups are closed under
inverses, (a−1b)−1 = b−1a ∈ H and b ≡ a; hence ≡ is symmetric. If a ≡ b and
b ≡ c, then a−1b, b−1c ∈ H ; since subgroups are closed under multiplication,
(a−1b)(b−1c) = a−1c ∈ H , and a ≡ c. Therefore, ≡ is transitive, and hence it
is an equivalence relation.
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We claim that the equivalence class of a ∈ H is the coset a H . If x ≡ a, then
x−1a ∈ H , and Lemma 2.80 gives x ∈ x H = a H . Thus, [a] ⊆ a H . For the
reverse inclusion, it is easy to see that if x = ah ∈ a H , then x−1a = (ah)−1a =
h−1a−1a = h ∈ H , so that x ≡ a and x ∈ [a]. Hence, a H ⊆ [a], and so
[a] = a H .

Lemma 2.80. Let H be a subgroup of a group G, and let a, b ∈ G.

(i) a H = bH if and only if b−1a ∈ H. In particular, a H = H if and only if
a ∈ H.

(ii) If a H ∩ bH 6= �
, then a H = bH.

(iii) |a H | = |H | for all a ∈ G.

Proof.
(i) This is a special case of Lemma 2.19, for cosets are equivalence classes. The
second statement follows because H = 1H .
(ii) This is a special case of Proposition 2.20, for the equivalence classes com-
prise a partition of X .
(iii) The function f : H → a H , given by f (h) = ah, is easily seen to be a
bijection [its inverse a H → H is given by ah 7→ a−1(ah) = h]. Therefore, H
and a H have the same number of elements, by Exercise 2.11 on page 101. •

Theorem 2.81 (Lagrange’s Theorem). If H is a subgroup of a finite group
G, then |H | is a divisor of |G|.
Proof. Let {a1 H, a2H, . . . , at H} be the family of all the distinct cosets of H
in G. Then

G = a1 H ∪ a2 H ∪ · · · ∪ at H,

because each g ∈ G lies in the coset gH , and gH = ai H for some i . Moreover,
Lemma 2.80(ii) shows that distinct cosets ai H and a j H are disjoint. It follows
that

|G| = |a1 H | + |a2 H | + · · · + |at H |.
But |ai H | = |H | for all i , by Lemma 2.80(iii), so that |G| = t |H |. •

Definition. The index of a subgroup H in G, denoted by [G : H ], is the number
of cosets of H in G.

When G is finite, the index [G : H ] is the number t in the formula |G| =
t |H | in the proof of Lagrange’s theorem, so that

|G| = [G : H ]|H |.

This formula shows that the index [G : H ] is also a divisor of |G|.
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Corollary 2.82. If H is a subgroup of a finite group G, then

[G : H ] = |G|/|H |.

Proof. This follows at once from Lagrange’s theorem. •
Recall Theorem 2.63: the symmetry group 6(πn) of a regular n-gon is a

dihedral group of order 2n. It contains a cyclic subgroup of order n, generated
by a rotation a, and the subgroup 〈a〉 has index [6(πn) : 〈a〉] = 2. Thus, there
are two cosets: 〈a〉 and b〈a〉, where b is any symmetry outside of 〈a〉.

We now see why the orders of elements in S5, displayed in Table 2.3 on
page 134, are divisors of 120. Corollary 2.144 explains why the number of
permutations in S5 of any given cycle structure is a divisor of 120.

Corollary 2.83. If G is a finite group and a ∈ G, then the order of a is a divisor
of |G|.
Proof. By Proposition 2.72, the order of the element a is equal to the order of
the subgroup H = 〈a〉. •

Corollary 2.84. If a finite group G has order m, then am = 1 for all a ∈ G.

Proof. By Corollary 2.83, a has order d , where d | m; that is, m = dk for some
integer k. Thus, am = adk = (ad)k = 1. •

Corollary 2.85. If p is a prime, then every group G of order p is cyclic.

Proof. Choose a ∈ G with a 6= 1, and let H = 〈a〉 be the cyclic subgroup
generated by a. By Lagrange’s theorem, |H | is a divisor of |G| = p. Since p is
a prime and |H | > 1, it follows that |H | = p = |G|, and so H = G. •

Lagrange’s theorem says that the order of a subgroup of a finite group G is
a divisor of |G|. Is the “converse” of Lagrange’s theorem true? That is, if d is a
divisor of |G|, must there exist a subgroup of G having order d? The answer is
“no;” Proposition 2.97 shows that the alternating group A4 is a group of order 12
which has no subgroup of order 6.

EXERCISES

2.46 (i) Define the special linear group by

SL(2, � ) = {A ∈ GL(2, � ) : det(A) = 1}.

Prove that SL(2, � ) is a subgroup of GL(2, � ).
(ii) Prove that GL(2, � ) is a subgroup of GL(2, � ).
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*2.47 Give an example of two subgroups H and K of a group G whose union H ∪ K is
not a subgroup of G .

*2.48 Let G be a finite group with subgroups H and K . If H ≤ K , prove that

[G : H ] = [G : K ][K : H ].

2.49 If H and K are subgroups of a group G and if |H | and |K | are relatively prime,
prove that H ∩ K = {1}.

2.50 Prove that every infinite group contains infinitely many subgroups.
*2.51 Let G be a group of order 4. Prove that either G is cyclic or x 2 = 1 for every

x ∈ G . Conclude, using Exercise 2.38 on page 143, that G must be abelian.
2.52 (i) Prove that the stochastic group 6(2, � ), the set of all nonsingular 2 × 2

matrices whose row sums are 1, is a subgroup of GL(2, � ) (see Exer-
cise 2.42 on page 144).

(ii) Define 6′(2, � ) to be the set of all nonsingular doubly stochastic matri-
ces (all row sums are 1 and all column sums are 1). Prove that 6 ′(2, � )
is a subgroup of GL(2, � ).

*2.53 Let G be a finite group, and let S and T be (not necessarily distinct) nonempty
subsets. Prove that either G = ST or |G| ≥ |S| + |T |.

2.54 (i) If {Si : i ∈ I } is a family of subgroups of a group G , prove that an
intersection of cosets

⋂
i∈I xi Si is either empty or a coset of

⋂
i∈I Si .

(ii) (B. H. Neumann.) If a group H is the set-theoretic union of finitely
many cosets,

H = x1S1 ∪ · · · ∪ xn Sn,

prove that at least one of the subgroups Si has finite index in G .
2.55 (i) Show that a left coset of 〈(1 2)〉 in S3 may not be equal to a right coset of

〈(1 2)〉 in S3; that is, there is α ∈ S3 with α〈(1 2)〉 6= 〈(1 2)〉α.
(ii) Let G be a finite group and let H ≤ G be a subgroup. Prove that the

number of left cosets of H in G is equal to the number of right cosets of
H in G .

2.5 HOMOMORPHISMS

An important problem is determining whether two given groups G and H are
somehow the same. For example, we have investigated S3, the group of all per-
mutations of X = {1, 2, 3}. The group SY of all the permutations of Y = {a, b, c}
is a group different from S3 because permutations of {1, 2, 3} are different than
permutations of {a, b, c}. But even though S3 and SY are different, they surely
bear a strong resemblance to each other (see Example 2.86). The notions of
homomorphism and isomorphism allow one to compare different groups, as we
shall see.



156 GROUPS I CH. 2

Definition. If (G, ∗) and (H, ◦) are groups (we have displayed the operation
in each), then a function f : G → H is a homomorphism15 if

f (x ∗ y) = f (x) ◦ f (y)

for all x, y ∈ G. If f is also a bijection, then f is called an isomorphism. We say
that G and H are isomorphic, denoted by G ∼= H , if there exists an isomorphism
f : G → H . (In Exercise 2.57 on page 165, we will see that isomorphism is an
equivalence relation on any family of groups. In particular, if G ∼= H , then
H ∼= G.

Two obvious examples of homomorphisms are the identity 1G : G → G,
which is an isomorphism, and the trivial homomorphism f : G → H , defined
by f (a) = 1 for all a ∈ G.

Here are more interesting examples. Let
�

be the group of all real numbers
with operation addition, and let

� > be the group of all positive real numbers with
operation multiplication. The function f : � → � > , defined by f (x) = ex , is a
homomorphism, for if x, y ∈ �

, then

f (x + y) = ex+y = ex ey = f (x) f (y).

Now f is an isomorphism, for its inverse function g : � > → �
is log(x). There-

fore, the additive group
�

is isomorphic to the multiplicative group
�
> . Note

that the inverse function g is also an isomorphism:

g(x y) = log(x y) = log(x)+ log(y) = g(x)+ g(y).

As a second example, we claim that the additive group
�

of complex num-
bers is isomorphic to the additive group

� 2 [see Example 2.47(vii)]. Define
f :

�
→ � 2 by

f : a + ib 7→ (a, b).

It is easy to check that f is a bijection; f is a homomorphism because

f ([a + ib] + [a′ + ib′]) = f ([a + a′] + i [b + b′])
= (a + a′, b + b′)

= (a, b)+ (a′, b′)

= f (a + ib)+ f (a′ + ib′).

Definition. Let a1, a2, . . . , an be a list with no repetitions of all the elements
of a finite group G of order n. A multiplication table for G is an n × n matrix
whose i j entry is ai a j .

15The word homomorphism comes from the Greek homo meaning “same” and morph mean-
ing “shape” or “form.” Thus, a homomorphism carries a group to another group (its image) of
similar form. The word isomorphism involves the Greek iso meaning “equal,” and isomorphic
groups have identical form.
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G a1 · · · a j · · · an

a1 a1a1 · · · a1a j · · · a1an

ai ai a1 · · · ai a j · · · ai an

an ana1 · · · ana j · · · anan

Let us agree, when writing a multiplication table, that the identity element is
listed first; that is, a1 = 1. In this case, the first row and first column of the table
merely repeat the listing above, and so we usually omit them.

Consider two almost trivial examples of groups: let 02 denote the multiplica-
tive group {1,−1}, and let � denote the parity group [Example 2.47(viii)]. Here
are their multiplication tables:

02 : 1 −1
−1 1

; � : even odd
odd even

.

It is clear that 02 and � are distinct groups; it is equally clear that there is no
significant difference between them. The notion of isomorphism formalizes this
idea; 02 and � are isomorphic, for the function f : 02 → � , defined by f (1) =
even and f (−1) = odd, is an isomorphism, as the reader can quickly check.

There are many multiplication tables for a group G of order n, one for each of
the n! lists of its elements. If a1, a2, . . . , an is a list of all the elements of G with
no repetitions, and if f : G → H is a bijection, then f (a1), f (a2), . . . , f (an)

is a list of all the elements of H with no repetitions, and so this latter list deter-
mines a multiplication table for H . That f is an isomorphism says that if we
superimpose the multiplication table for G (determined by a1, a2, . . . , an) upon
the multiplication table for H [determined by f (a1), f (a2), . . . , f (an)], then the
tables match: if ai a j is the i j entry in the given multiplication table of G, then
f (ai) f (a j ) = f (aia j ) is the i j entry of the multiplication table of H . In this
sense, isomorphic groups have the same multiplication table. Thus, isomorphic
groups are essentially the same, differing only in the notation for the elements
and the operations.

Example 2.86.
Here is an algorithm to check whether a given bijection f : G → H between a
pair of groups is actually an isomorphism: enumerate the elements a1, . . . , an of
G, form the multiplication table of G arising from this list, form the multiplica-
tion table for H from the list f (a1), . . . , f (an), and compare the n2 entries of
the two tables one row at a time.
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We illustrate this for G = S3, the symmetric group permuting {1, 2, 3}, and
H = SY , the symmetric group of all the permutations of Y = {a, b, c}. First,
enumerate G:

(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2).

We define the obvious function ϕ : S3 → SY that replaces numbers by letters:

(1), (a b), (a c), (b c), (a b c), (a c b).

Compare the multiplication table for S3 arising from this list of its elements with
the multiplication table for SY arising from the corresponding list of its elements.
The reader should write out the complete tables of each and superimpose one on
the other to see that they match. We will illustrate this by checking the 4,5 entry.
The 4,5 position in the table for S3 is the product (2 3)(1 2 3) = (1 3), while the
4,5 position in the table for SY is the product (b c)(a b c) = (a c).

This result is generalized in Exercise 2.56 on page 165. �

We now turn from isomorphisms to more general homomorphisms.

Lemma 2.87. Let f : G → H be a homomorphism.

(i) f (1) = 1;
(ii) f (x−1) = f (x)−1;

(iii) f (xn) = f (x)n for all n ∈ �
.

Proof.
(i) Applying f to the equation 1·1 = 1 in G gives the equation f (1) f (1) = f (1)
in H , and multiplying both sides by f (1)−1 gives f (1) = 1.
(ii) Apply f to the equation x−1x = 1 in G to obtain the equation f (x−1) f (x) =
1 in H . Proposition 2.45(iv), uniqueness of the inverse, gives f (x−1) = f (x)−1.
(iii) It is routine to prove by induction that f (x n) = f (x)n for all n ≥ 0. For
negative exponents, we have (y−1)n = y−n for all y in a group, and so

f (x−n) = f ((x−1)n) = f ((x−1))n = ( f (x)−1)n = f (x)−n. •

Example 2.88.
We show that any two finite cyclic groups G and H of the same order m are
isomorphic. It will then follow from Corollary 2.85 that any two groups of prime
order p are isomorphic.

Suppose that G = 〈x〉 and H = 〈y〉. Define f : G → H by f (x i ) = yi

for 0 ≤ i < m. Now G = {1, x, x2, . . . , xm−1} and H = {1, y, y2, . . . , ym−1},
and so it follows that f is a bijection. To see that f is a homomorphism (and
hence an isomorphism), we must show that f (x i x j ) = f (x i ) f (x j ) for all i and
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j with 0 ≤ i , j < m. The desired equation clearly holds if i + j < m, for
f (x i+ j ) = yi+ j , and so

f (x i x j ) = f (x i+ j ) = yi+ j = yi y j = f (x i ) f (x j ).

If i + j ≥ m, then i + j = m + r , where 0 ≤ r < m, so that

x i+ j = xm+r = xmxr = xr

(because xm = 1); similarly, y i+ j = yr (because ym = 1). Hence

f (x i x j ) = f (x i+ j ) = f (xr )

= yr = yi+ j = yi y j = f (x i ) f (x j ).

Therefore, f is an isomorphism and G ∼= H . (See Example 2.115 for a nicer
proof of this.) �

A property of a group G that is shared by every other group isomorphic to it
is called an invariant of G. For example, the order, |G|, is an invariant of G, for
isomorphic groups have the same order. Being abelian is an invariant [if a and b
commute, then ab = ba and

f (a) f (b) = f (ab) = f (ba) = f (b) f (a);

hence, f (a) and f (b) commute]. Thus,
�

and GL(2,
�
) are not isomorphic,

for
�

is abelian and GL(2,
�
) is not. There are other invariants of a group (see

Exercise 2.59 on page 166); for example, the number of elements in it of any
given order r , or whether or not the group is cyclic. In general, however, it is a
challenge to decide whether two given groups are isomorphic.

Example 2.89.
We present two nonisomorphic groups of the same order.

As in Example 2.65(ii), let V be the four-group consisting of the following
four permutations:

V = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

and let 04 = 〈i〉 = {1, i,−1,−i} be the multiplicative cyclic group of fourth
roots of unity, where i 2 = −1. If there were an isomorphism f : V → 04, then
surjectivity of f would provide some x ∈ V with i = f (x). But x 2 = (1) for
all x ∈ V, so that i2 = f (x)2 = f (x2) = f ((1)) = 1, contradicting i 2 = −1.
Therefore, V and 04 are not isomorphic.

There are other ways to prove this result. For example, 04 is cyclic and V is
not, or 04 has an element of order 4 and V does not, or 04 has a unique element
of order 2, but V has 3 elements of order 2. At this stage, you should really
believe that 04 and V are not isomorphic! �
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Definition. If f : G → H is a homomorphism, define

kernel16 f = {x ∈ G : f (x) = 1}

and

image f = {h ∈ H : h = f (x) for some x ∈ G}.

We usually abbreviate kernel f to ker f and image f to im f .

Example 2.90.

(i) If 0n = 〈ζ 〉, where ζ = e2π i/n is a primitive nth root of unity, then
f : � → 0n , given by f (m) = ζm , is a surjective homomorphism with
ker f all the multiples of n.

(ii) If 02 is the multiplicative group 02 = {±1}, then Theorem 2.39 says that
sgn : Sn → 02 is a homomorphism. The image of sgn = {±1}, that is, sgn
is surjective, because sgn(τ) = −1 for a transposition τ ; the kernel of sgn
is the alternating group An , the set of all even permutations.

(iii) Determinant is a homomorphism det : GL(2,
�
) → � × , the multiplica-

tive group of nonzero reals. Now im det = � × , that is, det is surjective,
because if r ∈ � × , then r = det(

[
r 0
0 1

]
). The kernel of det is the special

linear group SL(2,
�
). [This example can be extended to GL(n,

�
); see

Example 2.48(ii).]

(iv) We now generalize the construction of ker f . Recall the definition of in-
verse image: if f : X → Y is a function and if B ⊆ Y is a subset, then we
show that

f −1(B) = {x ∈ X : f (x) ∈ B}.

If f : G → H is a homomorphism and if B ≤ H is a subgroup of H ,
then the inverse image f −1(B) is a subgroup of G. We have 1 ∈ f −1(B),
for f (1) = 1 ∈ B ≤ H . If x, y ∈ f −1(B), then f (x), f (y) ∈ B and
so f (x) f (y) ∈ B; hence, f (x y) = f (x) f (y) ∈ B, and x y ∈ f −1(B).
Finally, if x ∈ f −1(B), then f (x) ∈ B; hence, f (x−1) = f (x)−1 ∈ B and
x−1 ∈ f −1(B). In particular, if B = {1}, then f −1(B) = f −1(1) = ker f .
It follows that if f : G → H is a homomorphism and B is a subgroup of
H , then f −1(B) is a subgroup of G containing ker f . �

16Kernel comes from the German word meaning “grain” or “seed” (corn comes from the
same word). Its usage here indicates an important ingredient of a homomorphism.
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Proposition 2.91. Let f : G → H be a homomorphism.

(i) ker f is a subgroup of G and im f is a subgroup of H.

(ii) If x ∈ ker f and if a ∈ G, then axa−1 ∈ ker f .

(iii) f is an injection if and only if ker f = {1}.

Proof.
(i) Lemma 2.87 shows that 1 ∈ ker f , for f (1) = 1. Next, if x , y ∈ ker f , then
f (x) = 1 = f (y); hence, f (x y) = f (x) f (y) = 1 · 1 = 1, and so x y ∈ ker f .
Finally, if x ∈ ker f , then f (x) = 1 and so f (x−1) = f (x)−1 = 1−1 = 1; thus,
x−1 ∈ ker f , and ker f is a subgroup of G.

We now show that im f is a subgroup of H . First, 1 = f (1) ∈ im f . Next,
if h = f (x) ∈ im f , then h−1 = f (x)−1 = f (x−1) ∈ im f . Finally, if
k = f (y) ∈ im f , then hk = f (x) f (y) = f (x y) ∈ im f . Hence, im f is a
subgroup of H .
(ii) If x ∈ ker f , then f (x) = 1 and

f (axa−1) = f (a) f (x) f (a)−1 = f (a)1 f (a)−1 = f (a) f (a)−1 = 1;

therefore, axa−1 ∈ ker f .
(iii) If f is an injection, then x 6= 1 implies f (x) 6= f (1) = 1, and so x /∈
ker f . Conversely, assume that ker f = {1} and that f (x) = f (y). Then 1 =
f (x) f (y)−1 = f (x y−1), so that x y−1 ∈ ker f = 1; therefore, x y−1 = 1,
x = y, and f is an injection. •

Definition. A subgroup K of a group G is called a normal subgroup if k ∈ K
and g ∈ G imply gkg−1 ∈ K . If K is a normal subgroup of G, one writes
K � G.

The proposition thus says that the kernel of a homomorphism is always a
normal subgroup. If G is an abelian group, then every subgroup K is normal, for
if k ∈ K and g ∈ G, then gkg−1 = kgg−1 = k ∈ K .

The cyclic subgroup H = 〈(1 2)〉 of S3, consisting of the two elements (1)
and (1 2), is not a normal subgroup of S3: if α = (1 2 3), then α−1 = (3 2 1),
and

α(1 2)α−1 = (1 2 3)(1 2)(3 2 1) = (2 3) /∈ H.

On the other hand, the cyclic subgroup K = 〈(1 2 3)〉 of S3 is a normal subgroup,
as the reader should verify.

It follows from Examples 2.90(ii) and 2.90(iii) that An is a normal subgroup
of Sn and SL(2,

�
) is a normal subgroup of GL(2,

�
) (however, it is also easy to

prove these facts directly).
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Definition. If G is a group and a ∈ G, then a conjugate of a is any element in
G of the form

gag−1,

where g ∈ G.

It is clear that a subgroup K ≤ G is a normal subgroup if and only if K
contains all the conjugates of its elements: if k ∈ K , then gkg−1 ∈ K for all
g ∈ G. In Proposition 2.33, we showed that α, β ∈ Sn are conjugate in Sn if and
only if they have the same cycle structure.

If H ≤ Sn, then α, β ∈ H being conjugate in Sn (that is, α and β have
the same cycle structure) does not imply that α and β are conjugate in H . For
example, (1 2)(3 4) and (1 3)(2 4) are conjugate in S4, but they are not conjugate
in V because the four-group V is abelian.

Remark. In linear algebra, a linear transformation T : V → V , where V is an
n-dimensional vector space over

�
, determines an n × n matrix A if one uses a

basis of V ; if one uses another basis, then one gets another matrix B from T . It
turns out that A and B are similar; that is, there is a nonsingular matrix P with
B = P AP−1. Thus, conjugacy in GL(n,

�
) is similarity. �

Definition. If G is a group and g ∈ G, define conjugation γg : G → G by

γg(a) = gag−1

for all a ∈ G.

Proposition 2.92.

(i) If G is a group and g ∈ G, then conjugation γg : G → G is an isomor-
phism.

(ii) Conjugate elements have the same order.

Proof.
(i) If g, h ∈ G, then

(γg ◦ γh)(a) = γg(hah−1) = g(hah−1)g−1 = (gh)a(gh)−1 = γgh(a);

that is,
γg ◦ γh = γgh.

It follows that each γg is a bijection, for γg ◦ γg−1 = γ1 = 1 = γg−1 ◦ γg . We
now show that γg is an isomorphism: if a, b ∈ G,

γg(ab) = g(ab)g−1 = (gag−1)(gbg−1) = γg(a)γg(b).
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(ii) To say that a and b are conjugate is to say that there is g ∈ G with b =
gag−1; that is, b = γg(a). But γg is an isomorphism, and so Exercise 2.59(ii)
on page 166 shows that a and b = γg(a) have the same order. •

Example 2.93.
Define the center of a group G, denoted by Z(G), to be

Z(G) = {z ∈ G : zg = gz for all g ∈ G};

that is, Z(G) consists of all elements commuting with everything in G. (Note
that the equation zg = gz can be rewritten as z = gzg−1, so that no other
elements in G are conjugate to z.)

Let us show that Z(G) is a subgroup of G. Clearly 1 ∈ Z(G), for 1 com-
mutes with everything. If y, z ∈ Z(G), then yg = gy and zg = gz for all g ∈ G.
Therefore, (yz)g = y(zg) = y(gz) = (yg)z = g(yz), so that yz commutes with
everything, and yz ∈ Z(G). Finally, if z ∈ Z(G), then zg = gz for all g ∈ G; in
particular, zg−1 = g−1z. Therefore,

gz−1 = (zg−1)−1 = (g−1z)−1 = z−1g

(we are using Lemma 2.46: (ab)−1 = b−1a−1 and (a−1)−1 = a).
The center Z(G) is a normal subgroup: if z ∈ Z(G) and g ∈ G, then

gzg−1 = zgg−1 = z ∈ Z(G).

A group G is abelian if and only if Z(G) = G. At the other extreme are groups
G for which Z(G) = {1}; such groups are called centerless. For example, it is
easy to see that Z(S3) = {1}; indeed, all large symmetric groups are centerless,
for Exercise 2.31 on page 121 shows that Z(Sn) = {1} for all n ≥ 3. �

Example 2.94.
The four-group V is a normal subgroup of S4. Recall that the elements of V are

V = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

By Proposition 2.32, every conjugate of a product of two transpositions is an-
other such. But we saw, in Example 2.29, that only 3 permutations in S4 have
this cycle structure, and so V is a normal subgroup of S4. �

Proposition 2.95.

(i) If H is a subgroup of index 2 in a group G, then g2 ∈ H for every g ∈ G.

(ii) If H is a subgroup of index 2 in a group G, then H is a normal subgroup
of G.
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Proof.
(i) Since H has index 2, there are exactly two cosets, namely, H and a H , where
a /∈ H . Thus, G is the disjoint union G = H ·∪ a H . Take g ∈ G with g /∈ H , so
that g = ah for some h ∈ H . If g2 /∈ H , then g2 = ah′, where h′ ∈ H . Hence,

g = g−1g2 = (ah)−1ah′ = h−1a−1ah′ = h−1h′ ∈ H,

and this is a contradiction.
(ii) It suffices to prove that if h ∈ H , then the conjugate ghg−1 ∈ H for every
g ∈ G. Since H has index 2, there are exactly two cosets, namely, H and a H ,
where a /∈ H . Now, either g ∈ H or g ∈ a H . If g ∈ H , then ghg−1 ∈ H ,
because H is a subgroup. In the second case, write g = ax , where x ∈ H . Then
ghg−1 = a(xhx−1)a−1 = ah′a−1, where h′ = xhx−1 ∈ H (for h ′ is a product
of three elements in H ). If ghg−1 /∈ H , then ghg−1 = ah′a−1 ∈ a H ; that is,
ah′a−1 = ay for some y ∈ H . Canceling a, we have h ′a−1 = y, which gives
the contradiction a = y−1h′ ∈ H . Therefore, if h ∈ H , every conjugate of h
also lies in H ; that is, H is a normal subgroup of G. •

Definition. The group of quaternions17 is the group Q of order 8 consisting of
the matrices in GL(2,

�
)

Q = {I, A, A2, A3, B, B A, B A2, B A3 },

where I is the identity matrix, A =
[

0 1
−1 0

]
, and B =

[
0 i
i 0

]
.

The reader should note that the element A ∈ Q has order 4, so that 〈A〉
is a subgroup of order 4 and hence of index 2; the other coset is B〈A〉 =
{B, B A, B A2, B A3 }.

17The operations of addition, subtraction, multiplication, and division (by nonzero num-
bers) can be extended from � to the plane in such a way that all the usual laws of arithmetic
hold; of course, the plane is usually called the complex numbers � in this context. W. R.
Hamilton invented a way of extending all these operations from � to four-dimensional space
in such a way that all the usual laws of arithmetic still hold (except for commutativity of mul-
tiplication); he called the new “numbers” quaternions (from the Latin word meaning “four”).
The multiplication is determined by knowing how to multiply the particular 4-tuples 1, i, j,
and k:

i2 = −1 = j2 = k2;
ij = k; ji = −k; jk = i; kj = −i; ki = j; jk = −j.

All the nonzero quaternions form a multiplicative group, and the group of quaternions is iso-
morphic to the smallest subgroup (it has order 8) containing these four elements.)
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Example 2.96.
In Exercise 2.76 on page 167, the reader will check that Q is a nonabelian group
of order 8. We claim that every subgroup of Q is normal. Lagrange’s theorem
says that every subgroup of Q has order a divisor of 8, and so the only possible
orders of subgroups are 1, 2, 4, or 8. Clearly, the subgroup {1} and the subgroup
of order 8 (namely, Q itself) are normal subgroups. By Proposition 2.95(ii), any
subgroup of order 4 must be normal, for it has index 2. Finally, the only element
in Q having order 2 is −I , and so 〈−I 〉 is the only subgroup of order 2. But
this subgroup is normal, for if M is any matrix, then M(−I ) = (−I )M , so that
M(−I )M−1 = (−I )M M−1 = −I ∈ 〈−I 〉. [Exercise 2.76 asks you to prove
that 〈−I 〉 = Z(Q).] �

Example 2.96 shows that Q is a nonabelian group which is like abelian
groups in the sense that every subgroup is normal. This is essentially the only
such example: every finite group with every subgroup normal has the form Q×A,
where A is an abelian group of a special form: A = B × C , where every non-
identity element in B has order 2 and every element in C has odd order (direct
products A × B will be introduced in the next section).

Lagrange’s theorem states that the order of a subgroup of a finite group G
must be a divisor of |G|. This suggests the question, given some divisor d of |G|,
whether G must contain a subgroup of order d . The next result shows that there
need not be such a subgroup.

Proposition 2.97. The alternating group A4 is a group of order 12 having no
subgroup of order 6.

Proof. First of all, |A4| = 12, by Exercise 2.29 on page 121. If A4 contains a
subgroup H of order 6, then H has index 2, and so α2 ∈ H for every α ∈ A4,
by Proposition 2.95(i). If α is a 3-cycle, however, then α has order 3, so that
α = α4 = (α2)2. Thus, H contains every 3-cycle. This is a contradiction, for
there are 8 3-cycles in A4. •

Proposition 2.122 will show that if G is an abelian group of order n, then G
does have a subgroup of order d for every divisor d of n.

EXERCISES

*2.56 If there is a bijection f : X → Y (that is, if X and Y have the same number of
elements), prove that there is an isomorphism ϕ : SX → SY .

*2.57 (i) Show that the composite of homomorphisms is itself a homomorphism.
(ii) Show that the inverse of an isomorphism is an isomorphism.
(iii) Prove that isomorphism is an equivalence relation on any family of groups.
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(iv) Show that two groups that are isomorphic to a third group are isomorphic
to each other.

2.58 Prove that a group G is abelian if and only if the function f : G → G , given by
f (a) = a−1, is a homomorphism.

*2.59 This exercise gives some invariants of a group G . Let f : G → H be an isomor-
phism.

(i) Prove that if a ∈ G has infinite order, then so does f (a), and if a has
finite order n, then so does f (a). Conclude that if G has an element of
some order n and H does not, then G 6∼= H .

(ii) Prove that if G ∼= H , then, for every divisor k of |G|, both G and H have
the same number of elements of order k.

2.60 (i) Show that every group G with |G| < 6 is abelian.
(ii) Find two nonisomorphic groups of order 6.

2.61 Prove that a dihedral group of order 4 is isomorphic to V, the 4-group, and a dihe-
dral group of order 6 is isomorphic to S3.

*2.62 Prove that any two dihedral groups of order 2n are isomorphic.
*2.63 This exercise is for readers familiar with n×n matrices (see Example 4.65). Define

a function f : Sn → GL(n, � ) by f : σ 7→ Pσ , where Pσ is the matrix obtained
from the n × n identity matrix I by permuting its columns by σ (the matrix Pσ
is called a permutation matrix). Prove that f gives an isomorphism of Sn and a
subgroup of GL(n, � ).

2.64 (i) Find a subgroup H ≤ S4 with H ∼= V but with H 6= V.
(ii) Prove that the subgroup H in part (i) is not a normal subgroup.

2.65 If G is a group and a, b ∈ G , prove that ab and ba have the same order.
2.66 (i) If f : G → H is a homomorphism and x ∈ G has order k, prove that

f (x) ∈ H has order m, where m | k.
(ii) If f : G → H is a homomorphism and if (|G|, |H |) = 1, prove that

f (x) = 1 for all x ∈ G .
*2.67 (i) Prove that the special orthogonal group S O(2, � ) is isomorphic to the

circle group S1.
(ii) Prove that all the rotations of the plane about the origin form a group

under composition that is isomorphic to S O2(� ).
2.68 Let G be the additive group of all polynomials in x with coefficients in � , and let

H be the multiplicative group of all positive rationals. Prove that G ∼= H .
*2.69 Show that if H is a subgroup with bH = Hb = {hb : h ∈ H} for every b ∈ G ,

then H must be a normal subgroup. (The converse is proved in Lemma 2.110.)
2.70 Prove that the intersection of any family of normal subgroups of a group G is itself

a normal subgroup of G .
2.71 Define W = 〈(1 2)(3 4)〉, the cyclic subgroup of S4 generated by (1 2)(3 4).

Show that W is a normal subgroup of V, but that W is not a normal subgroup of
S4. Conclude that normality is not transitive: W � V and V � G need not imply
W � G .

*2.72 Let G be a finite group written multiplicatively. Prove that if |G| is odd, then every
x ∈ G has a unique square root; that is, there exists exactly one g ∈ G with g2 = x .

2.73 Give an example of a group G , a subgroup H ≤ G , and an element g ∈ G with
[G : H ] = 3 and g3 /∈ H .
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*2.74 Show that the center of GL(2, � ) is the set of all scalar matrices
[

a 0
0 a

]

with a 6= 0.

*2.75 Let ζ = e2π i/n be a primitive nth root of unity, and define A =
[
ζ 0
0 ζ−1

]
and

B =
[

0 1
1 0

]
.

(i) Prove that A has order n and that B has order 2.
(ii) Prove that B AB = A−1.
(iii) Prove that the matrices of the form Ai and B Ai , for 0 ≤ i < n, form a

multiplicative subgroup G ≤ GL(2, � ).
(iv) Prove that each matrix in G has a unique expression of the form B i A j ,

where i = 0, 1 and 0 ≤ j < n. Conclude that |G| = 2n and that
G ∼= D2n .

*2.76 Recall that the group of quaternions Q (defined in Example 2.96) consists of the 8
matrices in GL(2, � )

Q = {I, A, A2, A3, B, B A, B A2, B A3 },

where A =
[

0 1
−1 0

]
and B =

[
0 i
i 0

]
.

(i) Prove that Q is a nonabelian group with operation matrix multiplication.
(ii) Prove that −I is the only element in Q of order 2, and that all other

elements M 6= I satisfy M2 = −I .
(iii) Show that Q has a unique subgroup of order 2, and it is the center of Q.
(iv) Prove that 〈−I 〉 is the center Z(Q).

*2.77 Prove that the quaternions Q and the dihedral group D8 are nonisomorphic groups
of order 8.

2.78 If G is a finite group generated by two elements of order 2, prove that G ∼= D2n
for some n.

*2.79 Prove that A4 is the only subgroup of S4 of order 12. (In Exercise 2.123 on
page 205, this will be generalized from S4 to Sn for all n ≥ 3.)

*2.80 (i) Let � be the set of all 2 × 2 matrices of the form A =
[

a b
0 1

]
, where

a 6= 0. Prove that � is a subgroup of GL(2, � ).
(ii) Prove that ψ : Aff(1, � ) → � , defined by f 7→ A, is an isomorphism,

where f (x) = ax + b.
(iii) Prove that the stochastic group6(2, � ) [see Exercise 2.42 on page 144] is

isomorphic to the affine group Aff(1, � ) by showing that ϕ : 6(2, � ) →
� ∼= Aff(1, � ), given by ϕ(M) = QM Q−1, is an isomorphism, where

Q =
[

1 0
1 1

]
and Q−1 =

[
1 0

−1 1

]
.

2.81 Prove that the symmetry group 6(πn), where πn is a regular polygon with n ver-
tices, is isomorphic to a subgroup of Sn .
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2.82 An automorphism of a group G is an isomorphism G → G .
(i) Prove that Aut(G), the set of all the automorphisms of a group G , is a

group under composition.
(ii) Prove that γ : G → Aut(G), defined by g 7→ γg (conjugation by g), is a

homomorphism.
(iii) Prove that ker γ = Z(G).
(iv) Prove that im γ � Aut(G).

2.83 If G is a group, prove that Aut(G) = {1} if and only if |G| ≤ 2.
2.84 If C is a finite cyclic group of order n, prove that | Aut(C)| = φ(n).

2.6 QUOTIENT GROUPS

We are now going to construct a group using congruence mod m. Once this is
done, we will be able to give a proof of Fermat’s theorem using group theory.
This construction is the prototype of a more general way of building new groups
from given groups, called quotient groups.

Definition. Given m ≥ 2 and a ∈ �
, the congruence class of a mod m is the

subset [a] of
�

:

[a] = {b ∈ � : b ≡ a mod m}
= {a + km : k ∈ � }
= {. . . , a − 2m, a − m, a, a + m, a + 2m, . . . };

the integers mod m, denoted by
�

m, is the family of all such congruence classes.18

For example, if m = 2, then [0] = {b ∈ � : b ≡ 0 mod 2} is the set of all the
even integers and [1] = {b ∈ � : b ≡ 1 mod 2} is the set of all the odd integers.
Notice that [2] = {2 + 2k : k ∈ � } is also the set of all even integers, so that
[2] = [0]; indeed, [0] = [2] = [−2] = [4] = [−4] = [6] = [−6] = · · · .

Remark. Given m, we may form the cyclic subgroup 〈m〉 of
�

generated by
m. The reader should check that the congruence class [a] is precisely the coset
a + 〈m〉. �

18The two most popular notations for the integers mod m are � /m � and � m. Both notations
are good ones: the first reminds us that the group is a quotient group of � , but the notation is
cumbersome; the second notation is compact, but it causes confusion because it is also used by
number theorists, when m is a prime p, to denote all the rational numbers whose denominator
is prime to p (the ring of p-adic fractions). In fact, many number theorists denote the ring of
p-adic integers by � p. To avoid possible confusion, I am introducing the notation � m.
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The notation [a] is incomplete in that it does not mention the modulus m:
for example, [1] in

�
2 is not the same as [1] in

�
3 (the former is the set of all odd

numbers and the latter is {1 + 3k : k ∈ � } = {. . . ,−2, 1, 4, 7, . . .}). This will
not cause problems, for, almost always, one works with only one

�
m at a time.

However, if there is a danger of confusion, as in Theorem 2.126, we will denote
the congruence class of a in

�
m by [a]m . The next proposition is a special case

of Lemma 2.19.

Proposition 2.98. [a] = [b] in
�

m if and only if a ≡ b mod m.

Proof. If [a] = [b], then a ∈ [a], by reflexivity, and so a ∈ [a] = [b]. There-
fore, a ≡ b mod m.

Conversely, if c ∈ [a], then c ≡ a mod m, and so transitivity gives c ≡
b mod m; hence [a] ⊆ [b]. By symmetry, b ≡ a mod m, and this gives the
reverse inclusion [b] ⊆ [a]. Thus, [a] = [b]. •

In words, Proposition 2.98 says that congruence mod m between numbers
can be converted into equality at the cost of replacing numbers by congruence
classes.

In particular, [a] = [0] in
�

m if and only if a ≡ 0 mod m; that is, [a] = [0]
in

�
m if and only if m is a divisor of a.

Proposition 2.99. Let m ≥ 2 be given.

(i) If a ∈ �
, then [a] = [r ] for some r with 0 ≤ r < m.

(ii) If 0 ≤ r ′ < r < m, then [r ′] 6= [r ].
(iii)

�
m has exactly m elements, namely, [0], [1], . . . , [m − 1].

Proof.
(i) For each a ∈ �

, the division algorithm gives a = qm + r , where 0 ≤ r < m;
hence a − r = qm and a ≡ r mod m. Therefore [a] = [r ], where r is the
remainder after dividing a by m.
(ii) Proposition 1.55(ii) gives r ′ 6≡ r mod m.
(iii) Part (i) shows that every [a] in

�
m occurs on the list [0], [1], [2], . . . , [m −1];

part (ii) shows that this list of m items has no repetitions. •

We are now going to make
�

m into an abelian group by equipping it with
an addition. Now Proposition 2.98 says that [a] = [b] in

�
m if and only if

a ≡ b mod m, so that each [a] ∈ �
m has many names. The operation we propose

to define on
�

m will appear to depend on choices of names, and so we will be
obliged to prove that the operation is well-defined.
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Lemma 2.100. If m ≥ 2, then the function α : �
m × �

m → �
m, given by

α([a], [b]) = [a + b],

is an operation on
�

m.

Proof. The operation appears to depend on choosing names [a] and [b]; what
if we had chosen names [a′] and [b′]? To see that α is a (well-defined) function,
we must show that if [a] = [a′] and [b] = [b′], then α([a], [b]) = α([a′], [b′]),
that is, [a + b] = [a′ + b′]. But this is precisely Proposition 1.57(i). •

Proposition 2.101.
�

m is an additive cyclic group of order m with generator
[1].

Proof.
In this proof only, we shall write � for addition of congruence classes:

α([a], [b]) = [a] � [b] = [a + b].

Associativity of the operation � follows from associativity of ordinary addi-
tion:

[a] �
(
[b] � [c]

)
= [a] � [b + c]
= [a + (b + c)]
= [(a + b)+ c]
= [a + b] � [c]
=
(
[a] � [b]

)
� [c].

Commutativity of the operation � follows from commutativity of ordinary addi-
tion:

[a] � [b] = [a + b] = [b + a] = [b] � [a].

The identity element is [0]: since 0 is the (additive) identity in
�

,

[0] � [a] = [0 + a] = [a].

The inverse of [a] is [−a]; since −a is the additive inverse of a in
�

,

[−a] � [a] = [−a + a] = [0].

Therefore,
�

m is an abelian group of order m; it is cyclic with generator [1],
for if 0 ≤ r < m, then [r ] = [1] + · · · + [1] is the congruence class obtained by
adding [1] to itself r times. •
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The reader should notice that the group axioms in
�

m are “inherited” from
the group axioms in

�
.

Here is an alternative construction of the group
�

m. Define Gm to be the set
{0, 1, . . . ,m − 1}, and define an operation on Gm by:

a � b =
{

a + b if a + b ≤ m − 1;
a + b − m if a + b > m − 1.

Although this definition is simpler than what we have just done, proving associa-
tivity is now is very tedious. It is also more awkward to use, for proofs usually
require case analyses (for example, see Example 2.88).

We now drop the notation � ; henceforth, we shall write

[a] + [b] = [a + b]
for the sum of congruence classes in

�
m.

Corollary 2.102. Every cyclic group of order m ≥ 2 is isomorphic to
�

m.

Proof. We have already seen, in Example 2.88, that any two finite cyclic groups
of the same order are isomorphic. •

We now focus on multiplication.

Proposition 2.103. The function µ : �
m × �

m → �
m, given by

µ([a], [b]) = [ab],
is an operation on

�
m. This operation is associative and commutative, and [1] is

an identity element.

Proof. The operation appears to depend on choosing names [a] and [b]; what
if we had chosen names [a′] and [b′]? To see that µ is a (well-defined) function,
we must show that if [a] = [a′] and [b] = [b′], then µ([a], [b]) = µ([a′], [b′]),
that is, [ab] = [a′b′]. But this is precisely Proposition 1.57(ii).

In this proof only, we are going to write � for multiplication of congruence
classes:

µ([a], [b]) = [a] � [b] = [ab].
Associativity of the operation � follows from associativity of ordinary mul-

tiplication:

[a] �
(
[b] � [c]

)
= [a] � [bc]
= [a(bc)]
= [(ab)c]
= [ab] � [c]
=
(
[a] � [b]

)
� [c].
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Commutativity of � follows from commutativity of ordinary multiplication:

[a] � [b] = [ab] = [ba] = [b] � [a].
The identity element is [1], because

[1] � [a] = [1a] = [a]
for all a ∈ �

. •
We now drop the notation � ; henceforth, we shall write

[a][b] = [ab]
for the product of congruence classes in

�
m instead of [a] � [b]. Note that

�
m is

not a group under multiplication because some elements, e.g., [0], do not have
inverses.

Proposition 2.104.

(i) If (a,m) = 1, then [a][x] = [b] can be solved for [x] in
�

m.

(ii) If p is a prime, then
� ×

p , the set of nonzero elements in
�

p, is a multiplicative
abelian group of order p − 1.

Proof.
(i) By Theorem 1.65, the congruence ax ≡ b mod m can be solved for x if
(a,m) = 1; that is, [a][x] = [b] can be solved for [x] in

�
m when a and m are

relatively prime. (Recall that if sa + tm = 1, then [x] = [sb].)
(ii) Assume that m = p is prime; if 0 < a < p, then (a, p) = 1 and the equation
[a][x] = [1] can be solved in

�
p, by part (iii); that is, [a] has an inverse in

�
p.

We have proved that
� ×

p is an abelian group; its order is p − 1 because, as a set,
it is obtained from

�
p by throwing away one element, namely, [0]. •

In Theorem 3.122 we will prove, for every prime p, that
� ×

p is a cyclic group
of order p − 1.

We now give a new proof of Fermat’s theorem which is entirely different
from our earlier proof, Theorem 1.61.

Corollary 2.105 (Fermat). If p is a prime and a ∈ �
, then

a p ≡ a mod p.

Proof. By Proposition 2.98, it suffices to show that [a p] = [a] in
�

p. If [a] =
[0], then Proposition 2.103 gives [a p] = [a]p = [0]p = [0] = [a]. If [a] 6=
[0], then [a] ∈ � ×

p , the multiplicative group of nonzero elements in
�

p. By

Corollary 2.84 to Lagrange’s theorem, [a]p−1 = [1], because | � ×
p | = p − 1.

Multiplying by [a] gives the desired result [a p] = [a]p = [a]. Therefore, a p ≡
a mod p. •
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Note that if m ≥ 2 is not a prime, then (
�

m)
× is not a group: if m = ab,

where 1 < a, b < m, then [a], [b] ∈ (
�

m)
×, but their product [a][b] = [ab] =

[m] = [0] /∈ ( �
m)

×. We are now going to define an analog of
� ×

p that can be used
to generalize Fermat’s theorem.

Definition. Let U (
�

m) be the set of all those congruence classes in
�

m having
an inverse; that is, [a] ∈ U (

�
m) if there is [s] ∈ �

m with [s][a] = [1].

Recall that φ(m) = |{k ∈ � : 1 ≤ k ≤ m and (k,m) = 1}|.

Lemma 2.106.

(i)
U (Im) = { [r ] ∈ �

m : (r,m) = 1}.

(ii) U (Im) is a multiplicative abelian group of order φ(m).

Proof.
(i) Let E = { [r ] ∈ �

m : (r,m) = 1}. If [r ] ∈ E , then (r,m) = 1, so there
are integers s and t with sr + tm = 1. Hence, sr ≡ 1 mod m. Therefore,
[sr ] = [s][r ] = [1], and so [r ] ∈ U (Im). For the reverse inclusion, assume that
[r ] ∈ U (Im); that is, there is [s] ∈ U (Im) with [s][r ] = [1]. But [s][r ] = [sr ] =
[1], so that m | (sr − 1); that is, there is an integer t with tm = sr − 1. By
Exercise 1.51 on page 52, (r,m) = 1, and so [r ] ∈ E .
(ii) By Exercise 1.53 on page 52, (r,m) = 1 = (r ′,m) implies (rr ′,m) = 1.
Hence, [r ] and [r ′] in U (Im) imply [r ][r ′] = [rr ′] ∈ U (Im), so that multipli-
cation is an operation on U (

�
m). Proposition 2.103 shows that multiplication is

associative and commutative, and that [1] is the identity. By Proposition 2.104(i),
the equation [r ][x] = [1] can be solved for [x] ∈ �

m. That is, each [r ] ∈ U (Im)

has an inverse. Therefore, U (Im) is an abelian group and, by Proposition 1.39,
its order is |U ( �

m)| = φ(m). •

If p is a prime, then φ(p) = p − 1, and U (Ip) = (Ip)
×.

Theorem 2.107 (Euler). If (r,m) = 1, then

rφ(m) ≡ 1 mod m.

Proof. If G is a finite group of order n, then Corollary 2.84 to Lagrange’s the-
orem gives xn = 1 for all x ∈ G. Here, if [r ] ∈ U (Im), then [r ]φ(m) = [1],
by Lemma 2.106. In congruence notation, this says that if (r,m) = 1, then
rφ(m) ≡ 1 mod m. •
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Example 2.108.
It is straightforward to see that

U (
�

8) = { [1], [3], [5], [7]} ∼= V,

for [3]2 = [9] = [1], [5]2 = [25] = [1], and [7]2 = [49] = [1].
Moreover,

U (
�

10) = { [1], [3], [7], [9]} ∼=
�

4,

for [3]4 = [81] = [1], while [3]2 = [9] = [−1] 6= [1]. �

Theorem 2.109 (Wilson’s Theorem). An integer p is a prime if and only if

(p − 1)! ≡ −1 mod p.

Proof. Assume that p is a prime. If a1, a2, . . . , an is a list of all the elements of
a finite abelian group G, then the product a1a2 . . . an is the same as the product
of all elements a with a2 = 1, for any other element cancels against its inverse.
Since p is prime, Exercise 1.81 on page 71 implies that

� ×
p has only one element

of order 2, namely, [−1]. It follows that the product of all the elements in
� ×

p ,
namely, [(p − 1)!], is equal to [−1]; therefore, (p − 1)! ≡ −1 mod p.

Conversely, if (m − 1)! ≡ −1 mod m, then (m, (m − 1)!) = 1. If m is
composite, then there is an integer a | m with 1 < a ≤ m − 1. Now a | a!
implies a | (m − 1)!. Thus, a > 1 is a common divisor of m and (m − 1)!, a
contradiction. Therefore, m is prime. •

Remark. One can generalize Wilson’s theorem in the same way that Euler’s
theorem generalizes Fermat’s theorem: replace U (

�
p) by U (

�
n). For example,

one can prove, for all m ≥ 3, that U (
�

2m) has exactly 3 elements of order 2,
namely, [−1], [1 + 2m−1], and [−(1 + 2m−1)]. It now follows that the product
of all the odd numbers r , where 1 ≤ r < 2m is congruent to 1 mod 2m , because

(−1)(1 + 2m−1)(−1 − 2m−1) = (1 + 2m−1)2

= 1 + 2m + 22m−2 ≡ 1 mod 2m . �

The homomorphism π : � → �
m, defined by π : a 7→ [a], is surjective, so

that
�

m is equal to im π . Thus, every element of
�

m has the form π(a) for some
a ∈ �

, and π(a)+ π(b) = π(a + b). This description of the additive group
�

m
in terms of the additive group

�
can be generalized to arbitrary, not necessarily

abelian, groups. Suppose that f : G → H is a surjective homomorphism be-
tween groups G and H . Since f is surjective, each element of H has the form
f (a) for some a ∈ G, and the operation in H is given by f (a) f (b) = f (ab),
where a, b ∈ G. Now K = ker f is a normal subgroup of G, and we are going
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to reconstruct H = im f (as well as a surjective homomorphism π : G → H )
from G and K alone.

We begin by introducing an operation on the set

�
(G)

of all nonempty subsets of a group G. If X , Y ∈
�
(G), define

XY = {x y : x ∈ X and y ∈ Y }.

This multiplication is associative: X (Y Z) is the set of all x(yz), where x ∈ X ,
y ∈ Y , and z ∈ Z , (XY )Z is the set of all such (x y)z, and these subsets are the
same because associativity in G says that their elements are the same.

An instance of this multiplication is the product of a one-point subset {a}
and a subgroup H ≤ G, which is the coset a H .

As a second example, we show that if H is any subgroup of G, then

HH = H.

If h, h′ ∈ H , then hh ′ ∈ H , because subgroups are closed under multiplication,
and so HH ⊆ H . For the reverse inclusion, if h ∈ H , then h = h1 ∈ HH
(because 1 ∈ H ), and so H ⊆ HH.

It is possible for two subsets X and Y in
�
(G) to commute even though

their constituent elements do not commute. One example has just been given;
take X = Y = H , where H is a nonabelian subgroup of G. Here is a more
interesting example: let G = S3 and K = 〈(1 2 3)〉. Now (1 2) does not
commute with (1 2 3) ∈ K , but we claim that (1 2)K = K (1 2). In fact, let us
prove the converse of Exercise 2.69 on page 166, so that H � G if and only if
every left coset of H in G is a right coset.

Lemma 2.110. If K is a normal subgroup of a group G, then

bK = K b

for every b ∈ G.

Proof. Let bk ∈ bK . Since K is normal, bkb−1 ∈ K , say bkb−1 = k′ ∈ K , so
that bk = (bkb−1)b = k′b ∈ K b, and so bK ⊆ K b. For the reverse inclusion,
let kb ∈ K b. Since K is normal, (b−1)k(b−1)−1 = b−1kb ∈ K , say b−1kb =
k′′ ∈ K . Hence, kb = b(b−1kb) = bk′′ ∈ bK and K b ⊆ bK . Therefore,
bK = K b when K � G. •

Here is a fundamental construction of a new group from a given group.
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Theorem 2.111. Let G/K denote the family of all the cosets of a subgroup K
of G. If K is a normal subgroup, then

aK bK = abK

for all a, b ∈ G, and G/K is a group under this operation.

Remark. The group G/K is called the quotient group G mod K ; when G is
finite, its order |G/K | is the index [G : K ] = |G|/|K | (presumably, this is the
reason quotient groups are so called). �

Proof. The product of two cosets (aK )(bK ) can also be viewed as the product
of 4 elements in

�
(G). Hence, associativity in

�
(G) gives generalized associa-

tivity:
(aK )(bK ) = a(K b)K = a(bK )K = abK K = abK ,

for normality of K gives K b = bK for all b ∈ K , by Lemma 2.110, while KK =
K because K is a subgroup. Thus, the product of two cosets of K is again a coset
of K , and so an operation on G/K has been defined. Because multiplication in

�
(G) is associative, equality X (Y Z) = (XY )Z holds, in particular, when X , Y ,

and Z are cosets of K , so that the operation on G/K is associative. The identity
is the coset K = 1K , for (1K )(bK ) = 1bK = bK , and the inverse of aK is
a−1K , for (a−1K )(aK ) = a−1aK = K . Therefore, G/K is a group. •

Example 2.112.
We show that the quotient group

�
/〈m〉 is precisely

�
m, where 〈m〉 is the (cyclic)

subgroup consisting of all the multiples of a positive integer m. Since
�

is
abelian, 〈m〉 is necessarily a normal subgroup. The sets

�
/〈m〉 and

�
m coin-

cide because they are comprised of the same elements: the coset a + 〈m〉 is the
congruence class [a]:

a + 〈m〉 = {a + km : k ∈ � } = [a].

The operations also coincide: addition in
�
/〈m〉 is given by

(a + 〈m〉)+ (b + 〈m〉) = (a + b)+ 〈m〉;

since a + 〈m〉 = [a], this last equation is just [a] + [b] = [a + b], which is the
sum in

�
m. Therefore,

�
m is equal to the quotient group

�
/〈m〉. �

We remind the reader of Lemma 2.80(i): if K is a subgroup of G, then two
cosets aK and bK are equal if and only if b−1a ∈ K . In particular, if b = 1,
then aK = K if and only if a ∈ K .

We can now prove the converse of Proposition 2.91(ii).
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Corollary 2.113. Every normal subgroup K � G is the kernel of some homo-
morphism.

Proof. Define the natural map π : G → G/K by π(a) = aK . With this
notation, the formula aK bK = abK can be rewritten as π(a)π(b) = π(ab);
thus, π is a (surjective) homomorphism. Since K is the identity element in G/K ,

kerπ = {a ∈ G : π(a) = K } = {a ∈ G : aK = K } = K ,

by Lemma 2.80(i). •
The next theorem shows that every homomorphism gives rise to an isomor-

phism, and that quotient groups are merely constructions of homomorphic im-
ages. It was E. Noether (1882–1935) who emphasized the fundamental impor-
tance of this fact.

Theorem 2.114 (First Isomorphism Theorem). If f : G → H is a homo-
morphism, then

ker f � G and G/ ker f ∼= im f.

In more detail, if ker f = K , then the function ϕ : G/K → im f ≤ H, given by
ϕ : aK 7→ f (a), is an isomorphism.

Proof. We have already seen, in Proposition 2.91(ii), that K = ker f is a nor-
mal subgroup of G. Now ϕ is well-defined: if aK = bK , then a = bk for some
k ∈ K , and so f (a) = f (bk) = f (b) f (k) = f (b), because f (k) = 1.

Let us now see that ϕ is a homomorphism. Since f is a homomorphism and
ϕ(aK ) = f (a),

ϕ(aK bK ) = ϕ(abK ) = f (ab) = f (a) f (b) = ϕ(aK )ϕ(bK ).

It is clear that im ϕ ≤ im f . For the reverse inclusion, note that if y ∈ im f ,
then y = f (a) for some a ∈ G, and so y = f (a) = ϕ(aK ). Thus, ϕ is
surjective.

Finally, we show that ϕ is injective. If ϕ(aK ) = ϕ(bK ), then f (a) = f (b).
Hence, 1 = f (b)−1 f (a) = f (b−1a), so that b−1a ∈ ker f = K . Thus, aK =
bK , by Lemma 2.80(i), and so ϕ is injective. Therefore, ϕ : G/K → im f is an
isomorphism. •

Remark. The following diagram describes the proof of the first isomorphism
theorem, where π : G → G/K is the natural map π : a 7→ aK .

G
f

//

π
""DD

DD
DD

DD
H

G/K

ϕ

<<zzzzzzzz

�
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Here is a minor application of the first isomorphism theorem. For any group
G, the identity function f : G → G is a surjective homomorphism with ker f =
{1}. By the first isomorphism theorem, we have

G/{1} ∼= G.

Given any homomorphism f : G → H , one should immediately ask for its
kernel and its image; the first isomorphism theorem will then provide an iso-
morphism G/ ker f ∼= im f . Since there is no significant difference between
isomorphic groups, the first isomorphism theorem also says that there is no sig-
nificant difference between quotient groups and homomorphic images.

Example 2.115.
Let us revisit Example 2.88, which showed that any two cyclic groups of order m
are isomorphic. If G = 〈a〉 is a cyclic group of order m, define a homomorphism
f : � → G by f (n) = an for all n ∈ �

. Now f is surjective (because a is a
generator of G), while ker f = {n ∈ � : an = 1} = 〈m〉, by Lemma 2.53.
The first isomorphism theorem gives an isomorphism

�
/〈m〉 ∼= G. We have

shown that every cyclic group of order m is isomorphic to
�
/〈m〉, and hence

that any two cyclic groups of order m are isomorphic to each other. Of course,
Example 2.112 shows that

�
/〈m〉 = �

m, so that every cyclic group of order m is
isomorphic to

�
m. �

Example 2.116.
What is the quotient group

�
/

�
? Define f : � → S1, where S1 is the circle

group, by
f : x 7→ e2π i x .

Now f is a homomorphism; that is, f (x + y) = f (x) f (y), by the addition
formulas for sine and cosine. The map f is surjective, and ker f consists of
all x ∈ �

for which e2π i x = cos 2πx + i sin 2πx = 1. But cos 2πx = 0 =
sin 2πx forces x to be an integer; since 1 ∈ ker f , we have ker f = �

. The first
isomorphism theorem now gives

�
/

� ∼= S1. �

A natural question is whether HK is a subgroup when both H and K are
subgroups. In general, HK need not be a subgroup. For example, let G = S3, let
H = 〈(1 2)〉, and let K = 〈(1 3)〉. Then

HK = {(1), (1 2), (1 3), (1 3 2)}

is not a subgroup lest we contradict Lagrange’s theorem. Exercise 2.95 on
page 188 gives a necessary condition describing when the product HK of sub-
groups H and K is a subgroup.
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Proposition 2.117.

(i) If H and K are subgroups of a group G, and if one of them is a normal
subgroup, then HK is a subgroup of G; moreover, HK = KH in this case.

(ii) If both H and K are normal subgroups, then HK is a normal subgroup.

Proof.
(i) Assume first that K � G. We claim that HK = KH. If hk ∈ HK, then
k′ = hkh−1 ∈ K , because K � G, and

hk = hkh−1h = k′h ∈ KH.

Hence, HK ⊆ KH. For the reverse inclusion, write kh = hh−1kh = hk′′ ∈ HK.
(Note that the same argument shows that HK = KH if H � G.)

We now show that HK is a subgroup. Since 1 ∈ H and 1 ∈ K , we have 1 =
1 · 1 ∈ HK; if hk ∈ HK, then (hk)−1 = k−1h−1 ∈ KH = HK; if hk, h1k1 ∈ HK,
then h−1

1 kh1 = k′ ∈ K and

hkh1k1 = hh1(h
−1
1 kh1)k1 = (hhi)(k

′k1) ∈ HK.

Therefore, HK is a subgroup of G.
(ii) If g ∈ G, then

ghkg−1 = (ghg−1)(gkg−1) ∈ HK.

Therefore, HK � G in this case. •

Here is a useful counting result.

Proposition 2.118 (Product Formula). If H and K are subgroups of a finite
group G, then

|HK||H ∩ K | = |H ||K |,

where HK = {hk : h ∈ H and k ∈ K }.

Proof. Define a function f : H × K → HK by f : (h, k) 7→ hk. Clearly, f is
a surjection. It suffices to show, for every x ∈ HK, that | f −1(x)| = |H ∩ K |,
where f −1(x) = {(h, k) ∈ H × K : f (h, k) = x} [because H × K is the disjoint
union

⋃
x∈HK f −1(x)].

We claim that if x = hk, then

f −1(x) = {(hd, d−1k) : d ∈ H ∩ K }.

Each (hd, d−1k) ∈ f −1(x), for f (hd, d−1k) = hdd−1k = hk = x . For the
reverse inclusion, let (h ′, k′) ∈ f −1(x), so that h ′k′ = hk. Then h−1h′ =
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kk′−1 ∈ H ∩ K ; call this element d . Then h ′ = hd and k′ = d−1k, and so
(h′, k′) lies in the right side. Therefore,

| f −1(x)| = |{(hd, d−1k) : d ∈ H ∩ K }| = |H ∩ K |,

because d 7→ (hd, d−1k) is a bijection. •

The next two results are variants of the first isomorphism theorem.

Theorem 2.119 (Second Isomorphism Theorem). If H and K are subgroups
of a group G with H � G, then HK is a subgroup, H ∩ K � K , and

K/(H ∩ K ) ∼= HK/H.

Proof. We begin by showing first that HK/H makes sense and then describing
its elements. Since H � G, Proposition 2.117 shows that HK is a subgroup.
Normality of H in HK follows from a more general fact: if H ≤ S ≤ G and if
H is normal in G, then H is normal in S (if ghg−1 ∈ H for every g ∈ G, then,
in particular, ghg−1 ∈ H for every g ∈ S).

We now show that each coset x H ∈ HK/H has the form kH for some
k ∈ K . Of course, x H = hkH , where h ∈ H and k ∈ K . But hk = k(k−1hk) =
kh′ for some h′ ∈ H , so that hkH = kh ′ H = kH .

It follows that the function f : K → HK/H , given by f : k 7→ kH , is
surjective. Moreover, f is a homomorphism, for it is the restriction of the natural
map π : G → G/H . Since kerπ = H , it follows that ker f = H ∩ K , and so
H ∩ K is a normal subgroup of K . The first isomorphism theorem now gives
K/(H ∩ K ) ∼= HK/H . •

The second isomorphism theorem gives the product formula in the special
case when one of the subgroups is normal: if K/(H ∩ K ) ∼= H K/H , then
|K/(H ∩ K )| = |H K/H |, and so |H K ||H ∩ K | = |H ||K |.

Theorem 2.120 (Third Isomorphism Theorem). If H and K are normal
subgroups of a group G with K ≤ H, then H/K � G/K and

(G/K )/(H/K ) ∼= G/H.

Proof. Define f : G/K → G/H by f : aK 7→ a H . Note that f is a (well-
defined) function, for if a′ ∈ G and a′K = aK , then a−1a′ ∈ K ≤ H , and so
a H = a′ H . It is easy to see that f is a surjective homomorphism.

Now ker f = H/K , for aK = H if and only if a ∈ H , and so H/K is a
normal subgroup of G/K . Since f is surjective, the first isomorphism theorem
gives (G/K )/(H/K ) ∼= G/H . •
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The third isomorphism theorem is easy to remember: the K ’s in the fraction
(G/K )/(H/K ) can be canceled. One can better appreciate the first isomorphism
theorem after having proved the third one. The quotient group (G/K )/(H/K )
consists of cosets (of H/K ) whose representatives are themselves cosets (of
G/K ). A direct proof of the third isomorphism theorem could be nasty.

The next result, which describes the subgroups of a quotient group G/K , can
be regarded as a fourth isomorphism theorem. Recall that a function f : X → Y
sets up a correspondence, using direct and inverse images, between subsets of
X and subsets of Y . We now adapt this viewpoint to the special case when
f : G → H is a homomorphism.

If G is a group and K � G, let Sub(G; K ) denote the family of all those
subgroups S of G containing K , and let Sub(G/K ) denote the family of all the
subgroups of G/K .

Proposition 2.121 (Correspondence Theorem). If G is a group and K � G,
then S 7→ S/K is a bijection Sub(G; K ) → Sub(G/K ). Denoting S/K by S∗,
we have

(i) T ≤ S ≤ G in Sub(G; K ) if and only if T ∗ ≤ S∗ in Sub(G/K ), in which
case [S : T ] = [S∗ : T ∗];

(ii) T � S in Sub(G; K ) if and only if T ∗ � S∗ in Sub(G/K ), in which case
S/T ∼= S∗/T ∗.

Proof. Let 8 : Sub(G; K ) → Sub(G/K ) denote the function 8 : S 7→ S/K
(it is routine to check that if S is subgroup of G containing K , then S/K is a
subgroup of G/K ).

To see that 8 is injective, we begin by showing that if K ≤ S ≤ G, then
π−1π(S) = S, where π : G → G/K is the natural map. As always, S ⊆
π−1π(S), by Proposition 2.14(iii). For the reverse inclusion, let a ∈ π−1π(S),
so that π(a) = π(s) for some s ∈ S. It follows that as−1 ∈ kerπ = K , so that
a = sk for some k ∈ K . But K ≤ S, and so a = sk ∈ S, as desired.

Assume now that π(S) = π(S ′), where S and S ′ are subgroups of G con-
taining K (note that π(S) = S/K ). Then π−1π(S) = π−1π(S′), as we have just
proved in the preceding paragraph, and so S = S ′; hence,8 is injective.

To see that8 is surjective, let U be a subgroup of G/K . By Example 2.90(iv)
π−1(U ) is a subgroup of G containing K = π−1({1}), and π(π−1(U )) = U , by
Proposition 2.14(ii).

Proposition 2.14(i) shows that T ≤ S ≤ G implies T/K = π(T ) ≤ π(S) =
S/K . Conversely, assume that T/K ≤ S/K . If t ∈ T , then t K ∈ T/K ≤ S/K
and so t K = sK for some s ∈ S. Hence, t = sk for some k ∈ K ≤ S, and so
t ∈ S.
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In the important special case when G is finite, we prove [S : T ] = [S∗ : T ∗]
as follows.

[S∗ : T ∗] = |S∗|/|T ∗|
= |S/K |/|T/K |
= (|S|/|K |) / (|T |/|K |)
= |S|/|T |
= [S : T ].

To prove that [S : T ] = [S∗ : T ∗] in the general case, it suffices to show that
there is a bijection from the family of all cosets of the form sT , where s ∈ S,
and the family of all cosets of the form s∗T ∗, where s∗ ∈ S∗, and the reader may
check that sT 7→ π(s)T ∗ is such a bijection.

The third isomorphism theorem shows that if T � S, then T/K � S/K and
(S/K )/(T/K ) ∼= S/T ; that is, S∗/T ∗ ∼= S/T . It remains to show that T � S if
T ∗ � S∗; that is, if t ∈ T and s ∈ S, then sts−1 ∈ T . Now

π(sts−1) = π(s)π(t)π(s)−1 ∈ π(s)T ∗π(s)−1 = T ∗,

so that sts−1 ∈ π−1(T ∗) = T . •
When dealing with quotient groups, one usually says, without mentioning

the correspondence theorem explicitly, that every subgroup of G/K has the form
S/K for a unique subgroup S ≤ G containing K . For example, if G is a finite
p-group, that is, if |G| = pn for some prime p, then Theorem 2.146 says that
if G 6= {1}, then the center is nontrivial; that is, Z(G) 6= {1}. Hence, if G is
not abelian, then Z(G/Z(G)) 6= {1}. An important role in the investigation of
finite p-groups is played by Z 2(G) which is, by definition, the inverse image of
Z(G/Z(G)). Note that Z 2(G) � G, by the correspondence theorem,

Proposition 2.122. If G is a finite abelian group, then G has a subgroup of
order d for every divisor d of |G|. In particular, if p is a prime divisor of |G|,
then G contains an element of order p. (Compare Proposition 2.97.)

Proof. We begin by proving, by induction on n = |G|, that for every prime
divisor p of |G|, there is an element of order p in G. The base step n = 1 is
true, for there are no prime divisors of 1. For the inductive step, choose a ∈ G
of order k > 1. If p | k, say k = p`, then Exercise 2.34 on page 143 says
that a` has order p. If p � k, consider the cyclic subgroup H = 〈a〉. Now
H � G, because G is abelian, and so the quotient group G/H exists. Note that
|G/H | = n/k is divisible by p, and so the inductive hypothesis gives an element
bH ∈ G/H of order p. If b has order m, then (bH)m = bm H = H in G/H ,
and so Lemma 2.53 gives p | m. We have returned to the first case.
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We prove the general result by induction on d ≥ 1. The base step d = 1
is obviously true, and so we may assume that d > 1; that is, we may assume
that d has a prime divisor, say, p. By induction, G contains a subgroup H of
order p. Since G is abelian, H � G, and so the quotient group G/H is defined.
Moreover, |G/H | = |G|/p, so that (d/p) | |G/H |. The inductive hypothesis
gives a subgroup S∗ ≤ G/H with |S∗| = d/p. By the correspondence theorem,
there is a subgroup S (where H ≤ S ≤ G) with S∗ = S/H . Therefore, |S| =
p|S∗| = p · (d/p) = d . •

A theorem of Cauchy, Theorem 2.145, says that if p is a prime divisor of
|G|, where G is any finite, not necessarily abelian, group, then G has an element
of order p.

Here is another construction of a new group from two given groups.

Definition. If H and K are groups, then their direct product, denoted by H×K ,
is the set of all ordered pairs (h, k) with h ∈ H and k ∈ K equipped with the
operation

(h, k)(h′, k′) = (hh′, kk′).

It is routine to check that H × K is a group [the identity is (1, 1) and
(h, k)−1 = (h−1, k−1)]. Note that H × K is abelian if and only if both H
and K are abelian.

Example 2.123.
The four-group V is isomorphic to

�
2×

�
2. The reader may check that the function

f : V → �
2 × �

2, defined by

f : (1) 7→ ([0], [0]),
f : (1 2)(3 4) 7→ ([1], [0]),
f : (1 3)(2 4) 7→ ([0], [1]),
f : (1 4)(2 3) 7→ ([1], [1]),

is an isomorphism. �

We now apply the first isomorphism theorem to direct products.

Proposition 2.124. Let G and G ′ be groups, and let K � G and K ′ � G′ be
normal subgroups. Then K × K ′ is a normal subgroup of G × G ′, and there is
an isomorphism

(G × G′)/(K × K ′) ∼= (G/K )× (G′/K ′).
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Proof. Let π : G → G/K and π ′ : G′ → G′/K ′ be the natural maps. The
reader may check that f : G × G ′ → (G/K )× (G′/K ′), given by

f : (g, g′) 7→ (π(g), π ′(g′)) = (gK , g′K ′)

is a surjective homomorphism with ker f = K × K ′. The first isomorphism
theorem now gives the desired isomorphism. •

Here is a characterization of direct products.

Proposition 2.125. If G is a group containing normal subgroups H and K with
H ∩ K = {1} and H K = G, then G ∼= H × K .

Proof. We show first that if g ∈ G, then the factorization g = hk, where
h ∈ H and k ∈ K , is unique. If hk = h ′k′, then h′−1h = k′k−1 ∈ H ∩ K = {1}.
Therefore, h ′ = h and k′ = k. We may now define a function ϕ : G → H × K
by ϕ(g) = (h, k), where g = hk, h ∈ H , and k ∈ K . To see whether ϕ
is a homomorphism, let g′ = h′k′, so that gg′ = hkh′k′ = hh′kk′ . Hence,
ϕ(gg′) = ϕ(hkh′k′), which is not in the proper form for evaluation. If we knew
that if h ∈ H and k ∈ K , then hk = kh, then we could continue:

ϕ(hkh′k′) = ϕ(hh′kk′)

= (hh′, kk′)

= (h, k)(h′, k′)

= ϕ(g)ϕ(g′).

Let h ∈ H and k ∈ K . Since K is a normal subgroup, (hkh−1)k−1 ∈ K ;
since H is a normal subgroup, h(kh−1k−1) ∈ H . But H ∩ K = {1}, so that
hkh−1k−1 = 1 and hk = kh. Finally, we show that the homomorphism ϕ is an
isomorphism. If (h, k) ∈ H × K , then the element g ∈ G defined by g = hk
satisfies ϕ(g) = (h, k); hence ϕ is surjective. If ϕ(g) = (1, 1), then g = 1, so
that kerϕ = 1 and ϕ is injective. Therefore, ϕ is an isomorphism. •

All the hypotheses in Proposition 2.125 are needed. For example, let G =
S3, H = 〈(1 2 3)〉, and K = 〈(1 2)〉. Now S3 = H K , {1} = H ∩ K , and H � S3,
but K is not a normal subgroup. It is not true that S3 ∼= H × K , for S3 is not
abelian, while the direct product H × K of abelian groups is abelian.

Theorem 2.126. If m and n are relatively prime, then
�

mn ∼=
�

m × �
n.

Proof. If a ∈ �
, denote its congruence class in

�
m by [a]m . The reader can

show that the function f : � → �
m × �

n, given by a 7→ ([a]m, [a]n), is a homo-
morphism. We claim that ker f = 〈mn〉. Clearly, 〈mn〉 ≤ ker f . For the reverse
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inclusion, if a ∈ ker f , then [a]m = [0]m and [a]n = [0]n; that is, a ≡ 0 mod m
and a ≡ 0 mod n; that is, m | a and n | a. Since m and n are relatively prime,
Exercise 1.55 on page 52 gives mn | a, and so a ∈ 〈mn〉, that is, ker f ≤ 〈mn〉,
and so ker f = 〈mn〉.

We now show that f is surjective. If ([a]m, [b]n) ∈ �
m × �

n, is there x ∈ �
with f (x) = ([x]m, [x]n) = ([a]m, [b]n); that is, is there x ∈ �

with x ≡
a mod m and x ≡ b mod n? Since m and n are relatively prime, the Chinese
Remainder Theorem provides a solution x . The first isomorphism theorem now
gives

�
mn = �

/〈mn〉 ∼=
�

m × �
n. •

For example, it follows that
�

6
∼=

�
2 × �

3. Note that there is no isomorphism
if m and n are not relatively prime. Example 2.123 shows that V ∼=

�
2 × �

2,
which is not isomorphic to

�
4 because V has no element of order 4.

In light of Proposition 2.72, we may say that an element a ∈ G has order n
if 〈a〉 ∼=

�
n. Theorem 2.126 can now be interpreted as saying that if a and b are

commuting elements having relatively prime orders m and n, then ab has order
mn. Let us give a direct proof of this result.

Proposition 2.127. Let G be a group, and let a, b ∈ G be commuting elements
of orders m and n, respectively. If (m, n) = 1, then ab has order mn.

Proof. Since a and b commute, we have (ab)r = arbr for all r , so that (ab)mn =
amnbmn = 1. It suffices to prove that if (ab)k = 1, then mn | k. If 1 = (ab)k =
akbk , then ak = b−k . Since a has order m, we have 1 = amk = b−mk . Since b
has order n, Lemma 2.53 gives n | mk. As (m, n) = 1, however, Corollary 1.37
gives n | k; a similar argument gives m | k. Finally, Exercise 1.55 on page 52
shows that mn | k. Therefore, mn ≤ k, and mn is the order of ab. •

Here is a number-theoretic application of direct products.

Corollary 2.128. If (m, n) = 1, then φ(mn) = φ(m)φ(n), where φ is the Euler
φ-function.

Proof. 19 As in the proof of Theorem 2.126, we denote the elements of
�

m by
[a]m , and we recall that f : �

mn → �
m × �

n, defined by [a]mn 7→ ([a]m, [a]n), is
an isomorphism. Now Lemma 2.106 says that |U ( �

m)| = φ(m), where U (
�

m) =
{[r ] ∈ �

m : (r,m) = 1}. Thus, if we prove that f (U (
�

mn)) = U (
�

m) × U (
�

n),
then the result will follow:

φ(mn) = |U ( �
mn)| = | f (U (

�
mn))|

= |U ( �
m)× U (

�
n)| = |U ( �

m)| · |U ( �
n)| = φ(m)φ(n).

19See Exercise 3.53(iii) on page 249 for a less computational proof.
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We claim that f (U (
�

mn)) = U (
�

m) × U (
�

n). If [a]mn ∈ U (
�

mn), then
[a]mn[b]mn = [1]mn for some [b]mn ∈ �

mn, and

f ([ab]mn) = ([ab]m, [ab]n) = ([a]m[b]m, [a]n[b]n)

= ([a]m, [a]n)([b]m, [b]n) = ([1]m, [1]n).

Hence, [1]m = [a]m[b]m and [1]n = [a]n[b]n , so that f ([a]mn) = ([a]m, [a]n) ∈
U (

�
m)× U (

�
n), and f (U (

�
mn)) ≤ U (

�
m)× U (

�
n).

For the reverse inclusion, if f ([c]mn) = ([c]m, [c]n) ∈ U (
�

m)× U (
�

n), then
we must show that [c]mn ∈ U (

�
mn). There is [d]m ∈ �

m with [c]m[d]m = [1]m ,
and there is [e]n ∈ �

n with [c]n[e]n = [1]n. Since f is surjective, there is b ∈ �
with ([b]m, [b]n) = ([d]m, [e]n), so that

f ([1]mn) = ([1]m, [1]n) = ([c]m[b]m, [c]n[b]n) = f ([c]mn[b]mn).

Since f is an injection, [1]mn = [c]mn[b]mn and [c]mn ∈ U (
�

mn). •

Definition. If H1, . . . , Hn are groups, then their direct product

H1 × · · · × Hn

is the set of all n-tuples (h1, . . . , hn), where h i ∈ Hi for all i , with coordinate-
wise multiplication:

(h1, . . . , hn)(h
′
1, . . . , h′

n) = (h1h′
1, . . . , hnh′

n).

The basis theorem, Theorem 6.11, says that every finite abelian group is a
direct product of cyclic groups.

Here is a variant of Proposition 2.73.

Proposition 2.129. If G is a finite abelian group having a unique subgroup of
order p for every prime divisor p of |G|, then G is cyclic.

Proof. Choose a ∈ G of largest order, say, n. If p is a prime divisor of |G|, let
C = C p be the unique subgroup of G having order p; the subgroup C must be
cyclic, say C = 〈c〉. We show that p | n by showing that c ∈ 〈a〉 (and hence
C ≤ 〈a〉). If (p, n) = 1, then ca has order pn > n, by Proposition 2.127,
contradicting a being an element of largest order. If p | n, say, n = pq, then aq

has order p, and hence it lies in the unique subgroup 〈c〉 of order p. Thus, aq =
ci for some i . Now (i, p) = 1, so there are integers u and v with 1 = ui + vp;
hence, c = cui+vp = cui cvp = cui . Therefore, aqu = cui = c, so that c ∈ 〈a〉, as
desired. It follows that 〈a〉 contains every element x ∈ G with x p = 1 for some
prime p.
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If 〈a〉 = G, we are finished. Therefore, we may assume that there is b ∈ G
with b /∈ 〈a〉. Now b|G| = 1 ∈ 〈a〉; let k be the smallest positive integer with
bk ∈ 〈a〉:

bk = aq .

Note that k | |G| because k is the order of b〈a〉 in G/〈a〉. Of course, k 6= 1,
and so there is a factorization k = pm, where p is prime. There are now two
possibilities. If p | q, then q = pu and

b pm = bk = aq = a pu.

Hence, (bma−u)p = 1, and so bma−u ∈ 〈a〉. Thus, bm ∈ 〈a〉, and this contra-
dicts k being the smallest exponent with this property. The second possibility is
that p � q, in which case (p, q) = 1. There are integers s and t with 1 = sp+ tq,
and so

a = asp+tq = aspatq = aspb pmt = (asbmt )p.

Therefore, a = x p, where x = asbmt , and Exercise 2.35 on page 143, which
applies because p | n, says that the order of x is greater than that of a, a contra-
diction. We conclude that G = 〈a〉. •

The proposition is false for nonabelian groups, for the group of quaternions
Q is a counterexample; it is a noncyclic group of order 8 having a unique sub-
group of order 2.

EXERCISES

2.85 Prove that U ( � 9) ∼= � 6 and U ( � 15) ∼= � 4 × � 2.
2.86 (i) If H and K are groups, prove, without using the first isomorphism the-

orem, that H∗ = {(h, 1) : h ∈ H} and K ∗ = {(1, k) : k ∈ K } are
normal subgroups of H × K with H ∼= H∗ and K ∼= K ∗.

(ii) Prove that f : H → (H × K )/K ∗ , defined by f (h) = (h, 1)K∗ , is an
isomorphism without using the first isomorphism theorem.

(iii) Use the first isomorphism theorem to prove that K∗ � (H × K ) and that
(H × K )/K ∗ ∼= H .

*2.87 If G is a group and G/Z(G) is cyclic, where Z(G) denotes the center of G , prove
that G is abelian; that is, G = Z(G). Conclude that if G is not abelian, then
G/Z(G) is never cyclic.

*2.88 Let G be a finite group, let p be a prime, and let H be a normal subgroup of G .
Prove that if both |H | and |G/H | are powers of p, then |G| is a power of p.

*2.89 Call a group G finitely generated if there is a finite subset X ⊆ G with G = 〈X〉.
Prove that every subgroup S of a finitely generated abelian group G is itself finitely
generated. (This can be false if G is not abelian.)
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*2.90 (i) Let π : G → H be a surjective homomorphism with kerπ = T . Let
H = 〈X〉, and, for each x ∈ X , choose an element gx ∈ G with π(gx ) =
x . Prove that G is generated by T ∪ {gx : x ∈ X}.

(ii) Let G be a group and let T � G . If both T and G/T are finitely generated,
prove that G is finitely generated.

*2.91 Let A, B and C be groups, and let α, β and γ be homomorphisms with γ ◦ α = β .

A
α //

β
��@

@@
@

@@
@ B

γ

��
C

If α is surjective, prove that ker γ = α(ker β).
*2.92 Let A and B be groups, let A′ � A and B ′ � B be normal subgroups, and let

α : A → B be a homomorphism with α(A′) ⊆ B ′.
(i) Prove that there is a (well-defined) homomorphism α∗ : A/A′ → B/B ′

given by α∗ : a A′ 7→ α(a)B ′.
(ii) Prove that if α is surjective, then α∗ is surjective.
(iii) Prove that if α is injective, then α∗ is injective.

2.93 (i) Prove that Q/Z(Q) ∼= V, where Q is the group of quaternions and V is
the four-group. Conclude that the quotient of a nonabelian group by its
center can be abelian.

(ii) Prove that Q has no subgroup isomorphic to V. Conclude that the quo-
tient Q/Z(Q) is not isomorphic to a subgroup of Q.

2.94 Let G be a finite group with K � G . If (|K |, [G : K ]) = 1, prove that K is the
unique subgroup of G having order |K |.

*2.95 Let H and K be subgroups of a group G .
(i) Prove that H K is a subgroup of G if and only if H K = K H . In particu-

lar, the condition holds if hk = kh for all h ∈ H and k ∈ K .
(ii) If H K = K H and H ∩ K = {1}, prove that H K ∼= H × K .

2.96 Let G be a group and regard G × G as the direct product of G with itself. If the
multiplication µ : G × G → G is a group homomorphism, prove that G must be
abelian.

*2.97 Generalize Theorem 2.126 as follows. Let G be a finite (additive) abelian group of
order mn, where (m, n) = 1. Define

Gm = {g ∈ G : order (g) | m} and Gn = {h ∈ G : order (h) | n}.

(i) Prove that Gm and Gn are subgroups with Gm ∩ Gn = {0}.
(ii) Prove that G = Gm + Gn = {g + h : g ∈ Gm and h ∈ Gn}.
(iii) Prove that G ∼= Gm × Gn .

*2.98 (i) Generalize Theorem 2.126 by proving that if the prime factorization of
an integer m is m = pe1

1 · · · pen
n , then

� m
∼= � p

e1
1

× · · · × � pen
n
.
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(ii) Generalize Corollary 2.128 by proving that if the prime factorization of
an integer m is m = pe1

1 · · · pen
n , then

U ( � m) ∼= U ( � p
e1
1
)× · · · × U ( � pen

n
).

2.99 Let p be an odd prime, and assume that ai ≡ i mod p for 1 ≤ i ≤ p − 1. Prove
that there exist i 6= j with iai ≡ ja j mod p.

2.100 (i) If p is a prime, prove that φ(pk ) = pk (1 − 1
p ).

(ii) If the distinct prime divisors of a positive integer h are p1, p2, . . . , pn ,
prove that

φ(h) = h(1 − 1
p1
)(1 − 1

p2
) · · · (1 − 1

pn
).

2.101 If G is a group and x, y ∈ G , define their commutator to be xyx−1y−1, and define
the commutator subgroup G ′ to be the subgroup generated by all the commutators
(the product of two commutators need not be a commutator).

(i) Prove that G ′ � G .
(ii) Prove that G/G ′ is abelian.
(iii) If ϕ : G → A is a homomorphism, where A is an abelian group, prove

that G ′ ≤ ker ϕ. Conversely, if G ′ ≤ ker ϕ, prove that imϕ is abelian.
(iv) If G ′ ≤ H ≤ G , prove that H � G .

2.7 GROUP ACTIONS

Groups of permutations led us to abstract groups; the next result, due to A. Cay-
ley (1821–1895), shows that abstract groups are not so far removed from permu-
tations.

Theorem 2.130 (Cayley). Every group G is (isomorphic to) a subgroup of
the symmetric group SG . In particular, if |G| = n, then G is isomorphic to a
subgroup of Sn.

Proof. For each a ∈ G, define “translation” τa : G → G by τa(x) = ax for
every x ∈ G (if a 6= 1, then τa is not a homomorphism). For a, b ∈ G,
(τa ◦τb)(x) = τa(τb(x)) = τa(bx) = a(bx) = (ab)x = τab(x), by associativity,
so that

τaτb = τab.

It follows that each τa is a bijection, for its inverse is τa−1 :

τaτa−1 = τaa−1 = τ1 = 1G,

and so τa ∈ SG .
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Define ϕ : G → SG by ϕ(a) = τa . Rewriting,

ϕ(a)ϕ(b) = τaτb = τab = ϕ(ab),

so that ϕ is a homomorphism. Finally, ϕ is an injection. If ϕ(a) = ϕ(b), then
τa = τb, and hence τa(x) = τb(x) for all x ∈ G; in particular, when x = 1, this
gives a = b, as desired.

The last statement follows from Exercise 2.56 on page 165, which says that
if X is a set with |X | = n, then SX ∼= Sn. •

The reader may note, in the proof of Cayley’s theorem, that the permutation
τa is just the ath row of the multiplication table of G.

To tell the truth, Cayley’s theorem itself is only mildly interesting. However,
the identical proof works in a larger setting that is more useful.

Theorem 2.131 (Representation on Cosets). Let G be a group, and let H
be a subgroup of G having finite index n. Then there exists a homomorphism
ϕ : G → Sn with kerϕ ≤ H.

Proof. Even though H may not be a normal subgroup, we still denote the fam-
ily of all the cosets of H in G by G/H .

For each a ∈ G, define “translation” τa : G/H → G/H by τa(x H) = ax H
for every x ∈ G. For a, b ∈ G,

(τa ◦ τb)(x H) = τa(τb(x H)) = τa(bx H) = a(bx H) = (ab)x H = τab(a H),

by associativity, so that
τaτb = τab.

It follows that each τa is a bijection, for its inverse is τa−1 :

τaτa−1 = τaa−1 = τ1 = 1G,

and so τa ∈ SG/H . Define ϕ : G → SG/H by ϕ(a) = τa . Rewriting,

ϕ(a)ϕ(b) = τaτb = τab = ϕ(ab),

so that ϕ is a homomorphism. Finally, if a ∈ kerϕ, then ϕ(a) = 1G/H , so that
τa(x H) = x H for all x ∈ G; in particular, when x = 1, this gives a H = H , and
a ∈ H , by Lemma 2.80(i). The result follows from Exercise 2.56 on page 165,
for |G/H | = n, and so SG/H

∼= Sn. •
When H = {1}, this is the Cayley theorem.
We are now going to classify all groups of order up to 7. By Example 2.88,

every group of prime order p is isomorphic to
�

p, and so, up to isomorphism,
there is just one group of order p. Of the possible orders through 7, four of them,
2, 3, 5, and 7, are primes, and so we need look only at orders 4 and 6.
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Proposition 2.132. Every group G of order 4 is isomorphic to either
�

4 or the
four-group V. Moreover,

�
4 and V are not isomorphic.

Proof. By Lagrange’s theorem, every element in G, other than 1, has order
either 2 or 4. If there is an element of order 4, then G is cyclic. Otherwise,
x2 = 1 for all x ∈ G, so that Exercise 2.38 on page 143 shows that G is abelian.

If distinct elements x and y in G are chosen, neither being 1, then one quickly
checks that x y /∈ {1, x, y}; hence,

G = {1, x, y, x y}.

It is easy to see that the bijection f : G → V, defined by f (1) = 1, f (x) =
(1 2)(3 4), f (y) = (1 3)(2 4), and f (x y) = (1 4)(2 3), is an isomorphism, for
the product of any two elements of order 2 here is the other element of order 2.

We have already seen, in Example 2.89, that
�

4 6∼= V. •

Proposition 2.133. If G is a group of order 6, then G is isomorphic to either�
6 or S3.20 Moreover,

�
6 and S3 are not isomorphic.

Proof. By Lagrange’s theorem, the only possible orders of nonidentity ele-
ments are 2, 3, and 6. Of course, G ∼=

�
6 if G has an element of order 6.

Now Exercise 2.40 on page 144 shows that G must contain an element of order
2, say, t . Let T = 〈t〉.

Since [G : T ] = 3, the representation on the cosets of T is a homomorphism
ρ : G → SG/T ∼= S3 with kerρ ≤ T . Thus, kerρ = {1} or kerρ = T . In the
first case, ρ is an injection, and hence it is an isomorphism, for |G| = 6 = |S3|.
In the second case, kerρ = T , so that T � G and the quotient group G/T is
defined. Now G/T is cyclic, for |G/T | = 3, so there is a ∈ G with G/T =
{T , aT , a2T }. Moreover, ρt is the permutation

ρt =
(

T aT a2T
tT taT ta2T

)
.

20Cayley states this proposition in an article he wrote in 1854. However, in 1878, in the
American Journal of Mathematics, he wrote, “The general problem is to find all groups of a
given order n; . . . if n = 6, there are three groups; a group

1, α, α2, α3, α4, α5 (α6 = 1),

and two more groups

1, β, β2, α, αβ, αβ2 (α2 = 1, β3 = 1),

viz., in the first of these αβ = βα while in the other of them, we have αβ = β2α, αβ2 = βα.”
Cayley’s list is � 6, � 2 × � 3, and S3. Of course, � 2 × � 3 ∼= � 6. Even Homer nods.
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Since t ∈ T = kerρ, we have ρt the identity. In particular, aT = ρt (aT ) =
taT , so that a−1ta ∈ T = {1, t}, by Lemma 2.80(i). But a−1ta 6= 1, so that
a−1ta = t ; that is, ta = at . Now a has order 3 or order 6 (for a 6= 1 and
a2 6= 1). In either case, G has an element of order 6: if a has order 3, then at
has order 6, by Proposition 2.127 (alternatively, just note that (at)6 = 1 and that
(at)i 6= 1 for i < 6). Therefore, G is cyclic of order 6, and G ∼=

�
6.

It is clear that
�

6 and S3 are not isomorphic, for one is abelian and the other
is not. •

One consequence of this result is another proof that
�

6
∼=

�
2 × �

3 (see Theo-
rem 2.126).

Classifying groups of order 8 is more difficult, for we have not yet developed
enough theory (see my book, Advanced Modern Algebra, Theorem 5.83). It turns
out that there are only 5 nonisomorphic groups of order 8: three are abelian:�

8;
�

4 × �
2;

�
2 × �

2 × �
2; two are nonabelian: D8; Q.

Order of Group Number of Groups
2 1
4 2
8 5
16 14
32 51
64 267
128 2, 328
256 56, 092
512 10, 494, 213
1024 49, 487, 365, 422

Table 2.4.

One can continue this discussion for larger orders, but things soon get out
of hand, as Table 2.4 shows (the calculation of the numbers in the table is very
sophisticated). The number of nonisomorphic groups having order ≤ 2000 was
found by E. O’Brien, but focusing on the numbers in Table 2.4 is more dramatic.
A. McIver and P. M. Neumann proved, for large n, that the number of noniso-
morphic groups of order n is about nµ

2+µ+2, where µ(n) is the largest exponent
occurring in the prime factorization of n. Obviously, making a telephone direc-
tory of groups is not the way to study them.

Groups arose by abstracting the fundamental properties enjoyed by permu-
tations. But there is an important feature of permutations that the axioms do
not mention: permutations are functions. We shall see that there are interesting
consequences when this feature is restored.
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Let us agree on some notation before giving the next definition. A function
of two variables, α : X × Y → Z , can be regarded as a one-parameter family
of functions of one variable: each x ∈ X gives a function αx : Y → Z , namely,
αx (y) = α(x, y).

Definition. If X is a set and G is a group, then G acts on X 21 if there exists a
function α : G × X → X , called an action, such that

(i) for g, h ∈ G, αg ◦ αh = αgh ;

(ii) α1 = 1X , the identity function.

If G acts on X , we shall usually write gx instead of αg(x). In this notation,
axiom (i) reads g(hx) = (gh)x .

Of course, every subgroup G ≤ SX acts on X . More generally, actions of a
group G on a set X correspond to homomorphisms G → SX .

Proposition 2.134. If α : G × X → X is an action of a group G on a set X,
then g 7→ αg defines a homomorphism G → SX . Conversely, if B : G → SX is
a homomorphism, then β : G × X → X, defined by β(g, x) = B(g)(x), is an
action.

Proof. If α : G × X → X is an action, then we claim that each αg is a permu-
tation of X . Indeed, its inverse is αg−1 , because αgαg−1 = αgg−1 = α1 = 1X . It
follows that A : G → SX , defined by A(g) = αg , is a function with the stated
target. That A is a homomorphism follows from axiom (i):

A(gh) = αgh = αg ◦ αh = A(g) ◦ A(h).

Conversely, the function β : G × X → X , defined by a homomorphism
B : G → SX as β(g, x) = B(g)(x), is an action. According to our notational
agreement, βg = B(g). Thus, axiom (i) merely says that B(g) ◦ B(h) = B(gh),
which is true because B is a homomorphism, while axiom (ii), B(1) = 1X , holds
because every homomorphism takes the identity to the identity. •

Cayley’s theorem says that a group G acts on itself by (left) translation, and
its generalization, the representation on cosets (Theorem 2.131), shows that G
also acts on the family of cosets of a subgroup H by (left) translation.

Example 2.135.
We show that G acts on itself by conjugation; that is, for each g ∈ G, define
αg : G → G by

αg(x) = gxg−1.

21If G acts on X , then one often calls X a G-set.
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To verify axiom (i), note that for each x ∈ G,

(αg ◦ αh)(x) = αg(αh(x))

= αg(hxh−1)

= g(hxh−1)g−1

= (gh)x(gh)−1

= αgh(x).

Therefore, αg ◦ αh = αgh .
To prove axiom (ii), note that for each x ∈ G,

α1(x) = 1x1−1 = x,

and so α1 = 1G . �

The following two definitions are fundamental.

Definition. If G acts on X and x ∈ X , then the orbit of x , denoted by
�
(x), is

the subset of X :
�
(x) = {gx : g ∈ G} ⊆ X;

the stabilizer of x , denoted by Gx , is the subgroup of G:

Gx = {g ∈ G : gx = x} ≤ G.

It is easy to check that the stabilizer Gx of a point x is a subgroup of G.
Let us find orbits and stabilizers in the examples above.

Example 2.136.

(i) Cayley’s theorem says that G acts on itself by translations: τa : x 7→ ax .
If x ∈ G, then the orbit

�
(x) = G, for if g ∈ G, then g = (gx−1)x . The

stabilizer Gx of x is {1}, for if x = τa(x) = ax , then a = 1. One says that
G acts transitively on X when there is some x ∈ X with

�
(x) = X .

(ii) When G acts on G/H (the family of cosets of a subgroup H ) by transla-
tions τa : x H 7→ ax H , then the orbit

�
(x H) = G/H, for if g ∈ G and

a = gx−1, then τa : x H 7→ gH . Thus, G acts transitively on G/H . The
stabilizer Gx H of x H is x H x−1, for ax H = x H if and only if x−1ax ∈ H
if and only if a ∈ x H x−1. �
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Figure 2.18 Dihedral Group D8

Example 2.137.
Let X = the vertices {v0, v1, v2, v3} of a square, and let G be the dihedral
group D8 acting on X , as in Figure 2.18 (for clarity, the vertices in the figure are
labeled 0, 1, 2, 3 instead of v0, v1, v2, v3).

G = {rotations : (1), (v0 v1 v2 v3), (v0 v2)(v1 v3), (v0 v3 v2 v1);
reflections : (v1 v3), (v0 v2), (v0 v1)(v2 v3), (v0 v3)(v1 v2)}.

For each vertex vi ∈ X , there is some g ∈ G with gv0 = vi ; therefore,
�
(v0) =

X and D8 acts transitively.
What is the stabilizer Gv0 of v0? Aside from the identity, there is only one

g ∈ D8 fixing v0, namely, g = (v1 v3); therefore Gv0 is a subgroup of order 2.
(This example can be generalized to the dihedral group D2n acting on a regular
n-gon.) �

Example 2.138.
Let a group G act on itself by conjugation. If x ∈ G, then

�
(x) = {y ∈ G : y = axa−1 for some a ∈ G};

�
(x) is called the conjugacy class of x , and it is often denoted by x G . For

example, Proposition 2.33 shows that if α ∈ Sn, then the conjugacy class of α
consists of all the permutations in Sn having the same cycle structure as α.

If x ∈ G, then the stabilizer Gx of x is

CG(x) = {g ∈ G : gxg−1 = x}.

This subgroup of G, consisting of all g ∈ G that commute with x , is called the
centralizer of x in G. �
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Example 2.139.
Let X = {1, 2, . . . , n}, let σ ∈ Sn, and regard the cyclic group G = 〈σ 〉 as acting
on X . If i ∈ X , then

�
(i) = {σ k(i) : k ∈ � }.

Let σ = β1 · · ·βt (σ ) be the complete factorization of σ , and let i = i0 be moved
by σ . If the cycle involving i0 is β j = (i0 i1 . . . ir−1), then the proof of
Theorem 2.26 shows that ik = σ k(i0) for all k < r − 1. Therefore,

�
(i) = {i0, i1, . . . , ir−1},

where i = i0. It follows that |
�
(i)| = r . The stabilizer G` of a symbol ` is G if

σ fixes `, and it is a proper subgroup of G if σ moves `. �

A group G acting on a set X gives an equivalence relation on X . Define

x ≡ y if there exists g ∈ G with y = gx .

If x ∈ X , then 1x = x , where 1 ∈ G, and so x ≡ x ; hence, ≡ is reflexive. If
x ≡ y, so that y = gx , then

g−1y = g−1(gx) = (g−1g)x = 1x = x,

so that x = g−1 y and y ≡ x ; hence, ≡ is symmetric. If x ≡ y and y ≡ z, there
are g, h ∈ G with y = gx and z = hy, so that z = hy = h(gx) = (hg)x , and
x ≡ z. Therefore, ≡ is transitive, and hence it is an equivalence relation. Now
the equivalence class of x ∈ X is its orbit, for

[x] = {y ∈ X : y ≡ x} = {gx : g ∈ G} =
�
(x).

Proposition 2.140. If G acts on a set X, then X is the disjoint union of the
orbits. If X is finite, then

|X | =
∑

i

|
�
(xi )|,

where one xi is chosen from each orbit.

Proof. This follows from Proposition 2.20, for the orbits form a partition of X .
The count given in the second statement is correct: since the orbits are dis-

joint, no element in X is counted twice. •

Here is the connection between orbits and stabilizers.
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Theorem 2.141. If G acts on a set X and x ∈ X, then

|
�
(x)| = [G : Gx ]

the index of the stabilizer Gx in G.

Proof. Let G/Gx denote the family of all the cosets of Gx in G. We will
exhibit a bijection ϕ :

�
(x) → G/Gx ; this will give the result, since |G/Gx | =

[G : Gx ], by Corollary 2.82 of Lagrange’s theorem. If y ∈
�
(x), then y = gx

for some g ∈ G; define ϕ(y) = gGx . Now ϕ is well-defined: if y = hx for
some h ∈ G, then h−1gx = x and h−1g ∈ Gx ; hence hGx = gGx . To see that
ϕ is injective, suppose that ϕ(y) = ϕ(z); then there are g, h ∈ G with y = gx ,
z = hx , and gGx = hGx ; that is, h−1g ∈ Gx . It follows that h−1gx = x ,
and so y = gx = hx = z. Finally, ϕ is a surjection: if gGx ∈ G/Gx , then let
y = gx ∈

�
(x), and note that ϕ(y) = gGx . •

In Example 2.137, D8 acting on the four corners of a square, we saw that
|

�
(v0)| = 4, |Gv0 | = 2, and [G : Gv0 ] = 8/2 = 4. In Example 2.139,

G = 〈σ 〉 ≤ Sn acting on X = {1, 2, . . . , n}, we saw that if, in the complete
factorization of σ into disjoint cycles σ = β1 · · · βt (σ ), the r -cycle β j moves `,
then r = |

�
(`)| for any ` occurring in β j . Theorem 2.141 says that r is a divisor

of the order k of σ . (But Theorem 2.54 tells us more: k is the lcm of the lengths
of the cycles occurring in the factorization.)

Corollary 2.142. If a finite group G acts on a set X, then the number of ele-
ments in any orbit is a divisor of |G|.
Proof. This follows at once from Theorem 2.141 and Lagrange’s theorem. •

Corollary 2.143. If x lies in a finite group G, then the number of conjugates of
x is the index of its centralizer:

|xG | = [G : CG(x)],

and hence it is a divisor of |G|.
Proof. As in Example 2.138, the orbit of x is its conjugacy class x G , and the
stabilizer Gx is the centralizer CG(x). •

In Example 2.29, there is a table displaying the number of permutations in
S4 of each cycle structure; these numbers are 1, 6, 8, 6, 3. Note that each of
these numbers is a divisor of |S4| = 24. In Example 2.30, we saw that the
corresponding numbers in S5 are 1, 10, 20, 30, 24, 20, and 15, and these are
all divisors of |S5| = 120. We now recognize these subsets as being conjugacy
classes, and the next corollary explains why these numbers divide the group
order.
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Corollary 2.144. If α ∈ Sn, then the number of permutations in Sn having the
same cycle structure as α is a divisor of n!.
Proof. This follows at once from Corollary 2.143 once one recalls Proposi-
tion 2.33 which says that two permutations in Sn are conjugate in Sn if and only
if they have the same cycle structure. •

When we began classifying groups of order 6, it would have been helpful to
be able to assert that any such group has an element of order 3 (we were able to
use an earlier exercise to assert the existence of an element of order 2). We now
prove that every finite group G contains an element of prime order p for every
p | |G|.

If the conjugacy class x G of an element x in a group G consists of x alone,
then x commutes with every g ∈ G, for gxg−1 = x ; that is, x ∈ Z(G). Con-
versely, if x ∈ Z(G), then x G = {x}. Thus, the center Z(G) consists of all those
elements in G whose conjugacy class has exactly one element.

Theorem 2.145 (Cauchy). If G is a finite group whose order is divisible by a
prime p, then G contains an element of order p.

Proof. We prove the theorem by induction on |G|; the base step |G| = 1 is
vacuously true, for there are no prime divisors of 1. If x ∈ G, then the number
of conjugates of x is |x G | = [G : CG(x)], where CG(x) is the centralizer of x
in G. As noted above, if x /∈ Z(G), then x G has more than one element, and
so |CG(x)| < |G|. If p | |CG(x)| for some noncentral x , then the inductive
hypothesis says there is an element of order p in CG(x) ≤ G, and we are done.
Therefore, we may assume that p � |CG(x)| for all noncentral x ∈ G. Better,
since |G| = [G : CG(x)]|CG(x)|, Euclid’s lemma gives

p | [G : CG(x)].

After recalling that Z(G) consists of all those elements x ∈ G with |x G | = 1,
we may use Proposition 2.140 to see

|G| = |Z(G)| +
∑

i

[G : CG(xi )],

where one xi is selected from each conjugacy class having more than one ele-
ment. Since |G| and all [G : CG(xi)] are divisible by p, it follows that |Z(G)|
is divisible by p. But Z(G) is abelian, and so Proposition 2.122 says that Z(G),
and hence G, contains an element of order p. •

Definition. The class equation of a finite group G is

|G| = |Z(G)| +
∑

i

[G : CG(xi )],
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where one xi is selected from each conjugacy class having more than one ele-
ment.

Definition. If p is a prime, then a p-group is a group of order pn for some
n ≥ 0.

There are groups whose center is trivial; for example, Z(S3) = {1}. For
p-groups with more than one element, however, this is never true.

Theorem 2.146. If p is a prime and G is a p-group with more than one element,
then Z(G) 6= {1}.

Proof. Consider the class equation

|G| = |Z(G)| +
∑

i

[G : CG(xi )].

Each CG(xi ) is a proper subgroup of G, for xi /∈ Z(G). Since G is a p-group,
[G : CG(xi )] is a divisor of |G|, hence is itself a power of p. Thus, p divides
each of the terms in the class equation other than |Z(G)|, and so p | |Z(G)| as
well. Therefore, Z(G) 6= {1}. •

Corollary 2.147. If p is a prime, then every group G of order p2 is abelian.

Proof. If G is not abelian, then its center Z(G) is a proper subgroup, so that
|Z(G)| = 1 or p, by Lagrange’s theorem. But Theorem 2.146 says that Z(G) 6=
{1}, and so |Z(G)| = p. The center is always a normal subgroup, so that the
quotient G/Z(G) is defined; it has order p, and hence G/Z(G) is cyclic. This
contradicts Exercise 2.87 on page 187. •

Example 2.148.
For every prime p, there exist nonabelian groups of order p3. Define UT(3, p) to
be the subgroup of GL(3,

�
p) consisting of all upper triangular matrices having

1’s on the diagonal; that is,

UT(3, p) =
{

A =
[

1 a b
0 1 c
0 0 1

]
: a, b, c ∈ �

p

}
.

It is easy to see that UT(3, p) is a subgroup of GL(3,
�

p), and it has order p3

because there are p choices for each of a, b, c. The reader will have no diffi-
culty finding two matrices in UT(3, p) that do not commute. (Exercise 2.111 on
page 204 says that UT(3, 2) ∼= D8) �
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Example 2.149.
Who would have guessed that Cauchy’s theorem and Fermat’s theorem are spe-
cial cases of some common theorem?22 The elementary yet ingenious proof of
this is due to J. H. McKay (as A. Mann has shown me). If G is a finite group and
p is a prime, denote the cartesian product of p copies of G by G p, and define

X = {(a1, a2, . . . , ap) ∈ G p : a1a2 . . .ap = 1}.

Note that |X | = |G|p−1, for having chosen the first p − 1 entries arbitrarily, the
pth entry must equal (a1a2 · · · ap−1)

−1. Now make X into an
�

p-set by defining,
for 0 ≤ i ≤ p − 1,

[i ](a1, a2, . . . , ap) = (ai+1, ai+2, . . . , ap, a1, a2, . . . , ai).

The product of the entries in the new p-tuple is a conjugate of a1a2 · · · ap:

ai+1ai+2 · · · apa1a2 · · · ai = (a1a2 · · · ai )
−1(a1a2 · · · ap)(a1a2 · · · ai ).

This conjugate is 1 (for g−11g = 1), and so [i ](a1, a2, . . . , ap) ∈ X . By Corol-
lary 2.142, the size of every orbit of X is a divisor of | �

p| = p; since p is prime,
these sizes are either 1 or p. Now orbits with just one element consist of a p-
tuple all of whose entries ai are equal, for all cyclic permutations of the p-tuple
are the same. In other words, such an orbit corresponds to an element a ∈ G
with a p = 1. Clearly, (1, 1, . . . , 1) is such an orbit; if it were the only such, then
we would have

|G|p−1 = |X | = 1 + kp

for some k ≥ 0; that is, |G|p−1 ≡ 1 mod p. If p is a divisor of |G|, then we have
a contradiction, for |G|p−1 ≡ 0 mod p. We have thus proved Cauchy’s theorem:
if a prime p is a divisor of |G|, then G has an element of order p.

Suppose now that G is a group of order n and that p is not a divisor of n; for
example, let G = �

n. By Lagrange’s theorem, G has no elements of order p, so
that if a ∈ G and a p = 1, then a = 1. Therefore, the only orbit in G p of size 1
is (1, 1, . . . , 1), and so

n p−1 = |G|p−1 = |X | = 1 + kp;

that is, if p is not a divisor of n, then n p−1 ≡ 1 mod p. Multiplying both sides
by n, we have n p ≡ n mod p. This congruence also holds when p is a divisor of
n, and this is Fermat’s theorem. �

We have seen, in Proposition 2.97, that A4 is a group of order 12 having no
subgroup of order 6. Thus, the assertion that if d is a divisor of |G|, then G must
have a subgroup of order d , is false. However, this assertion is true when G is a
p-group. Indeed, more is true; G must have a normal subgroup of order d .

22If G is a group of order n and p is a prime, then the number of solutions x ∈ G of the
equation x p = 1 is congruent to n p−1 mod p.
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Proposition 2.150. If G is a group of order |G| = pe, then G has a normal
subgroup of order pk for every k ≤ e.

Proof. We prove the result by induction on e ≥ 0. The base step is obviously
true, and so we proceed to the inductive step. By Theorem 2.146, the center of G
is nontrivial: Z(G) 6= {1}. If Z(G) = G, then G is abelian, and we have already
proved the result in Proposition 2.122. Therefore, we may assume that Z(G) is
a proper subgroup of G. Since Z(G) � G, we have G/Z(G) a p-group of order
strictly smaller than |G|. Assume that |Z(G)| = pc. If k ≤ c, then Z(G) and,
hence G, contains a normal subgroup of order pk , because Z(G) is abelian. If
k > c, then G/Z(G) contains a normal subgroup S∗ of order pk−c, by induction.
The correspondence theorem gives a normal subgroup S of G with

Z(G) ≤ S ≤ G

such that S/Z(G) ∼= S∗. By Corollary 2.82 to Lagrange’s theorem,

|S| = |S∗||Z(G)| = pk−c · pc = pk . •

Abelian groups (and the quaternions) have the property that every subgroup
is normal. At the opposite pole are groups having no normal subgroups other
than the two obvious ones: {1} and G.

Definition. A group G is called simple if G 6= {1} and G has no normal
subgroups other than {1} and G itself.

Proposition 2.151. An abelian group G is simple if and only if it is finite and
of prime order.

Proof. If G is finite of prime order p, then G has no subgroups H other than
{1} and G, otherwise Lagrange’s theorem would show that |H | is a divisor of p.
Therefore, G is simple.

Conversely, assume that G is simple. Since G is abelian, every subgroup
is normal, and so G has no subgroups other than {1} and G. Choose x ∈ G
with x 6= 1. Since 〈x〉 is a subgroup, we have 〈x〉 = G. If x has infinite order,
then all the powers of x are distinct, and so 〈x2〉 < 〈x〉 is a forbidden subgroup
of 〈x〉, a contradiction. Therefore, every x ∈ G has finite order, say, m. If m
is composite, then m = k` and 〈x k〉 is a proper nontrivial subgroup of 〈x〉, a
contradiction. Therefore, G = 〈x〉 has prime order. •

We are now going to show that A5 is a nonabelian simple group (indeed, it
is the smallest such; there is no nonabelian simple group of order less than 60).

Suppose that an element x ∈ G has k conjugates; that is

|xG | = |{gxg−1 : g ∈ G}| = k.
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If there is a subgroup H ≤ G with x ∈ H ≤ G, how many conjugates does x
have in H? Since

x H = {hxh−1 : h ∈ H} ⊆ {gxg−1 : g ∈ G} = xG ,

we have |x H | ≤ |xG |. It is possible that there is strict inequality |x H | < |xG |.
For example, take G = S3, x = (1 2), and H = 〈x〉. We know that |x G | =
3 (because all transpositions are conjugate), whereas |x H | = 1 (because H is
abelian).

Now let us consider this question, in particular, for G = S5, x = (1 2 3),
and H = A5.

Lemma 2.152. All 3-cycles are conjugate in A5.

Proof. Let G = S5, α = (1 2 3), and H = A5. We know that |αS5 | = 20,
for there are 20 3-cycles in S5 (as we saw in Example 2.30). Therefore, 20 =
|S5|/|CS5(α)| = 120/|CS5(α)|, by Corollary 2.143, so that |CS5(α)| = 6; that is,
there are exactly six permutations in S5 that commute with α. Here they are:

(1), (1 2 3), (1 3 2), (4 5), (4 5)(1 2 3), (4 5)(1 3 2).

The last three of these are odd permutations, so that |C A5 (α)| = 3. We conclude
that

|αA5 | = |A5|/|CA5 (α)| = 60/3 = 20;

that is, all 3-cycles are conjugate to α = (1 2 3) in A5. •

This lemma, which says that A5 is generated by the 3-cycles, can be gener-
alized from A5 to An for all n ≥ 5; see Exercise 2.116 on page 205.

Lemma 2.153. Every element in A5 is a 3-cycle or a product of 3-cycles.

Proof. If α ∈ A5, then α is a product of an even number of transpositions:
α = τ1τ2 · · · τ2n−1τ2n . As the transpositions may be grouped in pairs τ2i−1τ2i , it
suffices to consider products ττ ′, where τ and τ ′ are transpositions. If τ and τ ′

are not disjoint, then τ = (i j ), τ ′ = (i k), and ττ ′ = (i k j ); if τ and τ ′ are
disjoint, then ττ ′ = (i j )(k `) = (i j )( j k)( j k)(k `) = (i j k)( j k `). •

Theorem 2.154. A5 is a simple group.

Proof. We shall show that if H is a normal subgroup of A5 and H 6= {(1)}, then
H = A5. Now if H contains a 3-cycle, then normality forces H to contain all its
conjugates. By Lemma 2.152, H contains every 3-cycle, and by Lemma 2.153,
H = A5. Therefore, it suffices to prove that H contains a 3-cycle.
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As H 6= {(1)}, it contains some σ 6= (1). We may assume, after a harmless
relabeling, that either σ = (1 2 3), σ = (1 2)(3 4), or σ = (1 2 3 4 5). As we
have just remarked, we are done if σ is a 3-cycle.

If σ = (1 2)(3 4) ∈ H , use Proposition 2.32: conjugate σ by β = (3 4 5)
to have βσβ−1 = σ ′ = (1 2)(4 5) ∈ H (because β ∈ A5 and H � S5). Hence,
σσ ′ = (3 4 5) ∈ H .

If σ = (1 2 3 4 5) ∈ H , use Proposition 2.32: conjugate σ by γ = (1 2 3)
to have γ σγ−1 = σ ′′ = (2 3 1 4 5) ∈ H (because γ ∈ A5 and H � S5).
Hence, σ ′′σ−1 = (2 3 1 4 5)(5 4 3 2 1) = (1 2 4) ∈ H . We should say how
this last equation arose. If σ ∈ H and γ is a 3-cycle, then γ σγ −1 ∈ H , and
so (γ σγ−1)σ−1 ∈ H . Reassociating, γ (σγ−1σ−1) ∈ H . But σγ−1σ−1 is a
3-cycle, so that H contains a product of two 3-cycles. We have chosen γ more
carefully to force this product of two 3-cycles to be a 3-cycle.

We have shown, in all cases, that H contains a 3-cycle. Therefore, the only
normal subgroups in A5 are {(1)} and A5 itself, and so A5 is simple. •

As we shall see in Chapter 5, Theorem 2.154 turns out to be the basic reason
why the quadratic formula has no generalization giving the roots of polynomials
of degree 5 or higher.

Without much more effort, we can prove that the alternating groups An are
simple for all n ≥ 5. Observe that A4 is not simple, for the four-group V is a
normal subgroup of A4.

Lemma 2.155. A6 is a simple group.

Proof. Let H 6= {(1)} be a normal subgroup of A6; we must show that H = A6.
Assume that there is some α ∈ H with α 6= (1) which fixes some i , where
1 ≤ i ≤ 6. Define

F = {σ ∈ A6 : σ(i) = i}.

Now α ∈ H ∩ F , so that H ∩ F 6= {(1)}. The second isomorphism theorem
gives H ∩ F � F . But F is simple, for F ∼= A5, by Exercise 2.118 on page 205,
and so the only normal subgroups in F are {(1)} and F . Since H ∩ F 6= {(1)},
we have H ∩ F = F ; that is, F ≤ H . It follows that H contains a 3-cycle, and
so H = A6, by Exercise 2.116 on page 205.

We may now assume that there is no α ∈ H with α 6= (1) which fixes some
i with 1 ≤ i ≤ 6. If one considers the cycle structures of permutations in A6,
however, any such α must have cycle structure (1 2)(3 4 5 6) or (1 2 3)(4 5 6).
In the first case, α2 ∈ H is a nontrivial permutation which fixes 1 (and also 2), a
contradiction. In the second case, H contains α(βα−1β−1), where β = (2 3 4),
and it is easily checked that this is a nontrivial element in H which fixes 6,
another contradiction. Therefore, no such normal subgroup H can exist, and so
A6 is a simple group. •
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Theorem 2.156. An is a simple group for all n ≥ 5.

Proof. If H is a nontrivial normal subgroup of An [that is, H 6= (1)], then we
must show that H = An; by Exercise 2.116 on page 205, it suffices to prove
that H contains a 3-cycle. If β ∈ H is nontrivial, then there exists some i that
β moves; say, β(i) = j 6= i . Choose a 3-cycle α which fixes i and moves
j . The permutations α and β do not commute: βα(i) = β(i) = j , while
αβ(i) = α( j ) 6= j . It follows that γ = (αβα−1)β−1 is a nontrivial element of
H . But βα−1β−1 is a 3-cycle, by Proposition 2.32, and so γ = α(βα−1β−1) is
a product of two 3-cycles. Hence, γ moves at most 6 symbols, say, i1, . . . , i6 (if
γ moves fewer than 6 symbols, just adjoin others so we have a list of 6). Define

F = {σ ∈ An : σ fixes all i 6= i1, . . . , i6}.

Now F ∼= A6, by Exercise 2.118 on page 205, and γ ∈ H ∩ F . Hence, H ∩ F
is a nontrivial normal subgroup of F . But F is simple, being isomorphic to A6,
and so H ∩ F = F ; that is, F ≤ H . Therefore, H contains a 3-cycle, and so
H = An; the proof is complete. •

EXERCISES

2.102 If a and b are elements in a group G , prove that ab and ba have the same order.
2.103 Prove that every translation τa ∈ SG , where τa : g 7→ ag, is a regular permutation

(see Exercise 2.26 on page 121). The homomorphism ϕ : G → SG , defined by
ϕ(a) = τa , is often called the regular representation of G .

2.104 Prove that no pair of the following groups of order 8,

� 8; � 4 × � 2; � 2 × � 2 × � 2; D8; Q,

are isomorphic.
*2.105 If p is a prime and G is a finite group in which every element has order a power

of p, prove that G is a p-group.
*2.106 Prove that a finite p-group G is simple if and only if |G| = p.
*2.107 Show that S4 has a subgroup isomorphic to D8.
*2.108 Prove that S4/V ∼= S3.
2.109 (i) Prove that A4 6∼= D12.

(ii) Prove that D12 ∼= S3 × � 2.
*2.110 (i) If H is a subgroup of G and if x ∈ H , prove that

CH (x) = H ∩ CG (x).

(ii) If H is a subgroup of index 2 in a finite group G and if x ∈ H , prove that
either |x H | = |xG | or |x H | = 1

2 |xG |, where x H is the conjugacy class of
x in H .

*2.111 Prove that the group UT(3, 2) in Example 2.148 is isomorphic to D8.
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2.112 (i) How many permutations in S5 commute with (1 2)(3 4), and how many
even permutations in S5 commute with (1 2)(3 4).

(ii) How many permutations in S7 commute with (1 2)(3 4 5)?
(iii) Exhibit all the permutations in S7 commuting with (1 2)(3 4 5).

*2.113 (i) Show that there are two conjugacy classes of 5-cycles in A5, each of
which has 12 elements.

(ii) Prove that the conjugacy classes in A5 have sizes 1, 12, 12, 15, and 20.
2.114 (i) Prove that every normal subgroup H of a group G is a union of conjugacy

classes of G , one of which is {1}.
(ii) Use part (i) and Exercise 2.113 to give a second proof of the simplicity

of A5.
*2.115 If σ, τ ∈ S5, where σ is a 5-cycle and τ is a transposition, prove that 〈σ, τ 〉 = S5.
*2.116 (i) For all n ≥ 3, prove that every α ∈ An is a product of 3- cycles.

(ii) Prove that if a normal subgroup H � An contains a 3-cycle, where n ≥ 5,
then H = An . (Remark. See Lemmas 2.153 and 2.153.)

2.117 Prove that the only normal subgroups of S4 are {(1)}, V, A4, and S4.
*2.118 Let {i1, . . . , ir } ⊆ {1, 2, . . . n}, and let

F = {σ ∈ An : σ fixes all i with i 6= i1, . . . , ir }.
Prove that F ∼= Ar .

2.119 Prove that A5 is a group of order 60 that has no subgroup of order 30.
2.120 Let X = {1, 2, 3, . . .} be the set of all positive integers, and let SX be the symmetric

group on X .
(i) Prove that F∞ = {σ ∈ SX : σ moves only finitely many n ∈ X} is a

subgroup of SX .
(ii) Define A∞ to be the subgroup of F∞ generated by the 3-cycles. Prove

that A∞ is an infinite simple group.
2.121 (i) Prove that if a simple group G has a subgroup of index n, then G is

isomorphic to a subgroup of Sn .
(ii) Prove that an infinite simple group has no subgroups of finite index n > 1.

*2.122 Let G be a group with |G| = mp, where p is a prime and 1 < m < p. Prove that
G is not simple.
Remark. . Of all the numbers smaller than 60, we can now show that all but 11
are not orders of nonabelian simple groups (namely, 12, 18, 24, 30, 36, 40, 45, 48,
50, 54, 56). Theorem 2.146 eliminates all prime powers (for the center is always
a normal subgroup), and Exercise 2.122 eliminates all numbers of the form mp,
where p is a prime and m < p. (We will complete the proof that there are no
nonabelian simple groups of order less than 60 in Theorem 6.25.) �

*2.123 If n ≥ 3, prove that An is the only subgroup of Sn of order 1
2 n!.

*2.124 Prove that A6 has no subgroups of prime index.

2.8 COUNTING WITH GROUPS

We are now going to use group theory to do some fancy counting.
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Lemma 2.157.

(i) Let a group G act on a set X. If x ∈ X and σ ∈ G, then Gσ x = σGxσ
−1.

(ii) If a finite group G acts on a finite set X and if x and y lie in the same orbit,
then |G y | = |Gx |.

Proof.
(i) If τ ∈ Gx , then τ x = x . If σ x = y, we have

στσ−1y = στσ−1σ x = στ x = σ x = y.

Therefore, στσ−1 fixes y, and so σGxσ
−1 ≤ G y . The reverse inclusion is

proved in the same way, for x = σ−1y.
(ii) If x and y are in the same orbit, then there is σ ∈ G with y = σ x , and so
|G y | = |Gσ x | = |σGxσ

−1| = |Gx |. •

Theorem 2.158 (Burnside’s Lemma).23 Let G act on a finite set X. If N is the
number of orbits, then

N =
1

|G|
∑

τ∈G

F(τ),

where F(τ) is the number of x ∈ X fixed by τ .

Proof. List the elements of X as follows: choose x1 ∈ X , and then list all
the elements in the orbit

�
(x1); say,

�
(x1) = {x1, x2, . . . , xr }; then choose

xr+1 /∈
�
(x1), and list the elements of

�
(xr+1) as xr+1, xr+2, . . .; continue

this procedure until all the elements of X are listed. Now list the elements
τ1, τ2, . . . , τn of G, and form the following array of 0’s and 1’s, where

fi, j =
{

1 if τi fixes x j

0 if τi moves x j .

Now F(τi ), the number of x fixed by τi , is the number of 1’s in the i th row of
the array; therefore,

∑
τ∈G F(τ) is the total number of 1’s in the array. Let us

now look at the columns. The number of 1’s in the first column is the number
of τi that fix x1; by definition, these τi comprise Gx1 . Thus, the number of

23Burnside’s influential book, The Theory of Groups of Finite Order, had two editions. In
the first edition, he attributed this theorem to G. Frobenius; in the second edition, he gave no
attribution at all. However, the commonly accepted name of this theorem is Burnside’s lemma.
To avoid the confusion that would be caused by changing a popular name, P. M. Neumann
suggested that it be called “not-Burnside’s lemma.” Burnside was a fine mathematician, and
there do exist theorems properly attributed to him. For example, Burnside proved that if p and
q are primes, then there are no simple groups of order pmqn .
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x1 · · · xr xr+1 · · · x j · · ·
τ1 f1,1 · · · f1,r f1,r+1 · · · f1, j · · ·

τ2 f2,1 · · · f2,r f2,r+1 · · · f2, j · · ·

τi fi,1 · · · fi,r fi,r+1 · · · fi, j · · ·

τn fn,1 · · · fn,r fn,r+1 · · · fn, j · · ·

1’s in column 1 is |Gx1 |. Similarly, the number of 1’s in column 2 is |G x2 |.
By Lemma 2.157(ii), |Gx1 | = |Gx2 |. By Theorem 2.141, the number of 1’s in
the r columns labeled by the xi ∈

�
(x1) is thus

r |Gx1 | = |
�
(x1)| · |Gx1 | =

(
|G|/|Gx1 |

)
|Gx1 | = |G|.

The same is true for any other orbit: its columns contain exactly |G| 1’s. There-
fore, if there are N orbits, there are N |G| 1’s in the array. We conclude that

∑

τ∈G

F(τ) = N |G|. •

We are going to use Burnside’s lemma to solve problems of the following
sort. How many striped flags are there having six stripes (of equal width) each
of which can be colored red, white, or blue? Clearly, the two flags in Figure 2.19
are the same: the bottom flag is just the reverse of the top one (the flag may be
viewed by standing in front of it or by standing in back of it).

r w b r w b

b w r b w r

Figure 2.19 A Flag

Let X be the set of all 6-tuples of colors; if x ∈ X , then

x = (c1, c2, c3, c4, c5, c6),

where each ci denotes either red, white, or blue. Let τ be the permutation that
reverses all the indices:

τ =
(

1 2 3 4 5 6
6 5 4 3 2 1

)
= (1 6)(2 5)(3 4)
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(thus, τ “turns over” each 6-tuple x of colored stripes). The cyclic group G = 〈τ 〉
acts on X ; since |G| = 2, the orbit of any 6-tuple x consists of either 1 or 2
elements: either τ fixes x or it does not. Since a flag is unchanged by turning it
over, it is reasonable to identify a flag with an orbit of a 6-tuple. For example,
the orbit consisting of the 6-tuples

(r, w, b, r, w, b) and (b, w, r, b, w, r)

describes the flag in Figure 2.19. The number of flags is thus the number N of
orbits; by Burnside’s lemma, N = 1

2 [F((1))+ F(τ)]. The identity permutation
(1) fixes every x ∈ X , and so F((1)) = 36 (there are 3 colors). Now τ fixes a
6-tuple x if and only if x is a “palindrome,” that is, if the colors in x read the
same forward as backward. For example,

x = (r, r, w,w, r, r)

is fixed by τ . Conversely, if

x = (c1, c2, c3, c4, c5, c6)

is fixed by τ = (1 6)(2 5)(3 4), then c1 = c6, c2 = c5, and c3 = c4; that is, x is
a palindrome. It follows that F(τ) = 33, for there are 3 choices for each of c1,
c2, and c3. The number of flags is thus

N = 1
2 (3

6 + 33) = 378.

Let us make the notion of coloring more precise.

Definition. Given an action of a group G on X = {1, . . . , n} and a set � of q
colors, then G acts on the set � n of all n-tuples of colors by

τ(c1, . . . , cn) = (cτ1, . . . , cτn) for all τ ∈ G.

An orbit of (c1, . . . , cn) ∈ � n is called a (q, G)-coloring of X .

Example 2.159.
Color each square in a 4 × 4 grid red or black (adjacent squares may have the
same color; indeed, one possibility is that all the squares have the same color).

If X consists of the 16 squares in the grid and if � consists of the two colors
red and black, then the cyclic group G = 〈R〉 of order 4 acts on X , where R is
clockwise rotation by 90◦; Figure 2.20 shows how R acts: the right square is R’s
action on the left square. In cycle notation,
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

13 9 5 1

14 10 6 2

15 11 7 3

16 12 8 4

Figure 2.20 Chessboard

R = (1, 4, 16, 13)(2, 8, 15, 9)(3, 12, 14, 5)(6, 7, 11, 10),

R2 = (1, 16)(4, 13)(2, 15)(8, 9)(3, 14)(12, 5)(6, 11)(7, 10),

R3 = (1, 13, 16, 4)(2, 9, 15, 8)(3, 5, 14, 12)(6, 10, 11, 7).

A red-and-black chessboard does not change when it is rotated; it is merely
viewed from a different position. Thus, we may regard a chessboard as a (2,G)-
coloring of X ; the orbit of a 16-tuple corresponds to the four ways of viewing
the board.

By Burnside’s lemma, the number of chessboards is

1
4

[
F((1))+ F(R)+ F(R2)+ F(R3)

]
.

Now F((1)) = 216, for every 16-tuple is fixed by the identity. To compute F(R),
note that squares 1, 4, 16, 13 must all have the same color in a 16-tuple fixed by
R. Similarly, squares 2, 8, 15, 9 must have the same color, squares 3, 12, 14, 5
must have the same color, and squares 6, 7, 11, 10 must have the same color. We
conclude that F(R) = 24; note that the exponent 4 is the number of cycles in the
complete factorization of R. A similar analysis shows that F(R2) = 28, for the
complete factorization of R2 has 8 cycles, and F(R3) = 24, because the cycle
structure of R3 is the same as that of R. Therefore, the number N of chessboards
is

N = 1
4

[
216 + 24 + 28 + 24

]
= 16,456.

Doing this count without group theory is more difficult because of the danger of
counting the same chessboard more than once. �

We now show that the cycle structure of a permutation τ allows one to cal-
culate F(τ).
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Theorem 2.160. Let � be a set of q colors, and let τ ∈ Sn.

(i) If F(τ) is the number of x ∈ � n fixed by τ , and if t (τ) is the number of
cycles in the complete factorization of τ , then

F(τ) = q t (τ ).

(ii) If a finite group G acts on X = {1, . . . , n}, then the number N of (q,G)-
colorings of X is

N =
1

|G|
∑

τ∈G

q t (τ ),

where t (τ) is the number of cycles in the complete factorization of τ .

Proof.
(i) Let τ ∈ Sn and let τ = β1 · · · βt be a complete factorization, where each β j
is an r j -cycle. If i1, . . . , ir j are the symbols moved by β j , then ik+1 = τ k i1
for k < r j . Since τ(c1, . . . , cn) = (cτ1, . . . , cτn) = (c1, . . . , cn), we see that
cτ i1 = ci1 have the same color. But τ 2i1 also has the same color as i1; if fact,
τ k i1 has the same color as i1 for all k. Now there is another way to view these
points. By Example 2.139, the points τ k i1 are precisely the symbols moved by
β j ; that is, β j = (i1, i2, . . . , ir j ). Thus, (c1, . . . , cn) is fixed by τ if, for each j ,
all the symbols ck for k moved by β j must have the same color. As there are q
colors and t (τ) β j ’s, there are q t (τ )n-tuples fixed by τ .
(ii) Substitute q t (τ ) for F(τ) into the formula in Burnside’s lemma. •

Example 2.161.
We can now simplify the computations in Example 2.159. The group G acting on
the set X of all 4×4 grids consists of the 4 elements 1, R, R2, R3. The complete
factorizations of these elements were given in the example, from which we see
that

τ(1) = 16, τ (R) = 4 = τ(R3), τ(R2) = 8.

It follows from Theorem 2.160 that

N = 1
4

[
216 + 2 · 24 + 28]. �

We introduce a polynomial in several variables to allow us to state a more
delicate counting result due to P ólya.

Definition. If the complete factorization of τ ∈ Sn has er (τ) ≥ 0 r -cycles,
then the index of τ is the monomial

ind(τ) = xe1(τ )
1 xe2(τ )

2 · · · xen(τ )
n .
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If G is a subgroup of Sn, then the cycle index of G is the polynomial in n vari-
ables with coefficients in

�
:

PG(x1, . . . , xn) =
1

|G|
∑

τ∈G

ind(τ).

In our earlier discussion of the striped flags, the group G was a cyclic group
of order 2 with generator τ = (1 6)(2 5)(3 4). Thus, ind((1)) = x 6

1 , ind(τ) =
x3

2 , and
PG(x1, . . . , x6) = 1

2 (x
6
1 + x3

2).

As a second example, consider all possible blue-and-white flags having 9
stripes. Here |X | = 9 and G = 〈τ 〉 ≤ S9, where

τ = (1 9)(2 8)(3 7)(4 6)(5).

Now, ind((1)) = x9
1 , ind(τ) = x1x4

2 , and the cycle index of G = 〈τ 〉 is thus

PG(x1, . . . , x9) = 1
2 (x

9
1 + x1x4

2).

In Example 2.159, we saw that the cyclic group G = 〈R〉 of order 4 acts on
a grid with 16 squares, and:

ind((1)) = x16
1 ; ind(R) = x4

4; ind(R2) = x8
2 ; ind(R3) = x4

4 .

The cycle index is thus

PG(x1, . . . , x16) = 1
4 (x

16
1 + x8

2 + 2x4
4).

Proposition 2.162. If |X | = n and G is a subgroup of Sn, then the number of
(q,G)-colorings of X is PG(q, . . . , q), where PG(x1, . . . , xn) is the cycle index.

Proof. By Theorem 2.160, the number of (q,G)-colorings of X is

1

|G|
∑

τ∈G

q t (τ ),

where t (τ) is the number of cycles in the complete factorization of τ . On the
other hand,

PG(x1, . . . , xn) =
1

|G|
∑

τ∈G

ind(τ)

=
1

|G|
∑

τ∈G

xe1(τ )
1 xe2(τ )

2 · · · xen(τ )
n ,
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and so

PG(q, . . . , q) =
1

|G|
∑

τ∈G

qe1(τ )+e2(τ )+···+en(τ )

=
1

|G|
∑

τ∈G

q t (τ ). •

Let us count again the number of red-and-black chessboards with sixteen
squares in Example 2.159. Here,

PG(x1, . . . , x16) = 1
4 (x

16
1 + x8

2 + 2x4
4).

and so the number of chessboards is

PG(2, . . . , 2) = 1
4 (2

16 + 28 + 2 · 24).

The reason we have introduced the cycle index is that it allows us to state
P ólya’s generalization of Burnside’s lemma which solves the following sort of
problem. How many blue-and-white flags with 9 stripes have 4 blue stripes and
5 white stripes? More generally, we want to count the number of orbits in which
we prescribe the number of “stripes” of any given color.

Theorem 2.163 (Pólya). Let G ≤ SX , where |X | = n, let | � | = q, and, for
each i ≥ 1, define σi = ci

1 + · · · + ci
q . Then the number of (q,G)-colorings of

X having fr elements of color cr , for every r , is the coefficient of c f1
1 c f2

2 · · · c
fq
q

in PG(σ1, . . . , σn).

Proofs of P ólya’s theorem can be found in combinatorics books (for example,
see Biggs, Discrete Mathematics). To solve the flag problem posed above, first
note that the cycle index for blue-and-white flags having 9 stripes is

PG(x1, . . . , x9) = 1
2 (x

9
1 + x1x4

2).

and so the number of flags is PG(2, . . . , 2) = 1
2 (2

9 + 25) = 272. Using P ólya’s
theorem, the number of flags with 4 blue stripes and 5 white ones is the coeffi-
cient of b4w5 in

PG(σ1, . . . , σ9) = 1
2

[
(b + w)9 + (b + w)(b2 + w2)4

]
.

A calculation using the binomial theorem shows that the coefficient of b4w5

is 66.
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EXERCISES

2.125 How many flags are there with n stripes each of which can be colored any one of
q given colors?

2.126 Let X be the squares in an n × n grid, and let ρ be a rotation by 90◦. Define a
chessboard to be a (q,G)-coloring, where the cyclic group G = 〈ρ〉 of order 4 is
acting. Show that the number of chessboards is

1
4

(
qn2

+ qb(n2+1)/2c + 2qb(n2+3)/4c
)
,

where bxc is the greatest integer in the number x .
2.127 Let X be a disk divided into n congruent circular sectors, and let ρ be a rotation by

(360/n)◦ . Define a roulette wheel to be a (q,G)-coloring, where the cyclic group
G = 〈ρ〉 of order n is acting. Prove that if n = 6, then there are 1

6 (2q + 2q2 +
q3 + q6) roulette wheels having 6 sectors.

[The formula for the number of roulette wheels with n sectors is

1
n

∑

d|n
φ(n/d)qd ,

where φ is the Euler φ-function.]
2.128 Let X be the vertices of a regular n-gon, and let the dihedral group G = D2n act

(as the usual group of symmetries [see Example 2.62]). Define a bracelet to be a
(q,G)-coloring of a regular n-gon, and call each of its vertices a bead. (Not only
can one rotate a bracelet; one can also flip it.)

(i) How many bracelets are there having 5 beads, each of which can be col-
ored any one of q available colors?

(ii) How many bracelets are there having 6 beads, each of which can be col-
ored any one of q available colors?

(iii) How many bracelets are there with exactly 6 beads having 1 red bead, 2
white beads, and 3 blue beads?



3
Commutative Rings I

3.1 FIRST PROPERTIES

In high school algebra, one is usually presented with a list of “rules” for ordinary
addition and multiplication of real numbers; these lists1 are often quite long, hav-
ing perhaps 20 or more items. For example, one rule is the additive cancellation
law:

if a + c = b + c, then a = b.

Some rules, as this one, follow from properties of subtraction – just subtract c
from both sides – but there are also rules involving two operations. One such is
the distributive law:

(a + b)c = ac + bc;

when read from left to right, it says that c can be “multiplied through” a + b;
when read from right to left, it says that c can be “factored out” of ac+bc. There
is also the “mysterious” rule:

(−1)× (−1) = 1, (M)

which involves both multiplication and subtraction. Lists of rules can be shrunk
by deleting redundant items, but there is a good reason for so shrinking them
aside from the obvious economy provided by a shorter list: a short list makes it
easier to see analogies between numbers and other realms (such as polynomials)
in which one can both add and multiply. Before exploring such other realms, let
us dispel the mystery of (M).

1For example, see H. S. Hall and S. R. Knight, Algebra for Colleges and Schools, Macmil-
lan, 1923, or J. C. Stone and V. S. Mallory, A Second Course in Algebra, Sanborn, 1937.

214
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Lemma 3.1. 0 · a = 0 for every number a.

Proof. Since 0 = 0 + 0, the distributive law gives

0 · a = (0 + 0) · a = (0 · a)+ (0 · a).

Now subtract 0 · a from both sides (that is, use the additive cancellation law) to
get 0 = 0 · a. •

Incidentally, we can now see why dividing by 0 is forbidden: given a num-
ber b, its reciprocal 1/b must satisfy b(1/b) = 1. In particular, 1/0 would be a
number satisfying 0·(1/0) = 1. But Lemma 3.1 gives 0·(1/0) = 0, contradicting
1 6= 0.

Lemma 3.2. If −a is that number which, when added to a, gives 0, then
(−1)(−a) = a.

Proof. The distributive law and Lemma 3.1 give

0 = 0 · (−a) = (−1 + 1)(−a) = (−1)(−a)+ (−a);

now add a to both sides (the additive cancellation law again) to get a = (−1)(−a).
•

Setting a = 1 gives the (no longer) mysterious (M).
While we are proving elementary properties, let us show that, fortunately,

the product (−1)a is the same as −a.

Corollary 3.3. (−1)a = −a for every number a.

Proof. By Lemma 3.2, (−1)(−a) = a. Multiplying both sides by −1 gives

(−1)(−1)(−a)= (−1)a.

But Lemma 3.2 gives (−1)(−1) = 1, so that −a = (−1)a. •

Mathematical objects other than numbers can be added and multiplied. For
example, in calculus, one adds and multiplies functions. Now the constant func-
tion ε(x) ≡ 1 behaves just like the number 1 under multiplication. Is the analog
of Lemma 3.2 true; is [−ε(x)][− f (x)] = f (x)? The answer is yes, and the
proof of this fact is exactly the same as the proof just given for numbers: just
replace every occurrence of the letter a by f (x) and the numeral 1 by ε.

We now focus on certain simple properties enjoyed by ordinary addition
and multiplication, elevating them to the status of axioms. In essence, we are
describing more general realms in which we shall be working.
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Definition. A commutative ring2 R is a set with two operations, addition and
multiplication, such that:

(i) a + b = b + a for all a, b ∈ R;

(ii) a + (b + c) = (a + b)+ c for all a, b, c ∈ R;

(iii) there is an element 0 ∈ R with 0 + a = a for all a ∈ R;

(iv) for each a ∈ R, there is a′ ∈ R with a′ + a = 0;

(v) ab = ba for all a, b ∈ R;

(vi) a(bc) = (ab)c for every a, b, c ∈ R;

(vii) there is an element 1 ∈ R, called one (or the unit),3 with 1a = a for every
a ∈ R;

(viii) a(b + c) = ab + ac for every a, b, c ∈ R.

Of course, axioms (i) through (iv) say that R is an abelian group under ad-
dition. Addition and multiplication in a commutative ring R are operations, so
there are functions

α : R × R → R with α(r, r ′) = r + r ′ ∈ R

and
µ : R × R → R with µ(r, r ′) = rr ′ ∈ R

for all r, r ′ ∈ R. The law of substitution holds here, as it does for any operation:
if r = r ′ and s = s′, then r + s = r ′ + s′ and rs = r ′s′. For example, the proof
of Lemma 3.1 begins with µ(0, a) = µ(0 + 0, a), and the proof of Lemma 3.2
begins with α(0,−a) = α(−1 + 1,−a).

Example 3.4.

(i) The reader may assume that
�

,
�

,
�

, and
�

are commutative rings with the
usual addition and multiplication (the ring axioms are verified in courses
in the foundations of mathematics).

2This term was probably coined by D. Hilbert, in 1897, when he wrote Zahlring. One
of the meanings of the word ring, in German as in English, is collection, as in the phrase “a
ring of thieves.” (It has also been suggested that Hilbert used this term because, for a ring
of algebraic integers, an appropriate power of each element “cycles back” to being a linear
combination of lower powers.)

3Some authors do not demand that commutative rings have 1. For them, the set of all even
integers is a commutative ring, but we do not recognize it as such. They refer to our rings as
commutative rings with one.
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(ii) Let
� [i ] be the set of all complex numbers of the form a + bi , where

a, b ∈ �
and i2 = −1. It is a boring exercise to check that

� [i ] is, in fact,
a commutative ring (this exercise will be significantly shortened once the
notion of subring has been introduced).

� [i ] is called the ring of Gaussian
integers.

(iii) Consider the set R of all real numbers x of the form

x = a + bω,

where a, b ∈
�

and ω = 3
√

2. It is easy to see that R is closed under
ordinary addition, but we claim that R is not closed under multiplication.
If ω2 ∈ R, then there are rationals a and b with

ω2 = a + bω.

Multiplying both sides by ω gives the equations:

2 = aω + bω2

= aω + b(a + bω)

= aω + ab + b2ω

= ab + (a + b2)ω.

If a + b2 = 0, then a = −b2, and the last equation gives 2 = ab; hence,
2 = (−b2)b = −b3. But this says that the cube root of 2 is rational,
contradicting Exercise 1.49(ii) on page 51. Therefore, a + b2 6= 0 and
ω = (2 − ab)/(a + b2). Since a and b are rational, we have ω rational,
again contradicting Exercise 1.49(ii). Therefore, R is not closed under
multiplication, and so R is not a commutative ring. �

Remark. In the term commutative ring, the adjective modifies the operation
of multiplication, for commutativity of addition is part of the general concept of
ring. There are noncommutative rings; that is, there are sets with addition and
multiplication satisfying all the axioms of a commutative ring except the com-
mutativity axiom: ab = ba. [Actually, the definition replaces the axiom 1a = a
by 1a = a = a1, and it replaces the distributive law by two distributive laws,
one on either side: a(b+c) = ab+ac and (b+c)a = ba+ca.] For example, let
M denote the set of all 2 × 2 matrices with real entries. Example 2.48(i) defines
multiplication of matrices, and we now define addition by

[
a b
c d

]
+
[

a′ b′

c′ d ′

]
=
[

a + a′ b + b′

c + c′ d + d ′

]
.
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It is easy to see that M , equipped with this addition and multiplication, satisfies
all the new ring axioms except the commutativity of multiplication.

Even though there are interesting examples of noncommutative rings, we
shall consider only commutative rings in this book. �

Proposition 3.5. Lemma 3.1, Lemma 3.2, and Corollary 3.3 hold for every
commutative ring.

Proof. Each of these results can be proved using only the defining axioms of a
commutative ring. To illustrate, here is a very fussy proof of Lemma 3.1: if R is
a commutative ring and a ∈ R, then 0 · a = 0.

Since 0 = 0 + 0, the distributive law gives

0 · a = (0 + 0) · a = (0 · a)+ (0 · a).

Now add −(0 · a) to both sides:

−(0 · a)+ (0 · a) = −(0 · a)+ [(0 · a)+ (0 · a)].

The defining property of −(0 · a) gives the left side −(0 · a)+ (0 · a) = 0, and so

0 = −(0 · a)+ [(0 · a)+ (0 · a)].

We use associativity to simplify the right side.

0 = −(0 · a)+ [(0 · a)+ (0 · a)]
= [−(0 · a)+ (0 · a)] + (0 · a)

= 0 + (0 · a)

= 0 · a. •

It is unusual to give such a detailed proof, for it tends to make a simple
idea look difficult. You should regard a proof as an explanation why a statement
is true. But an explanation depends on whom you are talking to: you would
probably give one explanation to a beginning high school student, another to one
of your classmates, and yet another to your professor. As a rule of thumb, your
proofs should be directed toward your peers, one of whom is yourself. Make your
proof as clear as possible, not too long, not too short. If your proof is challenged,
you must be prepared to explain further, so try to anticipate challenges by giving
enough details in your original proof.

What have we shown? Formulas such as (−1)(−a) = a hold, not because
of the nature of the numbers a and 1, not because of the particular definitions of
the operations of addition and multiplication, but merely as consequences of the
axioms for addition and multiplication stated in the definition of commutative
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ring. For example, we shall see, in Proposition 3.6, that the binomial theorem
holds in every commutative ring. Once we see that all functions

� → �
form a

commutative ring [Example 3.10], it will then follow that the binomial theorem
( f + g)n =

∑(n
i

)
f i gn−i holds for all functions f, g : � → �

. Thus, a theo-
rem about commutative rings applies not only to numbers but to other realms as
well, thereby proving many theorems all at once instead of one at a time. The
abstract approach allows us to be more efficient; the same result need not be
proved over and over again. There is a second advantage of abstraction. The
things one adds and multiplies may be very complicated, but many properties
may be consequences of the rules of manipulating them and not of their intrinsic
structure. Thus, as we have seen when we studied groups, the abstract approach
allows us to focus on the essential parts of a problem; we need not be distracted
by any features irrelevant to it.

Definition. If R is a commutative ring and a, b ∈ R, then subtraction is defined
by

a − b = a + (−b).

In light of Corollary 3.3,

a − b = a + (−1)b.

Here is one more ultrafussy proof (we shall not be so fussy again!): the
distributive law ca − cb = c(a − b) holds for subtraction.

a(b − c) = a[b + (−1)c] = ab + a[(−1)c]
= ab + [a(−1)]c = ab + [(−1)a]c
= ab + (−1)(ac)= ab − ac.

It R is a commutative ring and r ∈ R, it is natural to denote rr as r 2 and rrr
as r3. Similarly, it is natural to denote r + r as 2r and r + r + r as 3r . Here is
the formal definition.

Definition. Let R be a commutative ring, let a ∈ R, and let n ∈ �
. Define

0a = 0 (the 0 on the left is the number zero, while the 0 on the right is the zero
element of R), and define (n + 1)a = na + a. Define (−n)a = −(na).

Thus, if n ∈ �
, we have na = a + a +· · ·+ a, where there are n summands.

It is easy to see that (−n)a = −(na) = n(−a). The element n∗ = ε + · · · + ε,
where ε is the one in a commutative ring R, has the property that na, as defined
above, is equal to n∗a. Thus, na, the product of a natural number and a ring
element, can also be viewed as the product of two ring elements.
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Proposition 3.6 (Binomial Theorem). If a, b ∈ R,, where R is a commutative
ring, then for all n ≥ 0,

(a + b)n =
n∑

r=0

(
n

r

)
ar bn−r .

Proof. Adapt the proof of Proposition 1.15, the binomial theorem in
�

. In
particular, define a0 = 1 for every a ∈ R, even for a = 0. •

In the definition of commutative ring, we did not insist that 1 6= 0.

Proposition 3.7. If R is a commutative ring in which 1 = 0, then R has only
one element: R = {0}. One calls R the zero ring.

Proof. If r ∈ R, then r = 1r = 0r = 0, by Proposition 3.5. •

The zero ring arises occasionally, but we agree that it is not very interesting.

Definition. An integral domain is a commutative ring R with 1 6= 0 which
satisfies an extra axiom, the cancellation law for multiplication:

if ca = cb and c 6= 0, then a = b.

We will consistently abbreviate this term to domain (unless it occurs in a context
in which it might be confused with the domain of some function).

The familiar examples of commutative rings:
�

,
�

,
�

,
�

, are domains, but
we shall soon exhibit honest examples of commutative rings that are not do-
mains.

Proposition 3.8. A commutative ring R is a domain if and only if it is not the
zero ring and the product of any two nonzero elements of R is nonzero.

Proof. Assume that R is a domain, so that the cancellation law holds. Suppose,
by way of contradiction, that there are nonzero elements a, b ∈ R with ab = 0.
Proposition 3.5 gives 0 · b = 0, so that ab = 0 · b. The cancellation law now
gives a = 0 (for b 6= 0), and this is a contradiction.

Conversely, assume that the product of nonzero elements in R is always
nonzero. If ca = cb with c 6= 0, then 0 = ca − cb = c(a − b). Since c 6= 0,
the hypothesis that the product of nonzero elements is nonzero forces a − b = 0.
Therefore, a = b, as desired. •
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Definition. A subset S of a commutative ring R is a subring of R if:

(i) 1 ∈ S;4

(ii) if a, b ∈ S, then a − b ∈ S;

(iii) if a, b ∈ S, then ab ∈ S.

Just as a subgroup is a group in its own right, so is a subring of a commutative
ring a commutative ring in its own right.

Proposition 3.9. A subring S of a commutative ring R is itself a commutative
ring.

Proof. By hypothesis, 1 ∈ S and axiom (vii) in the definition of commutative
ring on page 216 holds. We now show that S is closed under addition; that is,
if s, s′ ∈ S, then s + s′ ∈ S. Axiom (ii) in the definition of subring gives
0 = 1 − 1 ∈ S. Another application of this axiom shows that if b ∈ S, then
0 − b = −b ∈ S; finally, if a, b ∈ S, then Lemma 3.3 shows that S contains

a − (−b) = a + (−1)(−b)

= a + (−1)(−1)b

= a + b.

Thus, S is closed under addition and multiplication. It contains 1 and 0 and, for
each s ∈ S, it contains −s. All the other axioms in the definition of commuta-
tive ring are inherited by S from their holding in the commutative ring R. For
example, we know that the distributive law a(b + c) = ab + ac holds for all
a, b, c ∈ R. In particular, this equation holds for all a, b, c ∈ S ⊆ R, and so the
distributive law holds in S. •

To verify that a set S is a commutative ring requires checking ten items: clo-
sure under addition and multiplication and eight axioms; to verify that a subset
S of a commutative ring is a subring requires checking only three items, which
is obviously more economical. For example, it is simpler to show that the ring
of Gaussian integers,

� [i ] = {z ∈
�

: z = a + ib : a, b ∈ � },

is a subring of
�

than to verify all the axioms in the definition of a commutative
ring. Of course, one must first have shown that

�
is a commutative ring.

4The even integers do not form a subring of � because 1 is not even. Their special structure
will be recognized when ideals are introduced.
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Example 3.10.
If n ≥ 3 is an integer, let ζn = e2π i/n be a primitive nth root of unity, and define

� [ζn] = {z ∈
�

: z = a0 + a1ζn + a2ζ
2
n + · · · + an−1ζ

n−1
n , all ai ∈ � }.

When n = 4, then
� [ζ4] is the Gaussian integers

� [i ]. It is easy to check that� [ζn] is a subring of
�

; to prove that
� [ζn] is closed under multiplication, note

that if m ≥ n, then m = qn + r , where 0 ≤ r < n, and ζm
n = ζ r

n . �

Here is an example of a commutative ring that is not a domain.

Example 3.11.

(i) Let
�
(

�
) be the set of all the functions

� → �
equipped with the

operations of pointwise addition and pointwise multiplication: for func-
tions f, g ∈ �

(
�
), define new functions f + g and f g by

f + g : a 7→ f (a)+ g(a) and f g : a 7→ f (a)g(a)

(notice that f g is not their composite).

Pointwise addition and pointwise multiplication are precisely those
operations on functions that occur in calculus. For example, recall the
product rule for derivatives:

( f g)′ = f ′g + f g′.

The + in the sum f ′g + f g′ is pointwise addition, and f ′g is the pointwise
product of f ′ and g.

We claim that
�
(

�
) with these operations is a commutative ring. Ver-

ification of the axioms is left to the reader with the following hint: the zero
in

�
(

�
) is the constant function z with z(a) = 0 for all a ∈ �

, and the one
is the constant function ε with ε(a) = 1 for all a ∈ �

.

x x

y

f

g

y

Figure 3.1 � ( � ) is not a Domain
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We now show that
�
(

�
) is not a domain. Define f and g by:

f (a) =
{

a if a ≤ 0

0 if a ≥ 0;
g(a) =

{
0 if a ≤ 0

a if a ≥ 0.

Clearly, neither f nor g is zero (i.e., f 6= z and g 6= z). On the other
hand, for each a ∈ �

, f g : a 7→ f (a)g(a) = 0, because at least one
of the factors f (a) or g(a) is the number zero. Therefore, f g = z, by
Proposition 2.2, and

�
(

�
) is not a domain.

(ii) Recall that a function f : � → �
is differentiable if f ′(a) exists for all

a ∈ �
. Let � ( �

) = {all differentiable functions f : � → � } We claim
that � ( �

) is a subring of
�
(

�
). Now ε lies in � ( �

), for ε′ = z. If
f, g ∈ � (

�
), then f + g ∈ � (

�
), for ( f + g)′ = f ′ + g′, while ( f g)′

exists, by the product rule. Therefore, � (
�
) is a subring of

�
(

�
), and so

� ( �
) is a ring in its own right, by Proposition 3.9. �

Proposition 3.12.

(i)
�

m, the integers mod m, is a commutative ring.

(ii) The commutative ring
�

m is a domain if and only if m is a prime.

Proof.
(i) In Theorem 2.101, we proved that there is an addition defined on

�
m, namely,

[a] + [b] = [a + b], which satisfies axioms (i) through (iv) in the definition of
commutative ring ([a] is the congruence class [a] = {b ∈ � : b ≡ a mod m}). In
Theorem 2.103, we proved that there is a multiplication defined on

�
m, namely,

[a][b] = [ab], which satisfies axioms (v) through (vii). Only the distributive law
needs checking. Since distributivity does hold in

�
, we have

[a]
(
[b] + [c]

)
= [a][b + c]
= [a(b + c)]
= [ab + ac]
= [ab] + [ac]
= [a][b] + [a][c].

Therefore,
�

m is a commutative ring.
(ii) If m is not a prime, then m = ab, where 0 < a, b < m. Now both [a] and
[b] are not [0] in

�
m, because m divides neither a nor b, but [a][b] = [m] = [0].

Thus,
�

m is not a domain.
Conversely, suppose that m is prime. Since m ≥ 2, we have [1] 6= [0]. If

[a][b] = [0], then ab ≡ 0 mod m, that is, m | ab. Since m is a prime, Euclid’s
lemma gives m | a or m | b; that is, a ≡ 0 mod m or b ≡ 0 mod m; that is,
[a] = [0] or [b] = [0]. Therefore,

�
m is a domain. •
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For example,
�

6 is not a domain because [2] 6= 0 and [3] 6= 0, yet [2][3] =
[6] = [0].

Many theorems of ordinary arithmetic, that is, properties of the commutative
ring

�
, hold in more generality. We now generalize some familiar definitions

from
�

to arbitrary commutative rings.

Definition. Let a and b be elements of a commutative ring R. Then a divides
b in R (or a is a divisor of b or b is a multiple of a), denoted5 by

a | b,

if there exists an element c ∈ R with b = ca.

As an extreme example, if 0 | a, then a = 0 · b for some b ∈ R. Since
0 · b = 0, however, we must have a = 0. Thus, 0 | a if and only if a = 0.

Notice that whether a | b depends not only on the elements a and b but on the
commutative ring R as well. For example, 3 does divide 2 in

�
, for 2 = 3 × 2

3 ,
and 2

3 ∈
�

; on the other hand, 3 does not divide 2 in
�

, because there is no
integer c with 3c = 2.

The reader can quickly check each of the following facts. For every a ∈ R,
we have a | a, 1 | a, −a | a, −1 | a, and a | 0.

Lemma 3.13. Let R be a commutative ring, and let a, b, c be elements of R.

(i) If a | b and b | c, then a | c.

(ii) If a | b and a | c, then a divides every number of the form sb + tc, where
s, t ∈ R.

Proof. Exercises for the reader. •

Definition. If R is a commutative ring and a, b ∈ R, then a linear combination
of them is an element of R of the form sa + tb, where s, t ∈ R.

Thus, Lemma 3.13 says that any common divisor of elements a, b ∈ R must
also divide every linear combination of a and b.

Definition. An element u in a commutative ring R is called a unit if u | 1 in
R, that is, if there exists v ∈ R with uv = 1; the element v is called the6 inverse
of u, and v is often denoted by u−1.

An element a ∈ R is an associate of an element r ∈ R if there is a unit
u ∈ R with a = ur .

5Do not confuse the notations a | b and a/b. The first one denotes the statement “a is a
divisor of b,” whereas the second one denotes an element c ∈ R with bc = a.

6Uniqueness of the inverse is Exercise 3.2 on page 226.



FIRST PROPERTIES 225

Example 3.14.
The only units in

�
are ±1, and the associates of n ∈ �

are ±n. �

Units are of interest because one can always divide by them. If u is a unit in
R, then there is v ∈ R with uv = 1, and if a ∈ R, then u | a because

a = u(va)

is a factorization of a in R. Thus, it is reasonable to define the quotient a/u as
a/u = va = u−1a. (Recall that this last equation is the reason why zero is never
a unit; that is, why dividing by zero is forbidden.)

Just as divisibility depends on the commutative ring R, so does the question
whether an element u ∈ R is a unit depend on R (for it is a question whether u | 1
in R). For example, the number 2 is a unit in

�
, for 1

2 lies in
�

and 2 × 1
2 = 1,

but 2 is not a unit in
�

, because there is no integer v with 2v = 1.
The following theorem generalizes Exercise 1.45 on page 51.

Proposition 3.15. Let R be a domain, and let a, b ∈ R be nonzero. Then a | b
and b | a if and only if b = ua for some unit u ∈ R.

Proof. If a | b and b | a, there are elements u, v ∈ R with b = ua and a = vb.
Substituting, b = ua = uvb. Since b = 1b and b 6= 0, the cancellation law in
the domain R gives 1 = uv, and so u is a unit.

Conversely, assume that b = ua, where u is a unit in R. Plainly, a | b. If
v ∈ R satisfies uv = 1, then vb = vua = a, and so b | a. •

There exist examples of commutative rings R in which the conclusion of
Proposition 3.15 is false, and so the hypothesis in this proposition that R be a
domain is needed.

What are the units in
�

m?

Proposition 3.16. If a is an integer, then [a] is a unit in
�

m if and only if a and
m are relatively prime. In fact, if sa + tm = 1, then [a]−1 = [s].
Proof. If [a] is a unit in

�
m, then there is [s] ∈ �

m with [s][a] = [1]. Therefore,
sa ≡ 1 mod m, and so there is an integer t with sa−1 = tm; hence, 1 = sa−tm.
By Exercise 1.51 on page 52, a and m are relatively prime.

Conversely, if a and m are relatively prime, there are integers s and t with
1 = sa + tm. Hence, sa − 1 = −tm and so sa ≡ 1 mod m. Thus, [s][a] = [1],
and [a] is a unit in

�
m. •

Corollary 3.17. If p is a prime, then every nonzero [a] in
�

p is a unit.

Proof. If [a] 6= [0], then a 6≡ 0 mod p, and hence p � a. Therefore, a and p
are relatively prime because p is prime. •
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Definition. If R is a commutative ring, then the group of units of R is

U (R) = {all units in R}.

It is easy to check that U (R) is a multiplicative group; that is, it is closed
under products and inverses. [We have already met U (

�
m) in the proof of Theo-

rem 2.107.]
The introduction of the commutative ring

�
m makes the solution of congru-

ence problems much more natural. A congruence ax ≡ b mod m in
�

becomes
an equation [a][x] = [b] in

�
m. If [a] is a unit in

�
m, that is, if (a,m) = 1,

then it has an inverse [a]−1 = [s], and we can divide by it; the solution is
[x] = [a]−1[b] = [s][b] = [sb]. In other words, congruences are solved just as
ordinary linear equations αx = β are solved over

�
; that is, x = α−1β.

EXERCISES

3.1 Prove that a commutative ring R has a unique one 1; that is, if e ∈ R satisfies
er = r for all r ∈ R, then e = 1.

*3.2 Let R be a commutative ring.
(i) Prove the additive cancellation law.
(ii) Prove that every a ∈ R has a unique additive inverse: if a + b = 0 and

a + c = 0, then b = c.
(iii) If u ∈ R is a unit, prove that its inverse is unique: if ab = 1 and ac = 1,

then b = c.
3.3 (i) Prove that subtraction in � is not an associative operation.

(ii) Give an example of a commutative ring R in which subtraction is asso-
ciative.

3.4 Assume that S is a subset of a commutative ring R such that

(i) 1 ∈ S;

(ii) if a, b ∈ S, then a + b ∈ S;

(iii) if a, b ∈ S, then ab ∈ S.

(In contrast to the definition of subring, we are now assuming a + b ∈ S instead of
a − b ∈ S.) Give an example of a commutative ring R containing such a subset S
which is not a subring of R.

3.5 Find the multiplicative inverses of the nonzero elements in � 11.
*3.6 (i) If X is a set, prove that the Boolean group � (X) in Example 2.47(ix) with

elements the subsets of X and with addition given by

U + V = (U − V ) ∪ (V − U )

is a commutative ring if one defines multiplication

U V = U ∩ V .
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One calls � (X) a Boolean ring.
(ii) Prove that � (X) contains exactly one unit.
(iii) If Y is a proper subset of X , show that the one in � (Y ) is distinct from

the one in � (X). Conclude that � (Y ) is not a subring of � (X).
(iv) Prove that every element in � (X) satisfies U2 = U .

3.7 (i) If R is a domain and a ∈ R satisfies a2 = a, prove that either a = 0 or
a = 1.

(ii) Show that the commutative ring � ( � ) in Example 3.11(i) contains ele-
ments f 6= 0, 1 with f 2 = f .

3.8 Find all the units in the commutative ring � (� ) defined in Example 3.11(i).
*3.9 Generalize the construction of � (� ) to a set X and an arbitrary commutative

ring R: let � (X, R) be the set of all functions from X to R, with pointwise ad-
dition f + g : x 7→ f (x)+ g(x) and pointwise multiplication f g : x 7→ f (x)g(x)
for x ∈ X .

(i) Show that � (X, R) is a commutative ring.
(ii) Show that if X has at least two elements, then � (X, R) is not a domain.
(iii) If R is a commutative ring, denote � (R, R) by � (R):

� (R) = {all functions R → R}.

Show that � ( � 2) has exactly four elements, and that f + f = 0 for every
f ∈ � ( � 2).

*3.10 (i) If R is a domain and S is a subring of R, prove that S is a domain.
(ii) Prove that � is a domain.
(iii) Prove that � , � , and � are domains.
(iv) Prove that the ring of Gaussian integers is a domain.

*3.11 Prove that the intersection of any family of subrings of a commutative ring R is a
subring of R.

3.12 Prove that the only subring of � is � itself.
3.13 Let a and m be relatively prime integers. Prove that if sa + tm = 1 = s ′a + t ′m,

then s ≡ s ′ mod m. See Exercise 1.51 on page 52.
3.14 (i) Is R = {a + b

√
2 : a, b ∈ � } a domain?

(ii) Is R = { 1
2 (a + b

√
2) : a, b ∈ � } a domain?

(iii) Using the fact that α = 1
2 (1 +

√
−19) is a root of x2 − x + 5, prove that

R = {a + bα : a, b ∈ � } is a domain.
3.15 Prove that the set of all C∞-functions is a subring of � (� ). (See Exercise 1.37 on

page 34.)

3.2 FIELDS

There is an obvious difference between
�

and
�

: every nonzero element of
�

is
a unit.
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Definition. A field 7 F is a commutative ring with 1 6= 0 in which every non-
zero element a is a unit; that is, there is a−1 ∈ F with a−1a = 1.

The first examples of fields are
�

,
�

, and
�

.
The definition of field can be restated in terms of the group of units; a com-

mutative ring R is a field if and only if U (R) is the set R× of nonzero elements
in R. To say this another way, R is a field if and only if R× is a multiplicative
group.

Proposition 3.18. Every field F is a domain.

Proof. Assume that ab = ac, where a 6= 0. Multiplying both sides by a−1

gives a−1ab = a−1ac, and so b = c. •

Of course, the converse of this proposition is false, for
�

is a domain that is
not a field.

Proposition 3.19. The commutative ring
�

m is a field if and only if m is prime.

Proof. If m is prime, then Corollary 3.17 shows that
�

m is a field.
Conversely, if m is composite, then Proposition 3.12 shows that

�
m is not a

domain. By Proposition 3.18,
�

m is not a field. •

Notation. When p is a prime, we will usually denote the field
�

p by

�
p .

At the end of this chapter (see Theorem 3.124), we shall prove that there are
finite fields other than

�
p for p prime (a field with four elements is constructed

in Exercise 3.17 on page 232).
When I was a graduate student, one of my fellow students was hired to tutor

a mathematically gifted 10-year-old boy. To illustrate how gifted the boy was,
the tutor described the session in which he introduced 2 × 2 matrices and matrix
multiplication to the boy. The boy’s eyes lit up when he was shown multiplica-
tion by the identity matrix, and he immediately went off in a corner by himself.
In a few minutes, he told his tutor that a matrix

[
a b
c d

]
has a multiplicative inverse

if and only if ad − bc 6= 0!

7The derivation of the mathematical usage of the English term field (first used by E. H.
Moore in 1893 in his article classifying the finite fields) as well as the German term Körper and
the French term corps is probably similar to the derivation of the words group and ring: each
word denotes a “realm,” a “body” of things, or a “collection of things.” The word domain ab-
breviates the usual English translation integral domain of the German word Integretätsbereich,
a collection of things analogous to integers.
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In another session, the boy was shown the definition of a field. He was quite
content as the familiar examples of the rationals, reals, and complex numbers
were displayed. But when he was shown a field with 2 elements, he became very
agitated. After carefully checking that every axiom really does hold, he exploded
in a rage. I tell this story to illustrate how truly surprising and unexpected are the
finite fields.

In Chapter 2 we introduced GL(2,
�
), the group of nonsingular matrices

with entries in
�

. Afterward, we observed that replacing
�

by
�

or by
�

also
gives a group. We now observe that

�
can be replaced by any field k: GL(2, k)

is a group for every field k. In particular, GL(2,
�

p ) is a finite group for every
prime p.

It was shown in Exercise 3.10 on page 227 that every subring of a domain is
itself a domain. Since fields are domains, it follows that every subring of a field
is a domain. The converse of this exercise is true, and it is much more interesting:
every domain is a subring of a field. In order to prove this result, we recall that
an equivalence relation on a set X is a (binary) relation x ≡ y, where x, y ∈ X ,
which is reflexive, symmetric, and transitive.

Given four elements a, b, c, and d in a field F with b 6= 0 and d 6= 0, assume
that ab−1 = cd−1. Multiply both sides by bd to obtain ad = bc. In other words,
were ab−1 written as a/b, then we have just shown that a/b = c/d implies
ad = bc; that is, “cross-multiplication” is valid. Conversely, if ad = bc and
both b and d are nonzero, then multiplication by b−1d−1 gives ab−1 = cd−1,
that is, a/b = c/d .

The proof of the next theorem is a straightforward generalization of the stan-
dard construction of the field of rational numbers

�
from the domain of inte-

gers
�

.

Lemma 3.20. If R is a domain and X = {(a, b) ∈ R × R : b 6= 0}, then the
relation ≡ on X, defined by cross-multiplication:

(a, b) ≡ (c, d) if ad = bc,

is an equivalence relation.

Proof. Verifications of reflexivity and of symmetry are easy. For transitivity,
assume that (a, b) ≡ (c, d) and (c, d) ≡ (e, f ). Now ad = bc gives ad f =
bcf , and c f = de gives bcf = bde; thus, ad f = bde. Since R is a domain, we
may cancel the nonzero d to get a f = be; that is, (a, b) ≡ (e, f ). •

Theorem 3.21. If R is a domain, then there is a field F containing R as a
subring. Moreover, F can be chosen so that, each f ∈ F has a factorization
f = ab−1 with a, b ∈ R and b 6= 0.
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Proof. Example 2.17(iii) shows that the relation ≡ on {(a, b) ∈ � × � : b 6= 0},
defined by (a, b) ≡ (c, d) if ad = bc, is an equivalence relation. It is easy to
check that that argument generalizes to show that the relation on X = {(a, b) ∈
R × R : b 6= 0}, defined in the same way, is an equivalence relation on X .

Denote the equivalence class of (a, b) by [a, b], and define F = X̃ , the
set of all equivalence classes [a, b]. Equip F with the following addition and
multiplication (if we pretend that [a, b] is the fraction a/b, then these are just the
usual formulas):

[a, b] + [c, d] = [ad + bc, bd]
and

[a, b][c, d] = [ac, bd].
Notice that the symbols on the right make sense, for b 6= 0 and d 6= 0 imply
bd 6= 0 because R is a domain. The proof that F is a field is now a series of
routine steps.

Addition F × F → F is well-defined: if [a, b] = [a ′, b′] and [c, d] =
[c′, d ′], then [ad + bc, bd] = [a′d ′ + b′c′, b′d ′]. We are told that ab′ = a′b and
cd ′ = c′d . Hence,

(ad + bc)b′d ′ = adb′d ′ + bcb′d ′ = (ab′)dd ′ + bb′(cd ′)

= a′bdd ′ + bb′c′d = (a′d ′ + b′c′)bd;
that is, (ad + bc, bd) ≡ (a′d ′ + b′c′, b′d ′), as desired. A similar computation
shows that multiplication F × F → F is well-defined.

The verification that F is a commutative ring is also routine, and it is left to
the reader, with the remark that the zero element is [0, 1], the one is [1, 1], and
the negative of [a, b] is [−a, b]. If we identify a ∈ R with [a, 1] ∈ F , then it is
easy to see that the family R′ of all such elements is a subring of F :

[1, 1] ∈ R′;
[a, 1] − [c, 1] = [a, 1] + [−c, 1] = [a − c, 1] ∈ R′;
[a, 1][c, 1] = [ac, 1] ∈ R′.

To see that F is a field, observe first that if [a, b] 6= 0, then a 6= 0 (for
the zero element of F is [0, 1] = [0, b]). The inverse of [a, b] is [b, a], for
[a, b][b, a] = [ab, ab] = [1, 1].

Finally, if b 6= 0, then [1, b] = [b, 1]−1 (as we have just seen). Therefore, if
[a, b] ∈ F , then [a, b] = [a, 1][1, b] = [a, 1][b, 1]−1. This completes the proof,
for [a, 1] and [b, 1] are in R′. •

The statement of Theorem 3.21 is not quite accurate; the field F does not
contain R as a subring, for R is not even a subset of F . Instead, we proved
that F does contain a subring, namely, R′ = {[a, 1] : a ∈ R}, which strongly
resembles R. We shall make the identification of R and R′ precise once the
notion of isomorphism is introduced (see Example 3.31).
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Definition. The field F just constructed from a domain R in Theorem 3.21 is
called the fraction field of R; we denote it by

Frac(R),

and we denote the element [a, b] ∈ Frac(R) by a/b. In particular, the elements
[a, 1] of R′ are denoted by a/1 or, more simply, by a.

Notice that the fraction field of
�

is
�

; that is, Frac(
�
)=

�
.

Definition. A subfield of a field K is a subring k of K which is also a field.

Proposition 3.22.

(i) A subset k of a field K is a subfield if and only if it is a subring that is
closed under inverses; that is, if a ∈ k and a 6= 0, then a−1 ∈ k.

(ii) If {Fi : i ∈ I } is any (possibly infinite) family of subfields of a field K , then
k =

⋂
i∈I Fi is a subfield of K .

Proof.
(i) If a subset k of a field K is a subfield, then it obviously contains inverses of its
nonzero elements. Conversely, if k is a subring that contains inverses of nonzero
elements, then it is a field, and hence it is a subfield of K .
(ii) We use part (i). Since any intersection of subrings is itself a subring, by
Exercise 3.11 on page 227, k is a subring of K . If a ∈ k is nonzero, then it
got into k by being in every Fi . But since Fi is a subfield, a−1 ∈ Fi , and so
a−1 ∈

⋂
i Fi = k. Therefore, k is a subfield of K . •

Definition. If K is a field, the intersection k of all the subfields of K is called
the prime field of k.

Of course, every field has a unique prime field. In Proposition 3.111, we will
see that every prime field is essentially

�
or

�
p for some prime p.

EXERCISES

3.16 (i) If R is a commutative ring, define the circle operation a ◦ b by

a ◦ b = a + b − ab.

Prove that the circle operation is associative and that 0 ◦ a = a for all
a ∈ R.

(ii) Prove that a commutative ring R is a field if and only if the set

R# = {r ∈ R : r 6= 1}
is an abelian group under the circle operation.
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*3.17 (R. A. Dean) Define � 4 to be the set of all 2 × 2 matrices

� 4 =
{[

a b
b a + b

]
: a, b ∈ � 2

}
.

(i) Prove that � 4 is a commutative ring whose operations are matrix addition
and matrix multiplication.

(ii) Prove that � 4 is a field having exactly 4 elements.
(iii) Show that � 4 is not a field.

3.18 Prove that every domain R with a finite number of elements must be a field. Using
Proposition 3.12, this gives a new proof of sufficiency in Proposition 3.19.

*3.19 Find all the units in the ring � [i ] of Gaussian integers.
3.20 Show that F = {a + b

√
2 : a, b ∈ � } is a field.

*3.21 (i) Show that F = {a + bi : a, b ∈ � } is a field.
(ii) Show that every u ∈ F has a factorization u = αβ−1, where α, β ∈ � [i ].

(see Exercise 3.49(ii) on page 249.)
*3.22 If R is a commutative ring, define a relation ≡ on R by a ≡ b if there is a unit

u ∈ R with b = ua.
(i) Prove that ≡ is an equivalence relation.
(ii) If a ≡ b, prove that (a) = (b), where (a) = {ra : r ∈ R}. Conversely,

prove that if R is a domain, then (a) = (b) implies a ≡ b.
3.23 If R is a domain, prove that there is no subfield K of Frac(R) such that

R ⊆ K � Frac(R).

*3.24 Let k be a field with one ε, and let R be the subring

R =
{
nε : n ∈ �

}
.

(i) If F is a subfield of k, prove that R ⊆ F .
(ii) Prove that a subfield F of k is the prime field of k if and only if it is the

smallest subfield of k containing R; that is, there is no subfield F′ with
R ⊆ F ′ � F .

(iii) If R is a subfield of k, prove that R is the prime field of k.
3.25 (i) Show that every subfield of � contains � .

(ii) Show that the prime field of � is � .
(iii) Show that the prime field of � is � .

*3.26 (i) For any field F , prove that 6(2, F)∼= Aff(1, F), where 6(2, F) denotes
the stochastic group (defined in Exercise 2.42 on page 144).

(ii) If F is a finite field with q elements, prove that |6(2, F)| = q(q − 1).
(iii) Prove that 6(2, � 3 ) ∼= S3.

3.3 POLYNOMIALS

Even though the reader is familiar with polynomials, we now introduce them
carefully. One modest consequence is that the mystery surrounding the “un-
known” x will vanish.
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Informally, a polynomial is an “expression” s0 + s1x + s2x2 + · · · + snxn .
The key observation is that one should pay attention to where the coefficients of
polynomials live.

Definition. If R is a commutative ring, then a sequence8 in R is a function
σ : � → R.

Informally, the expression s0 + s1x + s2x2 + · · · + snxn corresponds to the
sequence (s0, s1, s2, . . . , sn, 0, 0, . . .) of its coefficients.

As any function, a sequence σ is determined by its values; for each i ∈ �
,

write σ(i) = si ∈ R, so that

σ = (s0, s1, s2, . . . , si . . . ).

The entries si ∈ R are called the coefficients of the sequence. The term coef-
ficient means “acting together to some single end.” Here, coefficients combine
with powers of x to give the terms of a sequence.

By Proposition 2.2, two sequences σ and τ in R are equal if and only if
σ(i) = τ(i) for all i ≥ 0; that is, σ = τ if and only if they have the same
coefficients.

Definition. A sequence σ = (s0, s1, . . . , si , . . . ) in a commutative ring R is
called a polynomial if there is some integer n ≥ 0 with si = 0 for all i > n; that
is,

σ = (s0, s1, . . . , sn, 0, 0, . . . ).

A polynomial has only finitely many nonzero coefficients.
The sequence σ = (0, 0, 0, . . . ) is a polynomial, called the zero polynomial;

it is denoted by σ = 0.

Definition. If σ 6= 0 is a polynomial, then there is a natural number n with
sn 6= 0 and si = 0 for all i > n. One calls sn the leading coefficient of σ , one
calls n the degree9 of σ , and one denotes it by deg(σ ).

The zero polynomial 0 does not have a degree because it has no nonzero
coefficients; every other polynomial does have a degree.

Notation. If R is a commutative ring, then the set of all polynomials with
coefficients in R is denoted by R[x].

8Sequences in R are also called formal power series (see Exercise 3.36 on page 240).
9The word degree comes from the Latin word meaning “step.”
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We will soon prove that a polynomial (s0, s1, . . . , sn, 0, 0, . . . ) of degree n
can be written as s0 + s1x + s2x2 + · · · + snxn , but, until then, we proceed
formally. Equip R[x] with the following operations. Define

σ + τ = (s0 + t0, s1 + t1, . . . , si + ti , . . . )

and
στ = (a0, a1, . . . , ak, . . . ),

where ak =
∑

i+ j=k si t j =
∑ k

i=0 si tk−i ; thus,

στ = (s0t0, s0t1 + s1t0, s0t2 + s1t1 + s2t0, . . . ).

We will soon prove that R[x] is a commutative ring. The next proposition
shows where the formula for multiplication comes from.

Proposition 3.23. If R is a commutative ring and r, si , t j ∈ R for i ≥ 0 and
j ≥ 0, then

(s0 + s1r + · · · )(t0 + t1r + · · · ) = a0 + a1r + · · · + akr k + · · · ,

where ak =
∑

i+ j=k si t j for all k ≥ 0.

Remark. This proof should be an induction on k ≥ 0, but we give an informal
proof instead. �

Proof. Write
∑

i sir i = f (r) and
∑

j t j r j = g(r). Then

f (r)g(r) = (s0 + s1r + s2r2 + · · · )g(r)
= s0g(r)+ s1rg(r)+ s2r2g(r)+ · · ·
= s0(t0 + t1r + · · · )+ s1r(t0 + t1r + · · · )

+ s2r2(t0 + t1r + · · · )+ · · ·
= s0t0 + (s1t0 + s0t1)r + (s2t0 + s1t1 + s0t2)r

2+
(s0t3 + s1t2 + s2t1 + s3t0)r

3 + · · · . •

Lemma 3.24. Let R be a commutative ring and let σ , τ ∈ R[x] be nonzero
polynomials.

(i) Either στ = 0 or deg(στ) ≤ deg(σ )+ deg(τ).

(ii) If R is a domain, then στ 6= 0 and

deg(στ) = deg(σ )+ deg(τ).
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Proof.
(i) Let σ = (s0, s1, . . . ) have degree m, let τ = (t0, t1, . . . ) have degree n, and
let στ = (a0, a1, . . . ). It suffices to prove that ak = 0 for all k > m + n. By
definition,

ak =
∑

i+ j=k

si t j .

If i ≤ m, then j = k − i ≥ k − m > n (because k > m + n), and so t j = 0
(because τ has degree n); if i > m, then si = 0 because σ has degree m. In
either case, each term si t j = 0, and so ak =

∑
i+ j=k si t j = 0.

(ii) Now let k = m + n. With the possible exception of sm tn (the product of the
leading coefficients of σ and τ ), the same calculation as in part (i) shows that
each term si t j in

am+n = s0tm+n + · · · + sn−1tm+1 + sn tm + sn+1tm−1 + · · · + sm+nt0

is 0. If i < m, then m − i > 0, hence j = m − i + n > n, and so t j = 0; if
i > m, then si = 0. Hence

am+n = sm tn .

Since R is a domain, sm 6= 0 and tn 6= 0 imply sm tn 6= 0; hence, στ 6= 0 and
deg(στ) = m + n = deg(σ )+ deg(τ). •

Proposition 3.25.

(i) If R is a commutative ring, then R[x] is a commutative ring that contains
R as a subring.

(ii) If R is a domain, then R[x] is a domain.

Proof.
(i) Addition and multiplication are operations on R[x]: the sum of two polyno-
mials σ and τ is a sequence which is also a polynomial (indeed, either σ +τ = 0
or deg(σ + τ) ≤ max{deg(σ ), deg(τ)}), while the lemma shows that the se-
quence which is the product of two polynomials is a polynomial as well. Verifi-
cations of the axioms for a commutative ring are again routine, and they are left
to the reader. Note that the zero is the zero polynomial, the one is the polynomial
(1, 0, 0, . . . ), and the negative of (s0, s1, . . . , si , . . . ) is (−s0,−s1, . . . ,−si , . . . ).
The only possible problem is proving associativity of multiplication; we give
the hint that if ρ = (r0, r1, . . . , ri , . . . ), then the `th coordinate of the polyno-
mial ρ(στ) turns out to be

∑
i+ j+k=` ri (s j tk), while the `th coordinate of the

polynomial (ρσ)τ turns out to be
∑

i+ j+k=`(ri s j )tk ; these are equal because of
associativity of the multiplication in R.

It is easy to check that R′ = {(r, 0, 0, . . . ) : r ∈ R} is a subring of R[x],
and we identify R′ with R by identifying r ∈ R with (r, 0, 0, . . . ).
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(ii) If R is a domain and if σ and τ are nonzero polynomials, then Lemma 3.24
shows that στ 6= 0. Therefore, R[x] is a domain. •

Just as our assertion (in Theorem 3.21) that a domain is a subring of its frac-
tion field was not quite true, so, too, our assertion here that a commutative ring
R is a subring of R[x] is not quite correct. There is a subring of R[x], namely
R′ = {(r, 0, 0, . . .) : r ∈ R}, which strongly resembles R, and the statement of
Proposition 3.25 will be made precise once the notion of isomorphism is intro-
duced (see Example 3.31).

We can now recapture the usual notation.

Definition. Define the indeterminate to be the element

x = (0, 1, 0, 0, . . . ) ∈ R[x].

Even though x is neither “the unknown” nor a variable, we call it the inde-
terminate to recall one’s first encounter with it in high school (see the discussion
on page 238). However, the indeterminate x is a specific element in the ring
R[x], namely, the polynomial (t0, t1, t2, . . . ) with t1 = 1 and all other ti = 0.
One reason we insist that commutative rings have ones is to enable us to make
this definition; if the set E of even integers were a commutative ring, then E[x]
would not contain x (it would contain 2x , however). Note that if R is the zero
ring, then R[x] is also the zero ring.

Lemma 3.26.

(i) If σ = (s0, s1, . . . , s j , . . . ), then

xσ = (0, s0, s1, . . . , s j , . . . );

that is, multiplying by x shifts each coefficient one step to the right.

(ii) If n ≥ 1, then xn is the polynomial having 0 everywhere except for 1 in the
nth coordinate.

(iii) If r ∈ R, then

(r, 0, 0, . . . )(s0, s1, . . . , s j , . . . ) = (rs0, rs1, . . . , rs j , . . . ).

Proof.
(i) Write x = (t0, t1, . . . , ti , . . . ), where t1 = 1 and all other ti = 0, and let
xσ = (a0, a1, . . . , ak, . . . ). Now a0 = t0s0 = 0 because t0 = 0. If k ≥ 1, then
the only nonzero term in the sum ak =

∑
i+ j=k si t j is sk−1t1 = sk−1, because

t1 = 1 and ti = 0 for i 6= 1; thus, for k ≥ 1, the kth coordinate ak of xσ is sk−1,
and xσ = (0, s0, s1, . . . , si , . . . ).
(ii) An easy induction, using (i).
(iii) This follows easily from the definition of multiplication. •
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If we identify (r, 0, 0, . . . ) with r , then Lemma 3.26(iii) reads

r(s0, s1, . . . , si , . . . ) = (rs0, rs1, . . . , rsi , . . . ).

We can now recapture the usual notation.

Proposition 3.27. If σ = (s0, s1, . . . , sn, 0, 0, . . . ), then

σ = s0 + s1x + s2x2 + · · · + sn xn,

where each element s ∈ R is identified with the polynomial (s, 0, 0, . . . ).

Proof.

σ = (s0, s1, . . . , sn, 0, 0, . . . )

= (s0, 0, 0, . . . )+ (0, s1, 0, . . . )+ · · · + (0, 0, . . . , sn, 0, . . . )

= s0(1, 0, 0, . . . )+ s1(0, 1, 0, . . . )+ · · · + sn(0, 0, . . . , 1, 0, . . . )

= s0 + s1x + s2x2 + · · · + snxn. •

We shall use this familiar (and standard) notation from now on. As is cus-
tomary, we shall write

f (x) = s0 + s1x + s2x2 + · · · + snxn

instead of σ = (s0, s1, . . . , sn, 0, 0, . . . ).

Definition. If R is a commutative ring, then R[x] is called the ring of polyno-
mials over R.

Here is some standard vocabulary associated with polynomials. If f (x) =
s0 + s1x + s2x2 + · · · + snxn , where sn 6= 0, then s0 is called its constant term
and, as we have already said, sn is called its leading coefficient. If its leading
coefficient sn = 1, then f (x) is called monic. Every polynomial other than the
zero polynomial 0 (having all coefficients 0) has a degree. A constant polyno-
mial is either the zero polynomial or a polynomial of degree 0. Polynomials of
degree 1, namely, a + bx with b 6= 0, are called linear, polynomials of degree 2
are quadratic,10 degree 3’s are cubic, then quartic, quintic, etc.

10Quadratic polynomials are so called because the particular quadratic x2 gives the area of
a square (quadratic comes from the Latin word meaning “four,” which is to remind one of the
4-sided figure); similarly, cubic polynomials are so called because x3 gives the volume of a
cube. Linear polynomials are so called because the graph of a linear polynomial in � [x] is a
line.
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Corollary 3.28. Polynomials f (x) = s0 + s1x + s2x2 + · · · + sn xn and
g(x) = t0 + t1x + t2x2 +· · ·+ tm xm are equal if and only if si = ti for all i ∈ �

.

Proof. We have merely restated the definition of equality of polynomials in
terms of the familiar notation. •

We can now describe the usual role of the indeterminate x as a variable. If R
is a commutative ring, each polynomial f (x) = s0 + s1x + s2x2 + · · · + snxn ∈
R[x] defines a polynomial function f [ : R → R by evaluation: if r ∈ R, define
f [(r) = s0 + s1r + s2r2 + · · · + snrn ∈ R [usually, one is not so fussy, and
one writes f (r) instead of f [(r)]. The reader should realize that polynomials
and polynomial functions are distinct objects. For example, if R is a finite ring,
e.g.,

�
m, then there are only finitely many functions from R to itself; a fortiori,

there are only finitely many polynomial functions. On the other hand, if R is not
the zero ring, there are infinitely many polynomials. For example, all the powers
1, x, x2, . . . , xn, . . . are distinct, by Corollary 3.28.

Definition. Let F be a field. The fraction field of F[x], denoted by F(x), is
called the field of rational functions over F .

Proposition 3.29. The elements of F(x) have the form f (x)/g(x), where f (x),
g(x) ∈ F[x] and g(x) 6= 0.

Proof. By Theorem 3.21, every element in the fraction field F(x) has the form
f (x)g(x)−1. •

Proposition 3.30. If p is a prime, then the field of rational functions
�

p (x) is
an infinite field whose prime field is

�
p .

Proof. By Proposition 3.25,
�

p [x] is a domain. Its fraction field
�

p (x) is a field
containing

�
p [x] as a subring, while

�
p [x] contains

�
p as a subring, by Propo-

sition 3.25. That
�

p is the prime field follows from Exercise 3.24 on page 232.
•

In spite of the difference between polynomials and polynomial functions
(we shall see, in Corollary 3.52, that these objects coincide when the coefficient
ring R is an infinite field), one often calls R[x] the ring of all polynomials over
R in one variable (or polynomials over R in one indeterminate). If we write
A = R[x], then the polynomial ring A[y] is called the ring of all polynomials
over R in two variables x and y (or indeterminates), and it is denoted by R[x, y].
For example, the quadratic polynomial ax2 + bx y + cy2 + dx + ey + f can be
written cy2 + (bx + e)y + (ax2 + dx + f ), a polynomial in y with coefficients
in R[x]. By induction, one can form the commutative ring R[x1, x2, . . . , xn]
of all polynomials in n variables (or indeterminates) with coefficients in R.



POLYNOMIALS 239

Proposition 3.25 can now be generalized, by induction on n, to say that if R
is a domain, then so is R[x1, x2, . . . , xn]. Moreover, when F is a field, we
can describe Frac(F[x1, x2, . . . , xn]), denoted by F(x1, x2, . . . , xn), as all ra-
tional functions in n variables (or indeterminates); its elements have the form
f (x1, x2, . . . , xn)/g(x1, x2, . . . , xn), where f and g lie in F[x1, x2, . . . , xn].

EXERCISES

3.27 Show that if R is a nonzero commutative ring, then R[x] is never a field.
*3.28 Let k be a field and let A be an n × n matrix with entries in k. If f (x) = c0 +

c1x + · · · + cm xm ∈ k[x], define

f (A) = c0 I + c1 A + · · · + cm Am .

(i) Prove that k[A], defined by k[A] = { f (A) : f (x) ∈ k[x]}, is a commu-
tative ring under matrix addition and matrix multiplication.

(ii) If f (x) = p(x)q(x) ∈ k[x] and if A is an n × n matrix over k, prove that
f (A) = p(A)q(A).

(iii) Give examples of n × n matrices A and B such that k[A] is a domain and
k[B] is not a domain.

*3.29 (i) Let R be a domain. Prove that if a polynomial f (x) ∈ R[x] is a unit,
then f (x) is a nonzero constant (the converse is true if R is a field).

(ii) Show that ([2]x + [1])2 = [1] in � 4[x]. Conclude that the statement in
part (i) may be false for commutative rings that are not domains.

*3.30 Show that if f (x) = x p − x ∈ � p [x], then its polynomial function f [ : � p → � p
is identically zero.

3.31 (i) If p is a prime and m, n ∈ � , prove that
(pm

pn

)
≡
(m

n

)
mod p.

(ii) Prove that
(pr m

pr n

)
≡
(m

n

)
mod p for all r ≥ 0.

(iii) Give another proof of Exercise 1.66: if p is a prime not dividing an inte-
ger m ≥ 1, then p � (pr m

pr

)
.

*3.32 Let α ∈ � , and let � [α] be the smallest subring of � containing α; that is, � [α] =⋂
S, where S ranges over all those subrings of � containing α. Prove that

� [α] = { f (α) : f (x) ∈ � [x]}.

3.33 If R is a commutative ring and f (x) =
∑ n

i=0 ai x i ∈ R[x] has degree n ≥ 1, define
its derivative f ′(x) ∈ R[x] by

f ′(x) = a1 + 2a2x + 3a3x2 + · · · + nan xn−1;

if f (x) is a constant polynomial, define its derivative to be the zero polynomial.
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Prove that the usual rules of calculus hold for this definition of derivative; that is,

( f + g)′ = f ′ + g′;
(r f )′ = r f ′ if r ∈ R;
( f g)′ = f g′ + f ′g;
( f n)′ = n f n−1 f ′ for all n ≥ 1.

*3.34 Assume that (x − a) | f (x) in R[x]. Prove that (x − a)2 | f (x) if and only if
(x − a) | f ′ in R[x].

3.35 (i) If f (x) = ax2p + bx p + c ∈ � p [x], prove that f ′(x) = 0.
(ii) State and prove a necessary and sufficient condition that a polynomial

f (x) ∈ � p [x] have f ′(x) = 0.
*3.36 If R is a commutative ring, define R[[x]], the ring of formal power series over R,

as the set of all sequences in R.
(i) Show that the formulas defining addition and multiplication on R[x]

make sense for R[[x]], and prove that R[[x]] is a commutative ring under
these operations.

(ii) Prove that R[x] is a subring of R[[x]].
(iii) Denote a formal power series σ = (s0, s1, s2, . . . , sn, . . . ) by

σ = s0 + s1x + s2x2 + · · · .

Prove that if σ = 1 + x + x2 + · · · , then σ = 1/(1 − x) is in R[[x]].
*3.37 If σ = (s0, s1, s2, . . . , sn, . . . ) is a nonzero formal power series, define ord(σ ) =

m, where m is the smallest natural number for which sm 6= 0. Note that σ 6= 0 if
and only if it has an order.

(i) Prove that if R is a domain, then R[[x]] is a domain.
(ii) Prove that if k is a field, then a nonzero formal power series σ ∈ k[[x]] is

a unit if and only if ord(σ ) = 0; that is, if its constant term is nonzero.
(iii) Prove that if σ ∈ k[[x]] and ord(σ ) = n, then

σ = xnu,

where u is a unit in k[[x]].

3.4 HOMOMORPHISMS

Just as one can use homomorphisms to compare groups, so one can use homo-
morphisms to compare commutative rings.

Definition. If A and R are commutative rings, a (ring) homomorphism is a
function f : A → R such that

(i) f (1) = 1;
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(ii) f (a + a′) = f (a)+ f (a′) for all a, a′ ∈ A;

(iii) f (aa′) = f (a) f (a′) for all a, a′ ∈ A.

A homomorphism that is also a bijection is called an isomorphism. Com-
mutative rings A and R are called isomorphic, denoted by A ∼= R, if there is an
isomorphism f : A → R.

Example 3.31.

(i) Let R be a domain and let F = Frac(R) denote its fraction field. In The-
orem 3.21 we said that R is a subring of F , but that is not the truth; R
is not even a subset of F . We did find a subring R′ of F , however, that
has a very strong resemblance to R, namely, R′ = {[a, 1] : a ∈ R} ⊆ F .
The function f : R → R′, given by f (a) = [a, 1], is easily seen to be an
isomorphism.

(ii) We implied that a commutative ring R is a subring of R[x] when we “iden-
tified” an element r ∈ R with the constant polynomial (r, 0, 0, . . . ) [see
Lemma 3.26(iii)]. The subset R′ = {(r, 0, 0, . . . ) : r ∈ R} is a subring
of R[x], and it is easy to see that the function f : R → R′, defined by
f (r) = (r, 0, 0, . . . ), is an isomorphism. �

Example 3.32.

(i) Complex conjugation z = a + ib 7→ a − ib is a homomorphism
�

→
�

because 1 = 1, z + w = z +w, and zw = zw. Conjugation is an isomor-
phism because it is its own inverse: for all z, we have z = z.

(ii) Here is an example of a homomorphism of rings that is not an isomor-
phism. Choose m ≥ 2 and define f : � → �

m by f (n) = [n]. Notice that
f is surjective but not injective.

(iii) The preceding example can be generalized. If R is a commutative ring with
its one denoted by ε, then the function χ : � → R, defined by χ(n) = nε,
is a ring homomorphism. �

Proposition 3.33. Let R and S be commutative rings, and let ϕ : R → S be
a homomorphism. If s1, . . . , sn ∈ S, then there exists a unique homomorphism
ϕ̃ : R[x1, . . . , xn] → S with ϕ̃(xi) = si for all i and ϕ̃(r) = ϕ(r) for all r ∈ R.
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Proof. The proof is by induction on n ≥ 1. If n = 1, denote x1 by x and s1 by
s. Define ϕ̃ : R[x] → S as follows: if f (x) =

∑
i ri x i , then

ϕ̃ : r0 + r1x + · · · + rnxn 7→ ϕ(r0)+ ϕ(r1)s + · · · + ϕ(rn)s
n = ϕ̃( f ).

By Corollary 3.28, a polynomial f (x) determines its sequence of coefficients,
and so the function ϕ̃ is well-defined; moreover, the formula shows that ϕ̃(x) = s
and ϕ̃(r) = ϕ(r) for all r ∈ R.

It remains to prove that ϕ̃ is a homomorphism. First, ϕ̃(1) = ϕ(1) = 1
because ϕ is a homomorphism. Second, if g(x) = a0 + a1x + · · · + am xm , then

ϕ̃( f + g) = ϕ̃
(∑

i

(ri + ai )x
i)

=
∑

i

ϕ(ri + ai )s
i

=
∑

i

(ϕ(ri )+ ϕ(ai ))s
i

=
∑

i

ϕ(ri )s
i +

∑

i

ϕ(ai )s
i

= ϕ̃( f )+ ϕ̃(g).

Third, let f (x)g(x) =
∑

k ck xk , where ck =
∑

i+ j=k ri a j . Then

ϕ̃( f g) = ϕ̃
(∑

k

ck xk)

=
∑

k

ϕ(ck)s
k

=
∑

k

ϕ
( ∑

i+ j=k

ri a j
)
sk

=
∑

k

( ∑

i+ j=k

ϕ(ri )ϕ(a j )
)
sk .

On the other hand,

ϕ̃( f )ϕ̃(g) =
(∑

i

ϕ(ri )s
i )(∑

j

ϕ(a j )s
j )

=
∑

k

( ∑

i+ j=k

ϕ(ri )ϕ(a j )
)
sk .

We let the reader show uniqueness of ϕ̃ by proving, by induction on n ≥ 0,
that when θ : R[x] → S is a homomorphism with θ(x) = s and θ(r) = ϕ(r) for
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all r ∈ R, then

θ(r0 + rx + · · · + rnxn) = ϕ(r0)+ ϕ(r1)s + · · · + ϕ(rn)s
n.

The routine proof of the inductive step is left to the reader. •

Definition. If R is a commutative ring and s ∈ R, then evaluation at s is the
function es : R[x] → R, defined by es( f (x)) = f (s); that is, es(

∑
i ri x i ) =∑

i ri si .

Corollary 3.34. If R is a commutative ring and s ∈ R, then the evaluation map
es : R[x] → R is a homomorphism.

Proof. If we set R = S and ϕ = 1R in Proposition 3.33, then ϕ̃ = es . •

Certain properties of a ring homomorphism follow from its being a homo-
morphism between the additive groups A and R. For example: f (0) = 0,
f (−a) = − f (a), and f (na) = n f (a) for all n ∈ �

. For readers not fa-
miliar with groups, we prove these statements. Since 0 + 0 = 0, we have
f (0) = f (0) + f (0), so that subtracting f (0) from each side gives 0 = f (0).
Since −a + a = 0, we have f (−a) + f (a) = f (0) = 0; subtracting f (a)
from both sides gives f (−a) = − f (a). The statement f (na) = n f (a) for all
n ≥ 0 and all a ∈ R is proved by induction for all n ≥ 0; finally, if n < 0,
then the result follows by replacing a by −a. That a homomorphism preserves
multiplication has similar consequences.

Lemma 3.35. If f : A → R is a ring homomorphism, then, for all a ∈ A,

(i) f (an) = f (a)n for all n ≥ 0;
(ii) if a is a unit, then f (a) is a unit and f (a−1) = f (a)−1;

(iii) if a is a unit, then f (a−n) = f (a)−n for all n ≥ 1.

Proof.
(i) If n = 0, then f (a0) = 1 = ( f (a))0; this follows from our convention that
r0 = 1 for any ring element r , together with the property f (1) = 1 satisfied by
every ring homomorphism. The statement for positive n is proved by induction
on n ≥ 1.
(ii) Applying f to the equation a−1a = 1 shows that f (a) is a unit with inverse
f (a−1).
(iii) Recall that a−n = (a−1)n , and invoke (i) and (ii). •
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Corollary 3.36. If f : A → R is a ring homomorphism, then

f (U (A)) ⊆ U (R),

where U (A) is the group of units of A; if f is an isomorphism, then there is a
group isomorphism

U (A) ∼= U (R).

Proof. The first statement is just a rephrasing of part (ii) of Lemma 3.35: if a
is a unit in A, then f (a) is a unit in R.

If f is an isomorphism, then its inverse f −1 : R → A is also a ring ho-
momorphism, by Exercise 3.41(i) on page 248; hence, if r is a unit in R, then
f −1(r) is a unit in A. It is now easy to check that ϕ : U (A)→ U (R), defined by
a 7→ f (a), is a (group) isomorphism, for its inverse ψ : U (R) → U (A) is given
by r 7→ f −1(r). •

Example 3.37.
If X is a nonempty set, define a bitstring on X to be a function β : X → �

2 ,
and denote the set of all bitstrings on X by b(X). When X is finite, say, X =
{x1, . . . , xn}, then a bitstring is just a sequence of 0’s and 1’s of length n.

Define binary operations on b(X): if β, γ ∈ b(X), define

βγ : x 7→ β(x)γ (x)

and
β + γ : x 7→ β(x)+ γ (x).

That b(X) is a commutative ring under these operations is the special case of
Exercise 3.9 on page 227 with R = �

2 .
Recall the Boolean ring

�
(X) (see Exercise 3.6(i) on page 226) whose el-

ements are the subsets of X , with multiplication defined as their intersection:
AB = A ∩ B, and with addition defined as their symmetric difference: A + B =
(A − B) ∪ (B − A). We now show that

�
(X) ∼= b(X).

If A is a subset of a set X , define its characteristic function χA : X → �
2

by

χA(x) =
{

1 if x ∈ A

0 if x /∈ A.

For example, χX is the constant function χX (x) = 1 for all x ∈ X , while χ � is
the constant function χ � (x) = 0 for all x ∈ X .

Define ϕ :
�
(X) → b(X) by ϕ(A) = χA, its characteristic function. If

x ∈ X , then x ∈ A if and only if χA(x) = 1. Hence, if χA = χB , then x ∈ A
if and only if x ∈ B; that is, A = B. It follows that ϕ is an injection. In
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fact, ϕ is a bijection, for if f : X → �
2 is a bitstring, then ϕ(A) = f , where

A = {x ∈ X : f (x) = 1}.
We now show that ϕ is a ring isomorphism. The one in

�
(X) is X , and

ϕ(X) = χX , the constant function at 1, which is the one in b(X). Let A and B
be subsets of X . If x ∈ X , then

(χAχB)(x) = 1 if and only if x ∈ A and x ∈ B;
that is, χAχB = χA∩B . Hence, ϕ(AB) = ϕ(A)ϕ(B). Also

(χA + χB)(x) = 1 if and only if x ∈ A or x ∈ B but not both;
that is, χA + χB = χ(A∪B)−(A∩B) = χA+B [recall that (A − B) ∪ (B − A) =
(A ∪ B) − (A ∩ B)]. Hence, ϕ(A + B) = ϕ(A) + ϕ(B). Therefore, ϕ is an
isomorphism. �

Definition. If f : A → R is a ring homomorphism, then its kernel is

ker f = {a ∈ A with f (a) = 0},
and its image is

im f = {r ∈ R : r = f (a) for some a ∈ A}.
Notice that if we forget the multiplications, then the rings A and R are addi-

tive abelian groups and these definitions coincide with the group-theoretic ones.
Let k be a field, let a ∈ k and, as in Corollary 3.34, consider the evaluation

homomorphism ea : k[x] → k sending f (x) 7→ f (a). Now ea is always surjec-
tive, for if b ∈ k, then b = ea( f ), where f (x) = x − a + b. By definition, ker ea
consists of all those polynomials g(x) for which g(a) = 0.

Proposition 3.38. If f : A → R is a ring homomorphism, where R is a nonzero
ring, then im f is a subring of R and ker f is a proper subset of A satisfying the
conditions:

(i) 0 ∈ ker f ;
(ii) x, y ∈ ker f implies x + y ∈ ker f ;

(iii) x ∈ ker f and a ∈ A imply ax ∈ ker f .

Proof. If r, r ′ ∈ im f , then r = f (a) and r ′ = f (a′) for some a, a′ ∈ A.
Hence, r − r ′ = f (a) − f (a′) = f (a − a′) ∈ im f and rr ′ = f (a) f (a′) =
f (aa′) ∈ im f . Since f (1) = 1, by the definition of a homomorphism, im f is
a subring of R.

We observed on page 243 that f (0) = 0, so that 0 ∈ ker f . If x, y ∈ ker f ,
then f (x + y) = f (x)+ f (y) = 0 + 0 = 0, so that x + y ∈ ker f . If x ∈ ker f
and a ∈ A, then f (ax) = f (a) f (x) = f (a)0 = 0, and so ax ∈ ker f . Note
that ker f is a proper subset of A, for f (1) = 1 6= 0, and so 1 /∈ ker f . •
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The kernel of a group homomorphism G → H is not merely a subgroup; it
is a normal subgroup: it is closed under conjugation by any element in the group
G. Similarly, if f : A → R is a ring homomorphism, then ker f is almost11 a
subring because it is closed under addition and multiplication. But ker f is also
closed under multiplication by any element in the commutative ring A.

Definition. An ideal in a commutative ring R is a subset I of R such that

(i) 0 ∈ I ;

(ii) if a, b ∈ I , then a + b ∈ I ;

(iii) if a ∈ I and r ∈ R, then ra ∈ I .

An ideal I 6= R is called a proper ideal.

Proposition 3.38 can be restated. If f : A → R is a ring homomorphism,
where R is a nonzero ring, then im f is a subring of R and ker f is a proper
ideal in A.

There are two obvious examples of ideals in every nonzero commutative ring
R: the ring R itself and the subset {0} consisting of 0 alone. In Proposition 3.43,
we will see that a commutative ring having only these ideals must be a field.

Example 3.39.
If b1, b2, . . . , bn lie in R, then the set of all their linear combinations

I = {r1b1 + r2b2 + · · · + rnbn : ri ∈ R for all i}

is an ideal in R. One writes I = (b1, b2, . . . , bn) in this case.
In particular, if n = 1, then

I = (b) = {rb : r ∈ R}

is an ideal in R; (b) consists of all the multiples of b, and it is called the principal
ideal generated by b.

Notice that R and {0} are always principal ideals: R = (1) and {0} = (0). In�
, the even integers form the principal ideal (2). �

Theorem 3.40. Every ideal in
�

is a principal ideal.

Proof. This is just a restatement of Corollary 1.34. •

Can a principal ideal have more than one generator?

11If f : A → R and R is not the zero ring, then ker f is not a subring because it does not
contain 1: f (1) = 1 6= 0.
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Proposition 3.41. If R is a commutative ring and a = ub for some unit u ∈ R,
then (a) = (b). Conversely, if R is a domain, then (a) = (b) implies a = ub for
some unit u ∈ R.

Proof. Suppose that a = ub for some unit u ∈ R. If x ∈ (a), then x = ra =
rub ∈ (b) for some r ∈ R, so that (a) ⊆ (b). For the reverse inclusion, if
y ∈ (b), then y = sb for some s ∈ R. Hence, y = sb = su−1a ∈ (a), so that
(b) ⊆ (a) and (a) = (b).

Conversely, if (a) = (b), then a ∈ (a) = (b) says that a = rb for some
r ∈ R; that is, b | a; similarly, b ∈ (b) = (a) implies a | b. By Proposition 3.15,
which assumes that R is a domain, there is a unit u ∈ R with a = ub. •

Example 3.42.
If an ideal I in a commutative ring R contains 1, then I = R, because I contains
r = r1 for every r ∈ R. Indeed, an ideal I contains a unit u if and only if I = R.
Sufficiency is obvious: if I = R, then I contains a unit, namely, 1. Conversely,
if u ∈ I for some unit u, then I contains u−1u = 1, and so I contains r = r1 for
every r ∈ R. �

Proposition 3.43. A nonzero commutative ring R is a field if and only if its only
ideals are {0} and R itself.

Proof. Assume that R is a field. If I 6= {0}, it contains some nonzero element,
and every nonzero element in a field is a unit. Therefore, I = R, by Exam-
ple 3.42.

Conversely, assume that R is a commutative ring whose only ideals are {0}
and R itself. If a ∈ R and a 6= 0, then the principal ideal (a) = R, for (a) 6= 0,
and so 1 ∈ R = (a). There is thus r ∈ R with 1 = ra; that is, a has an inverse
in R, and so R is a field. •

Proposition 3.44. A ring homomorphism f : A → R is an injection if and only
if ker f = {0}.

Proof. If f is an injection, then a 6= 0 implies f (a) 6= f (0) = 0, and so a /∈
ker f . Therefore, ker f = {0}. Conversely, if ker f = {0} and f (a) = f (a ′),
then 0 = f (a)− f (a′) = f (a − a′). Hence, a − a′ ∈ ker f = {0} and a = a′;
that is, f is an injection. •

Corollary 3.45. If f : k → R is a ring homomorphism, where R is not the zero
ring, and if k is a field, then f is an injection.
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Proof. By the proposition, it suffices to prove that ker f = {0}. But ker f is
a proper ideal in k, by Proposition 3.38, and Proposition 3.43 shows that k has
only two ideals: k and {0}. Now ker f 6= k, because f (1) = 1 6= 0 (R is not the
zero ring). Therefore, ker f = {0} and f is an injection. •

EXERCISES

*3.38 Prove that the function k[x] → k[A], defined by f (x) 7→ f (A), is a surjective
ring homomorphism. (See Exercise 3.28 on page 239.)

3.39 Let A be a commutative ring. Prove that a subset J of A is an ideal if and only if
0 ∈ J , u, v ∈ J implies u − v ∈ J , and u ∈ J , a ∈ A imply au ∈ J . (In order that
J be an ideal, u, v ∈ J should imply u + v ∈ J instead of u − v ∈ J .)

3.40 (i) Prove that a field with 4 elements (see Exercise 3.17 on page 232) and � 4
are not isomorphic commutative rings.

(ii) Prove that any two fields having exactly four elements are isomorphic.
*3.41 (i) Let ϕ : A → R be an isomorphism, and let ψ : R → A be its inverse.

Show that ψ is an isomorphism.
(ii) Show that the composite of two homomorphisms (or two isomorphisms)

is again a homomorphism (or an isomorphism).
(iii) Show that A ∼= R defines an equivalence relation on any family of com-

mutative rings.
3.42 Let R be a commutative ring and let � (R) be the commutative ring of all functions

f : R → R (see Exercise 3.9 on page 227).
(i) Show that R is isomorphic to the subring of � (R) consisting of all the

constant functions.
(ii) If f (x) = a0 + a1x + · · · + an xn ∈ R[x], let f [ : R → R be defined

by f [(r) = a0 + a1r + · · · + anrn [thus, f [ is the polynomial function
associated to f (x)]. Show that the function ϕ : R[x] → � (R), defined
by ϕ : f (x) 7→ f [, is a ring homomorphism.

(iii) Show that if R = � p , where p is a prime, then x p − x ∈ ker ϕ. (It will be
shown, in Theorem 3.50, that ϕ is injective when R is an infinite field.)

3.43 Let R be a commutative ring. Show that the function η : R[x] → R, defined by

η : a0 + a1x + a2x + · · · + an xn 7→ a0,

is a homomorphism. Describe ker η in terms of roots of polynomials.
*3.44 Let R and S be commutative rings and let ϕ : R → S be a homomorphism. Show

that ϕ∗ : R[x] → S[x], defined by

ϕ∗ : r0 + r1x + r2x2 + · · · 7→ ϕ(r0)+ ϕ(r1)x + ϕ(r2)x
2 + · · · ,

is a homomorphism.
*3.45 Let R and S be commutative rings, and let ψ : R → S be a homomorphism with

kerψ = I . If J is an ideal in S, prove that ψ−1(J ) is an ideal in R which con-
tains I .
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3.46 If R is a commutative ring and c ∈ R, prove that the function ϕ : R[x] → R[x],
defined by f (x) 7→ f (x + c), is an isomorphism. In more detail, ϕ(

∑
i si x i ) =∑

i si (x + c)i .
*3.47 Let p be a prime.

(i) Show that if p is a prime, then the function F : � p → � p , given by
F(a) = a p , is an isomorphism (F is called the Frobenius map).

(ii) Show that every element a ∈ � p has a pth root, i.e., there is b ∈ � p with
a = b p .

(iii) Let k be a field that contains � p as a subfield [e.g., k = Frac
(

� p [x]
)
].

For every positive integer n, show that the function Fn : k → k, given by
F(a) = a pn

, is an injective ring homomorphism.
3.48 If R is a field, show that R ∼= Frac(R). More precisely, show that the homomor-

phism f : R → Frac(R) in Example 3.31, namely, r 7→ [r, 1], is an isomorphism.
*3.49 Let R be a domain and let F be a field containing R as a subring.

(i) Prove that E = {uv−1 : u, v ∈ R and v 6= 0} is a subfield of F containing
R as a subring.

(ii) Prove that Frac(R) ∼= E , where E is the subfield of F defined in part (i).
(See Exercise 3.21 on page 232.)

*3.50 (i) If A and R are domains and ϕ : A → R is a ring isomorphism, then
[a, b] 7→ [ϕ(a), ϕ(b)] is a ring isomorphism Frac(A) → Frac(R).

(ii) Show that a field k containing an isomorphic copy of � as a subring must
contain an isomorphic copy of � .

3.51 Let R be a domain with fraction field F = Frac(R).
(i) Prove that Frac(R[x]) ∼= F(x).
(ii) Prove that Frac(R[x1, x2, . . . , xn]) ∼= F(x1, x2, . . . , xn).

3.52 (i) If R and S are commutative rings, show that their direct product R × S is
also a commutative ring, where addition and multiplication in R × S are
defined “coordinatewise:”

(r, s)+ (r ′, s ′) = (r + r ′, s + s ′) and (r, s)(r ′, s ′) = (rr ′, ss ′).

(ii) Show that R × {0} is an ideal in R × S.
(iii) Show that R × S is not a domain if neither R nor S is the zero ring.

*3.53 (i) If R and S are commutative rings, prove that

U (R × S) = U (R) × U (S),

where U (R) is the group of units of R.
(ii) Show that if m and n are relatively prime, then � mn

∼= � m × � n as rings.
(iii) Use part (ii) to give a new proof of Corollary 2.128: if (m, n) = 1, then

φ(mn) = φ(m)φ(n), where φ is the Euler φ-function.
3.54 Let F be the set of all 2 × 2 real matrices of the form

A =
[

a b
−b a

]
.

(i) Prove that F is a field (with operations matrix addition and matrix multi-
plication).
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(ii) Prove that F is isomorphic to � .

3.5 GREATEST COMMON DIVISORS

We are now going to see that virtually all the theorems proved for
�

in Chapter 1
have polynomial analogs in k[x], where k is a field; we shall also see that the
proofs there can be translated into proofs here.

The division algorithm for polynomials with coefficients in a field says that
long division is possible.

s−1
n tm xm−n + · · ·

snxn + sn−1xn−1 + · · ·
∣∣∣ tm xm + tm−1xm−1 + · · ·

Definition. If f (x) = snxn + · · · + s1x + s0 is a polynomial of degree n, then
its leading term is

LT( f ) = sn xn.

Let k be a field and let f (x) = snxn + · · · + s1x + s0 and g(x) = tm xm +
· · · + t1x + t0 be polynomials in k[x] with deg( f ) ≤ deg(g); that is, n ≤ m.
Then s−1

n ∈ k, because k is a field, and

LT(g)

LT( f )
= s−1

n tm xm−n ∈ k[x];

thus, LT( f ) | LT(g).

Theorem 3.46 (Division Algorithm). Let R be a commutative ring, let f (x),
g(x) ∈ R[x], and let the leading coefficient of f (x) be a unit in R.

(i) There are polynomials q(x), r(x) ∈ R[x] with

g(x) = q(x) f (x)+ r(x),

where either r(x) = 0 or deg(r) < deg( f ).

(ii) If R is a domain, then the polynomials q(x) and r(x) in part (i) are unique.
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Remark. If R is a field, the hypothesis that the leading coefficient of f (x) is a
unit is equivalent to f (x) 6= 0. �

Proof.
(i) We prove the existence of q(x), r(x) ∈ R[x] as in the statement. If f | g,
then g = q f for some q; define the remainder r = 0, and we are done. If
f � g, then consider all (necessarily nonzero) polynomials of the form g − q f as
q varies over R[x]. The least integer axiom provides a polynomial r = g − q f
having least degree among all such polynomials. Since g = q f + r , it suffices
to show that deg(r) < deg( f ). Write f (x) = snxn + · · · + s1x + s0 and r(x) =
tm xm + · · · + t1x + t0. By hypothesis, sn is a unit, and so s−1

n exists in k. If
deg(r) ≥ deg( f ), define

h(x) = r(x)− tms−1
n xm−n f (x);

that is, h = r − [LT(r)/LT( f )] f ; note that h = 0 or deg(h) < deg(r). If h = 0,
then r = [LT(r)/LT( f )] f and

g = q f + r = q f +
LT(r)

LT( f )
f =

[
q +

LT(r)

LT( f )

]
f,

contradicting f � g. If h 6= 0, then deg(h) < deg(r) and

g − q f = r = h +
LT(r)

LT( f )
f.

Thus, g −
[
q +LT(r)/LT( f )

]
f = h, contradicting r being a polynomial of least

degree having this form. Therefore, deg(r) < deg( f ).
(ii) To prove uniqueness of q(x) and r(x), assume that g = q ′ f + r ′, where
deg(r ′) < deg( f ). Then

(q − q ′) f = r ′ − r.

If r ′ 6= r , then each side has a degree. But deg((q − q ′) f ) = deg(q − q ′) +
deg( f ) ≥ deg( f ), while deg(r ′ − r) ≤ max{deg(r ′), deg(r)} < deg( f ), a
contradiction. Hence, r ′ = r and (q − q ′) f = 0. Now R[x] is a domain because
R is a domain. It follows that q − q ′ = 0 and q = q ′. •

Our proof of the division algorithm for polynomials is written as an indirect
proof, but the proof can be recast so that it is a true algorithm, as is the division
algorithm for integers. Here is a pseudocode implementing it.

Input: g, f
Output: q, r
q := 0; r := g
WHILE r 6= 0 AND LT( f ) | LT(r) DO

q := q +
[
LT(r)/LT( f )

]
xdeg(r)−deg( f )

r := r −
[
LT(q)/LT( f )

]
f

END WHILE
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Definition. If f (x) and g(x) are polynomials in k[x], where k is a field, then
the polynomials q(x) and r(x) occurring in the division algorithm are called the
quotient and the remainder after dividing g(x) by f (x).

The next theorem uses the division algorithm to divide by a monic polyno-
mial in

� [x]. Recall that cyclotomic polynomials were defined on page 29.

Proposition 3.47. For every positive integer n, the cyclotomic polynomial
8n(x) is a monic polynomial all of whose coefficients are integers.

Proof. The proof is by induction on n ≥ 1. The base step holds, for 81(x) =
x − 1. For the inductive step, we assume that 8d (x) is a monic polynomial
with integer coefficients. From the equation x n − 1 =

∏
d 8d(x) (see Proposi-

tion 1.27), we have
xn − 1 = 8n(x) f (x),

where f (x) is the product of all 8d (x), where d is a proper divisor of n (i.e.,
d | n and d < n). By the inductive hypothesis, f (x) is a monic polynomial
with integer coefficients. Because f (x) is monic, the division algorithm for
monic polynomials in

� [x] shows that (xn − 1)/ f (x) ∈ � [x] and, hence, all the
coefficients of 8n(x) = (xn − 1)/ f (x) are integers, as desired. •

We now turn our attention to roots of polynomials.

Definition. If f (x) ∈ k[x], where k is a field, then a root of f (x) in k is an
element a ∈ k with f (a) = 0.

Remark. The polynomial f (x) = x2 − 2 has its coefficients in
�

, but we
usually say that

√
2 is a root of f (x) even though

√
2 /∈

�
. We shall see later,

in Theorem 3.118, that for every polynomial f (x) ∈ k[x], where k is any field,
there is a larger field E which contains k as a subfield and which “contains all
the roots” of f (x). �

Lemma 3.48. Let f (x) ∈ k[x], where k is a field, and let a ∈ k. Then there is
q(x) ∈ k[x] with

f (x) = q(x)(x − a)+ f (a).

Proof. Use the division algorithm to obtain

f (x) = q(x)(x − a)+ r;
the remainder r is a constant because x − a has degree 1. By Corollary 3.34,
ea : k[x] → k, evaluation at a, is a ring homomorphism:

ea( f ) = ea(q)ea(x − a)+ ea(r).

Hence, f (a) = q(a)(a − a)+ r , and so r = f (a). •
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There is a connection between roots and factoring.

Proposition 3.49. If f (x) ∈ k[x], where k is a field, then a ∈ k is a root of
f (x) in k if and only if x − a divides f (x) in k[x].

Proof. If a is a root of f (x) in k, then f (a) = 0 and the lemma gives f (x) =
q(x)(x − a). Conversely, if f (x) = q(x)(x − a), then evaluating at a gives
f (a) = q(a)(a − a) = 0. •

Theorem 3.50. Let k be a field and let f (x) ∈ k[x].

(i) If f (x) has degree n, then f (x) has at most n roots in k.

(ii) If f (x) has degree n and a1, a2, . . . , an ∈ k are distinct roots of f (x) in k,
then there is c ∈ k and a factorization

f (x) = c(x − a1)(x − a2) · · · (x − an).

Proof.
(i) We prove the statement by induction on n ≥ 0. If n = 0, then f (x) is a
nonzero constant, and so the number of its roots in k is zero. Now let n > 0. If
f (x) has no roots in k, then we are done, for 0 ≤ n. Otherwise, we may assume
that there is a ∈ k with a a root of f (x); hence, by Proposition 3.49,

f (x) = q(x)(x − a),

and q(x) ∈ k[x] has degree n − 1. If there is a root b ∈ k with b 6= a, then

0 = f (b) = q(b)(b − a).

Since b − a 6= 0 and k is a field (and, hence, a domain), we have q(b) = 0, so
that b is a root of q(x). But deg(q) = n −1, so that the inductive hypothesis says
that q(x) has at most n − 1 roots in k. Therefore, f (x) has at most n roots in k.
(ii) The proof, by induction on n ≥ 1, is left to the reader. •

Example 3.51.
Theorem 3.50 is false for arbitrary commutative rings. The polynomial x 2 − 1 ∈�

8[x] has 4 roots in
�

8, namely, [1], [3], [5], and [7]. �

Recall that every polynomial f (x) = cnxn + cn−1xn−1 + · · · + c0 ∈ k[x]
determines the polynomial function f [ : k → k with f [(a) = cnan+cn−1an−1+
· · · + c0 for all a ∈ k. In Exercise 3.30 on page 239, however, we saw that a
nonzero polynomial in

�
p [x], e.g., x p − x , can determine the constant function

zero. This pathology vanishes when the field k is infinite.
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Corollary 3.52. Let k be an infinite field and let f (x) and g(x) be polynomi-
als in k[x]. If f (x) and g(x) determine the same polynomial function, i.e., if
f [(a) = g[(a) for all a ∈ k, then f (x) = g(x).

Proof. If f (x) 6= g(x), then the polynomial f (x) − g(x) is nonzero, so that
it has some degree, say, n. Now every element of k is a root of f (x) − g(x);
since k is infinite, this polynomial of degree n has more than n roots, and this
contradicts the theorem. •

The last proof gives a bit more.

Corollary 3.53. Let k be any (possibly finite) field, let f (x), g(x) ∈ k[x], and
let n = max{deg( f ), deg(g)}. If there are n + 1 distinct elements a ∈ k with
f (a) = g(a), then f (x) = g(x).

Proof. If f (x) 6= g(x), then h(x) = f (x)− g(x) 6= 0, and

deg(h) ≤ max{deg( f ), deg(g)} = n.

By hypothesis, there are n + 1 elements a ∈ k with h(a) = f (a) − g(a) = 0,
contradicting Theorem 3.50(i). Therefore, h(x) = 0 and f (x) = g(x). •

Corollary 3.54 (Lagrange Interpolation). Let k be a field, and let u0, . . . , un
be distinct elements of k. Given any list y0, . . . , yn in k, there exists a unique
f (x) ∈ k[x] of degree ≤ n with f (ui ) = yi for all i = 0, . . . , n. In fact,

f (x) =
n∑

i=0

yi
(x − u0) · · ·

�

(x − ui ) · · · (x − un)

(ui − u0) · · ·
�

(ui − ui ) · · · (ui − un)
.

Proof. The polynomial f (x) displayed in the formula has degree at most n and
f (ui ) = yi for all i . Uniqueness follows from Corollary 3.53. •

Remark. The Lagrange interpolation formula can be shortened using Exer-
cise 1.14 on page 14: if f = g0 · · · gn , then f ′ =

∑n
i=0 di f , where di f =

g0 · · · g′
i · · · gn. If gi (x) = x − ui , then

f (x) =
n∑

i=0

yi
di f (x)

di f (ui )
,

because di f (x) = (x − u0) · · ·
�

(x − ui ) · · · (x − un). �

The definition of greatest common divisor in k[x], where k is a field, is es-
sentially the same as the corresponding definition for integers. We shall define
greatest common divisors in general domains on page 256.
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Definition. If k is a field and f (x), g(x) ∈ k[x], then a common divisor is a
polynomial c(x) ∈ k[x] with c(x) | f (x) and c(x) | g(x).

If f (x) = 0 = g(x), then the greatest common divisor, abbreviated gcd,
is defined to be 0. If at least one of f (x), g(x) is nonzero, then the greatest
common divisor, denoted by ( f, g), is a monic common divisor d(x) ∈ k[x]
with deg(c) ≤ deg(d) for every common divisor c(x).

The following elementary lemma often allows us to prove results about arbi-
trary polynomials from the special case of monic polynomials.

Lemma 3.55. Let f (x) be a nonzero polynomial in k[x], where k is a field. If
h(x) = anxn + · · · + a0 ∈ k[x] is a divisor of f (x), then a−1

n h(x) is a monic
divisor of f (x) having the same degree as h(x).

Proof. Since k is a field, an ∈ k nonzero implies a−1
n ∈ k. If f (x) = c(x)h(x),

then f (x) = [anc(x)][a−1
n h(x)]. Of course, deg(a−1

n h) = deg(h). •
It follows from the lemma that if f (x), g(x) ∈ k[x], where k is a field, and

if c(x) is a common divisor of f (x) and g(x), then there is a monic common
divisor having deg(c).

Proposition 3.56. If k is a field, then every pair f (x), g(x) ∈ k[x] has a gcd.

Proof. Since the theorem is obvious if both f (x) and g(x) are 0, we may as-
sume that f (x) 6= 0. If h(x) is a divisor of f (x), then deg(h) ≤ deg( f ); a
fortiori, deg( f ) is an upper bound for the degrees of the common divisors of
f (x) and g(x). Let d(x) be a common divisor of largest degree; since k is a
field, we may assume, by Lemma 3.55, that d(x) is monic. •

Here is the analog of Theorem 1.32; we will soon use it to prove uniqueness
of gcd’s.

Theorem 3.57. If k is a field and f (x), g(x) ∈ k[x], then their gcd is a linear
combination of f (x) and g(x).

Remark. By linear combination, we now mean s f + tg, where both s = s(x)
and t = t (x) are polynomials in k[x]. �

Proof. We may assume that at least one of f and g is not zero (for the gcd is 0
otherwise). Consider the set I of all the linear combinations:

I = {s(x) f (x)+ t (x)g(x) : s(x), t (x) ∈ k[x]} .

Now f and g are in I (take s = 1 and t = 0 or vice versa). It follows that if
N = {n ∈ � : n = deg( f ), where f (x) ∈ I , then N is nonempty. By the least



256 COMMUTATIVE RINGS I CH. 3

integer axiom, N contains a smallest integer, say, n and there is some d(x) ∈ I
with deg(d) = n; as in Lemma 3.55, we may assume that d(x) is monic. We
claim that d(x) = ( f, g).

Since d ∈ I , it is a linear combination of f and g:

d = s f + tg.

Let us show that d is a common divisor by trying to divide each of f and g by
d . The division algorithm gives f = qd + r , where r = 0 or deg(r) < deg(d).
If r 6= 0, then

r = f − qd = f − q(s f + tg) = (1 − qs) f − qtg ∈ I,

contradicting d having smallest degree among all linear combinations of f and g.
Hence, r = 0 and d | f ; a similar argument shows that d | g.

Finally, if c is a common divisor of f and g, then c divides d = s f + tg. But
c | d implies deg(c) ≤ deg(d). Therefore, d is the gcd of f and g. •

Corollary 3.58. Let k be a field and let f (x), g(x) ∈ k[x].

(i) A monic common divisor d(x) is the gcd if and only if d(x) is divisible by
every common divisor.

(ii) Every two polynomials f (x) and g(x) have a unique gcd.

Proof. The last paragraph of the proof of Theorem 3.57 shows that every com-
mon divisor c of f and g is a divisor of d = s f + tg.

Conversely, let d denote a gcd of f and g, and let d ′ be a common divisor
divisible by every common divisor c; thus, d | d ′. On the other hand, d is
divisible by every common divisor (as we have just seen in the first paragraph), so
that d ′ | d . By Proposition 3.15 (which applies because k[x] is a domain), there
is a unit u(x) ∈ k[x] with d ′(x) = u(x)d(x). By Exercise 3.29 on page 239, u(x)
is a nonzero constant; call it u. Hence, d ′(x) = ud(x); if the leading coefficients
are s′ and s, then s ′ = us. But both d(x) and d ′(x) are monic, so that u = 1 and
d ′(x) = d(x). This last argument also proves uniqueness of the gcd. •

Greatest common divisors can be defined in any domain R once one takes
note of Corollaries 1.33 and 3.58.

Definition. If R is a domain and a, b ∈ R, then a common divisor is an element
c ∈ R with c | a and c | b. If a = 0 = b, then the greatest common divisor,
abbreviated gcd, is defined to be 0. If at least one of a, b is nonzero, then a
greatest common divisor, denoted by (a, b), is a common divisor d ∈ R with
c | d for every common divisor c ∈ R.
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Exercise 3.75 on page 272 gives an example of a domain R containing a pair
of elements having no gcd.

The definition just given is not quite the same as our definition of gcd in
�

(in Chapter 1), because it does not insist that gcd’s be nonnegative. For example,
both 2 and −2 are gcd’s of 4 and 6 in the new sense; this shows why we wrote “a
gcd” in the latest definition instead of “the gcd.” Similarly, this definition of gcd
in k[x] is slightly different than our earlier definition on page 255 because gcd’s
in the present sense need not be monic. In order to make them unique, gcd’s in

�
are defined to be nonnegative and gcd’s in k[x] are defined to be monic. In more
general domains, gcd’s are not unique. However, if both d and d ′ are gcd’s of
a, b ∈ R, then there is a unit u ∈ R with d ′ = ud (for each divides the other). In�

, gcd’s are unique to sign (because the only units in
�

are ±1), and we choose
the positive gcd as our favorite; in k[x], where k is a field, any two gcd’s differ
by a constant nonzero multiple (for the only units are the nonzero constants), and
we choose the monic polynomial as our favorite. But, in general domains, there
is no obvious choice of a “favorite,” and so we cannot single out one of the gcd’s
as being “the gcd.” By Proposition 3.41, the principal ideals generated by two
gcd’s d and d ′ of a and b coincide: (d ′) = (d). Thus, even though the gcd of
elements a and b is not unique, the gcd’s determine a unique principal ideal.

Theorem 3.40 says that every ideal in
�

is a principal ideal; its analog below
has essentially the same proof.

Theorem 3.59. If k is a field, then every ideal I in k[x] is a principal ideal.
Moreover, if I 6= {0}, there is a monic polynomial that generates I .

Proof. If I consists of 0 alone, take d = 0. If there are nonzero polynomials
in I , the least integer axiom allows us to choose a polynomial d(x) ∈ I of least
degree. As in Lemma 3.55, we may assume that d(x) is monic.

We claim that every f in I is a multiple of d . The division algorithm gives
polynomials q and r with f = qd + r , where either r = 0 or deg(r) < deg(d).
Now d ∈ I gives qd ∈ I , by part (iii) in the definition of ideal; hence part (ii)
gives r = f − qd ∈ I . If r 6= 0, then it has a degree and deg(r) < deg(d),
contradicting d having least degree among all the polynomials in I . Therefore,
r = 0 and f is a multiple of d . •

The proof of Theorem 3.57 identifies the gcd of f (x) and g(x) (when at
least one of them is not the zero polynomial) as the monic generator of the ideal
I = ( f (x), g(x)) consisting of all the linear combinations of f (x) and g(x)
Recall the notation introduced in Example 3.39: if b1, . . . , bn ∈ R, then the
ideal consisting of all their linear combinations is denoted by (b1, . . . , bn). This
explains the notation ( f, g) for the gcd. Notice that this notation makes sense
even when both f (x) and g(x) are the zero polynomial: the gcd is 0, which is
the generator of the ideal (0, 0) = {0}.
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Definition. A commutative ring R is a principal ideal domain if it is a domain
in which every ideal is a principal ideal. One usually abbreviates this name to
PID.

Example 3.60.

(i) The ring
�

of integers is a PID, by Theorem 3.40.

(ii) Every field is a PID, by Proposition 3.43.

(iii) If k is a field, then the polynomial ring k[x] is a PID, by Theorem 3.59.

(iv) If k is a field, then Exercise 3.68 on page 272 shows that the ring k[[x]] of
formal power series is a PID.

(v) There are rings other than
�

and k[x] where k is a field, that have a divi-
sion algorithm; the ring of Gaussian integers

� [i ] is an example of such a
ring. These rings are called euclidean rings, and they, too, are PID’s (see
Proposition 3.78). �

It is not true that ideals in arbitrary commutative rings are always principal
ideals.

Example 3.61.

(i) Let R = � [x], the commutative ring of all polynomials over
�

. It is easy
to see that the set I of all polynomials with even constant term is an ideal
in

� [x]. We show that I is not a principal ideal.
Suppose there is d(x) ∈ � [x] with I = (d(x)). The constant 2 ∈ I ,

so that there is f (x) ∈ � [x] with 2 = d(x) f (x). Since the degree of a
product is the sum of the degrees of the factors, 0 = deg(2) = deg(d)+
deg( f ). Since degrees are nonnegative, it follows that deg(d) = 0, i.e.,
d(x) is a nonzero constant. As constants here are integers, the candidates
for d(x) are ±1 and ±2. Suppose d(x) = ±2; since x ∈ I , there is
g(x) ∈ � [x] with x = d(x)g(x) = ±2g(x). But every coefficient on
the right side is even, while the coefficient of x on the left side is 1. This
contradiction gives d(x) = ±1. By Proposition 3.43, I = � [x], another
contradiction. Therefore, no such d(x) exists, that is, the ideal I is not a
principal ideal.

(ii) Exercise 3.71 on page 272 shows that k[x, y], where k is a field, is not
a PID. More precisely, it asks you to prove that the ideal (x, y) is not a
principal ideal. �
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Example 3.62.
If I and J are ideals in a commutative ring R, we now show that I ∩ J is also
an ideal in R. Since 0 ∈ I and 0 ∈ J , we have 0 ∈ I ∩ J . If a, b ∈ I ∩ J , then
a − b ∈ I and a − b ∈ J , for each is an ideal, and so a − b ∈ I ∩ J . If a ∈ I ∩ J
and r ∈ R, then ra ∈ I and ra ∈ J , hence ra ∈ I ∩ J . Therefore, I ∩ J is an
ideal. With minor alterations, this argument also proves that the intersection of
any, possibly infinite, family of ideals in R is also an ideal in R. �

Definition. If f (x), g(x) ∈ k[x], where k is a field, then a common multiple
is a polynomial m(x) ∈ k[x] with f (x) | m(x) and g(x) | m(x).

Given polynomials f (x) and g(x) in k[x], both nonzero, define their least
common multiple, abbreviated lcm, to be a monic common multiple of them
having smallest degree. If f (x) = 0 or g(x) = 0, define their lcm = 0. A lcm
of f (x) and g(x) is often denoted by

[ f (x), g(x)].
Proposition 3.63. Assume that k is a field and that f (x), g(x) ∈ k[x] are
nonzero.

(i) [ f (x), g(x)] is the monic generator of ( f (x)) ∩ (g(x)).
(ii) Let m(x) be a monic common multiple of f (x) and g(x). Then m(x) =

[ f (x), g(x)] if and only if m(x) divides every common multiple of f (x)
and g(x).

(iii) Every pair of polynomials f (x) and g(x) has a unique lcm.

Proof.
(i) Since f (x) 6= 0 and g(x) 6= 0, we have ( f ) ∩ (g) 6= 0, because 0 6= f g ∈
( f )∩ (g). By Theorem 3.59, ( f )∩ (g) = (m), where m is the monic polynomial
of least degree in ( f ) ∩ (g). As m ∈ ( f ), m = q f for some q(x) ∈ k[x], and
so f | m; similarly, g | m, so that m is a common multiple of f and g. If M is
another common multiple, then M ∈ ( f ) and M ∈ (g), hence M ∈ ( f ) ∩ (g) =
(m), and so m | M . Therefore, deg(m) ≤ deg(M), and m = [ f, g].
(ii) We have just seen that [ f, g] divides every common multiple M of f and g.
Conversely, assume that m ′ is a monic common multiple that divides every other
common multiple. Now m ′ | [ f, g], because [ f, g] is a common multiple, while
[ f, g] | m ′, by part (i). Proposition 3.15 provides a unit u(x) ∈ k[x] with
m′(x) = u(x)m(x); by Exercise 3.29 on page 239, u(x) is a nonzero constant.
Since both m(x) and m ′(x) are monic, it follows that m(x) = m ′(x).
(iii) If ` and `′ are both lcm’s of f (x) and g(x), then part (ii) shows that each
divides the other. Uniqueness now follows from Proposition 3.15, for both ` and
`′ are monic. •

Here is the generalization of a prime number.
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Definition. An element p is a commutative ring R is irreducible if p is neither
0 nor a unit and if, in any factorization p = ab in R, either a or b is a unit.

The irreducible elements in
�

are ±p, where p is a prime. The next propo-
sition describes irreducible polynomials in k[x], where k is a field.

Proposition 3.64. If k is a field, then a nonconstant polynomial p(x) ∈ k[x]
is irreducible in k[x] if and only if p(x) has no factorization in k[x] of the form
p(x) = f (x)g(x) in which both factors have degree smaller than deg(p).

Proof. If p(x) is irreducible, it must be nonconstant. If p(x) = f (x)g(x) in
k[x], where both factors have degree smaller than deg(p), then neither deg( f )
nor deg(g) is 0, and so neither factor is a unit in k[x]. This is a contradiction.

Conversely, if p(x) cannot be factored into polynomials of smaller degree,
then its only factors have the form a or ap(x), where a is a nonzero constant.
Since k is a field, nonzero constants are units, and so p(x) is irreducible. •

This characterization of irreducible polynomials does not apply to polyno-
mial rings R[x] when R not a field. In

�
[x], the polynomial f (x) = 2x + 2

is irreducible (because 2 is a unit). However, f (x) is not irreducible in
� [x]

because f (x) = 2(x + 1), and neither 2 nor x + 1 is a unit in
� [x].

A linear polynomial f (x) ∈ k[x], where k is a field, is always irreducible [if
f = gh, then 1 = deg( f ) = deg(g)+ deg(h), and so one of g or h must have
degree 0 while the other has degree 1 = deg( f )]. There are polynomial rings
over fields in which linear polynomials are the only irreducible polynomials. For
example, the fundamental theorem of algebra says that

�
[x] is such a ring.

Just as the definition of divisibility in a commutative ring R depends on R,
so, too, does irreducibility of a polynomial p(x) ∈ k[x] depend on the commuta-
tive ring k[x] and hence on the field k. For example, p(x) = x 2 −2 is irreducible
in

�
[x], but it factors as (x +

√
2)(x −

√
2) in

� [x].

Proposition 3.65. Let k be a field and let f (x) ∈ k[x] be a quadratic or cubic
polynomial. Then f (x) is irreducible in k[x] if and only if f (x) does not have a
root in k.

Proof. If f (x) has a root a in k, then Proposition 3.49 shows that f (x) has an
honest factorization, and so it is not irreducible.

Conversely, assume that f (x) is not irreducible, i.e., there is a factorization
f (x) = g(x)h(x) in k[x] with deg(g) < deg( f ) and deg(h) < deg( f ). By
Lemma 3.18, deg( f ) = deg(g)+ deg(h). Since deg( f ) = 2 or 3, one of deg(g),
deg(h)must be 1, and Proposition 3.49 says that f (x) has a root in k. •

This corollary is false for larger degrees. For example,

x4 + 2x2 + 1 = (x2 + 1)2
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obviously factors in
� [x], but it has no real roots.

Proposition 3.66. If k is a field, then every nonconstant f (x) ∈ k[x] has a
factorization

f (x) = ap1(x) · · · pt (x),

where a is a nonzero constant and the pi (x) are monic irreducible polynomials.

Proof. We prove the proposition for a polynomial f (x) by (the second form of)
induction on deg( f ) ≥ 1. If deg( f ) = 1, then f (x) = ax + c = a(x + a−1c);
as every linear polynomial, x + a−1c is irreducible, and so it is a product of ir-
reducibles (our usage of the word product allows only one factor). Assume now
that deg( f ) ≥ 1. If f (x) is irreducible and its leading coefficient is a, write
f (x) = a(a−1 f (x)); we are done, for a−1 f (x) is monic. If f (x) is not irre-
ducible, then f (x) = g(x)h(x), where deg(g) < deg( f ) and deg(h) < deg( f ).
By the inductive hypothesis, there are factorizations g(x) = bp1(x) · · · pm(x)
and h(x) = cq1(x) · · ·qn(x), where the p’s and q’s are monic irreducibles. It
follows that f (x) = (bc)p1(x) · · · pm(x)q1(x) · · · qn(x), as desired. •

The analog of the fundamental theorem of arithmetic, uniqueness of the
monic irreducible factors, will be proved in the next section.

If k is a field, it is easy to see that if p(x), q(x) ∈ k[x] are irreducible
polynomials, then p(x) | q(x) if and only if there is a unit u with q(x) = up(x).
If, in addition, both p(x) and q(x) are monic, then p(x) | q(x) implies p(x) =
q(x). Here is the analog of Proposition 1.31.

Lemma 3.67. Let k be a field, let p(x), f (x) ∈ k[x], and let d(x) = (p, f ) be
their gcd. If p(x) is a monic irreducible, then

d(x) =
{

1 if p(x) � f (x)

p(x) if p(x) | f (x).

Proof. The only monic divisors of p(x) are 1 and p(x). If p(x) | f (x), then
d(x) = p(x), for p(x) is monic. If p(x) � f (x), then the only monic common
divisor is 1, and so d(x) = 1. •

Theorem 3.68 (Euclid’s Lemma). Let k be a field and let f (x), g(x) ∈
k[x]. If p(x) is an irreducible polynomial in k[x], and if p(x) | f (x)g(x), then
p(x) | f (x) or p(x) | g(x). More generally, if p(x) | f1(x) · · · fn(x), then
p(x) | fi (x) for some i .
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Proof. If p | f , we are done. If p � f , then the lemma says that gcd(p, f ) = 1.
There are thus polynomials s(x) and t (x) with 1 = sp + t f , and so

g = spg + t f g.

Since p | f g, it follows that p | g, as desired. The second statement follows by
induction on n ≥ 2. •

Definition. Two polynomials f (x), g(x) ∈ k[x], where k is a field, are called
relatively prime if their gcd is 1.

Corollary 3.69. Let f (x), g(x), h(x) ∈ k[x], where k is a field, and let h(x)
and f (x) be relatively prime. If h(x) | f (x)g(x), then h(x) | g(x).

Proof. By hypothesis, f g = hq for some q(x) ∈ k[x]. There are polynomials
s and t with 1 = s f + th, and so g = s f g + thg = shq + thg = h(sq + tg);
that is, h | g. •

Definition. If k is a field, then a rational function f (x)/g(x) ∈ k(x) is in lowest
terms if f (x) and g(x) are relatively prime.

Proposition 3.70. If k is a field, every nonzero f (x)/g(x) ∈ k(x) can be put in
lowest terms.

Proof. If d = ( f, g), then f = d f ′ and g = dg′ in k[x]. Moreover, f ′ and g′

are relatively prime, for if h were a nonconstant common divisor of f ′ and g′,
then hd would be a common divisor of f and g of degree greater than that of d .
Now f/g = d f ′/dg′ = f ′/g′, and the latter is in lowest terms. •

The same complaint about computing gcd’s that arose in
�

arises here, and
it has the same resolution.

Theorem 3.71 (Euclidean Algorithm). If k is a field and f (x), g(x) ∈ k[x],
then there is an algorithm computing the gcd ( f (x), g(x)), and there is an algo-
rithm finding a pair of polynomials s(x) and t (x) with ( f, g) = s f + tg.

Proof. The proof is just a repetition of the proof of the euclidean algorithm in�
: iterated application of the division algorithm.

g = q0 f + r1 deg(r1) < deg( f )

f = q1r1 + r2 deg(r2) < deg(r1)

r1 = q2r2 + r3 deg(r3) < deg(r2)

r2 = q3r3 + r4 deg(r4) < deg(r3)

...
...
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As in the proof of Theorem 1.41, the last nonzero remainder is a common divisor
which is divisible by every common divisor. Since the remainder may not be
monic (even if f and g are both monic, the remainder r = g − q f may not be
monic), one must make it monic, as in Lemma 3.55. •

Example 3.72.
Use the euclidean algorithm to find the gcd (x 5 + 1, x3 + 1) in

�
[x].

x5 + 1 = x2(x3 + 1)+ (−x2 + 1)

x3 + 1 = (−x)(−x2 + 1)+ (x + 1)

−x2 + 1 = (−x + 1)(x + 1).

We conclude that x + 1 is the gcd. �

Example 3.73.
Find the gcd in

�
[x] of

f (x) = x3 − x2 − x + 1 and g(x) = x3 + 4x2 + x − 6.

Note that f (x), g(x) ∈ � [x], and
�

is not a field. As we proceed, rational num-
bers may enter, for

�
is the smallest field containing

�
. Here are the equations.

g = 1 · f + (5x2 + 2x − 7)

f = ( 1
5 x − 7

25 )(5x2 + 2x − 7)+
(

24
25 x − 24

25

)

5x2 + 2x − 7 =
(

25
24 5x + 175

24

)(
24
25 x − 24

25

)
.

We conclude that the gcd is x − 1 [which is 24
25 x − 24

25 made monic]. The reader
should find s(x), t (x) expressing x − 1 as a linear combination (as in arithmetic,
work from the bottom up).

As a computational aid, one can clear denominators at any stage. For exam-
ple, one can replace the second equation above by

(5x − 7)(5x2 + 2x − 7)+ (24x − 24);

after all, we ultimately multiply by a unit to obtain a monic gcd. �

Example 3.74.
Find the gcd in

�
5 [x] of

f (x) = x3 − x2 − x + 1 and g(x) = x3 + 4x2 + x − 6.
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The terms in the euclidean algorithm simplify considerably.

g = 1 · f + (2x + 3)

f = (3x2 + 2)(2x + 3).

The gcd is x − 1 (which is 2x + 3 made monic). �

Here are factorizations of the polynomials f (x) and g(x) in Example 3.73:

f (x) = x3 − x2 − x + 1 = (x − 1)2(x + 1)

and
g(x) = x3 + 4x2 + x − 6 = (x − 1)(x + 2)(x + 3);

one could have seen that x − 1 is the gcd, had these factorizations been known at
the outset. This suggests that an analog of the fundamental theorem of arithmetic
could provide another way to compute gcd’s. Such an analog does exist (see
Proposition 3.86). As a practical matter, however, factoring polynomials is a
very difficult task, and the euclidean algorithm is the best way to compute gcd’s.

Here is an unexpected bonus from the euclidean algorithm.

Corollary 3.75. Let k be a subfield of a field K , so that k[x] is a subring of
K [x]. If f (x), g(x) ∈ k[x], then their gcd in k[x] is equal to their gcd in K [x].

Proof. The division algorithm in K [x] gives

g(x) = Q(x) f (x)+ R(x),

where Q(x), R(x) ∈ K [x] and either R(x) = 0 or deg(R) < deg( f ); since
f (x), g(x) ∈ k[x], the division algorithm in k[x] gives

g(x) = q(x) f (x)+ r(x),

where q(x), r(x) ∈ k[x] and either r(x) = 0 or deg(r) < deg( f ). But the
equation g(x) = q(x) f (x)+ r(x) also holds in K [x] because k[x] ⊆ K [x], so
that the uniqueness of quotient and remainder in the division algorithm in K [x]
gives Q(x) = q(x) ∈ k[x] and R(x) = r(x) ∈ k[x]. Therefore, the list of
equations occurring in the euclidean algorithm in K [x] is exactly the same list
occurring in the euclidean algorithm in the smaller ring k[x], and so the same
gcd is obtained in both polynomial rings. •

Even though there are more divisors with complex coefficients, the gcd of
x3 − x2 + x − 1 and x4 − 1 is x2 + 1, whether computed in

� [x] or in
�

[x].
We have seen, when k is a field, that there are many analogs for k[x] of

theorems proved for
�

. The essential reason for this is that both rings are PID’s.
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Euclidean Rings

There are rings other than
�

and k[x], where k is a field, that have a division
algorithm. In particular, we present an example of such a ring in which the
quotient and remainder are not unique. We begin by generalizing a property
shared by both

�
and k[x].

Definition. A commutative ring R is a euclidean ring if it is a domain and
there is a function

∂ : R× → �

(where R× denotes the nonzero elements of R), called a degree function, such
that

(i) ∂( f ) ≤ ∂( f g) for all f , g ∈ R×;

(ii) for all f , g ∈ R with f ∈ R×, there exist q, r ∈ R with

g = q f + r,

and either r = 0 or ∂(r) < ∂( f ).

Example 3.76.

(i) Every field R is a euclidean ring with degree function ∂ identically 0: if
g ∈ R with f ∈ R×, set q = f −1 and r = 0. Conversely, if R is a domain
for which the zero function ∂ : R× → �

is a degree function, then R is a
field. If f ∈ R×, then there are q, r ∈ R with 1 = q f + r . If r 6= 0, then
∂(r) < ∂( f ) = 0, a contradiction. Hence, r = 0 and 1 = q f , so that f is
a unit; therefore, R is a field.

(ii) The domain
�

is a euclidean ring with degree function ∂(m) = |m|. In
�

,
we have

∂(mn) = |mn| = |m||n| = ∂(m)∂(n).

(iii) When k is a field, the domain k[x] is a euclidean ring with degree function
the usual degree of a nonzero polynomial. In k[x], we have

∂( f g) = deg( f g)

= deg( f )+ deg(g)

= ∂( f )+ ∂(g)

≥ ∂( f ).

Certain properties of a particular degree function may not be enjoyed by
all degree functions. For example, the degree function in

�
in part (ii) is
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multiplicative: ∂(mn) = ∂(m)∂(n), while the degree function on k[x] here
is not multiplicative. If a degree function ∂ is multiplicative, that is, if

∂( f g) = ∂( f )∂(g),

then ∂ is called a euclidean norm. �

Example 3.77.
The Gaussian12 integers

� [i ] form a euclidean ring whose degree function

∂(a + bi) = a2 + b2

is a a euclidean norm.
To see that ∂ is a multiplicative degree function, note first that if α =

a + bi , then
∂(α) = αα,

where α = a − bi is the complex conjugate of α. It follows that ∂(αβ) =
∂(α)∂(β) for all α, β ∈ � [i ], because

∂(αβ) = αβαβ = αβαβ = ααββ = ∂(α)∂(β);

indeed, this is even true for all α, β ∈
�

[i] = {x + yi : x, y ∈
�

}, by Corol-
lary 1.20.

We now show that ∂ satisfies the first property of a degree function. If
β = c + id ∈ � [i ] and β 6= 0, then

1 ≤ ∂(β),

for ∂(β) = c2 + d2 is a positive integer; it follows that if α, β ∈ � [i ] and β 6= 0,
then

∂(α) ≤ ∂(α)∂(β) = ∂(αβ).

Let us show that ∂ also satisfies the second desired property. Given α, β ∈� [i ] with β 6= 0, regard α/β as an element of
�

. Rationalizing the denominator
gives α/β = αβ/ββ = αβ/∂(β), so that

α/β = x + yi,

where x , y ∈
�

. Write x = m + u and y = n + v, where m, n ∈ �
are integers

closest to x and y, respectively; thus, |u|, |v| ≤ 1
2 . (If x or y has the form m + 1

2 ,
where m is an integer, then there is a choice of nearest integer: x = m + 1

2 or

12The Gaussian integers are so called because Gauss tacitly used � [i] and its euclidean
norm ∂ to investigate biquadratic residues.
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x = (m +1)− 1
2 ; a similar choice arises if x or y has the form m − 1

2 .) It follows
that

α = β(m + ni)+ β(u + vi).

Notice that β(u + vi) ∈ � [i ], for it is equal to α − β(m + ni). Finally, we
have ∂

(
β(u + vi)

)
= ∂(β)∂(u + vi), and so ∂ will be a degree function if

∂(u + vi) < 1. And this is so, for the inequalities |u| ≤ 1
2 and |v| ≤ 1

2 give
u2 ≤ 1

4 and v2 ≤ 1
4 , and hence ∂(u + vi) = u2 + v2 ≤ 1

4 + 1
4 = 1

2 < 1.
Therefore, ∂(β(u + vi)) < ∂(β), and so

� [i ] is a euclidean ring whose degree
function is a euclidean norm.

The ring
� [i ] of Gaussian integers is a euclidean ring in which quotients and

remainders may not be unique.13 For example, let α = 3 + 5i and β = 2. Then
α/β = 3

2 + 5
2 i ; the choices are:

m = 1 and u = 1
2 or m = 2 and u = − 1

2 ;
n = 2 and v = 1

2 or n = 3 and v = − 1
2 .

There are four quotients after dividing 3 + 5i by 2 in
� [i ], and each of the

remainders (e.g., 1 + i ) has degree 2 < 4 = ∂(2):

3 + 5i = 2(1 + 2i)+ (1 + i);
= 2(1 + 3i)+ (1 − i);
= 2(2 + 2i)+ (−1 + i);
= 2(2 + 3i)+ (−1 − i). �

Proposition 3.78. Every euclidean ring R is a PID. In particular, the ring
� [i ]

of Gaussian integers is a PID.

Proof. The reader can adapt the proof of Proposition 3.59: if I is a nonzero
ideal in R, then I = (d), where d is an element in I of least degree. •

The converse of Proposition 3.78 is false: there are PID’s that are not eu-
clidean rings, as we will see in the next example.

13Note the equations in � :

3 = 1 · 2 + 1;
3 = 2 · 2 − 1.

Now |−1| = |1| < |2|, so that quotients and remainders in � are not unique! In Theorem 1.29,
we forced uniqueness by demanding that remainders be non-negative.
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Example 3.79.
It is shown in algebraic number theory (see the remark on page 274) that the ring

R = {a + bα : a, b ∈ � },

where α = 1
2 (1 +

√
−19), is a PID [R is the ring of algebraic integers in the

quadratic number field
�
(
√

−19)]. In 1949, T. S. Motzkin showed that R is not
a euclidean ring. To do this, he found the following property of euclidean rings
that does not mention its degree function.

Definition. An element u in a domain R is a universal side divisor if u is not a
unit and, for every x ∈ R, either u | x or there is a unit z ∈ R with u | (x + z).

Proposition 3.80. If R is a euclidean ring that is not a field, then R has a
universal side divisor.

Proof. Define

S = {∂(v) : v 6= 0 and v is not a unit},

where ∂ is the degree function on R. Since R is not a field, there is some v ∈ R×

which is not a unit, and so S is a nonempty subset of the natural numbers. By the
Least Integer Axiom, there is a nonunit u ∈ R× with ∂(u) the smallest element
of S. We claim that u is a universal side divisor. If x ∈ R, there are elements q
and r with x = qu + r , where either r = 0 or ∂(r) < ∂(u). If r = 0, then u | x ;
if r 6= 0, then r must be a unit, otherwise its existence contradicts ∂(u) being the
smallest number in S. We have shown that u is a universal side divisor. •

Motzkin then showed that if α = 1
2 (1 +

√
−19), then the ring

{a + bα : a, b ∈ � }

has no universal side divisors, concluding that this PID is not a euclidean ring.
For details, we refer the reader to K. S. Williams, “Note on Non-euclidean Prin-
cipal Ideal Domains,” Math. Mag. 48 (1975), 176–177. �

Remark. If π is an irreducible element in a PID R, then every divisor of π is
either a unit or an associate uπ , where u ∈ R is a unit. It follows that if β ∈ R
and π � β, then 1 is a gcd of π and β. See Proposition 1.31. �

The following result holds for every PID; we will soon apply it to
� [i ].
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Proposition 3.81. Let R be a PID.

(i) Each α, β ∈ R has a gcd, δ, which is a linear combination of α and β :
there are σ, τ ∈ R such that

δ = σα + τβ.

(ii) If an irreducible element π ∈ R divides a product αβ, then either π | α or
π | β.

Proof.
(i) We may assume that at least one of α and β is not zero (otherwise, the gcd is
0 and the result is obvious). Consider the set I of all the linear combinations:

I = {σα + τβ : σ, τ in R}.

Now α and β are in I (take σ = 1 and τ = 0 or vice versa). It is easy to check
that I is an ideal in R, and so there is δ ∈ I with I = (δ), because R is a PID;
we claim that δ is a gcd of α and β.

Since α ∈ I = (δ), we have α = ρδ for some ρ ∈ R; that is, δ is a divisor
of α; similarly, δ is a divisor of β, and so δ is a common divisor of α and β.

Since δ ∈ I , it is a linear combination of α and β: there are σ, τ ∈ R with

δ = σα + τβ.

Finally, if γ is any common divisor of α and β, then α = γα′ and β = γβ ′, so
that γ divides δ, for δ = σα+ τβ = γ (σα′ + τβ ′). We conclude that δ is a gcd.
(ii) If π | α, we are done. If π � α, then the remark says that 1 is a gcd of π and
α. There are thus σ, τ ∈ R with 1 = σπ + τα, and so

β = σπβ + ταβ.

Since π | αβ, it follows that π | β, as desired. •
If n is an odd number, then either n ≡ 1 mod 4 or n ≡ 3 mod 4. In par-

ticular, the odd prime numbers are divided into two classes. Thus, 5, 13, 17 are
congruent to 1 mod 4, for example, while 3, 7, 11 are congruent to 3 mod 4.

Lemma 3.82. If p is a prime and p ≡ 1 mod 4, then there is an integer m with

m2 ≡ −1 mod p.

Proof. If G = (
�

p )
× is the multiplicative group of nonzero elements in

�
p ,

then |G| = p − 1 ≡ 0 mod 4; that is, 4 is a divisor of |G|. By Proposition 2.122,
G contains a subgroup S of order 4. By Proposition 2.132, either S is cyclic or
a2 = 1 for all a ∈ S. Since

�
p is a field, however, it cannot contain 4 roots of the
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quadratic polynomial x2 − 1. Therefore, S is cyclic, say, S = 〈[m]〉, where [m]
is the congruence class of m mod 4. Since [m] has order 4, we have [m4] = [1].
Moreover, [m2] 6= [1] (lest [m] have order ≤ 2 < 4), and so [m2] = [−1], for
[−1] is the unique element in S of order 2. Therefore, m2 ≡ −1 mod p. •

Theorem 3.83 (Fermat’s Two-Squares Theorem). 14 An odd prime p is a sum
of two squares,

p = a2 + b2,

where a and b are integers, if and only if p ≡ 1 mod 4.

Proof. For any integer a we have a ≡ r mod 4, where r = 0, 1, 2 or 3, and so
a2 ≡ r2 mod 4. But, mod 4,

02 ≡ 0, 12 ≡ 1, 22 = 4 ≡ 0, and 32 = 9 ≡ 1,

so that a2 ≡ 0 or 1 mod 4. It follows, for any integers a and b, that a2 + b2 6≡
3 mod 4. Therefore, if p = a2 + b2, where a and b are integers, then p 6≡
3 mod 4. Since p is odd, either p ≡ 1 mod 4 or p ≡ 3 mod 4. We have just
ruled out the latter possibility, and so p ≡ 1 mod 4.

Conversely, assume that p ≡ 1 mod 4. By the lemma, there is an integer m
such that

p | (m2 + 1).

In
� [i ], there is a factorization m2 + 1 = (m + i)(m − i), and so

p | (m + i)(m − i) in
� [i ].

If p | (m + i) in
� [i ], then there are integers u and v with m + i = p(u + iv).

Taking complex conjugates, we have m − i = p(u − iv), so that p | (m − i) as
well. Therefore, p divides (m + i)− (m − i) = 2i , which is a contradiction, for
∂(p) = p2 > ∂(2i) = 4. We conclude that p is not an irreducible element, for it
does not satisfy the analog of Euclid’s lemma in Proposition 3.81. Since

� [i ] is
a PID, there is a factorization

p = αβ in
� [i ]

in which neither α = a + ib nor β = c + id is a unit. Therefore, taking norms
gives an equation in

�
:

p2 = ∂(p)

= ∂(αβ)

= ∂(α)∂(β)

= (a2 + b2)(c2 + d2).

14Fermat was the first to state this theorem, but the first published proof is due to Euler.
Gauss proved that there is only one pair of numbers a and b with p = a2 + b2.
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Since a2 + b2 6= 1 and c2 + d2 6= 1, Euclid’s lemma gives p | (a2 + b2) and
p | (c2 + d2), and these equations give p = a2 + b2 (and p = c2 + d2). •

EXERCISES

3.55 Find the gcd of x2 − x − 2 and x3 − 7x + 6 in � 5 [x], and express it as a linear
combination of them.

3.56 If R is a domain and f (x) ∈ R[x] has degree n, show that f (x) has at most n roots
in R.

3.57 Let R be an arbitrary commutative ring. If f (x) ∈ R[x] and if a ∈ R is a root
of f (x), i.e., f (a) = 0, prove that there is a factorization f (x) = (x − a)g(x)
in R[x].

3.58 (i) Show that the following pseudocode implements the euclidean algorithm
finding gcd f (x) and g(x) in k[x], where k is a field.

Input: g, f
Output: d
d := g; s := f
WHILE s 6= 0 DO

rem := remainder(d, s)
d := s
s := rem

END WHILE
a := leading coefficient of d
d := a−1d

(ii) Find ( f, g), where f (x) = x2 + 1, g(x) = x3 + x + 1 ∈ � 3[x].
3.59 Prove the converse of Euclid’s lemma. Let k be a field and let f (x) ∈ k[x] be a

polynomial of degree ≥ 1; if, whenever f (x) divides a product of two polynomials,
it necessarily divides one of the factors, then f (x) is irreducible.

3.60 Let f (x), g(x) ∈ R[x], where R is a domain. If the leading coefficient of f (x) is
a unit in R, then the division algorithm gives a quotient q(x) and a remainder r(x)
after dividing g(x) by f (x). Prove that q(x) and r(x) are uniquely determined by
g(x) and f (x).

3.61 Let k be a field, and let f (x), g(x) ∈ k[x] be relatively prime. If h(x) ∈ k[x],
prove that f (x) | h(x) and g(x) | h(x) imply f (x)g(x) | h(x).

*3.62 If k is a field in which 1 + 1 6= 0, prove that
√

1 − x2 /∈ k(x), where k(x) is the
field of rational functions.

*3.63 Let f (x) = (x − a1) · · · (x − an) ∈ R[x], where R is a commutative ring. Show
that f (x) has no repeated roots (that is, all the ai are distinct) if and only if the
gcd ( f, f ′) = 1, where f ′ is the derivative of f .

3.64 Let ∂ be the degree function of a euclidean ring R. If m, n ∈ � and m ≥ 1, prove
that ∂ ′ is also a degree function on R, where

∂ ′(x) = m∂(x) + n
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for all x ∈ R. Conclude that a euclidean ring may have no elements of degree 0 or
degree 1.

3.65 Let R be a euclidean ring with degree function ∂ .
(i) Prove that ∂(1) ≤ ∂(a) for all nonzero a ∈ R.
(ii) Prove that a nonzero u ∈ R is a unit if and only if ∂(u) = ∂(1).

3.66 If α = 1
2

(
1 +

√
−19

)
, prove that the only units in R = {a + bα : a, b ∈ � } are

±1.
3.67 Let R be a euclidean ring with degree function ∂ , and assume that b ∈ R is neither

zero nor a unit. Prove, for every i ≥ 0, that ∂(bi ) < ∂(bi+1).

*3.68 (i) If k is a field, prove that the ring of formal power series k[[x]] is a PID.
(ii) Prove that every nonzero ideal in k[[x]] is equal to (x n) for some n ≥ 0.

3.69 Let k be a field, and let polynomials a1(x), a2(x), . . . , an(x) in k[x] be given.
(i) Show that the greatest common divisor d(x) of these polynomials has the

form
∑

ti (x)ai (x), where ti (x) ∈ k[x] for 1 ≤ i ≤ n.
(ii) Prove that if c(x) is a monic common divisor of these polynomials, then

c(x) | d(x).
3.70 Let [ f (x), g(x)] denote the lcm of f (x), g(x) ∈ k[x], where k is a field. Show

that if f (x)g(x) is monic, then

[ f, g]( f, g) = f g.

*3.71 If k is a field, show that the ideal (x, y) in k[x, y] is not a principal ideal.
3.72 For every m ≥ 1, prove that every ideal in � m is a principal ideal. (If m is compos-

ite, then � m is not a PID because it is not a domain.)
3.73 (i) Show that x, y ∈ k[x, y] are relatively prime, but that 1 is not a linear

combination of them, i.e., there do not exist s(x, y), t (x, y) ∈ k[x, y]
with 1 = xs(x, y)+ yt (x, y).

(ii) Show that 2 and x are relatively prime in � [x], but that 1 is not a linear
combination of them; that is, there do not exist s(x), t (x) ∈ � [x] with
1 = 2s(x) + xt (x).

3.74 Because x − 1 = (
√

x + 1)(
√

x − 1), a student claims that x − 1 is not irreducible.
Explain the error of his ways.

*3.75 Prove that there are domains R containing a pair of elements having no gcd. (See
the definition of gcd in general domains on page 256.)

3.6 UNIQUE FACTORIZATION

Here is the analog for polynomials of the fundamental theorem of arithmetic; it
shows that irreducible polynomials are “building blocks” of arbitrary polynomi-
als in the same sense that primes are building blocks of arbitrary integers. To
avoid long sentences, let us agree that a “product” may have only one factor.
Thus, when we say that a polynomial f (x) is a product of irreducibles, we al-
low the possibility that the product has only one factor, that is, that f (x) itself is
irreducible.
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Theorem 3.84 (Unique Factorization). If k is a field, then every polyno-
mial f (x) ∈ k[x] of degree ≥ 1 is a product of a nonzero constant and monic
irreducibles. Moreover, if

f (x) = ap1(x) · · · pm(x) and f (x) = bq1(x) · · · qn(x),

where a and b are nonzero constants and the p’s and q’s are monic irreducibles,
then a = b, m = n, and the q’s may be reindexed so that qi = pi for all i .

Proof. The existence of a factorization of a polynomial f (x) ∈ k[x] into irre-
ducibles was proved in Proposition 3.66, and so we need only prove the unique-
ness assertion.

An equation f (x) = ap1(x) · · · pm(x) gives a the leading coefficient of
f (x), since a product of monic polynomials is monic. Hence, two factorizations
of f (x) give a = b, for each is equal to the leading coefficient of f (x). It now
suffices to prove uniqueness when

p1(x) · · · pm(x) = q1(x) · · ·qn(x).

The proof is by induction on M = max{m, n} ≥ 1. The base step M = 1
is obviously true, for the given equation is p1(x) = q1(x). For the inductive
step, the given equation shows that pm(x) | q1(x) · · · qn(x). By Theorem 3.68,
Euclid’s lemma for polynomials, there is some i with pm(x) | qi (x). But qi (x),
being monic irreducible, has no monic divisors other than 1 and itself, so that
qi (x) = pm(x). Reindexing, we may assume that qn(x) = pm(x). Canceling
this factor, we have p1(x) · · · pm−1(x) = q1(x) · · · qn−1(x). By the inductive
hypothesis, m −1 = n −1 (hence m = n) and, after possible reindexing, qi = pi
for all i . •

Example 3.85.
The reader may check, in

�
4[x], that

x2 − 1 = (x − 1)(x + 1) = (x − 3)(x + 3);

each of the linear factors is irreducible (of course,
�

4 is not a field). Therefore,
unique factorization does not hold in

�
4[x]. �

Let k be a field, and assume that f (x) ∈ k[x] splits; that is, there are
a, r1, . . . , rn ∈ k with

f (x) = a
n∏

i=1

(x − ri ).

If r1, . . . , rs , where s ≤ n, are the distinct roots of f (x), then collecting terms
gives

f (x) = a(x − r1)
e1(x − r2)

e2 · · · (x − rs)
es ,
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where e j ≥ 1 for all j . We call e j the multiplicity of the root r j . As linear poly-
nomials are always irreducible, unique factorization shows that multiplicities of
roots are well-defined.

Remark. A domain R is called a UFD, unique factorization domain, if every
nonzero nonunit r ∈ R is a product of irreducibles and, moreover, such a fac-
torization of r is essentially unique. The domains

� [ζp] in Example 3.10, where
ζ = e2π i/p for p an odd prime, are quite interesting in this regard. Positive
integers a, b, c for which

a2 + b2 = c2,

for example, 3, 4, 5 and 5, 12, 13, are called Pythagorean triples, and they have
been recognized for four thousand years (a Babylonian tablet of roughly this
age has been found containing a dozen of them), and they were classified by
Diophantus about two thousand years ago. Around 1637, Fermat wrote in the
margin of his copy of a book by Diophantus what is nowadays called Fermat’s
Last Theorem: for all integers n ≥ 3, there do not exist positive integers a, b, c
for which

an + bn = cn.

Fermat claimed that he had a wonderful proof of this result, but that the margin
was too small to contain it. Elsewhere, he did prove this result for n = 4 and,
later, others proved it for small values of n. However, the general statement
challenged mathematicians for centuries.

Call a positive integer n ≥ 2 good if there are no positive integers a, b, c
with an + bn = cn . If n is good, then so is any multiple nk of it. Otherwise,
there are positive integers r, s, t with r nk +snk = tnk ; this gives the contradiction
an + bn = cn , where a = r k, b = sk , and c = tk . For example, any integer of
the form 4k is good. Since every positive integer is a product of primes, Fermat’s
Last Theorem would follow if every odd prime is good.

As in Exercise 3.78 on page 278, a solution a p + b p = c p, for p an odd
prime, gives a factorization

c p = (a + b)(a + ζb)(a + ζ 2b) · · · (a + ζ p−1b),

where ζ = ζp = e2π i/p. In the 1840s, E. Kummer considered this factorization
in the domain

� [ζp] (described in Example 3.10 on page 222). He proved that
if unique factorization into irreducibles holds in

� [ζ p], then there do not exist
positive integers a, b, c (none of which is divisible by p) with a p + b p = c p.
Kummer realized, however, that even though unique factorization does hold in� [ζp] for some primes p, it does not hold in all

� [ζp]. To extend his proof,
he invented what he called “ideal numbers,” and he proved that there is unique
factorization of ideal numbers as products of “prime ideal numbers.” These ideal
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numbers motivated R. Dedekind to define ideals in arbitrary commutative rings
(our definition of ideal is that of Dedekind), and he proved that ideals in the
special rings

� [ζp] correspond to Kummer’s ideal numbers. Over the years these
investigations have been vastly developed, and at last, in 1995, A. Wiles proved
Fermat’s Last Theorem. �

There are formulas for gcd’s and lcm’s of two polynomials in k[x].

Proposition 3.86. Let k be a field and let g(x) = ape1
1 · · · pen

n ∈ k[x] and let

h(x) = bp f1
1 · · · p fn

n ∈ k[x], where a, b ∈ k, the pi are distinct monic irreducible
polynomials, and ei , fi ≥ 0 for all i . Define

mi = min{ei , fi} and Mi = max{ei , fi }.

Then
(g, h) = pm1

1 · · · pmn
n and [g, h] = pM1

1 · · · pMn
n .

Proof. The proof is a just an adaptation of the proof of Proposition 1.52. •
The next result is an analog of Proposition 1.44: for b ≥ 2, every positive

integer has an expression in base b.

Lemma 3.87. Let k be a field, and let b(x) ∈ k[x] have deg(b) ≥ 1. Each
nonzero f (x) ∈ k[x] has an expression

f (x) = dm(x)b(x)
m + · · · + d j (x)b(x)

j + · · · + d0(x),

where, for every j , either d j (x) = 0 or deg(d j ) < deg(b).

Proof. By the division algorithm, there are g(x), d0(x) ∈ k[x] with

f (x) = g(x)b(x)+ d0(x),

where either d0(x) = 0 or deg(d0) < deg(b). Now deg( f ) = deg(gb), so that
deg(b) ≥ 1 gives deg(g) < deg( f ). By induction, there are d j (x) ∈ k[x] with
each d j (x) = 0 or deg(d j ) < deg(b), such that

g(x) = dmbm−1 + · · · + d2b + d1.

Therefore,

f = gb + d0 = (dmbm−1 + · · · + d2b + d1)b + d0

= dmbm + · · · + d2b2 + d1b + d0. •

Just as for integers, it can be proved that the “digits” di (x) are unique (see
Proposition 1.44).
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Definition. Polynomials q1(x), . . . , qn(x) in k[x], where k is a field, are pair-
wise relatively prime if (qi , q j ) = 1 for all i 6= j .

It is easy to see that if q1(x), . . . , qm(x) are pairwise relatively prime, then
q1(x) and the product q2(x) · · · qm(x) are relatively prime.

Lemma 3.88. Let k be a field, let f (x)/g(x) ∈ k(x), and suppose that g(x) =
q1(x) · · · qm(x), where q1(x), . . . , qm(x) ∈ k[x] are pairwise relatively prime.
Then there are ai (x) ∈ k[x] with

f (x)

g(x)
=

m∑

i=1

ai (x)

qi (x)
.

Proof. The proof is by induction on m ≥ 1. The base step m = 1 is clearly
true. Since q1 and q2 . . . qm are relatively prime, there are polynomials s and t
with 1 = sq1 + tq2 · · · qm . Therefore,

f

g
= (sq1 + tq2 · · · qm)

f

g

=
sq1 f

g
+

tq2 · · · qm f

g

=
sq1 f

q1q2 · · · qm
+

tq2 · · · qm f

q1q2 · · · qm

=
s f

q2 · · · qm
+

t f

q1
.

The polynomials q2(x), . . . , qm(x) are pairwise relatively prime, and the induc-
tive hypothesis now rewrites the first summand. •

We now prove the algebraic portion of the method of partial fractions used
in calculus to integrate rational functions.

Theorem 3.89 (Partial Fractions). Let k be a field, and let the factorization
into irreducibles of a monic polynomial g(x) ∈ k[x] be

g(x) = p1(x)
e1 · · · pm(x)

em .

If f (x)/g(x) ∈ k(x), then

f (x)

g(x)
= h(x)+

m∑

i=1

(
di1(x)

pi (x)
+

di2(x)

pi (x)2
+ · · · +

diei (x)

pi (x)ei

)
,

where h(x) ∈ k[x] and either di j (x) = 0 or deg(di j ) < deg(pi ) for all j .
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Proof. Clearly, the polynomials p1(x)e1, p2(x)e2, . . . , pm(x)em are pairwise
relatively prime. By Lemma 3.88, there are ai (x) ∈ k[x] with

f (x)

g(x)
=

m∑

i=1

ai (x)

pi (x)ei
.

For each i , the division algorithm gives polynomials Q i (x) and Ri (x) with
ai (x) = Qi (x)pi(x)ei +Ri (x), where either Ri (x) = 0 or deg(Ri ) < deg(pi(x)ei ).
Hence,

ai (x)

pi (x)ei
= Qi (x)+

Ri (x)

pi (x)ei
.

By Lemma 3.87,

Ri (x) = dim(x)pi(x)
m + di,m−1(x)pi(x)

m−1 + · · · + di0(x),

where, for all j , either di j (x) = 0 or deg(di j ) < deg(pi ); moreover, since
deg(Ri ) < deg(pei

i ), we have m ≤ ei . Therefore,

ai (x)

pi (x)ei
= Qi (x)+

dim(x)pi(x)m + di,m−1(x)pi(x)m−1 + · · · + di0(x)

pi (x)ei

= Qi (x)+
dim(x)pi(x)m

pi (x)ei
+

di,m−1(x)pi(x)m−1

pi (x)ei
+ · · · +

di0(x)

pi (x)ei
.

After cancellation, each of the summands di j (x)pi(x) j/pi (x)ei is either a poly-
nomial or a rational function of the form di j (x)/pi(x)s, where 1 ≤ s ≤ ei . If we
call h(x) the sum of all those polynomials which are not rational functions, then
this is the desired expression. •

It is known that the only irreducible polynomials in
� [x] are linear or quad-

ratic, so that all the numerators in the partial fraction decomposition in
� [x]

are either constant or linear. Theorem 3.89 is used in proving that all rational
functions in

�
(x) can be integrated in closed form using logs and arctans.

Here is the integer version of partial fractions. If a/b is a positive rational
number and if the prime factorization of b is b = pe1

1 · · · pem
m , then

a

b
= h +

m∑

i=1

(
ci1

pi
+

ci2

p2
i

+ · · · +
ciei

pei
i

)
,

where h ∈ �
and 0 ≤ ci j < pi for all j .
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EXERCISES

3.76 In k[x], where k is a field, let f = pe1
1 · · · pem

m and g = pε1
1 · · · pεm

m , where the pi ’s
are distinct monic irreducibles and ei , εi ≥ 0 for all i (as with integers, the device
of allowing zero exponents allows us to have the same irreducible factors in the
two factorizations). Prove that f | g if and only if ei ≤ εi for all i .

*3.77 (i) If f (x) ∈ � [x], show that f (x) has no repeated roots in � if and only if
( f, f ′) = 1.

(ii) Prove that if p(x) ∈ � [x] is an irreducible polynomial, then p(x) has no
repeated roots.

*3.78 Let ζ = e2π i/n .
(i) Prove that

xn − 1 = (x − 1)(x − ζ )(x − ζ 2) · · · (x − ζ n−1)

and, if n is odd, that

xn + 1 = (x + 1)(x + ζ )(x + ζ 2) · · · (x + ζ n−1).

(ii) For numbers a and b, prove that

an − bn = (a − b)(a − ζb)(a − ζ 2b) · · · (a − ζ n−1b)

and, if n is odd, that

an + bn = (a + b)(a + ζb)(a + ζ 2b) · · · (a + ζ n−1b).

3.79 If R is a PID, prove that R is a unique factorization domain.

3.7 IRREDUCIBILITY

Although there are some techniques to help decide whether an integer is prime,
the general problem of factoring (large) integers is a very difficult one. It is
also very difficult to determine whether a polynomial is irreducible, but we now
present some useful techniques that frequently work.

We know that if f (x) ∈ k[x] and r is a root of f (x) in a field k, then there
is a factorization f (x) = (x − r)g(x) in k[x], and so f (x) is not irreducible.
In Corollary 3.65, we saw that this decides the matter for quadratic and cubic
polynomials in k[x]: such polynomials are irreducible in k[x] if and only if they
have no roots in k.

Theorem 3.90. Let f (x) = a0 + a1x + · · · + anxn ∈ � [x] ⊆
�

[x]. Every
rational root r of f (x) has the form r = b/c, where b | a0 and c | an .
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Proof. We may assume that r = b/c is in lowest terms, that is, (b, c) = 1.
Substituting r into f (x) gives

0 = f (b/c) = a0 + a1b/c + · · · + anbn/cn,

and multiplying through by cn gives

0 = a0cn + a1bcn−1 + · · · + anbn.

Hence, a0cn = b(−a1cn−1 − · · · − anbn−1), that is, b | a0cn. Since b and c
are relatively prime, it follows that b and cn are relatively prime, and so Euclid’s
lemma in

�
gives b | a0. Similarly, anbn = c(−an−1bn−1 − · · · − a0cn−1),

c | anbn, and c | an . •

Definition. A complex number α is called an algebraic integer if α is a root of
a monic polynomial f (x) ∈ � [x].

We note that it is crucial, in the definition of algebraic integer, that f (x) ∈� [x] be monic. Every algebraic number z, that is, every complex number z
that is a root of some polynomial g(x) ∈

�
[x], is necessarily a root of some

polynomial h(x) ∈ � [x]; just clear the denominators of the coefficients of g(x).

Corollary 3.91. A rational number z that is an algebraic integer must lie in�
. More precisely, if f (x) ∈ � [x] ⊆

�
[x] is a monic polynomial, then every

rational root of f (x) is an integer that divides the constant term.

Proof. If f (x) = a0+a1x+· · ·+anxn is monic, then an = 1, and Theorem 3.90
applies at once. •

For example, consider f (x) = x3+4x2−2x −1 ∈
�

[x]. By Corollary 3.65,
this cubic is irreducible if and only if it has no rational root. As f (x) is monic,
the candidates for rational roots are ±1, for these are the only divisors of −1 in�

. But f (1) = 2 and f (−1) = 4, so that neither 1 nor −1 is a root. Thus, f (x)
has no roots in

�
, and hence f (x) is irreducible in

�
[x].

This corollary gives a new solution of Exercise 1.64 on page 56. If m is an
integer that is not a perfect square, then the polynomial x 2 − m has no integer
roots, and so

√
m is irrational. Indeed, the reader can now generalize to nth roots:

if m is not an nth power of an integer, then n
√

m is irrational, for any rational root
of xn − m must be an integer.

The next proposition gives a way of proving that a complex number is an
algebraic integer; moreover, it shows that the sum and product of algebraic inte-
gers is another such (if α and β are algebraic integers, then it is not too difficult
to give monic polynomials having α + β and αβ as roots, but it takes a bit of
work to find such polynomials having all coefficients in

�
).
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Let α ∈
�

. If
� [α] is the smallest subring of

�
containing α, then Exer-

cise 3.32 on page 239 shows that

� [α] = { f (α) : f (x) ∈ � [x]}.

We have seen
� [α] in the special case α = ζn (in Example 3.10).

Proposition 3.92.

(i) If α ∈
�

, then α is an algebraic integer if and only if
� [α] contains a

finite subset x1, . . . , xn such that every β ∈ � [α] is a linear combination
β =

∑
i mi xi with all mi ∈ �

.

(ii) The set of all algebraic integers is a subring of
�

.

Remark. In Exercise 2.89 on page 187, we defined finitely generated abelian
groups, and said that every subgroup of a finitely generated abelian group is itself
finitely generated. Forgetting its multiplication, every ring is an abelian group
under addition, and the condition in part (i) says that the additive group of

� [α]
is finitely generated. �

Proof.
(i) If α is an algebraic integer, then there is a monic f (x) = x n + bn−1xn−1 +
· · · + b0 ∈ � [x] having α as a root. Let

G = {mn−1α
n−1 + · · · + m2α

2 + m1α + m0 · 1 : mi ∈ � }.

Clearly, G ⊆ � [α]. For the reverse inclusion, note that αk ∈ G for all k < n.
We now show that αk ∈ G for all k ≥ n by induction on k. If k = n, then
αn = −(bn−1α

n−1 + · · · + b1α + b0) ∈ G (notice how we have used the fact
that f (x) is monic). For the inductive step, assume that there are integers ci so
that αk = cn−1α

n−1 + · · · + c1α + c0. Then

αk+1 = ααk

= cn−1α
n + cn−2α

n−1 + · · · + c1α
2 + c0α

= cn−1[−(bn−1α
n−1 + · · · + b2α

2 + b1α + b0)]
+ cn−2α

n−1 + · · · + c1α
2 + c0α,

which lies in G. By Exercise 3.32 on page 239, if β ∈ � [α], then β = f (α) for
some f (x) ∈ � [x], and so β ∈ G.

Conversely, suppose that
� [α] consists of all the

�
-linear combinations of

elements x1, . . ., xn; in particular, each x j =
∑

i a j iα
i , where all a j i ∈ �

.
Let M be the largest power of α occurring in any of these expressions. Now
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αM+1 ∈ � [α], so that it can be expressed as a
�

-linear combination of smaller
powers of α; say, αM+1 =

∑M
k=0 bkα

k , where all bk ∈ �
. Therefore, α is a root

of f (x) = x M+1 −
∑M

k=0 bk xk , which is a monic polynomial in
� [x], and so α

is an algebraic integer.
(ii) Suppose that α and β are algebraic integers; let α be a root of a monic f (x) ∈� [x] of degree n, and let β be a root of a monic g(x) ∈ � [x] of degree m. The
additive group A of

�
generated by all αiβ j , where 0 ≤ i < n and 0 ≤ j <

m, is a finitely generated abelian subgroup containing
� [αβ] and

� [α + β] as
subgroups. By Exercise 2.89 on page 187, every subgroup of a finitely generated
abelian group is finitely generated, and so both αβ and α + β are algebraic
integers, by part (i). •

We are now going to find several conditions that imply that a polynomial
f (x) ∈ � [x] does not factor in

� [x] as a product of polynomials of smaller
degree. Since

�
is not a field, this does not force f (x) be irreducible in

� [x]; for
example, f (x) = 2x +2 does not so factor in

� [x], yet it is not irreducible there.
However, C. F. Gauss (1777–1855) proved that if f (x) ∈ � [x] does not factor
as a product of polynomials in

� [x] of smaller degree, then f (x) is irreducible
in

�
[x]. We prove this result after first proving several lemmas.

Definition. A polynomial f (x) = a0 + a1x + a2x2 + · · · + anxn ∈ � [x] is
called primitive if the gcd of its coefficients is 1.

Of course, every monic polynomial in
� [x] is primitive. It is easy to see

that if d is the gcd of the coefficients of f (x), then (1/d) f (x) is a primitive
polynomial in

� [x].
Observe that if f (x) is not primitive, then there exists a prime p that divides

each of its coefficients: if the gcd is d > 1, then take for p any prime divisor
of d .

Lemma 3.93 (Gauss’s Lemma). If f (x), g(x) ∈ � [x] are both primitive,
then their product f (x)g(x) is also primitive.

Proof. Let f (x) =
∑

ai x i , g(x) =
∑

b j x j , and f (x)g(x) =
∑

ck xk . If
f (x)g(x) is not primitive, then there is a prime p that divides every ck . Since
f (x) is primitive, at least one of its coefficients is not divisible by p; let ai be
the first such (i.e., i is the smallest index of such a coefficient). Similarly, let
b j be the first coefficient of g(x) that is not divisible by p. The definition of
multiplication of polynomials gives

ai b j = ci+ j − (a0bi+ j + · · · + ai−1b j+1 + ai+1b j−1 + · · · + ai+ j b0).

Each term on the right side is divisible by p, and so p divides ai b j . As p divides
neither ai nor b j , however, this contradicts Euclid’s lemma in

�
. •
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Here is a more elegant proof of this last lemma; after all, the hypothesis that
a polynomial h(x) ∈ � [x] is not primitive says that all its coefficients are 0 in
�

p for some prime p. Assume that the product f (x)g(x) is not primitive, so
there is some prime p dividing each of its coefficients. If ϕ : � → �

p is the
natural map a 7→ [a], then Exercise 3.44 on page 248 shows that the function
ϕ∗ : � [x] → �

p [x], which reduces all the coefficients of a polynomial mod
p, is a ring homomorphism. In particular, since p divides every coefficient of
f (x)g(x), we have 0 = ϕ∗( f g) = ϕ∗( f )ϕ∗(g) in

�
p [x]. On the other hand,

neither ϕ∗( f ) nor ϕ∗(g) is 0, because they are primitive. We have contradicted
the fact that

�
p [x] is a domain.

Lemma 3.94. Every nonzero f (x) ∈
�

[x] has a unique factorization

f (x) = c( f ) f #(x),

where c( f ) ∈
�

is positive and f #(x) ∈ � [x] is primitive.

Proof. There are integers ai and bi with

f (x) = (a0/b0)+ (a1/b1)x + · · · + (an/bn)x
n ∈

�
[x].

Define B = b0b1 . . . bn , so that g(x) = B f (x) ∈ � [x]. Now define D = ±d ,
where d is the gcd of the coefficients of g(x); the sign is chosen to make the
rational number D/B positive. Now (B/D) f (x) = (1/D)g(x) lies in

� [x], and
it is a primitive polynomial. If we define c( f ) = D/B and f #(x) = (B/D) f (x),
then f (x) = c( f ) f #(x) is a desired factorization.

Suppose that f (x) = eh(x) is a second such factorization, so that e is a pos-
itive rational number and h(x) ∈ � [x] is primitive. Now c( f ) f #(x) = f (x) =
eh(x), so that f #(x) = [e/c( f )]h(x). Write e/c( f ) in lowest terms: e/c( f )
= u/v, where u and v are relatively prime positive integers. The equation
v f #(x) = uh(x) holds in

� [x]; equating like coefficients, v is a common di-
visor of each coefficient of uh(x). Since (u, v) = 1, Euclid’s lemma in

�
shows

that v is a (positive) common divisor of the coefficients of h(x). Since h(x) is
primitive, it follows that v = 1. A similar argument shows that u = 1. Since
e/c( f ) = u/v = 1, we have e = c( f ) and hence h(x) = f #(x). •

Definition. The rational c( f ) in Lemma 3.94 is called the content of f (x).

Corollary 3.95. If f (x) ∈ � [x], then c( f ) ∈ �
.

Proof. If d is the gcd of the coefficients of f (x), then (1/d) f (x) ∈ � [x] is
primitive. Since d[(1/d) f (x)] is a factorization of f (x) as the product of a
positive rational d (which is even a positive integer) and a primitive polynomial,
the uniqueness in the lemma gives c( f ) = d ∈ �

. •
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Corollary 3.96. If f (x) ∈
�

[x] factors as f (x) = g(x)h(x), then

c( f ) = c(g)c(h) and f #(x) = g#(x)h#(x).

Proof. We have

f (x) = g(x)h(x)

c( f ) f #(x) = [c(g)g#(x)][c(h)h#(x)]
= c(g)c(h)g#(x)h#(x).

Since g∗(x)h#(x) is primitive, by Lemma 3.93, and c(g)c(h) is a positive ratio-
nal, the uniqueness of the factorization in Lemma 3.94 gives c( f ) = c(g)c(h)
and f #(x) = g#(x)h#(x). •

Theorem 3.97 (Gauss). Let f (x) ∈ � [x]. If

f (x) = G(x)H(x) in
�

[x],

then there is a factorization

f (x) = g(x)h(x) in
� [x],

where deg(g) = deg(G) and deg(h) = deg(H). Therefore, if f (x) does not
factor into polynomials of smaller degree in

� [x], then f (x) is irreducible in�
[x].

Proof. By Corollary 3.96, there is a factorization

f (x) = c(G)c(H)G#(x)H#(x) in
�

[x],

where G#(x), H#(x) ∈ � [x] are primitive polynomials. But c(G)c(H) = c( f ),
by Corollary 3.96, and c( f ) ∈ �

, by Corollary 3.95 (which applies because
f (x) ∈ � [x]). Therefore, f (x) = g(x)h(x) is a factorization in

� [x], where
g(x) = c( f )G#(x) and h(x) = H#(x). •

Remark. Gauss used these ideas to prove Theorem 7.21: the ring k[x1, . . . , xn]
of all polynomials in n variables with coefficients in a field k is a unique factor-
ization domain. �

The next criterion uses the integers mod p.

Theorem 3.98. Let f (x) = a0 + a1x + a2x2 + · · · + xn ∈ � [x] be monic,
and let p be a prime. If f ∗(x) = [a0] + [a1]x + [a2]x2 + · · · + xn ∈ �

p [x] is
irreducible, then f (x) is irreducible in

�
[x].



284 COMMUTATIVE RINGS I CH. 3

Proof. By Exercise 3.44 on page 248, the natural map ϕ : � → �
p defines a

homomorphism ϕ∗ : � [x] → �
p [x] by

ϕ∗(b0 + b1x + b2x2 + · · · ) = [b0] + [b1]x + [b2]x2 + · · · ,

that is, just reduce all the coefficients mod p. If g(x) ∈ � [x], denote its
image ϕ∗(g(x)) ∈ �

p [x] by g∗(x). Suppose that f (x) factors in
� [x]; say,

f (x) = g(x)h(x), where deg(g) < deg( f ) and deg(h) < deg( f ) [of course,
deg( f ) = deg(g) + deg(h)]. Now f ∗(x) = g∗(x)h∗(x), because ϕ∗ is a ring
homomorphism, so that deg( f ∗) = deg(g∗) + deg(h∗). Since f (x) is monic,
f ∗(x) is also monic, and so deg( f ∗) = deg( f ). (Of course, the hypothesis that
f (x) be monic can be relaxed; we may assume, instead, that p does not divide its
leading coefficient.) Thus, both g∗(x) and h∗(x) have degrees less than deg( f ∗),
contradicting the irreducibility of f ∗(x). Therefore, f (x) is irreducible in

� [x],
and, by Gauss’s theorem, f (x) is irreducible in

�
[x]. •

The converse of Theorem 3.98 is false; its criterion does not always work. It
is not difficult to find an irreducible f (x) ∈ � [x] ⊆

�
[x] with f (x) factoring

mod p for some prime p, and Exercise 3.96 on page 304 shows that x 4 + 1 is an
irreducible polynomial in

�
[x] that factors in

�
p [x] for every prime p.

Theorem 3.98 says that if one can find a prime p with f ∗(x) irreducible in
�

p [x], then f (x) is irreducible in
�

[x]. Until now, the finite fields
�

p have been
oddities;

�
p has appeared only as a curious artificial construct. Now the finite-

ness of
�

p is a genuine advantage, for there are only a finite number of polyno-
mials in

�
p [x] of any given degree. In principle, then, one can test whether a

polynomial of degree n in
�

p [x] is irreducible by just looking at all the possible
factorizations of it.

Since it becomes tiresome not to do so, we are now going to write the ele-
ments of

�
p without brackets.

Example 3.99.
We determine the irreducible polynomials in

�
2 [x] of small degree.

As always, the linear polynomials x and x + 1 are irreducible.
There are four quadratics: x2; x2 + x ; x2 + 1; x2 + x + 1 (more generally,

there are pn monic polynomials of degree n in
�

p [x], for there are p choices for
each of the n coefficients a0, . . . , an−1). Since each of the first three has a root
in

�
2 , there is only one irreducible quadratic.
There are eight cubics, of which four are reducible because their constant

term is 0. The remaining polynomials are

x3 + 1; x3 + x + 1; x3 + x2 + 1; x3 + x2 + x + 1.

Since 1 is a root of the first and fourth, the middle two are the only irreducible
cubics.
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There are 16 quartics, of which eight are reducible because their constant
term is 0. Of the eight with nonzero constant term, those having an even num-
ber of nonzero coefficients have 1 as a root. There are now only four surviving
polynomials f (x), and each of them has no roots in

�
2 , i.e., they have no lin-

ear factors. If f (x) = g(x)h(x), then both g(x) and h(x) must be irreducible
quadratics. But there is only one irreducible quadratic, namely, x 2 + x + 1, and
so (x2 + x + 1)2 = x4 + x2 + 1 is reducible while the other three quartics are
irreducible. The following list summarizes these observations.

Irreducible Polynomials of Low Degree over
�

2

degree 2: x2 + x + 1.
degree 3: x3 + x + 1; x3 + x2 + 1.
degree 4: x4 + x3 + 1; x4 + x + 1; x4 + x3 + x2 + x + 1. �

Example 3.100.
Here is a list of the monic irreducible quadratics and cubics in

�
3 [x]. The reader

can verify that the list is correct by first enumerating all such polynomials; there
are 6 monic quadratics having nonzero constant term, and there are 18 monic
cubics having nonzero constant term. It must then be checked which of these
have 1 or −1 as a root (it is more convenient to write −1 instead of 2).

Monic Irreducible Quadratics and Cubics over
�

3

degree 2: x2 + 1; x2 + x − 1; x2 − x − 1.
degree 3: x3 − x + 1; x3 + x2 − x + 1; x3 − x2 + 1;

x3 − x2 + x + 1; x3 + x2 − 1; x3 − x2 − 1;
x3 + x2 + x − 1; x3 − x2 − x − 1. �

Example 3.101.

(i) We show that f (x) = x4 − 5x3 + 2x + 3 is an irreducible polynomial in�
[x]. By Corollary 3.91, the only candidates for rational roots of f (x) are

1, −1, 3, −3, and the reader may check that none of these is a root. Since
f (x) is a quartic, one cannot yet conclude that f (x) is irreducible, for it
might be a product of (irreducible) quadratics.

Let us try the criterion of Theorem 3.98. Since f ∗(x) = x4 + x3 + 1
in

�
2 [x] is irreducible, by Example 3.99, it follows that f (x) is irreducible

in
�

[x]. [It was not necessary to check that f (x) has no rational roots;
irreducibility of f ∗(x) is enough to conclude irreducibility of f (x).]

(ii) Let 85(x) = x4 + x3 + x2 + x + 1 ∈
�

[x].
In Example 3.99, we saw that (85)

∗(x) = x4 + x3 + x2 + x + 1 is
irreducible in

�
2 [x], and so 85(x) is irreducible in

�
[x]. �
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As any linear polynomial, 82(x) = x + 1 is irreducible in
�

[x]; 83(x) =
x2 + x + 1 is irreducible in

�
[x] because it has no rational roots; we have just

seen that 85(x) is irreducible in
�

[x]. Let us introduce another irreducibility
criterion in order to prove that 8p(x) is irreducible in

�
[x] for all primes p.

Lemma 3.102. Let g(x) ∈ � [x]. If there is c ∈ �
with g(x + c) irreducible in� [x], then g(x) is irreducible in

�
[x].

Proof. By Proposition 3.33, the function ϕ : � [x] → � [x], given by

f (x) 7→ f (x + c),

is an isomorphism. If g(x) = s(x)t (x), then g(x + c) = ϕ(g(x)) = ϕ(st) =
ϕ(s)ϕ(t) is a forbidden factorization of g(x + c). Therefore, g(x) is irreducible
in

� [x] and hence, by Gauss’s theorem, g(x) is irreducible in
�

[x]. •

Theorem 3.103 (Eisenstein Criterion).
Let f (x) = a0 + a1x + · · · + anxn ∈ � [x]. If there is a prime p dividing ai

for all i < n but with p � an and p2 � a0, then f (x) is irreducible in
�

[x].

Proof. Assume, on the contrary, that

f (x) = (b0 + b1x + · · · + bmxm)(c0 + c1x + · · · + ck xk),

where m < n and k < n; by Theorem 3.97, we may assume that both factors
lie in

� [x]. Now p | a0 = b0c0, so that Euclid’s lemma in
�

gives p | b0
or p | c0; since p2 � a0, only one of them is divisible by p, say, p | c0 but
p � b0. By hypothesis, the leading coefficient an = bmck is not divisible by p,
so that p does not divide ck (or bm). Let cr be the first coefficient not divisible
by p (so that p does divide c0, . . . , cr−1). If r < n, then p | ar , and so b0cr =
ar − (b1cr−1 + · · · + br c0) is also divisible by p. This contradicts Euclid’s
lemma, for p | b0cr , but p divides neither factor. It follows that r = n; hence
n ≥ k ≥ r = n, and so k = n, contradicting k < n. Therefore, f (x) is
irreducible in

�
[x]. •

Remark. R. Singer found the following elegant proof of Eisenstein’s criterion.
Let ϕ∗ : � [x] → �

p [x] be the ring homomorphism that reduces coefficients
mod p, and let f ∗(x) denote ϕ∗( f (x)). If f (x) is not irreducible in

�
[x], then

Gauss’s theorem gives polynomials g(x), h(x) ∈ � [x] with f (x) = g(x)h(x),
where g(x) = b0 + b1x + · · · + bmxm , h(x) = c0 + c1x + · · · + ck xk , and
m, k > 0. There is thus an equation f ∗(x) = g∗(x)h∗(x) in

�
p [x].

Since p � an , we have f ∗(x) 6= 0; in fact, f ∗(x) = uxn for some unit
u ∈ �

p , because all its coefficients aside from its leading coefficient are 0. By
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Theorem 3.84, unique factorization in
�

p [x], we must have g∗(x) = vxm and
h∗(x) = wxk , where v and w are units in

�
p , because the only monic divisors

of xn are powers of x . It follows that each of g∗(x) and h∗(x) has constant term
0; that is, [b0] = 0 = [c0] in

�
p ; equivalently, p | b0 and p | c0. But a0 = b0c0,

and so p2 | a0, a contradiction. Therefore, f (x) is irreducible in
�

[x]. �

Definition. If p is a prime, then the pth cyclotomic polynomial is

8p(x) = (x p − 1)/(x − 1) = x p−1 + x p−2 + · · · + x + 1.

Corollary 3.104 (Gauss). For every prime p, the pth cyclotomic polynomial
8p(x) is irreducible in

�
[x].

Remark. Every cyclotomic polynomial8n(x), for every (not necessarily prime)
n ≥ 1 (defined on page 29), is irreducible in

�
[x] (see Tignol, Galois’ Theory

of Algebraic Equations, Theorem 12.31). �

Proof. Since 8p(x) = (x p − 1)/(x − 1), we have

8p(x + 1) = [(x + 1)p − 1]/x

= x p−1 +
(

p

1

)
x p−2 +

(
p

2

)
x p−3 + · · · + p.

Since p is prime, Proposition 1.36 shows that Eisenstein’s criterion applies; we
conclude that 8p(x + 1) is irreducible in

�
[x]. By Lemma 3.102, 8p(x) is

irreducible in
�

[x]. •

We do not say that xn−1 + xn−2 + · · · + x + 1 is irreducible when n is not
prime. For example, when n = 4, x3 + x2 + x + 1 = (x + 1)(x2 + 1).

EXERCISES

*3.80 Determine whether the following polynomials are irreducible in � [x].
(i) f (x) = 3x2 − 7x − 5.
(ii) f (x) = 350x3 − 25x2 + 34x + 1.
(iii) f (x) = 2x3 − x − 6.
(iv) f (x) = 8x3 − 6x − 1.
(v) f (x) = x3 + 6x2 + 5x + 25.
(vi) f (x) = x5 − 4x + 2.
(vii) f (x) = x4 + x2 + x + 1.
(viii) f (x) = x4 − 10x2 + 1.
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(ix) f (x) = x6 − 210x − 616.
(x) f (x) = 350x3 + x2 + 4x + 1.

3.81 If p is a prime, prove that there are exactly 1
3

(
p3 − p

)
monic irreducible cubic

polynomials in � p [x].
3.82 Prove that there are exactly 6 irreducible quintics in � 2 [x].
3.83 (i) If a 6= ±1 is a squarefree integer, show that x n − a is irreducible in � [x]

for every n ≥ 1. Conclude that there are irreducible polynomials in � [x]
of every degree n ≥ 1.

(ii) If a 6= ±1 is a squarefree integer, prove that n
√

a is irrational.
3.84 Let k be a field, and let f (x) = a0 + a1x + · · · + an xn ∈ k[x] have degree n. If

f (x) is irreducible, then so is an + an−1x + · · · + a0xn .
*3.85 Let S be a subring of a commutative ring A. If both S and A/S are finitely gener-

ated, prove that A is finitely generated. Prove that every subgroup S of a finitely
generated abelian group A is finitely generated.

*3.86 If α is an algebraic integer and p(x) ∈ � [x] is the monic polynomial of least
degree having α as a root, prove that p(x) is irreducible in � [x]. One calls p(x)
the minimum polynomial of α.

3.8 QUOTIENT RINGS AND FINITE FIELDS

The fundamental theorem of algebra states that every nonconstant polynomial
in

�
[x] is a product of linear polynomials in

�
[x]; informally,

�
contains all

the roots of every polynomial in
�

[x]. We now return to the study of ideals and
homomorphisms in order to prove a “local” analog of the Fundamental Theorem
of Algebra for polynomials over an arbitrary field k: given a polynomial f (x) ∈
k[x], then there is some field K containing k that also contains all the roots of
f (x) (we call this a local analog, for even though f (x) splits in K [x], that is,
f (x) is a product of linear polynomials in K [x], other polynomials in k[x] may
not split in K [x]). The main idea behind the construction of K involves quotient
rings, a straightforward generalization of the construction of

�
m which we now

review.
Given

�
and an integer m, the congruence relation on

�
is defined by:

a ≡ b mod m if and only if m | (a − b).

This definition can be rewritten: a ≡ b mod m if and only if a − b = km for
some k ∈ �

, and this is equivalent to a − b ∈ (m), where (m) denotes the
principal ideal in

�
generated by m. Congruence is an equivalence relation on�

, its equivalence classes [a] are called congruence classes, and the set
�

m is the
family of all the congruence classes.

We begin the new construction. Given a commutative ring R and an ideal I ,
define the relation congruence mod I on R:

a ≡ b mod I if and only if a − b ∈ I.
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Lemma 3.105. If R is a commutative ring and I is an ideal in R, then congru-
ence mod I is an equivalence relation on R.

Proof.
(i) Reflexivity: if a ∈ R, then a − a = 0 ∈ I ; hence, a ≡ a mod I .
(ii) Symmetry: if a ≡ b mod I , then a − b ∈ I . Since −1 ∈ R, we have
b − a = (−1)(a − b) ∈ I , and so b ≡ a mod I .
(iii) Transitivity: if a ≡ b mod I and b ≡ c mod I , then a−b ∈ I and b−c ∈ I .
Hence, a − c = (a − b)+ (b − c) ∈ I , and a ≡ c mod I . •

Definition. If R is a commutative ring and I is an ideal in R, then the equiva-
lence class of a ∈ R, namely,

[a] = {b ∈ R : b ≡ a mod I }

is called the congruence class of a mod I .
The set of all the congruence classes mod I is denoted by R/I .

Addition and multiplication are defined on
�

m by the formulas:

[a] + [b] = [a + b] and [a][b] = [ab].

It is not obvious that these functions
�

m × �
m → �

m are well-defined, and we
were obliged to prove that they are (see Propositions 2.101 and 2.103). These
formulas also give addition and multiplication operations on R/I .

Lemma 3.106. The functions

α : (R/I ) × (R/I ) → R/I, given by ([a], [b]) 7→ [a + b],

and
µ : (R/I ) × (R/I ) → R/I, given by ([a], [b]) 7→ [ab],

are well-defined operations on R/I .

Proof. Let us prove that α and µ are well-defined. Recall Lemma 2.19: if ≡ is
an equivalence relation on a set X , then [a] = [a ′] if and only if a ≡ a′; here,
[a] = [a′] if and only if a − a′ ∈ I . Is addition well-defined? If [a] = [a ′]
and [b] = [b′], is [a + b] = [a′ + b′]; that is, if a − a′ ∈ I and b − b′ ∈ I ,
is (a + b) − (a′ + b′) ∈ I? The answer is “yes,” for (a + b) − (a ′ + b′) =
(a − a′) + (b − b′) ∈ I . Hence, [a + b] = [a′ + b′]. Is multiplication well-
defined; that is, if [a] = [a′] and [b] = [b′], is [ab] = [a′b′]? Now a − a′ ∈ I
and b − b′ ∈ I , and so

ab − a′b′ = (ab − ab′)+ (ab′ − a′b′) = a(b − b′)+ (a − a′)b′ ∈ I,

for ideals are closed under products ri for r ∈ R and i ∈ I . Therefore, [ab] =
[a′b′]. •
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The proof that R/I , equipped with the operations in Lemma 3.106, is a com-
mutative ring is, mutatis mutandis, precisely the proof that

�
m is a commutative

ring. In essence, the ring axioms hold in R/I because they are inherited from
the ring axioms in R.

Theorem 3.107. If I is an ideal in a commutative ring R, then R/I , equipped
with the addition and multiplication defined in Lemma 3.106, is a commutative
ring.

Proof. We check each axiom of the definition of commutative ring on page 216.
(i) Since a + b = b + a in R, we have

[a] + [b] = [a + b] = [b + a] = [b] + [a].

(ii) . Now [a]+([b]+[c])= [a]+[b+c] = [a+(b+c)], while ([a]+[b])+[c] =
[a+b]+[c] = [(a+b)+c], and the result follows because a+(b+c) = (a+b)+c
in R.
(iii) . Define 0 = [0], where the 0 in brackets is the zero element of R. Now
0 + [a] = [0 + a] = [a], because 0 + a = a in R.
(iv) Define [a]′ = [−a]. Now [−a] + [a] = [−a + a] = [0] = 0.
(v) Since ab = ba in R, we have [a][b] = [ab] = [ba] = [b][a].
(vi) Now [a]([b][c]) = [a][bc] = [a(bc)], while ([a][b])[c] = [ab][c] =
[(ab)c], and the result follows because a(bc) = (ab)c in R.
(vii) Define 1 = [1], where the 1 in brackets is the one in R. Now 1[a] = [1a] =
[a], because 1a = a in R.
(viii) We use the distributivity in R: [a]([b] + [c]) = [a][b + c] = [a(b + c)]
and [a][b] + [a][c] = [ab] + [ac] = [ac + ab] = [a(b + c)]. •

Definition. The commutative ring R/I just constructed is called the quotient
ring of R modulo I (pronounced R mod I ).

Congruence classes in
�

m have another description, as cosets:

[a] = {b ∈ � : b = a + km for k ∈ � } = a + (m).

Definition. If R is a commutative ring and I is an ideal, then a coset is a subset
of R of the form

a + I = {b ∈ R : b = a + i for some i ∈ I }.

We now show that cosets are the same as congruence classes.
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Lemma 3.108. If R is a commutative ring and I is an ideal, then for each
a ∈ R, the congruence class [a] in R/I is a coset:

[a] = a + I.

Proof. If b ∈ [a], then b − a ∈ I . Hence, b = a + (b − a) ∈ a + I , and so
[a] ⊆ a + I . For the reverse inclusion, if c ∈ a + I , then c = a + i for some
i ∈ I , and so c − a ∈ I . Hence, c ≡ a mod I , c ∈ [a], and a + I ⊆ [a].
Therefore, [a] = a + I . •

The coset notation a + I is the notation most commonly used; thus,

R/I = {a + I : a ∈ R}.

If we forget the multiplication in a commutative ring R, then it is an additive
abelian group, and every ideal I in R is a subgroup. Since every subgroup of
an abelian group is a normal subgroup, the quotient group R/I is defined. We
claim that this quotient group coincides with the additive group of the quotient
ring R/I . The elements of either quotient are the same (they are cosets of I ),
and the addition of cosets in each is the same as well. In particular, the principal
ideal (m) in

�
is often denoted by m

�
and we have been denoting the quotient

ring
�
/m

�
by

�
m.

The natural map π : � → �
m, defined by π(a) = [a] = a + (m), is a ring

homomorphism, and so is its generalization to quotient rings.

Definition. If R is a commutative ring and I is an ideal, then the natural map
π : R → R/I is defined by π(a) = a + I for all a ∈ R.

We can now prove a converse to Proposition 3.38.

Proposition 3.109.

(i) Let I be an ideal in a commutative ring R. The natural map π : R → R/I
is a surjective homomorphism whose kernel is I .

(ii) A subset J of R is an ideal if and only if J is the kernel of a homomorphism
from R to some commutative ring.

Proof.
(i) We have π(1) = 1 + I , which is the one in R/I . The definition of addition in
R/I gives

π(a)+ π(b) = (a + I ) + (b + I ) = a + b + I = π(a + b),

and the definition of multiplication gives

π(a)π(b) = (a + I )(b + I ) = ab + I = π(ab).
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Therefore, π : R → R/I is a homomorphism.
The elements of R/I are cosets a + I ; since a + I = π(a), the natural map

is surjective. Clearly, I ⊆ kerπ , for if a ∈ I , then π(a) = a + I = 0 + I .
For the reverse inclusion, if a ∈ kerπ , then π(a) = a + I = I , and so a ∈ I .
Therefore, kerπ = I .
(ii) If there is a commutative ring A and a homomorphism ϕ : R → A with
J = kerϕ, then Proposition 3.38 shows that J is an ideal. Conversely, if J is an
ideal in R, then the natural map π : R → R/J is a homomorphism whose kernel
is J . •

Proposition 2.99 describes the congruence classes [a] in
�

m in a very simple
way; they are all possible remainders after dividing by m:

�
m =

{
[0], [1], [2], . . . , [m − 1]

}
.

In general, there is no such easy description of the elements of R/I . On the other
hand, we shall soon see (Theorem 3.115) that there is a version of this description
when R = k[x] (when k is a field) and I = ( f (x)) for f (x) ∈ k[x].

For readers familiar with groups, the proof of Theorem 3.107 can be short-
ened a bit. If we forget the multiplication in a commutative ring R, then an
ideal I is a subgroup of the additive group R; since R is an abelian group, the
subgroup I is necessarily normal, and so the quotient group R/I is defined.
Thus, axioms (i) through (iv) in the definition of commutative ring hold. One
now defines multiplication, shows that it is well-defined, and verifies axioms (v)
through (viii). Presumably, quotient rings are so-called in analogy with quotient
groups. The proof of Proposition 3.109 can also be shortened a bit. The nat-
ural map π : R → R/I is a homomorphism between the additive groups of R
and of R/I , and one need only check that π(1) = 1 + I and that π preserves
multiplication.

Theorem 3.110 (First Isomorphism Theorem). If ϕ : R → S is a homo-
morphism of commutative rings, then kerϕ is an ideal in R, imϕ is a subring
of S, and there is an isomorphism

ϕ̃ : R/ ker ϕ → imϕ

defined by ϕ̃ : a + kerϕ 7→ ϕ(a).

Proof. Let I = kerϕ. We have already seen, in Proposition 3.38, that I is an
ideal in R and that im ϕ is a subring of A.

ϕ̃ is well-defined.
If a + I = b + I , then a − b ∈ I = kerϕ, so that ϕ(a − b) = 0. But

ϕ(a − b) = ϕ(a)− ϕ(b); hence, ϕ̃(a + I ) = ϕ(a) = ϕ(b) = ϕ̃(b + I ).
ϕ̃ is a homomorphism.
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First, ϕ̃(1 + I ) = ϕ(1) = 1.
Second,

ϕ̃ ((a + I )+ (b + I )) = ϕ̃ (a + b + I )

= ϕ(a + b)

= ϕ(a)+ ϕ(b)

= ϕ̃(a + I ) + ϕ̃(b + I ).

Third,

ϕ̃ ((a + I )(b + I )) = ϕ̃ (ab + I )

= ϕ(ab)

= ϕ(a)ϕ(b)

= ϕ̃(a + I )ϕ̃(b + I ).

ϕ̃ is surjective. If x ∈ imϕ, then x = ϕ(a) for some a ∈ R, and so x =
ϕ̃(a + I ).

ϕ̃ is injective. If a + I ∈ ker ϕ̃, then ϕ̃(a + I ) = 0. But ϕ̃(a + I ) = ϕ(a).
Hence, ϕ(a) = 0, a ∈ kerϕ = I , and a + I = I = 0 + I . Therefore,
ker ϕ̃ = {0 + I }, and ϕ̃ is an injection. •

The proof of the first isomorphism theorem for rings can be shortened for
readers familiar with group theory. If we forget the multiplication, then the proof
of Theorem 2.114 shows that the function ϕ̃ : R/I → S, given by ϕ̃(r + I ) =
ϕ(r), is a (well-defined) isomorphism of the additive groups. Since ϕ(1 + I ) =
ϕ(1) = 1, it is only necessary to prove that ϕ̃ preserves multiplication.

The first isomorphism theorem says that there is no significant difference
between a quotient ring R/ ker ϕ and the image of a homomorphism ϕ, for they
are isomorphic rings. Another viewpoint is that one can create an isomorphism
from a homomorphism once one knows its kernel and image. Given a homo-
morphism, the first questions one should ask are what is its kernel and what is
its image. (There are analogs for commutative rings of the second and third iso-
morphism theorems for groups, but they are less useful for rings than they are
for groups.)

Recall that the prime field of a field k is the intersection of all the subfields
of k.

Proposition 3.111. If k is a field, then its prime field is isomorphic to
�

or to
�

p for some prime p.

Proof. Denote the one in k by ε, and consider the homomorphism χ : � → k
defined by χ(n) = nε. Since every ideal in

�
is principal, there is an integer
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m ≥ 0 with kerχ = (m). If m = 0, then χ is an injection, and so imχ is a
subring of k isomorphic to

�
. By Exercise 3.50 on page 249,

�
= Frac(

�
) ∼=

Frac(imχ). Since
�

is the smallest field containing
�

as a subring, it follows
from Exercise 3.24 on page 232 that the prime field of k is isomorphic to

�
in this

case. If m 6= 0, the first isomorphism theorem gives
�

m = �
/(m) ∼= imχ ⊆ k.

Since k is a field, imχ is a domain, and so Proposition 3.12 gives m prime. If
we now write p instead of m, then imχ = {0, ε, 2ε, . . . , (p − 1)ε} is a subfield
of k isomorphic to

�
p . Thus, Exercise 3.24 shows that imχ ∼=

�
p is the prime

field of k in this case. •
This last result is the first step in classifying different types of fields.

Definition. A field k has characteristic 0 if its prime field is isomorphic to
�

;
if its prime field is isomorphic to

�
p for some prime p, then one says that k has

characteristic p.

The fields
�

,
�

,
�

,
�
(x) have characteristic 0, as does any subfield of the

latter three. Every finite field has characteristic p for some prime p, as does
�

p (x), the ring of all rational functions over
�

p .
Recall that if R is a commutative ring, r ∈ R, and n ∈ �

, then nr =
r + · · · + r , where there are n summands. If ε is the one in R, then nr = (nε)r .
Thus, if nε = 0 in R, then nr = 0 for all r ∈ R. Now, in

�
p , we have p[1] =

[p] = [0], and so p[r ] = [0] for all [r ] ∈ �
p . More generally, if k is any field of

characteristic p > 0, then pa = 0 for all a ∈ k. In particular, when p = 2, we
have 0 = 2a = a + a, and so, in this case, −a = a for all a ∈ k.

Example 3.112.
Consider the homomorphism ϕ : � [x] →

�
, defined by f (x) 7→ f (i), where

i2 = −1; that is, ϕ :
∑

k ak xk 7→
∑

k aki k . The first isomorphism theorem
teaches us to seek im ϕ and kerϕ.

First, ϕ is surjective: if a+bi ∈
�

, then a+bi = ϕ(a+bx) ∈ imϕ. Second,

kerϕ = { f (x) ∈ � [x] : f (i) = 0},
the set of all polynomials having i as a root. Of course, x 2 + 1 ∈ kerϕ, and we
claim that kerϕ = (x2 + 1). Since

� [x] is a PID, the ideal kerϕ is generated
by the monic polynomial of least degree in it. If x 2 + 1 does not generate kerϕ,
then there would be a linear divisor of x2 + 1 in

� [x]; that is, x2 + 1 would have
a real root. The first isomorphism theorem now gives

� [x]/(x 2 + 1) ∼=
�

.
Thus, the quotient ring construction builds the complex numbers from the

reals; that is, if one did not know the field of complex numbers, it could be
defined as

� [x]/(x2 + 1). One advantage of constructing
�

in this way is that it
is not necessary to check all the field axioms, for Theorem 3.113 shows that they
hold automatically. �
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Theorem 3.113. If k is a field and I = (p(x)), where p(x) ∈ k[x] is noncon-
stant, then the following statements are equivalent.

(i) k[x]/I is a field.

(ii) k[x]/I is a domain.

(iii) p(x) is irreducible in k[x].

Proof.
(i) ⇒ (ii). Every field is a domain.
(ii) ⇒ (iii). If p(x) is not irreducible, then there is a factorization p(x) =
g(x)h(x) in k[x] with deg(g) < deg(p) and deg(h) < deg(p). If g(x) ∈ I =
(p), then p(x) | g(x) and deg(p) ≤ deg(g), a contradiction; thus, g(x) + I 6=
0 + I in k[x]/I . Similarly, h(x)+ I 6= 0 in k[x]/I . However, the product

(g(x)+ I )(h(x)+ I ) = p(x)+ I = 0 + I

is zero in the quotient ring, contradicting k[x]/I being a domain. Therefore,
p(x)must be an irreducible polynomial.
(iii) ⇒ (i). Assume that p(x) is irreducible. Since p(x) is not a unit, the ideal
I = (p(x)) does not contain 1; that is, 1+ I 6= 0 in k[x]/I . If f (x)+ I ∈ k[x]/I
is nonzero, then f (x) /∈ I , that is, f (x) is not a multiple of p(x) or, to say it
another way, p � f . By Lemma 3.67, p and f are relatively prime, and so
there are polynomials s and t with s f + tp = 1. Thus, s f − 1 ∈ I , and so
1 + I = s f + I = (s + I )( f + I ). Therefore, every nonzero element of k[x]/I
has an inverse, and so k[x]/I is a field. •

Compare this theorem with Proposition 3.19, which can be rephrased as
giving the equivalence of the statements:

�
m is a field;

�
m is a domain; m is a

prime.

Proposition 3.114.

(i) If k is a field, let p(x) ∈ k[x] be an irreducible polynomial, and let I =
(p(x)). Then k[x]/(p(x)) = k[x]/I is a field containing (an isomorphic
copy of ) k and a root z of p(x).

(ii) If g(x) ∈ k[x] and z is also a root of g(x), then p(x) | g(x).

Proof.
(i) The quotient ring K = k[x]/I is a field, by Theorem 3.113, because p(x) is
irreducible. Define ϕ : k → K by ϕ(a) = a + I ; ϕ is a homomorphism because
it is the restriction to k of the natural map k[x] → k[x]/I . By Corollary 3.45,
ϕ is an injection (because k is a field), and so it is an isomorphism from k to the
subfield k′ = {a + I : a ∈ k} ⊆ K . Let us identify k with this subfield k′ of K .
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Remember that x is a particular element of k[x]; we claim that z = x + I ∈ K
is a root of p(x). Now

p(x) = a0 + a1x + · · · + anxn,

where ai ∈ k for all i . In k[x]/I , we have

p(z) = (a0 + I ) + (a1 + I )z + · · · + (an + I )zn

= (a0 + I ) + (a1 + I )(x + I )+ · · · + (an + I )(x + I )n

= (a0 + I ) + (a1x + I ) + · · · + (anxn + I )

= a0 + a1x + · · · + anxn + I

= p(x)+ I = I,

because p(x) ∈ I = (p(x)). But I is the zero element of k[x]/I , and so z is a
root of p(x).
(ii) Since z is a root of g(x), we have g(x) ∈ kerπ , where π : k[x] → k[x]/(p(x))
is the natural map, and so p(x) | g(x). •

Here is a compact description of k[x]/( f (x)) that is similar to Corollary 1.56,
the description of

�
m as {[0], [1], . . . , [m−1]}. Although the next theorem is true

for any, not necessarily irreducible, polynomial f (x), the most important case is
when f (x) is irreducible, for then k[x]/( f (x)) is a field.

Theorem 3.115. Let k be a field, let f (x) ∈ k[x] be a nonzero polynomial of
degree n ≥ 1, let I = ( f (x)), and let K = k[x]/I . Then every element in K has
a unique expression of the form

b0 + b1z + · · · + bn−1zn−1,

where z = x + I is a root of f (x) and all bi ∈ k.

Proof. Every element of K has the form g(x) + I , where g(x) ∈ k[x]. By
the division algorithm, there are polynomials q(x), r(x) ∈ k[x] with g(x) =
q(x) f (x)+ r(x) and either r(x) = 0 or deg(r) < n = deg( f ). Since g − r =
q f ∈ I , it follows that g(x)+ I = r(x)+ I . As in the proof of Proposition 3.114,
we may rewrite r(x)+ I as r(z) = b0 + b1z + · · · + bn−1zn−1 with all bi ∈ k.

To prove uniqueness, suppose that

r(z) = b0 + b1z + · · · + bn−1zn−1 = c0 + c1z + · · · + cn−1zn−1,

where all ci ∈ k. Define h(x) ∈ k[x] by h(x) =
∑n−1

i=0 (bi − ci )x i . Since z is
a root of h(x). we have h(x) ∈ ( f (x)); that is, f (x) | h(x). If h(x) is not the
zero polynomial, then deg(h) ≥ n = deg( f ). But deg(h) < n, a contradiction.
Therefore, h(x) = 0 and bi = ci for all i . •
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Applying this theorem to Example 3.112, in which f (x) = x 2 + 1 ∈ � [x],
n = 2, and the coset x + I [where I = (x2+1)] is denoted by i , we see that every
complex number has a unique expression of the form a + bi , where a, b ∈ �

,
and that i2 + 1 = 0, that is, i2 = −1.

The easiest way to multiply in
�

is to first treat i as a variable and then to
impose the condition i 2 = −1. For example, to compute (a + bi)(c + di), first
write ac + (ad +bc)i +bdi 2, and then observe that i 2 = −1. The proper way to
multiply (b0 + b1z +· · ·+ bn−1zn−1)(c0 + c1z +· · ·+ cn−1zn−1) in the quotient
ring k[x]/(p(x)) is to first regard the factors as polynomials in z and then to
impose the condition that p(z) = 0. These remarks follow from the natural map
π : f (x) 7→ f (x)+ I being a homomorphism. Since π : f (x) 7→ f (z), we see
that π( f )π(g) is the product f (z)g(z). On the other hand, π( f g) first multiplies
f (x)g(x) and then sets x = z.

We are now going to generalize Example 3.112.

Definition. Let K be a field and let k be a subfield. If z ∈ K , then we define
k(z) to be the smallest subfield of K containing k and z; that is, k(z) is the
intersection of all the subfields of K containing k and z. One calls k(z) the field
obtained from k by adjoining z.

For example,
�

= �
(i); the complex numbers are obtained from

�
by ad-

joining i . In Theorem 3.115, we have K = k(z), where z = x + I .
The next result shows that quotient rings occur in nature.

Proposition 3.116. Let k be a subfield of a field K and let z ∈ K .

(i) If z is a root of some nonzero polynomial f (x) ∈ k[x], then z is a root of
an irreducible polynomial p(x) ∈ k[x], and p(x) | f (x).

(ii) For p(x) in part (i), there is an isomorphism

ϕ : k[x]/(p(x)) → k(z)

with ϕ(x + (p(x)) = z and ϕ(a) = a for all a ∈ k.

(iii) If z and z′ are roots of p(x) lying in K , then there is an isomorphism
θ : k(z) → k(z′) with θ(z) = z′ and with θ(a) = a for all a ∈ k.

(iv) Each element in k(z) has a unique expression of the form

b0 + b1z + · · · + bn−1zn−1,

where bi ∈ k and n = deg(p).

Proof. Our proof is essentially the same as that of Proposition 3.111.
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(i) Define a homomorphism ϕ : k[x] → K by ϕ(x) = z; in more detail,

ϕ :
∑

bi x
i 7→

∑
bi z

i .

Notice that ϕ(a) = a for all a ∈ k. Now f (x) ∈ kerϕ because z is a root of
f (x), and so kerϕ is a nonzero ideal in k[x]; indeed, kerϕ must have the form
(p(x)) for some nonzero p(x) ∈ k[x] because k[x] is a PID. Since im ϕ is a
subring of the field K , it is a domain, and so Theorem 3.113 says that p(x) is
irreducible.

We may regard both p(x) and f (x) as lying in k[x], and each is a multiple of
x − z in K [x]; it follows that their gcd( f, p) in K [x] is not 1. By Corollary 3.75,
however, this gcd is the same whether computed in K [x] or in k[x]. But p(x) is
irreducible, so that ( f, p) 6= 1 in k[x] gives p | f in k[x] (by Lemma 3.67).
(ii) Since p(x) is irreducible, Theorem 3.113 shows that im ϕ is a field; that is,
im ϕ is a subfield of K containing k and z, and so k(z) ⊆ im ϕ. On the other
hand, every element in im ϕ has the form g(x)+I , where g(x) ∈ k[x], so that any
subfield S of K containing k and z must also contain im ϕ; that is, imϕ = k(z).
(iii) As in part (ii), there is an isomorphism ψ : k[x]/(p(x)) → k(z ′) with
ψ(a) = a for all a ∈ k and ψ(x + (p(x)) = z. The composite θ = ψ ◦ ϕ−1 is
the desired isomorphism.
(iv) By Theorem 3.115, each element in k[x]/I , where I = (p(x))), has a unique
expression of the form b0+b1(x+ I )+· · ·+bn−1(x+ I )n−1, and injectivity of the
isomorphism k[x]/I → k(z) which sends x + I 7→ z preserves this uniqueness.

•

Corollary 3.117. Let k be a field and p(x) ∈ k[x] be an irreducible polynomial.
If K = k[x]/I , where I = (p(x)), and if α ∈ K , then there exists a unique monic
irreducible polynomial h(x) ∈ k[x] having α as a root.

Proof. By Theorem 3.115, α = b0 + b1z + · · · + bn−1zn−1, where z = x + I ,
all bi ∈ k, and n = deg(p). Thus, α is a root of b0 + b1x + · · · + bn−1xn−1 ∈
k[x], and Proposition 3.116(i) applies: there is a monic irreducible polynomial
h(x) ∈ k[x] having α as a root.

To prove uniqueness of h(x), suppose that g(x) ∈ k[x] is another monic
irreducible polynomial having α as a root. In K [x], the gcd (h, g) 6= 1 (for
x − α is a common divisor), and so Corollary 3.75 says that (h, g) 6= 1 in
k[x]. Since h(x) is irreducible, its only monic divisors are 1 and itself, and so
(h, g) = h. Therefore, h(x) | g(x). But since g(x) is monic irreducible, we
must have h(x) = g(x). •

We now prove two important results: the first, due to Kronecker, says that
if f (x) ∈ k[x], where k is any field, then there is some larger field E which
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contains k and all the roots of f (x); the second, due to Galois, constructs finite
fields other than

�
p .

Theorem 3.118 (Kronecker). If k is a field and f (x) ∈ k[x] is nonconstant,
then there exists a field K , containing k as a subfield, with f (x) splitting in
K [x]; that is, f (x) is a product of linear polynomials in K [x].

Remark. One often says that f (x) splits over K if it is a product of linear
polynomials in K [x]. �

Proof. We prove the theorem by induction on deg( f ), and we modify the state-
ment a bit to enable us to prove the inductive step more easily: if E is any field
containing k as a subfield (so that f (x) ∈ k[x] ⊆ E[x]), then there is a field
K containing E such that f (x) is a product of linear polynomials in K [x]. If
deg( f ) = 1, then f (x) is linear and we can choose K = E . For the inductive
step, we consider two cases. If f (x) is not irreducible, then f (x) = g(x)h(x)
in k[x], where deg(g) < deg( f ) and deg(h) < deg( f ). By induction, there is
a field E containing k with g(x) splitting over E ; a second use of the inductive
hypothesis provides a field K containing E with h(x) splitting over K . Thus,
f (x) = g(x)h(x) splits over K . If p(x) is irreducible in k[x], then Propo-
sition 3.114(i) provides a field E containing k and a root z of p(x). Hence
p(x) = (x − z)`(x) in E[x]. By induction, there is a field K containing E so
that `(x), and hence f (x) = (x − z)`(x) splits over K . •

For the familiar fields
�

,
�

, and
�

, Kronecker’s theorem offers nothing new.
The Fundamental Theorem of Algebra, first proved by Gauss in 1799 (com-
pleting earlier attempts of Euler and of Lagrange), says that every nonconstant
f (x) ∈

�
[x] has a root in

�
. It follows, by induction on the degree of f (x), that

all the roots of f (x) lie in
�

; that is, f (x) = a(x − r1) . . . (x − rn), where a ∈
�

and r j ∈
�

for all j . On the other hand, if k = �
p or k =

�
(x) = Frac(

�
[x]),

then Kronecker’s theorem does apply to tell us, for any given f (x), that there
is always some larger field E that contains all the roots of f (x). For example,
there is some field containing

�
(x) and

√
x . There is a general version of the

fundamental theorem: every field k is a subfield of an algebraically closed field
K , that is, K is a field containing k such that every f (x) ∈ k[x] is a product of
linear polynomials in K [x]. In contrast, Kronecker’s theorem gives roots of just
one polynomial at a time.

We now consider finite fields; that is, fields having only finitely many ele-
ments. Our first goal is to prove Proposition 3.119: every finite field has exactly
pn elements for some prime p and some n ≥ 1. Our first proof of this result uses
group theory (also see Exercise 3.102 on page 305).
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Proposition 3.119. If E is a finite field, then |E | = pn for some prime p and
some n ≥ 1.

Proof. If k is the prime field of E , then Proposition 3.111 says that k ∼=
�

or
k ∼=

�
p for some prime p; since

�
is infinite, we have k of characteristic p.

Therefore, pa = 0 for all a ∈ E ; that is, as an additive abelian group, every
nonzero element in E has order p. If there is a prime divisor q of |E | with
q 6= p, then Cauchy’s theorem (Theorem 2.145) gives a nonzero element b ∈ E
with qb = 0, contradicting every nonzero element having order p. We conclude
that |E | = pn for some n ≥ 1. •

There is an elegant proof of Proposition 3.119 using linear algebra, Propo-
sition 4.29, and many people view linear algebra as a part of commutative ring
theory. However, for those readers who have not yet learned groups or linear
algebra, here is an awkward proof using only commutative rings.

Lemma 3.120. Let E be a finite field, and let k be its prime field.

(i) There is a prime p with k ∼=
�

p .

(ii) There is an integer M > 0 so that every nonzero z ∈ E is a root of x M −1.

(iii) If S is a subfield of E and z ∈ E, then |S(z)| = |S|m for some m ≥ 1.

Proof.
(i) Since E is finite, it cannot contain a copy of

�
, and so Proposition 3.111 says

that its prime field k ∼=
�

p for some prime p.
(ii) Let z ∈ E be nonzero. Since E is finite, there must be repetitions on the list
1, z, z2, . . .. Let the first repetition occur at m; that is, 1, z, z2, . . . , zm−1 are all
distinct, while zm ∈ {1, z, z2, . . . , zm−1}. If zm 6= 1, then zm = zi for some
i < m, and so zm−i = 1. But m − i ≤ m −1, contradicting 1, z, z2, . . . , zm−1 all
being distinct. Therefore, zm = 1. For each nonzero z ∈ E , we have found an
integer m = m(z) with zm(z) = 1, Since there are only finitely many elements in
E , we may define M =

∏
z∈E× m(z) (where E× denotes the nonzero elements

of E), and zM = 1 for all z ∈ E×. Hence, every nonzero z ∈ E is a root of
x M − 1.
(iii) We claim that z is a root of an irreducible polynomial q(x) ∈ k[x]. If z = 0,
take q(x) = x ; if z 6= 0, then part (ii) shows that z is a root of a nonzero
polynomial in S[x], namely, x M − 1, and Proposition 3.116 gives an irreducible
polynomial q(x) ∈ S[x] having z as a root. Let X = S ×· · ·× S be the cartesian
product of d copies of S with itself, where d = deg(q). By Proposition 3.116,
the function β : S(z)→ X , defined by

β : b0 + b1z + · · · + bd−1zd−1 7→ (b0, b1, . . . , bd−1)

is a bijection. Hence, |S(z)| = |X | = |S|d . •
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Proposition 3.121. If E is a finite field, then |E | = pn for some prime p and
some n ≥ 1.

Proof. Since E is finite, Lemma 3.120(i) says that its prime field k ∼=
�

p for
some prime p. If k = E , we are done. Otherwise, there is some element z1 ∈ E
with z1 /∈ k. By Corollary 3.120(iii), |k(z1)| = pm . If k(z1) = E , we are done.
Otherwise, there is some element z2 ∈ E with z2 /∈ k(z1). If K = k(z1), then
Corollary 3.120(iii) gives |K (z2)| = (pm)n = pmn. If K (z2) = E , we are done.
This procedure must end after a finite number of steps because there are only
finitely many elements in E . •

The next group-theoretic result will imply that every finite field E contains
a primitive element π ; that is, there is an element π ∈ E with every nonzero
a ∈ E equal to some power of π .

Theorem 3.122.

(i) If k is a field and G is a finite subgroup of the multiplicative group k×,
then G is cyclic. In particular, if k itself is finite (e.g., k = �

p ), then k× is
cyclic.

(ii) For each positive integer m, there exists a primitive mth root of unity
z ∈ k; that is, every mth root of unity in k is a power of z.

Proof.
(i) Let d be a divisor of |G|. If there are two subgroups of G of order d , say, S
and T , then |S ∪ T | > d . But each a ∈ S ∪ T satisfies ad = 1, and hence it is a
root of xd − 1. This contradicts Theorem 3.50(i), for x d − 1 now has too many
roots in k. Thus, G is cyclic, by Proposition 2.73.
(ii) The set 0m = {all mth roots of unity in k} is a (finite) subgroup of k×, and
so it is cyclic. A generator of 0m is a primitive mth root of unity. •

Although the multiplicative groups
� ×

p are cyclic, no explicit formula giving
generators of each of them is known; i.e., no efficient algorithm is known that
computes s(p) for every prime p, where [s(p)] is a generator of

� ×
p .

This result gives another proof of Proposition 3.121 and a little more. It
proves that there is some π ∈ E so that E ∼=

�
p (π).

Corollary 3.123 (= Corollary 3.121). Every finite field E has exactly pn ele-
ments for some prime p and some n ≥ 1.

Proof. Since E is finite, its prime field k ∼=
�

p for some prime p. There is
a primitive element π ∈ E , by Theorem 3.122, and so |k(π)| = pn for some
n ≥ 1, by Lemma 3.120(iii). But k(π) = E , because the powers of π already
give all of E×. •
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We are now going to display the finite fields. We saw, in Lemma 3.120(ii),
that every nonzero element of E is a root of x M −1 for some integer M . It follows
that every element of E , including 0, is a root of x M+1 − x . A consequence of
the next proof is that M + 1 can be chosen to be a power of p.

Theorem 3.124 (Galois). If p is a prime and n is a positive integer, then there
exists a field that has exactly pn elements.

Proof. Write q = pn , and consider the polynomial

g(x) = xq − x ∈ �
p [x].

By Kronecker’s theorem, there is a field E containing
�

p such that g(x) is a
product of linear factors in E[x]. Define

F = {α ∈ E : g(α) = 0};

thus, F is the set of all the roots of g(x). Since the derivative g′(x) = qxq−1 − 1
= pnxq−1 − 1 = −1, it follows that the gcd (g, g′) = 1. By Exercise 3.63
on page 271, all the roots of g(x) are distinct; that is, F has exactly q = pn

elements.
We claim that F is a subfield of E , and this will complete the proof. If

a, b ∈ F , then aq = a and bq = b. Therefore, (ab)q = aqbq = ab, and
ab ∈ F . By Exercise 3.47 on page 249(iii), (a − b)q = aq − bq = a − b, so that
a − b ∈ F . Finally, if a 6= 0, then the cancellation law applied to aq = a gives
aq−1 = 1, and so the inverse of a is aq−2 (which lies in F because F is closed
under multiplication). •

In Corollary 5.25, we will see that any two finite fields k with the same
number of elements are isomorphic. Here are some special cases of this theorem.

Example 3.125.
In Exercise 3.17 on page 232, we constructed a field k with 4 elements as all the
matrices

[
a b
b a+b

]
= a

[
1 0
0 1

]
+ b

[
0 1
1 1

]
, where a, b ∈ �

2. (We remark that
[

0 1
1 1

]

is a primitive element, as is
[

1 1
1 0

]
)

On the other hand, we may construct a field with 4 elements as the quotient
F = �

2 [x]/(x2+x+1), for x2+x+1 ∈ �
2 [x] is irreducible. By Corollary 3.115,

F is a field consisting of all a +bz, where z is a root of x 2 + x +1 and a, b ∈ �
2 .

Since z2 + z + 1 = 0, we have z2 = −z − 1 = z + 1; moreover, z3 = zz2 =
z(z + 1) = z2 + z = 1. It is now easy to see that there is a ring isomorphism
ϕ : k → F with ϕ :

[
a b
b a+b

]
7→ a + bz. �
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Example 3.126.
According to the table in Example 3.100, there are three monic irreducible quad-
ratics in

�
3 [x], namely,

p(x) = x2 + 1, q(x) = x2 + x − 1, and r(x) = x2 − x − 1;

each gives rise to a field with 9 = 32 elements. Let us look at the first two in
more detail. Corollary 3.115 says that E = �

3 [x]/(q(x)) is given by

E = {a + bα : where α2 + 1 = 0}.

Similarly, if F = �
3 [x]/(p(x)), then

F = {a + bβ : where β2 + β − 1 = 0}.

The reader can show that these two fields are isomorphic by checking that the
function ϕ : E → F , defined by

ϕ(a + bα) = a + b(1 − β),

is an isomorphism.
Now

�
3 [x]/(x2 − x − 1) is also a field with 9 elements, and one can show

that it is isomorphic to both of the two fields E and F given above.
In Example 3.100, we exhibited 8 monic irreducible cubics p(x) ∈ �

3 [x];
each of them gives rise to a field

�
3 [x]/(p(x)) having 27 = 33 elements. All

eight of these fields are isomorphic. �

EXERCISES

3.87 For every commutative ring R, prove that R[x]/(x) ∼= R.
*3.88 Let k be a field and f (x), g(x) ∈ k[x] be relatively prime. If each divides h(x) in

k[x], prove that their product f (x)g(x) also divides h(x).
3.89 Define ϕ : � → � m × � n by ϕ : a 7→ ([a]m , [a]n), where [a]m is the congruence

class of a in � m.
(i) Prove that ϕ is a homomorphism, and that ker ϕ = (m) ∩ (n).
(ii) If (m, n) = 1, prove that (m) ∩ (n) = (mn).
(iii) If (m, n) = 1, prove that ϕ is surjective.
(iv) Use part (iii) to prove the Chinese remainder theorem.

3.90 Chinese Remainder Theorem in k[x].
(i) Prove that if k is a field and f (x), f′(x) ∈ k[x] are relatively prime, then

given b(x), b′(x) ∈ k[x], there exists c(x) ∈ k[x] with

c − b ∈ ( f ) and c − b′ ∈ ( f ′);

moreover, if d(x) is another common solution, then c − d ∈ ( f f ′).
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(ii) Prove that if k is a field and f (x), g(x) ∈ k[x] are relatively prime, then

k[x]/( f (x)g(x)) ∼= k[x]/( f (x)) × k[x]/(g(x)).

*3.91 Generalize Exercise 3.77 on page 278 by proving that if k is a field of character-
istic 0 and if p(x) ∈ k[x] is an irreducible polynomial, then p(x) has no repeated
roots.

3.92 (i) Prove that a field K cannot have subfields k′ and k ′′ with k ′ ∼= � and
k ′′ ∼= � p for some prime p.

(ii) Prove that a field K cannot have subfields k′ and k ′′ with k ′ ∼= � p and
k ′′ ∼= � q , where p 6= q .

3.93 Let k be a subfield of a field K , and let p(x) ∈ k[x] be irreducible. If z, z′ ∈ K are
roots of p(x), prove that there is an isomorphism θ : k(z) → k(z ′) with θ(z) = z′

and θ(a) = a for all a ∈ k.
*3.94 Prove that every element z in a finite field E is a sum of two squares. (If z = a2 is

a square, then we may write z = a2 + 02.)
*3.95 If p is a prime and p ≡ 3 mod 4, prove that either a2 ≡ 2 mod p is solvable or

a2 ≡ −2 mod p is solvable.
*3.96 (i) Prove that x4 + 1 factors in � 2 [x].

(ii) If x4 + 1 = (x2 + ax + b)(x2 + cx + d) ∈ � p [x], where p is an odd
prime, prove that c = −a and

d + b − a2 = 0

a(d − b) = 0

bd = 1.

(iii) Prove that x4 + 1 factors in � p [x], where p is an odd prime, if any of the
following congruences are solvable:

b2 ≡ −1 mod p,

a2 ≡ ±2 mod p.

(iv) Prove that x4 + 1 factors in � p [x] for all primes p.
*3.97 Generalize Proposition 3.116(iii) as follows. Let ϕ : k → k ′ be an isomorphism

of fields, let E/k and E′/k ′ be extensions, let p(x) ∈ k[x] and p∗(x) ∈ k ′[x]
be irreducible polynomials (as in Exercise 3.44 on page 248, if p(x) =

∑
ai x i ,

then p∗(x) =
∑
ϕ(ai )x i ), and let z ∈ E and z′ ∈ E ′ be roots of p(x), p∗(x),

respectively. Then there exists an isomorphism ϕ̃ : k(z) → k ′(z′) with ϕ̃(z) = z′

and with ϕ̃ extending ϕ.

k(z)
ϕ̃

// k ′(z′)

k ϕ
// k ′

3.98 If F is a field with four elements, prove that the stochastic group 6(2, F)∼= A4.
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*3.99 Let f (x) = a0 +a1x +· · ·+an−1xn−1 +xn ∈ k[x], where k is a field, and suppose
that f (x) = (x −r1)(x −r2) . . . (x −rn) ∈ E [x], where E is some field containing
k. Prove that

an−1 = −(r1 + r2 + · · · + rn) and a0 = (−1)nr1r2 · · · rn .

Conclude that the sum and the product of all the roots of f (x) lie in k.
3.100 If E = � 2 [x]/(p(x)), where p(x) = x3 + x + 1, then E is a field with 8 elements.

Show that a root π of p(x) is a primitive element in E by writing every nonzero
element of E as a power of π .

3.101 (i) Prove, for all n ≥ 1, that there is an irreducible polynomial of degree n
in � [x].

(ii) Prove, for all n ≥ 1 and every prime p, that there is an irreducible poly-
nomial of degree n in � p [x].

3.102 This exercise gives yet another proof, using group theory, of Proposition 3.121.
(i) Let F be a finite field, but consider it only as a group under addition.

Show, for each pair x and y of nonzero elements in F , that there is an
isomorphism ϕ : F → F with y = ϕ(x).

(ii) Prove that |F | = pn for some prime p and some n ≥ 1.
3.103 Prove that the matrices A =

[
0 1

−1 0

]
and B =

[
0 2
2 0

]
generate a subgroup of

SL(2, � 5) of order 8 which is isomorphic to Q.

3.9 OFFICERS, MAGIC, FERTILIZER, AND HORIZONS

Officers

In 1782, L. Euler posed the following problem in an article he was writing
about magic squares. Suppose there are 36 officers of 6 ranks and from 6 reg-
iments. If the regiments are numbered 1 through 6 and the ranks are captain,
major, lieutenant, . . . , then each officer has a double label: e.g., captain 3 or
major 4. Euler asked whether there is a 6 × 6 formation of these officers so
that each row and each column contains exactly one officer of each rank and one
officer from each regiment. Thus, no row can have two captains in it, nor can
any column; no row can have two officers from the same regiment, nor can any
column.

The problem is made clearer by the following definitions.

Definition. An n × n Latin square is an n × n matrix whose entries are taken
from a set X with n elements (e.g., X = {0, 1, . . . , n − 1}) so that no element
occurs twice in any row or in any column.
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It is easy to see that an n × n matrix A (whose entries lie in a set X with
|X | = n) is a Latin square if and only if every row and every column of A is a
permutation of X .

As is customary, we may denote a matrix A by A = [ai j ], where ai j are its
entries; the first index i of ai j describes the i th row

ai1 ai2 . . . ain,

and the second index j describes the j th column

a1 j
a2 j
...

anj

Example 3.127.
There are exactly two 2 × 2 Latin squares having entries 0 and 1:

A =
[

0 1
1 0

]
and B =

[
1 0
0 1

]
�

Example 3.128.
Here are two 4 × 4 Latin squares.

A =




0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


 and B =




0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2


 �

Example 3.129.
The multiplication table of a finite group G = {a1, . . . , an} of order n, namely,
[ai a j ], is a Latin square. Since the cancellation laws hold in groups, ai a j = ai ak
implies a j = ak , and so the i th row is a permutation of G; since ai a` = a j a`
implies ai = a j , the j th column is a permutation of G. �

We are going to use the following construction, which is usually the first
attempt of a neophyte defining matrix multiplication.

Definition. If A = [ai j ] and B = [bi j ] are m×n matrices, then their Hadamard
product , denoted by A ◦ B, is the m × n matrix whose i j entry is the ordered
pair (ai j , bi j ).
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If the entries of A and of B lie in a commutative ring R, then one often
replaces the i j entry of the Hadamard product, (ai j , bi j ), by the product ai j bi j
in R.

Suppose that the entries of A lie in a set X with |X | = n, and the entries of
B lie in a set Y with |Y | = n. There are exactly n2 ordered pairs in X × Y , and
we say that A and B are orthogonal if every ordered pair occurs as an entry in
their Hadamard product A ◦ B.

Definition. Two n × n Latin squares A = [ai j ] and B = [bi j ], with entries in
sets X and Y with |X | = n = |Y |, respectively, are called orthogonal if all the
entries in their Hadamard product A ◦ B, namely, all the ordered pairs (ai j , bi j ),
are distinct.

For example, there is no orthogonal pair of 2×2 Latin squares: as we saw in
Example 3.127, there are only two 2×2 Latin squares with entries in X = {0, 1},
and their Hadamard product is

A ◦ B =
[

01 10
10 01

]
.

There are only two distinct ordered pairs, not four as the definition requires.

Example 3.130.
The two 4 × 4 Latin squares in Example 3.128 are orthogonal, for all 16 ordered
pairs are distinct.

A ◦ B =




00 11 22 33
12 03 30 21
23 32 01 10
31 20 13 02


 �

Let A be a matrix whose entries lie in a set X . If α : x 7→ x ′ is a permutation
of X , then applying α to each entry in A yields a new matrix A′.

Lemma 3.131. Let A = [ai j ] be a Latin square whose entries lie in a set X
with n elements. If x 7→ x ′ is a permutation of X, then A′ = [(ai j )

′] is a Latin
square; that is, if x = ai j is the i j entry of A, then x ′ is the i j entry of A′.
Moreover, if A and B = [bi j ] are orthogonal Latin squares, then A′ and B are
also orthogonal.

Proof. As the i th row (ai1, . . . , ain) of A is a permutation of X , so is the i th
row

(
(ai1)

′, . . . , (ain)
′) of A′ (the composite of two permutations is again a per-

mutation). A similar argument shows that the columns of A′ are permutations of
X , and so A′ is a Latin square.
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If A′ and B are not orthogonal, then two entries of A′ ◦ B are equal: say,
(a′

i j , bi j ) = (a′
k`, bk`), so that a′

i j = a′
k` and bi j = bk`. Since priming is a per-

mutation, ai j = ak`. Thus, there is a repeated ordered pair in A◦ B, contradicting
the orthogonality of A and B. Hence, A′ and B are orthogonal. •

Euler’s problem asks whether there is a pair of orthogonal 6×6 Latin squares
(the first index denotes the rank and the second index denotes the regiment).
Euler was more interested in orthogonal Latin squares than he was in officers.
To see why he cared about the case n = 6, let us first construct some orthogonal
pairs.

Proposition 3.132.

(i) If k is a finite field and a ∈ k× = k − {0}, then the |k| × |k| matrix

La = [`xy ] = [ax + y],

where x, y ∈ k, is a Latin square.

(ii) If a, b ∈ k× and b 6= a, then La and Lb are orthogonal Latin squares.

Proof.
(i) The x th row of La consists of the elements ax + y, where x is fixed. These
are all distinct, for if ax + y = ax + y ′, then y = y′. Similarly, the yth column of
La consists of elements ax + y, where y is fixed, and these are distinct because
ax + y = ax ′ + y implies ax = ax ′. Since a 6= 0, the cancellation law gives
x = x ′.
(ii) Suppose that two ordered pairs coincide; say,

(ax + y, bx + y) = (ax ′ + y′, bx ′ + y′).

Thus, ax + y = ax ′ + y′ and bx + y = bx ′ + y′. There result equations

a(x − x ′) = y′ − y = b(x − x ′).

Since a 6= b, the cancellation law says that x − x ′ = 0, and so y′ − y = 0, i.e.,
x ′ = x and y′ = y. Therefore, La and Lb are orthogonal Latin squares. •

Corollary 3.133. For every prime power pe > 2, there exists a pair of orthog-
onal pe × pe Latin squares.

Proof. By Galois’ theorem, there exists a finite field k with |k| = pe. In order
to have an orthogonal pair of Latin squares, we need |k×| ≥ 2; that is, pe−1 ≥ 2,
hence pe > 2. •
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Remark. Galois invented finite fields around 1830, so that Euler, in 1782,
constructed orthogonal pe × pe Latin squares in a different (more complicated)
way. �

We now show how to create large orthogonal Latin squares from small ones.
Let K and L be sets with |K | = k and |L| = `. If B = [bi j ] is an `× ` matrix
with entries in L , then a B is the `× ` matrix whose i j entry is abi j [where abi j
abbreviates the ordered pair (a, bi j )]. If A = [ast ] is a k×k matrix whose entries
lie in K , then the Kronecker product A ⊗ B of A and B is the k` × k` matrix




a11 B a12 B . . . a1k B
a21 B a22 B . . . a2k B
. . . . . . . . . . . .

ak1 B ak2 B . . . akk B


 .

Theorem 3.134 (Euler). If n 6≡ 2 mod 4, then there exists an orthogonal pair
of n × n Latin squares.

Proof. We merely state the main steps of the proof. One shows first that if A
and B are Latin squares, then A ⊗ B is a Latin square. Second, one proves that if
A and A′ are orthogonal k×k Latin squares, and if B and B ′ are orthogonal `×`
Latin squares, then A ⊗ B and A′ ⊗ B ′ are orthogonal k` × k` Latin squares.
Neither of these steps is challenging. Of course, one can form the Kronecker
product of a finite number of matrices.

A positive integer n is odd if and only if n ≡ 1 mod 4 or n ≡ 3 mod 4; in
either case, n = pe1

1 · · · pet
t , where the pi are odd primes. A positive integer

n ≡ 0 mod 4 if and only if n = 2em, where e ≥ 2 and m is odd. Therefore,
n 6≡ 2 mod 4 if and only if n = 2e pe1

1 · · · pet
t , where e 6= 1 and the pi are odd

primes. By Corollary 3.133, there is an orthogonal pair of pei
i × pei

i Latin squares
for each i and, if e ≥ 2, an orthogonal pair of 2e × 2e Latin squares. Taking the
Kronecker product of these gives a pair of orthogonal n × n Latin squares. •

The smallest n not covered by Euler’s theorem is n = 6, and this is why
Euler posed the question of the 36 officers. Indeed, he conjectured that there is
no orthogonal pair of n × n Latin squares if n ≡ 2 mod 4. In 1901, G. Tarry
proved that there does not exist an orthogonal pair of 6 × 6 Latin squares, thus
answering Euler’s question posed at the beginning of this section: there is no
such formation of 36 officers. However, in 1958, E. T. Parker discovered an
orthogonal pair of 10 × 10 Latin squares, thereby disproving Euler’s conjecture
Parker’s example is displayed on the front cover of this book. Table 3.1 is a less
colorful version of it; note that every number less that 100 appears, in decimal
notation, as an entry. Parker, R. C. Bose, and S. S. Shrikhande went on to prove
that there exists a pair of orthogonal n × n Latin squares for all n except 2 and 6.



310 COMMUTATIVE RINGS I CH. 3

00 15 23 32 46 51 64 79 87 98
94 77 10 25 52 49 01 83 68 36
71 34 88 17 20 02 43 65 96 59
45 81 54 66 18 27 72 90 39 03
82 40 61 04 99 16 28 37 53 75
26 62 47 91 74 33 19 58 05 80
13 29 92 48 31 84 55 06 70 67
69 93 35 50 07 78 86 44 12 21
57 08 76 89 63 95 30 11 24 42
38 56 09 73 85 60 97 22 41 14

Table 3.1.

Magic
We are now going to use orthogonal Latin squares to construct some magic

squares.

Definition. An n × n magic square is an n × n matrix A = [ai j ] whose entries
consist of all the numbers 0, 1, . . . , n2 − 1 and whose row sums and columns
sums are the same; that is, there is a number σ , called the magic number, with

n∑

j=1

ai j = σ for all i and
n∑

i=1

ai j = σ for all j.

The 1514 engraving Melencolia I, by Albrecht Dürer (see Figure 3.2) con-
tains the following square in its upper right corner.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

Notice the date 1514 in the bottom row.15 The row and column sums all equal 34;
in fact, the sum

∑
i ai i of the diagonal terms is also 34, as is the sum

∑
i ain−i

of the terms on the back diagonal (going up from the bottom left corner to the
top right corner). This is not a magic square, for its entries range from 1 to 16
instead of from 0 to 15, but this is easily remedied: subtract 1 from each entry
and get a magic square with magic number 30.

15D ürer was familiar with Qabala, Hebrew mysticism, in which each letter of the alphabet
is assigned a numeric value, and each word is assigned the value which is the sum of the values
of its letters. The values assigned to the letters of the Latin alphabet are 1, 2, . . . , 26. Notice
that 4 and 1 flank 1514 in the magic square; these are the initials of the artist D ürer, Albrecht.
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Figure 3.2

Melencholia I, by Albrecht D ürer
Grunwald Center for the Graphic Arts

UCLA Hammer Museum
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Proposition 3.135. If A is an n × n magic square, then its magic number is

σ = 1
2 n(n2 − 1).

Proof. If ρi denotes the sum of the entries in the i th row of A, then ρi = σ for
all i , and so

n∑

i=1

ρi = nσ.

But this last number is the sum of all the entries in A; that is,

nσ = 1 + 2 + · · · + (n2 − 1) = 1
2 (n

2 − 1)n2.

Therefore, σ = 1
2 n(n2 − 1). •

If n = 4, then σ = 1
2 4 · 15 = 30.

There is a minor disagreement about terminology. In order that a square be
magic, some authors also require that the diagonal entries and the back diagonal
entries each add up to the magic number, as in the modified Dürer square.

Definition. A diabolic square is a magic square whose diagonal and back
diagonal sums are each equal to the magic number.

We will construct some diabolic squares below, but let us first return to magic
squares. There are many methods of constructing magic squares. For example,
in 1693, De la Loubère showed how to construct an n × n magic square, for any
odd n, in which 0 can occur in any i j position (see Stark, An Introduction to
Number Theory, Chapter 4). We now use orthogonal Latin squares to construct
magic squares.

Proposition 3.136. If A = [ai j ] and B = [bi j ] are orthogonal Latin squares
with entries in 0, 1, . . . , n − 1, then the matrix M = [ai j n + bi j ] is an n × n
magic square.

Proof. Since A and B are orthogonal, the entries (ai j , bi j ) of their Hadamard
product A ◦ B are all distinct. It follows from Proposition 1.44, which says that
the n-adic digits of a non-negative number are unique, that every number from
0 through n2 − 1 occurs in M (note that 0 ≤ ai j < n and 0 ≤ bi j < n). Now
A being a Latin square says that each row and column of A is a permutation of
0, 1, . . . , n − 1, and so each row sum and column sum equals s =

∑n−1
i=0 i =

1
2 (n − 1)n; similarly, each row sum and column sum of B equals s. Therefore,
each row sum of M is equal to sn + s, as is each column sum. Therefore, M is a
magic square. •
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The magic number of M is σ = s(n + 1), where s = 1
2 n(n − 1). This

agrees with the value of the magic number in Proposition 3.135, for s(n + 1) =
1
2 n(n − 1)(n + 1) = 1

2 n(n2 − 1).
Parker’s 10 × 10 orthogonal Latin squares have been converted into deci-

mal digits in Table 3.1, which is an example of a 10 × 10 magic square as just
constructed.

Example 3.137.
Proposition 3.136 is not the only way to construct magic squares. For example,
here is a 6 × 6 magic square (whose magic number is, of course, 105); it is even
diabolic. This magic square does not arise from an orthogonal pair of 6×6 Latin
squares, for Tarry has shown us that there aren’t any!

34 0 5 25 18 23
2 31 6 20 22 24

30 8 1 21 26 19
7 27 32 16 9 14

29 4 23 11 13 15
3 35 28 12 17 10

�

We now construct some diabolic squares from orthogonal Latin squares. It
is known that n × n diabolic squares exist for all n ≥ 3, but we will construct
them for only certain n.

Definition. An n×n Latin square A = [ai j ] with entries in a set X with |X | = n
is a diagonal Latin square if its diagonal and its back diagonal are permutations
of X .

Lemma 3.138. If n ∈ �
is an odd integer that is not a multiple of 3, then there

exists an orthogonal pair of n × n diagonal Latin squares.

Proof. Given n, the method we use requires positive integers a > b with each
of a, b, a − b, and a + b being relatively prime to n. If we choose a = 2 and
b = 1, then (2, n) = 1 forces n to be odd, b = 1 = a − b does not constrain n,
but a + b = 3 forces n not to be a multiple of 3.

First, we construct a diagonal n × n Latin square. It will be convenient to
label the rows and columns so that 0 ≤ i, j ≤ n − 1. Define A to be the n × n
matrix whose i j entry is the congruence class [ib + ja] mod n; we simplify
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notation by omitting the brackets of the entries. Thus,

A =




0 a 2a · · · (n − 1)a
b b + a b + 2a · · · b + (n − 1)a

2b 2b + a 2b + 2a · · · 2b + (n − 1)a
...

...
...

...
...

(n − 1)b (n − 1)b + a (n − 1)b + 2a · · · (n − 1)b + (n − 1)a



.

We now show that A is a diagonal Latin square; remember that its entries lie in�
n. Each row is a permutation: for fixed i , if ib+ ja = ib+ j ′a, then ( j − j ′)a ≡

0 mod n. But (a, n) = 1 permits cancellation, so that [ j ] = [ j ′]. Each column
is a permutation: for fixed j , if ib + ja = i ′b + ja, then (i − i ′)b ≡ 0 mod n,
and so (b, n) = 1 gives [i ] = [i ′]. For the main diagonal, if ib + ia = i ′b + i ′a,
then i(b + a) = i ′(b + a), so that (b + a, n) = 1 gives [i ] = [i ′]. Finally, for the
back diagonal, if ib + (n − i)a = i ′b + (n − i ′)a, then i(b − a) = i ′(b − a), and
so (b − a, n) = (a − b, n) = 1 gives [i ] = [i ′].

It is obvious that the transpose AT of A is also a diagonal Latin square, and
we now show that A and AT are orthogonal.16 Note that the i j entry of AT is
jb+ia, so that the i j entry of the Hadamard product A◦ AT is (ib+ ja, jb+ia).
To check orthogonality, suppose that (ib + ja, jb + ia)= (i ′b + j ′a, j ′b + i ′a).
Now ib + ja = i ′b + j ′a and jb + ia = j ′b + i ′a (remember that entries lie in�

n), so that [(i − i ′)a] = [( j ′ − j )b] and [( j ′ − j )a] = [(i − i ′)b]. Multiplying
the first equation by [b] and the second by [a] gives [( j ′− j )a2] = [(i −i ′)ab] =
[( j ′ − j )b2]. Now a = 2 and b = 1, so that [4( j ′ − j )] = [ j ′ − j ] and, hence,
3( j ′ − j ) ≡ 0 mod n. But (3, n) = 1, so that j ′ − j ≡ 0 mod n and [ j ] = [ j ′].
A similar argument gives [i ] = [i ′]. •

Proposition 3.139. If n ∈ �
is an odd integer that is not a multiple of 3, then

there exists an n × n diabolic square.

Proof. Let A = [ai j ] and B = [bi j ] be diagonal orthogonal n×n Latin squares,
which exist, by Lemma 3.138. By Proposition 3.136, the matrix M = [ai j n+bi j ]
is a magic square with magic number σ = s(n + 1), where s =

∑n−1
i=0 i . As the

main diagonal of A and of B are permutations of {0, 1, . . . , n − 1}, the sum of
the diagonal terms is s(n + 1), and the same is true of the back diagonal. •

Fertilizer

16If A is a Latin square, it is not always true that A and AT are orthogonal. For example,
the 4 × 4 Latin square A in Example 3.130 has all 0’s on its main diagonal, and so does its
transpose. Since all the diagonal entries of A ◦ AT equal (0, 0), the Latin squares A and AT

are not orthogonal.
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Here is a fertilizer story that will ultimately be seen to be related to Latin
squares. To maximize his corn production, a farmer has to choose the best type
of seed. But he knows that the amount of fertilizer also affects his crop. How
can he design an experiment to show him what is the best combination? We give
a simple illustration. Suppose there are three types of seed: A, B, and C . To
measure the effect of using different amounts of fertilizer, the farmer can divide
a plot into 9 subplots, as follows:

Amount of Fertilizer Seed Type
High A B C
Medium A B C
Low A B C

In each position, an observation xs f is made, where xs f is the number of ears
harvested according to the seed type s and level f of fertilizer.

The farmer now wants to see the effect of differing dosages of pesticide. He
could have 27 observations xs f p (more generally, if he had n different dosages
and n different seed types, there would be n3 observations). On the other hand,
suppose he arranges his experiment as follows (again, we illustrate with n = 3).

Amount of Pesticide
Amount of Fertilizer High Medium Low
High A B C
Medium C A B
Low B C A

The seed types are now arranged in a Latin square. For example, the observation
from the northwest subplot is the number of ears from seed type A, with a high
level of fertilizer, and high level of pesticide. There are only 9 observations in-
stead of 27 (more generally, there are n2 observations instead of n3). Obviously
we do not have all possible observations. To infer properties about a large col-
lection from measuring a small sample is what statistics is all about. And it turns
out that the Latin square organization of data gives essentially the same statistical
information as that given by the complete set of all n3 observations. A discussion
of the analysis of variance for such designs can be found, for example, in Li, An
Introduction to Experimental Statistics.

The farmer now wants to consider water amounts. Again we illustrate with
n = 3. In addition to the seed types A, B, C , and the various levels of fertilizer
and pesticide, let there be three water levels: α > β > γ .
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Amount of Pesticide
Amount of Fertilizer High Medium Low
High Aα Bβ Cγ
Medium Cβ Aγ Bα
Low Bγ Cα Aβ

The observation from the northwest subplot, for example, is the number of
ears of seed type A, high level of fertilizer, high level of pesticide, and high level
of water. Again, the statistical data arising from this small number, namely 9, of
observations are essentially the same as what one would get from 81 observations
xs f pw (more generally, n2 observations instead of n4). Euler called such matrices
Graeco-Latin squares, because he described them, as above, using Latin and
Greek fonts; he coined the term Latin square for this same notational reason. We
recognize an orthogonal pair of Latin squares. One could test more variables if
one could find an orthogonal set of Latin squares as defined below.

Definition. A set A1, A2, . . . , At of n × n Latin squares is an orthogonal set
if each pair of them is orthogonal.

Lemma 3.140. If A1, A2, . . . , At is an orthogonal set of n × n Latin squares,
then t ≤ n − 1.

Proof. There is no loss in generality in assuming that each Aν has entries lying
in X = {0, 1, . . . , n − 1}. Permute the entries of A1 so that its first row is
0, 1, . . . , n − 1 in this order. By Lemma 3.131, this new matrix A′

1 is a Latin
square which is orthogonal to each of A2, . . . , At . Now permute the entries of
A2 so that its first row is 0, 1, . . . , n − 1 in this order. This new matrix A′

2 is a
Latin square, and it is orthogonal to each of A′

1, A3, . . . , At . Continuing in this
way, we may assume that the top row of each Aν is 0, 1, . . . , n − 1 in this order.

If ν 6= λ, then the first row of Aν ◦ Aλ, their Hadamard product, is

(0, 0), (1, 1), . . ., (n − 1, n − 1).

We claim that Aν and Aλ do not have the same 2, 1 entry. Otherwise, there is
some k with aν21 = k = aλ21 (where aνi j denotes the i j entry of Aν) so that

(aν21, aλ21) = (k, k).

This contradicts the orthogonality of Aν and Aλ, for the ordered pair (k, k) al-
ready occurs in the first row of Aν ◦ Aλ as (aν1k, aλ1k). Therefore, distinct Aν have
distinct entries in the 2, 1 position. In any Aν , however, there are only n − 1
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choices for its 2, 1 entry, because 0 already occurs in its 1, 1 position, and so
there are at most n − 1 distinct Aν ’s. •

Definition. A complete orthogonal set of n × n Latin squares is an orthogonal
set of n − 1 Latin squares.

Theorem 3.141. If q = pe, then there exists a complete orthogonal set of q −1
q × q Latin squares.

Proof. If k is a finite field with q elements, then there are q−1 elements a ∈ k×,
and so there are q − 1 Latin squares La , each pair of which is orthogonal, by
Theorem 3.132. •

One Latin square can test two variables (e.g., levels of fertilizer and pesti-
cide) on different varieties (e.g., of seed). A Graeco-Latin square, i.e., a pair of
orthogonal Latin squares, allows testing for a third variable (e.g., levels of wa-
ter). More generally, a set of t orthogonal Latin squares allows one to test levels
of t + 1 different variables on different varieties.

Horizons

And now another stream enters the story. By the early 1800s, mathemati-
cians were studying the problems of perspective arising from artists painting
pictures of three-dimensional scenes on two-dimensional canvases. To the eye,
parallel lines seem to meet at the horizon, and this suggests adjoining a new con-
struct, a “line at infinity,” to the ordinary plane. Every line is parallel to a line
` passing through the origin O. For each such line, define a new point, ω`, and
“lengthen” every line parallel to ` by adjoining this new point to it. Finally, we
decree that all the new points ω`, for all lines ` through the origin, comprise a
new line, the line at infinity, or the horizon. If `1 and `2 are (lengthened) paral-
lel lines, and if ` is the line through O parallel to each of them, then `1 and `2
intersect in the point ω`. The reader may check that the familiar property that
every two points determine a unique line17 is now accompanied by the property
that every two lines determine a unique point: it is the usual point of intersection
if the lines are not parallel, and it is a point ω` on the horizon if the lines are
parallel.

Since we are now interested in finite structures, let us replace the plane� × �
by a finite “plane” k × k, where k is a finite field with q elements.

We regard this finite plane as the direct product. Define a line ` through the
origin O = (0, 0) to be a subset of the form

17This is the reason we do not adjoin a new point to lines which are not parallel.
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` = {(ax, ay) : a ∈ k and (x, y) 6= O},

and, more generally, define a line to be a coset

(u, v)+ ` =
{
(u + ax, v + ay) : a ∈ k

}
.

Since k is finite, we can do some counting. There are q2 points in the plane,
and there are q points on every line. As usual, two points determine a line. Call
two lines parallel if they do not intersect, and say that two lines have the same
direction if they are parallel. How many directions are there? Every line, being a
coset of a line ` through the origin, has the same direction as `, whereas distinct
lines through the origin have different directions, for they intersect. Thus, the
number of directions is the same as the number of lines through the origin. There
are q2 − 1 points V 6= O, each of which determines a line ` = OV through the
origin. Since there are q points on `, there are q − 1 points on ` other than O,
and each of them determines `. There are thus

(q2 − 1)/(q − 1) = q + 1

directions. We adjoin q + 1 new points ω` to k × k, one for each direction; that
is, one for each line ` through the origin. Define ω, the line at infinity, by

ω = {ω` : ` is a line through the origin},

and define the projective plane over k:

P(k) = (k × k) ∪ ω.

Define a (projective) line in P(k) to be either ω or an old line (u, v)+ ` in k × k
with the point ω` adjoined, where ` is a line through the origin. It follows that
|P(k)| = q2 + q + 1, every line has q + 1 points, and any two points determine
a unique line. (In Example 4.26, we shall use linear algebra to give another
construction of a projective plane.)

Example 3.142.
If k = �

2 , then k × k has 4 points: O = (0, 0), a = (1, 0), b = (0, 1), and
c = (1, 1), and 6 lines, each with two points, as in Figure 3.3.

There are three sets of parallel lines: Oa and bc, Ob and ac, and Oc and ab.
The projective plane P(

�
2 ) is obtained by adding new points ω1, ω2, ω3 and

forcing parallel lines to meet. There are now 7 lines: the 6 original lines (each
lengthened) and the line at infinity {ω1, ω2, ω3}. �

We now abstract the features we need.
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Figure 3.3 Affine Plane
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Figure 3.4 Projective Plane

Definition. A projective plane of order n is a set X with |X | = n2 + n + 1,
a family of subsets called lines, each having n + 1 points, such that every two
points determine a unique line.

We have seen above that if k is a finite field with q elements, then P(k) is a
projective plane of order q. It is possible to construct projective planes without
using finite fields. For example, it is known that there are four projective planes
of order 9, only one of which arises from the finite field with 9 elements.

The following theorem is the reason we have introduced projective planes.

Theorem. If n ≥ 3, then there exists a projective plane of order n if and only
if there exists a complete orthogonal set of n × n Latin squares.

Proof. See Ryser, Combinatorial Mathematics, p. 92. •
A natural question is to find those n for which there exists a projective plane

of order n. Notice that this is harder than Euler’s original question; instead of
asking whether there is an orthogonal pair of n × n Latin squares, we are now
asking whether there is an orthogonal set of n −1 n ×n Latin squares. If n = pe,
then we have constructed a projective plane of order n above. Since Tarry proved
that there is no orthogonal pair of 6×6 Latin squares, there is no set of 5 pairwise
orthogonal 6 × 6 Latin squares, and so there is no projective plane of order 6.
The following theorem was proved in 1949.

Theorem (Bruck–Ryser). If either n ≡ 1 mod 4 or n ≡ 2 mod 4 and, further,
if n is not a sum of two squares, then there does not exist a projective plane of
order n.

Proof. See Ryser, Combinatorial Mathematics, p. 111. •
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The first few n ≡ 1 or 2 mod 4 with n ≥ 3 are

5, 6, 9, 10, 13, 14, 17, 18, 21, 22.

Some of these are primes or prime powers, and so they must be sums of two
squares18 because projective planes of these orders do exist; and so it is:

5 = 1 + 4; 9 = 0 + 9; 13 = 4 + 9; 17 = 1 + 16.

Of the remaining numbers, 10 = 1 + 9 and 18 = 9 + 9 are sums of two squares
(and the theorem does not apply), but the others are not. It follows that there is
no projective plane of order 6, 14, 21, or 22 (thus, Tarry’s result follows from the
Bruck–Ryser theorem).

The smallest n not covered by the Bruck–Ryser theorem is n = 10. The
question whether there exists a projective plane of order 10 was the subject of
much investigation (after Tarry, 10 was also the first open case of Euler’s con-
jecture). This is a question about a set with 111 points, and so one would expect
that a computer could solve it quickly. But it is really a question about 11-
point subsets of a set with 111 points, the order of magnitude of which is the
binomial coefficient

(111
11

)
, a huge number. In spite of this, C. Lam was able

to show, in 1988, that there does not exist a projective plane of order 10. He
used a massive amount of calculation: 19,200 hours on VAX 11/780 followed
by 3000 hours on CRAY-1S. Thus, two and half years of actual computer run-
ning time (not counting the years of human thought and ingenuity involved in
instructing the machines) solved the problem. As of this writing, it is unknown
whether a projective plane of order 12 exists (12 ≡ 0 mod 4, and so it is not
covered by the Bruck–Ryser theorem).

18Recall Theorem 3.83, Fermat’s two-square theorem: if p ≡ 1 mod 4, then p is a sum of
two squares. Since there exists a projective plane of order p, the Bruck-Ryser theorem implies
the two-square theorem. In fact, the Bruck-Ryser theorem implies that if p ≡ 1 mod 4, then
pe is a sum of two squares for all e ≥ 1.



4
Linear Algebra

4.1 VECTOR SPACES

Linear algebra is the study of vector spaces and their homomorphisms, with
applications to systems of linear equations. From now on, we are going to as-
sume that most readers have had some course involving matrices, probably with
real entries or with complex entries (we have already discussed elementary facts
about 2 × 2 matrices in some detail). Nowadays, such courses usually deal with
computational aspects of the subject, but here we do not emphasize this impor-
tant aspect of linear algebra. Instead, we discuss more theoretical properties of
vector spaces (with scalars in any field) and linear transformations (which are
homomorphisms between vector spaces and which are concretely described by
matrices). When we discuss codes in Section 4.5, you will see how linear al-
gebra with scalars in finite fields is used in an essential way to enable us to see
photographs sent from outer space.

Definition. If k is a field, then a vector space over k is an (additive) abelian
group V equipped with a scalar multiplication: There is a function k × V → V ,
denoted by (a, v) 7→ av, such that, for all a, b ∈ k and all u, v ∈ V ,

(i) a(u + v) = au + av;

(ii) (a + b)v = av + bv;

(iii) (ab)v = a(bv);

(iv) 1v = v, where 1 is the one in k.

Besides the 5 axioms explicitly mentioned [scalar multiplication is defined
plus axioms (i) through (iv)], there are several more axioms implicit in the state-
ment that a vector space is an abelian group under addition. There is a function

321
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V × V → V , denoted by (u, v) 7→ u + v, satisfying the following equations for
all u, v, w ∈ V :

(i) ′ (u + v)+ w = u + (v + w);
(ii) ′ u + v = v + u;

(iii) ′ there is 0 ∈ V with 0 + v = v;
(iv) ′ for each v ∈ V , there is v′ ∈ V with v + v′ = 0.

Thus, the definition of vector space involves ten axioms.
Elements of V are called vectors1 and elements of k are called scalars.

Example 4.1.

(i) Euclidean space
� n is a vector space over

�
. Vectors are n-tuples v =

(a1, . . . , an), where ai ∈ �
for all i . Picture a vector v as an arrow from

the origin to the point having coordinates (a1, . . . , an). Addition is given
by

(a1, . . . , an)+ (b1, . . . , bn) = (a1 + b1, . . . , an + bn);

geometrically, the sum of two vectors is described by the parallelogram
law.

If c ∈ �
, then scalar multiplication by c is given by

cv = c(a1, . . . , an) = (ca1, . . . , can).

Scalar multiplication v 7→ cv “stretches” v by a factor |c|, reversing its
direction when c is negative (we put quotes around stretches because cv is
shorter than v when |c| < 1).

(ii) The example in part (i) can be generalized. If k is any field, define V = kn ,
the set of all n-tuples v = (a1, . . . , an), where ai ∈ k for all i . Addition
and scalar multiplication by c ∈ k are given by the same formulas as in (i):

(a1, . . . , an)+ (b1, . . . , bn) = (a1 + b1, . . . , an + bn);
c(a1, . . . , an) = (ca1, . . . , can).

(iii) If R is a commutative ring and k is a subring that is a field, then R is a
vector space over k. Regard the elements of R as vectors and the elements

1The word vector comes from the Latin word meaning “to carry”; vectors in euclidean
space carry the data of length and direction. The word scalar comes from regarding v 7→ cv
as a change of scale. The terms scale and scalar come from the Latin word meaning “ladder,”
for the rungs of a ladder are evenly spaced.
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of k as scalars; define scalar multiplication cv, where c ∈ k and v ∈ R, to
be the given product of two elements in R. Notice that the axioms in the
definition of vector space are just particular cases of some of the axioms
holding in the commutative ring R.

For example, if k is a field, then the polynomial ring R = k[x] is a
vector space over k. Vectors are polynomials f (x), scalars are elements
c ∈ k, and scalar multiplication gives the polynomial c f (x); that is, if

f (x) = bnxn + · · · + b1x + b0,

then

c f (x) = cbnxn + · · · + cb1x + cb0.

In particular, if a field k is a subfield of a larger field E , then E is a vector
space over k. For example,

�
is a vector space over

�
.

(iv) If k is a field, let Matm×n(k) denote the set of all m × n matrices having
entries in k. Define the sum A + B of two matrices A and B by adding
entries in the same position: if A = [ai j ] and B = [bi j ], then

A + B = [ai j + bi j ].

If c ∈ k, then multiplying each entry of A = [ai j ] by c gives

c A = [cai j ].

It is routine to check that Matm×n(k) is a vector space over k.
If m = n, then we write Matn(k) instead of Matn×n(k). �

A subspace of a vector space V is a subset of V that is a vector space under
the addition and scalar multiplication in V . However, we give a simpler defini-
tion that is more convenient to use.

Definition. If V is a vector space over a field k, then a subspace of V is a subset
U of V such that

(i) 0 ∈ U ;

(ii) u, u′ ∈ U imply u + u′ ∈ U ;

(iii) u ∈ U and c ∈ k imply cu ∈ U .

Proposition 4.2. Every subspace U of a vector space V over a field k is itself
a vector space over k.
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Proof. By hypothesis, U is closed under scalar multiplication: if u ∈ U and
c ∈ k, then cu ∈ U . Axioms (i) through (iv) in the definition of vector space
hold for all scalars and for all vectors in V ; in particular, they hold for all vectors
in U . For example, axiom (iii) says that (ab)v = a(bv) holds for all a, b ∈ k
and all v ∈ V ; in particular, this equation holds for all u ∈ U .

By hypothesis, U is closed under addition: if u, u ′ ∈ U , then u + u′ ∈ U .
Axioms (i)’ through (iv)’ in the definition of vector space hold for all scalars and
for all vectors in V ; in particular, they hold for all vectors in U . Finally, axiom
(iii)’ requires 0 ∈ U , and this, too, is part of the hypothesis. •

Example 4.3.

(i) The extreme cases U = V and U = {0} (where {0} denotes the subset
consisting of the zero vector alone) are always subspaces of a vector space.
A subspace U ⊆ V with U 6= V is called a proper subspace of V ; we may
write U � V to denote U being a proper subspace of V .

(ii) If v = (a1, . . . , an) is a nonzero vector in
� n , then

` = {av : a ∈ � }

is a line through the origin, and ` is a subspace of
� n . For example, the

diagonal {(a, a) : a ∈ � } is a subspace of the plane
� 2 .

Similarly, a plane through the origin consists of all vectors of the form
av1 + bv2, where v1, v2 is a fixed pair of noncollinear vectors, and a, b
vary over

�
. It is easy to check that planes through the origin are subspaces

of
� n .
By Proposition 4.2, lines and planes through the origin are vector spaces;

without this proposition, one would be obliged to check each of the ten ax-
ioms in the definition of vector space.

(iii) If m ≤ n and
� m is regarded as the set of all those vectors in

� n whose
last n − m coordinates are 0, then

� m is a subspace of
� n . For example,

we may regard
� 1 = �

as all points (x, 0) in
� 2 ; that is,

�
can be viewed

as the real axis in the plane.

(iv) If k is a field, then a linear system over k of m equations in n unknowns is
a set of equations

a11x1 + · · · + a1nxn = b1

a21x1 + · · · + a2nxn = b2

...
...

am1x1 + · · · + amnxn = bm,
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where ai j , bi ∈ k. A solution is a vector s = (s1, . . . , sn) ∈ kn with∑
j ai j s j = bi for all i . The set of all solutions is a subset of kn , called the

solution set of the system; if there are no solutions, one calls the system
inconsistent. A linear system is homogeneous if all the bi are 0. Since the
zero vector is always a solution of a homogeneous linear system, a homo-
geneous system is always consistent. A solution s = (s1, . . . , sn) is called
nontrivial if some s j 6= 0. The set of all solutions of a homogeneous linear
system forms a subspace of kn , called the solution space (or nullspace) of
the system.

These definitions can be written more compactly in matrix notation.
The coefficient matrix of the system is A = [ai j ]. If b is the column
vector b = (b1, . . . , bm), then s is a solution if and only if As = b.

To see that the solution space is a subspace, let Ax = 0 be a homoge-
neous system, and let U be its solution space. Now 0 ∈ U because A0 = 0.
If u, u′ ∈ U , then Au = 0 = Au′, and so A(u+u′) = Au+ Au′ = 0+0 =
0; hence, u + u′ ∈ U . If c ∈ k and u ∈ U , then A(cu) = c(Au) = c0 = 0,
and so cu ∈ U . Therefore, U is a subspace of kn .

We can solve systems of linear equations over the field
�

p , where p is
a prime; that is, we can treat a system of congruences mod p just as we
treat an ordinary system of equations over

�
.

For example, the system of congruences

3x − 2y + z ≡ 1 mod 7

x + y − 2z ≡ 0 mod 7

−x + 2y + z ≡ 4 mod 7

can be regarded as a system of equations over the field
�

7 . This system
can be solved just as in high school, for inverses mod 7 are now known:
[2][4] = [1]; [3][5] = [1]; [6][6] = [1]. The solution is

(x, y, z) = ([5], [4], [1]).

(v) Recall that the the transpose of an m × n matrix A = [ai j ] is the n × m
matrix AT whose i j entry is a j i . The basic properties of transposing are:

(A + B)T = AT + BT ; (c A)T = c AT ;
(AB)T = BT AT ; (AT )T = A.

We show that the set S of all symmetric n × n matrices is a subspace of
Matn(k), where A ∈ Matn(k) is symmetric if AT = A. If 0 denotes the
matrix all of whose entries are 0, then 0 T = 0, and so 0 ∈ S. If A, B ∈ S,
then

(A + B)T = AT + BT = A + B,
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so that A + B ∈ S. Finally, if c ∈ k and A ∈ S, then

(c A)T = c(AT ) = c A,

so that c A ∈ S. Therefore, S is a subspace of Matn(k). By Proposition 4.2,
the set of all n × n symmetric matrices with entries in a field k is a vector
space. �

The following type of square matrix is important.

Definition. An m × m matrix A is nonsingular if there exists an m × m matrix
B such that AB = I and B A = I . One calls B the inverse of A and denotes it
by A−1.

Recall that the dot product of two vectors v = (a, b, c), v′ = (a′, b′, c′) in� 3 is defined as
v · v′ = aa′ + bb′ + cc′ ∈ �

.

There is a geometric interpretation of this number:

v · v′ = ‖v‖ ‖v′‖ cos θ,

where ‖v‖ is the length of v and θ is the angle between v and v′. It follows that
if v · v′ = 0, then either v = 0, v′ = 0, or that v and v′ are orthogonal2. We can
adapt dot product to more general spaces.

Definition. If k is a field and V is a vector space over k, then an inner product
on V is a function f : V × V → k, usually denoted by f (v, w) = (v, w), such
that

(i) (v, w +w′) = (v, w)+ (v, w′) for all v, w,w′ ∈ V ;

(ii) (v, aw) = a(v, w) for all v, w ∈ V and a ∈ k;

(iii) (v, w) = (w, v) for all v, w ∈ V .

An inner product is called nondegenerate (or nonsingular) if, for all v ∈ V ,
(v, v) = 0 implies v = 0.

Example 4.4.

2In Greek, ortho means “right” and gon means “angle.” Thus, orthogonal means right
angled or perpendicular.



VECTOR SPACES 327

(i) Let k be any field, let V = kn , and let v = (a1, . . . , an), v′ = (a′
1, . . . , a′

n)

lie in V . Then
(v, v′) = a1a′

1 + · · · + ana′
n

is an inner product on kn . If k = �
, then this inner product is nondegen-

erate, for if
∑

i a2
i = 0, then each ai = 0. However, if k =

�
, then this

inner product is degenerate (not nondegenerate). For example, if n = 2
and v = (1, i), then (v, v) = 1 + i 2 = 0. One usually repairs this for
vector spaces V =

� n by defining (v, v′) =
∑

a j a′
j , where a is complex

conjugate. This does not give an inner product [because axiom (ii) of the
definition may not hold: (v, aw) = a(v, w)], but it does give (v, v) = 0
implies v = 0.

The same phenomenon can occur for inner products defined on vector
spaces over a finite field k. For example, let k = �

2 ; if n is even and v =
(1, 1, . . . , 1) ∈ kn , then (v, v) = 0; if n is odd and v = (0, 1, 1, . . . , 1),
then (v, v) = 0.

(ii) Let k be a field, and regard a vector in kn as an n × 1 column matrix. If A
is an n × n symmetric matrix with entries in k, define an inner product on
V = kn by

(v, w) = vT Aw.

The reader may prove that this is an inner product, and that it is nondegen-
erate if and only if A is a nonsingular matrix. �

We now use inner products to construct some subspaces.

Example 4.5.
Let V be a vector space with an inner product, and let W ⊆ V be a subspace.
Define

W ⊥ = {v ∈ V : (w, v) = 0 for all w ∈ W }.

Let us check that W ⊥ (pronounced W perp) is a subspace. Clearly, 0 ∈ W ⊥.
If v, v′ ∈ W ⊥, then (w, v) = 0 and (w, v′) = 0 for all w ∈ W . Hence,
(w, v+ v′) = (w, v)+ (w, v′) = 0 for all w ∈ W , and so v+ v′ ∈ W ⊥. Finally,
if v ∈ W ⊥ and a ∈ k, then (w, av) = a(w, v) = 0, so that av ∈ W ⊥. Therefore,
W ⊥ is a subspace of V ; it is called the orthogonal complement of W , to remind
us that (v, w) = 0 in euclidean space does imply that u and v are orthogonal
vectors. It is easy to see that W ∩ W ⊥ = {0} if and only if the inner product is
nondegenerate. �

Dimension is a rather subtle idea. One thinks of a curve in the plane, that
is, the image of a continuous function f : � → � 2 , as a one-dimensional subset
of a two-dimensional space. Imagine the confusion at the end of the nineteenth
century when a “space-filling curve” was discovered: there exists a continuous
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f : � → � 2 with image the whole plane! We will give a way of defining di-
mension that works for analogs of euclidean space called vector spaces (there
are topological ways of defining dimension of more general spaces).

The key observation in getting the “right” definition of dimension is to un-
derstand why

� 3 is 3-dimensional. Every vector (x, y, z) is a linear combination
of the three vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1); that is,

(x, y, z)= xe1 + ye2 + ze3.

It is not so important that every vector is a linear combination of these specific
vectors; what is important is that there are three of them, for it turns out that three
is the smallest number of vectors with the property that every vector is a linear
combination of them.

Definition. A list3 in a vector space V is a finite sequence X = v1, . . . , vn of
vectors in V , where n ∈ �

. In particular, we allow n = 0 and the empty list
which has no terms.

More precisely,we are saying that a list X = v1, . . . , vn is a function

ϕ : {1, 2, . . . , n} → V ,

for some n ∈ �
, with ϕ(i) = vi for all i . Note that X is ordered in the sense

that there is a first vector v1, a second vector v2, and so forth. A vector may
appear several times on a list; that is, ϕ need not be injective. The empty list ϕ
has im ϕ = �

.

Definition. Let V be a vector space over a field k. A linear combination of a
list v1, . . . , vn in V is a vector v of the form

v = a1v1 + · · · + anvn,

where n ∈ �
and ai ∈ k for all i . We define the linear combination of the empty

list to be 0, the zero vector.

Definition. If X = v1, . . . , vm is a list in a vector space V , then

〈X〉 = 〈v1, . . . , vm〉

is the set of all the linear combinations of v1, . . . , vm; it is called the subspace
spanned by X. We also say that v1, . . . , vm spans 〈v1, . . . , vm〉.

3Actually, a list X = a1, . . . , an is exactly the same thing as an n-tuple (a1, . . . , an). We
write n-tuples with parentheses to conform to standard notation.
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Example 4.6.
If A is an m × n matrix over a field k, then its row space Row(A) is the sub-
space of kn spanned by the rows of A. The column space Col(A) of A is the
subspace of km spanned by the columns of A. Note that Row(A) = Col(AT )

and Col(A) = Row(AT ), for the columns of A are the rows of AT (and the rows
of A are the columns of AT ).

If A is an m × n matrix, its row space Row(A), its column space Col(A),
and the solution space Sol(A) of Ax = 0 are related. It can be shown that
if the usual inner product on kn is nondegenerate,then Row(A)⊥ = Sol(A),
Col(A)⊥ = Sol(AT ), and Sol(A)⊥ = Row(A) (see Leon, Linear Algebra with
Applications, pages 242-244). �

Proposition 4.7. If X = v1, . . . , vm is a list in a vector space V , then 〈X〉 is a
subspace of V containing the subset {v1, . . . , vm}.

Proof. Let us write L = 〈v1, . . . , vm〉. Now 0 ∈ L , for

0 = 0v1 + · · · + 0vm .

If u = a1v1 + · · · + amvm and v = b1v1 + · · · + bmvm ∈ L , then

u + v = a1v1 + · · · + anvn + b1v1 + · · · + bmvm

= a1v1 + b1v1 · · · + amvm + bmvm

= (a1 + b1)v1 + · · · + (am + bm)vm ∈ L .

Finally, if c ∈ k, then

c(a1v1 + · · · + amvm) = (ca1)v1 + · · · + (cam)vm ∈ L .

Therefore, L is a subspace.
To see that each vi ∈ L , choose the linear combination having ai = 1 and

all other coefficients 0. •

If X = v1, . . . , vn is a list in a vector space V , then its underlying set is the
subset {v1, . . . , vn}. Note that v1, v2, v3 and v2, v1, v3 are distinct lists having
the same underlying set. Moreover, v1, v2, v2 and v1, v2 are also distinct lists
having the same underlying set. One reason we are being so fussy about lists and
underlying sets can be found in our discussion of coordinates on page 334.

Lemma 4.8. If X = v1, . . . , vn is a list in a vector space V , then 〈X〉 depends
only on its underlying set.
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Proof. If σ ∈ Sn is a permutation, then define a list Xσ = vσ (1), . . . , vσ (n).
Now a linear combination of X is a vector v = a1v1 +· · ·+anvn . Since addition
in V is commutative, v is also a linear combination of the list X σ . Therefore,
〈X〉 = 〈Xσ 〉, for both subsets are comprised of the same vectors.

If the list X has a repetition; say, vi = v j for some i 6= j , then

a1v1 + · · · + anvn = a1v1 + · · · + (ai + a j )vi + · · · + v̂ j + · · · + anvn,

where a1v1 + · · · + v̂ j + · · · + anvn is the shorter sum with v j deleted. It
follows that the set of linear combinations of X is the same as the set of all linear
combinations of the shorter list obtained from X by deleting v j . •

We now extend the definition of 〈Y 〉 to arbitrary, possibly infinite, subsets
Y ⊆ V .

Definition. If Y is a subset of a vector space V , then 〈Y 〉 is the set of all linear
combinations of lists v1, . . . , vn , for n ∈ �

, whose terms all lie in Y .

If Y is finite, then Lemma 4.8 shows that this definition coincides with our
earlier definition of 〈Y 〉 on page 328.

Lemma 4.9. Let V be a vector space over a field k.

(i) Every intersection of subspaces of V is itself a subspace.

(ii) If Y is a subset of V , then 〈Y 〉 is the intersection of all the subspaces of V
containing Y .

(iii) If Y is a subset of V , then 〈Y 〉 is the smallest subspace of V containing Y ;
that is, if U is any subspace of V containing Y , then 〈Y 〉 ⊆ U.

Proof.
(i) Let

�
be a family of subspaces of V , and denote

⋂
S∈ � S by W . Since 0 ∈ S

for every S ∈
�

, we have 0 ∈ W . If x, y ∈ W , then x, y ∈ S for every S ∈
�

; as
S is a subspace, we have x + y ∈ S for all S ∈

�
, and so x + y ∈ W . Finally,

if x ∈ W , then x ∈ S for every S ∈
�

; if c ∈ k, then cx ∈ S for all S, and so
cx ∈ W . Therefore, W is a subspace of V .
(ii) Let

� ′ denote the family of all the subspaces of V containing subset Y . We
claim that

〈Y 〉 =
⋂

S∈ � ′
S.

The inclusion ⊆ is clear: if v1, . . . , vn is a list with each vi ∈ Y and
∑

i civi ∈
〈Y 〉, then

∑
i civi ∈ S for every S ∈

� ′, because a subspace contains the linear
combinations of any list of its vectors. (This argument even holds if Y = �

,
for then 〈Y 〉 = {0}.) The reverse inclusion follows from a general fact about
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intersections: for any S0 ∈
� ′, we have

⋂
S∈ � ′ S ⊆ S0. In particular, S0 = 〈Y 〉 ∈

� ′, by Proposition 4.7.
(iii) A subspace U containing Y is one of the subspaces S involved in the inter-
section 〈Y 〉 =

⋂
S∈ � ′ S. •

Were all terminology in algebra consistent, we would call 〈Y 〉 the subspace
generated by Y. The reason for the different terms is that the theories of groups,
rings, and vector spaces developed independently of each other.

Example 4.10.

(i) Let V = � 2 , let e1 = (1, 0), and let e2 = (0, 1). Now V = 〈e1, e2〉, for if
v = (a, b) ∈ V , then

v = (a, 0)+ (0, b)

= a(1, 0)+ b(0, 1)

= ae1 + be2 ∈ 〈e1, e2〉.

(ii) If k is a field and V = kn , define ei as the n-tuple having 1 in the i th coor-
dinate and 0’s elsewhere. The reader may adapt the argument in part (i) to
show that e1, . . . , en spans kn .

The list e1, . . . , en is called the standard basis of kn . Note, in kn , that
(a1, . . . , an) = a1e1 + · · · + anen .

(iii) A vector space V need not be spanned by a finite sequence. For example,
let V = k[x], and suppose that X = f1(x), . . . , fm(x) is a finite list in V .
If d is the largest degree of any of the f i (x), then every (nonzero) linear
combination of

∑
i ai fi (x), where ai ∈ k, has degree at most d . Thus,

xd+1 is not a linear combination of vectors in X , and so X does not span
k[x]. �

The following definition makes sense even though we have not yet defined
dimension.

Definition. A vector space V is called finite-dimensional if it is spanned by a
finite list; otherwise, V is called infinite-dimensional.

Example 4.10(ii) shows that kn is finite-dimensional, while part (iii) of this
Example shows that k[x] is infinite-dimensional. By Example 4.1(iii), both

�
and

�
are vector spaces over

�
, and each is infinite-dimensional.

Given a subspace U of a vector space V , we seek a list X which spans U .
Notice that U can have many such lists; for example, if X = v1, v2, . . . , vm
spans U and u is any vector in U , then v1, v2, . . . , vm, u also spans U . Let us,
therefore, seek a shortest list that spans U .
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Definition. A list X = v1, . . . , vm in a vector space V is a shortest spanning
list (or a minimal spanning list) if no proper sublist v1, . . . , v̂i . . . , vm spans
〈v1, . . . , vm〉 ⊆ V .

Proposition 4.11. If V is a vector space, then the following conditions on a list
X = v1, . . . , vm spanning V are equivalent:

(i) X is not a shortest spanning list; that is, a proper sublist spans 〈X〉.
(ii) some vi is in the subspace spanned by the others; that is,

vi ∈ 〈v1, . . . , v̂i , . . . , vm〉;

(iii) there are scalars a1, . . . , am , not all zero, with

m∑

j=1

a jv j = 0.

Proof. (i) ⇒ (ii). If X is not a shortest spanning list, then one of the vectors in
X , say, vi , can be thrown out, and vi ∈ 〈v1, . . . , v̂i , . . . , vm〉.

(ii) ⇒ (iii). If vi =
∑

j 6=i c jv j , then define ai = −1 6= 0 and a j = c j for all
j 6= i .

(iii) ⇒ (i). The given equation implies that one of the vectors, say, vi , is a linear
combination of the others, say,

vi =
∑

j 6=i

a−1
i a jv j .

Deleting vi gives a shorter list, which still spans: if v ∈ V , then we know that
v =

∑m
j=1 b jv j , for the list v1, . . . , vm spans V . We rewrite:

v = bivi +
∑

j 6=i

b jv j

= bi
(∑

j 6=i

a−1
i a jv j

)
+
∑

j 6=i

b jv j ∈ 〈v1, . . . , v̂i , . . . , vm〉. •

Definition. A list X = v1, . . . , vm in a vector space V is linearly dependent if
there are scalars a1, . . . , am, not all zero, with

∑m
j=1 a jv j = 0; otherwise, X is

called linearly independent.
The empty set

�
is defined to be linearly independent (we interpret

�
as a

list of length 0).
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Example 4.12.

(i) Any list X = v1, . . . , vm containing the zero vector is linearly dependent.

(ii) A list v1 of length 1 is linearly dependent if and only if v1 = 0; hence, a
list v1 of length 1 is linearly independent if and only if v1 6= 0.

(iii) A list v1, v2 is linearly dependent if and only if one of the vectors is a scalar
multiple of the other.

(iv) If there is a repetition on the list v1, . . . , vm (that is, if vi = v j for some
i 6= j ), then v1, . . . , vm is linearly dependent: define ci = 1, c j = −1,
and all other c = 0. Therefore, if v1, . . . , vm is linearly independent, then
all the vectors vi are distinct. �

The contrapositive of Proposition 4.11 is worth stating.

Corollary 4.13. If X = v1, . . . , vm is a list spanning a vector space V , then X
is a shortest spanning list if and only if X is linearly independent.

Linear independence has been defined indirectly, as not being linearly depen-
dent. Because of the importance of linear independence, let us define it directly.
A list X = v1, . . . , vm is linearly independent if, whenever a linear combination∑m

j=1 a jv j = 0, then every a j = 0. Informally, this says that every “sublist”
of a linearly independent list is itself linearly independent (this is one reason for
decreeing that

�
be linearly independent).

We have arrived at the notion we have been seeking.

Definition. A basis of a vector space V is a linearly independent list that
spans V .

Thus, bases are shortest spanning lists. Of course, all the vectors in a linearly
independent list v1, . . . , vn are distinct, by Example 4.12(iv).

Example 4.14.
In Example 4.10(ii), we saw that the standard basis E = e1, . . . , en spans kn ,
where ei is the n-tuple having 1 in the i th coordinate and 0’s elsewhere. To
see that E is linearly independent, note that

∑n
i=1 ai ei = (a1, . . . , an), so that∑n

i=1 ai ei = 0 if and only if each ai = 0. Therefore, E is a basis of kn . �

Proposition 4.15. Let X = v1, . . . , vn be a list in a vector space V over a field
k. Then X is a basis if and only if each vector in V has a unique expression as a
linear combination of vectors in X.
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Proof. If a vector v =
∑

aivi =
∑

bivi , then
∑
(ai − bi )vi = 0, and so

independence gives ai = bi for all i ; that is, the expression is unique.
Conversely, existence of an expression shows that the list of vi spans. More-

over, if 0 =
∑

civi with not all ci = 0, then the vector 0 does not have a unique
expression as a linear combination of the vi . •

Definition. If X = v1, . . . , vn is a basis of a vector space V and if v ∈ V ,
then there are unique scalars a1, . . . , an with v =

∑n
i=1 aivi . The n-tuple

(a1, . . . , an) is called the coordinate list of a vector v ∈ V relative to the ba-
sis X .

If E = e1, . . . , en is the standard basis of V = kn , then each vector v ∈ V
has a unique expression

v = a1v1 + a2v2 + · · · + anvn,

where ai ∈ k for all i . The coordinate list of v ∈ kn coincides with its usual
coordinates, for

v = (a1, . . . , an) = a1e1 + · · · + anen.

Since there is a first vector v1, a second vector v2, and so forth, the coefficients
in this linear combination determine a unique n-tuple (a1, a2, . . . , an). Were a
basis merely a subset of V and not a list, then there would be n! coordinate lists
for every vector.

We are going to define the dimension of a vector space V to be the number
of vectors in a basis. Two questions arise at once.

(i) Does every vector space have a basis?

(ii) Do all bases of a vector space have the same number of elements?

The first question is easy to answer; the second needs some thought.

Theorem 4.16. Every finite-dimensional vector space V has a basis.

Proof. A finite spanning list X exists, since V is finite-dimensional. If it is
linearly independent, it is a basis; if not, X can be shortened to a spanning sublist
X ′, by Proposition 4.11. If X ′ is linearly independent, it is a basis; if not, X ′

can be shortened to a spanning sublist X ′′. Eventually, we arrive at a shortest
spanning sublist, which is independent and hence it is a basis. •

Remark. The definitions of spanning and linear independence can be extended
to infinite-dimensional vector spaces (when dealing with infinite-dimensional
vector spaces, one usually speaks of subspaces spanned by subsets rather than
by lists). We can prove that these vector spaces also have bases. For example, it
turns out that a basis of k[x] is 1, x, x2, . . . , xn, . . . . �
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We are now going to prove invariance of dimension, one of the most impor-
tant results about vector spaces.

Lemma 4.17. Let u1, . . . , un span a vector space V . If v1, . . . , vm ∈ V and
m > n, then v1, . . . , vm is a linearly dependent list.

Proof. The proof is by induction on n ≥ 1.
Base Step. If n = 1, then there are at least two vectors v1, v2, for m > n, and
v1 = a1u1 and v2 = a2u1. If u1 = 0, then v1 = 0 and the list of v’s is linearly
dependent. Suppose u1 6= 0. We may assume that v1 6= 0, or we are done;
hence, a1 6= 0. Therefore, u1 = a−1

1 v1, and so v1, v2 is linearly dependent (for
v2 − a2a−1

1 v1 = 0), and hence the larger list v1, . . . , vm is linearly dependent.

Inductive Step. There are equations, for i = 1, . . . ,m,

vi = ai1u1 + · · · + ainun .

We may assume that some ai1 6= 0, otherwise v1, . . . , vm ∈ 〈u2, . . . , un〉, and
the inductive hypothesis applies. Changing notation if necessary (that is, by re-
ordering the v’s), we may assume that a11 6= 0. For each i ≥ 2, define

v′
i = vi − ai1a−1

11 v1 ∈ 〈u2, . . . , un〉

[the coefficient of u1 in v′
i is 0 = ai1 − (ai1a−1

11 )a11]. Since m − 1 > n − 1, the
inductive hypothesis gives scalars b2, . . . , bm , not all 0, with

b2v
′
2 + · · · + bmv

′
m = 0.

Rewrite this equation using the definition of v′
i :

(
−
∑

i≥2

bi ai1a−1
11

)
v1 + b2v2 + · · · + bmvm = 0.

Not all the coefficients are 0, and so v1, . . . , vm is linearly dependent. •

Theorem 4.18 (Invariance of Dimension). If X = x1, . . . , xn and Y =
y1, . . . , ym are bases of a vector space V , then m = n.

Proof. If m 6= n, then either n < m or m < n. In the first case, y1, . . . , ym ∈
〈x1, . . . , xn〉, because X spans V , and Lemma 4.17 gives Y linearly dependent,
a contradiction. A similar contradiction arises if m < n, and so we must have
m = n. •

It is now permissible to make the following definition.
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Definition. If V is a finite-dimensional vector space over a field k, then its
dimension, denoted by dim(V ), is the number of elements in a basis of V .

Example 4.19.

(i) Example 4.14 shows that kn has dimension n, for the standard basis has n
elements, and this agrees with our intuition when k = �

. Thus, the plane� × �
is two-dimensional!

(ii) If V = {0}, then dim(V ) = 0, for there are no elements in its basis
�

.
(This is the reason for defining

�
to be linearly independent.)

(iii) Let X = {x1, . . . , xn} be a finite set. Define

kX = {functions f : X → k}.

Now kX is a vector space if we define addition f + f ′ to be

f + f ′ : x 7→ f (x)+ f ′(x)

and scalar multiplication a f , for a ∈ k and f : X → k, by

a f : x 7→ a f (x).

It is easy to check that the set of n functions of the form fx , where x ∈ X ,
defined by

fx (y) =
{

1 if y = x;
0 if y 6= x,

forms a basis, and so dim(kX ) = n = |X |.
This is not a new example: an n-tuple (a1, . . . , an) is really a function

f : {1, . . . , n} → k with f (i) = ai for all i . Thus, the functions fx com-
prise the standard basis. �

The following proof illustrates the intimate relation between linear algebra
and systems of linear equations.

Corollary 4.20. A homogeneous system of linear equations over a field k with
more unknowns than equations has a nontrivial solution.

Proof. An n-tuple (s1, . . . , sn) is a solution of a system

a11x1 + · · · + a1nxn = 0

...
...

...

am1x1 + · · · + amnxn = 0
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if ai1s1 +· · ·+ainsn = 0 for all i . In other words, if C1, . . . ,Cn are the columns
of the m × n coefficient matrix A = [ai j ], then the definition of matrix multipli-
cation gives

s1C1 + · · · + snCn = 0.

Note that Ci ∈ km . Now km can be spanned by m vectors (the standard basis,
for example). Since n > m, by hypothesis, Lemma 4.17 shows that the list
C1, . . . ,Cn is linearly dependent; there are scalars p1, . . . , pn , not all zero, with
p1C1 + · · · + pnCn = 0. Therefore, (p1, . . . , pn) is a nontrivial solution of the
system. •

Definition. A list u1, . . . , um in a vector space V is a longest linearly inde-
pendent list (or a maximal linearly independent list) if there is no vector v ∈ V
such that u1, . . . , um, v is linearly independent.

Lemma 4.21. Let V be a finite-dimensional vector space.

(i) Let v1, . . . , vm be a linearly independent list in V , and let v ∈ V . If
v /∈ 〈v1, . . . , vm〉, then v1, . . . , vm, v is linearly independent.

(ii) If a longest linearly independent list X = v1, . . . , vn exists, then it is a
basis of V .

Proof.
(i) Let av +

∑
i aivi = 0. If a 6= 0, then v = −a−1∑

i aivi ∈ 〈v1, . . . , vm〉, a
contradiction. Therefore, a = 0 and

∑
i aivi = 0. But linear independence of

v1, . . . , vm implies each ai = 0, and so the longer list v1, . . . , vm, v is linearly
independent.
(ii) If X is not a basis, then it does not span: there isw ∈ V withw /∈ 〈v1, . . . , vn〉.
But the longer list X, w is linearly independent, by part (i), contradicting X being
a longest independent list. •

It is not obvious that longest linearly independent lists always exist; that they
do exist follows from the next result, which is quite useful in its own right.

Proposition 4.22. If Z = u1, . . . , um is a linearly independent list in an
n-dimensional vector space V , then Z can be extended to a basis; that is, there
are vectors v1, . . . , vn−m so that u1, . . . , um , v1, . . . , vn−m is a basis of V .

Proof. If m > n, then Lemma 4.17 implies that Z is linearly dependent, a
contradiction; therefore, m ≤ n. If the linearly independent list Z does not span
V , there is v1 ∈ V with v1 /∈ 〈Z〉, and the longer list Z , v1 = u1, . . . , um, v1 is
linearly independent, by Lemma 4.21. If Z , v1 does not span V , there is v2 ∈ V
with v2 /∈ 〈Z , v1〉. This process eventually stops, for the length of these lists can
never exceed n = dim(V ). •
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Corollary 4.23. If dim(V ) = n, then any list of n+1 or more vectors is linearly
dependent.

Proof. Otherwise, such a list could be extended to a basis having too many
elements. •

Corollary 4.24. Let V be a vector space with dim(V ) = n.

(i) A list X of n vectors which spans V must be linearly independent.

(ii) Any linearly independent list Y of n vectors must span V .

Proof.
(i) If the list X is linearly dependent, then it could be shortened to give a basis of
V which is too small.
(ii) If the list Y does not span V , then it could be lengthened to give a basis of V
which is too large. •

Corollary 4.25. Let U be a subspace of a vector space V of dimension n.

(i) Then U is finite-dimensional and dim(U ) ≤ dim(V ).

(ii) If dim(U ) = dim(V ), then U = V .

Proof.
(i) Take u1 ∈ U . If U = 〈u1〉, then U is finite-dimensional. Otherwise, there
is u2 /∈ 〈u1〉. By Lemma 4.21, u1, u2 is linearly independent. If U = 〈u1, u2〉,
we are done. This process cannot be repeated n + 1 times, for then u1, . . . , un+1
would be a linearly independent list in U ⊆ V , contradicting Corollary 4.23.

A basis of U is linearly independent, and so it can be extended to a basis of V .
(ii) If dim(U ) = dim(V ), then a basis of U is already a basis of V (otherwise it
could be extended to a basis of V that would be too large). •

Example 4.26.
A projective plane of order n was defined, in Chapter 3, as a set X with |X | =
n2 + n + 1, and a family of subsets of X , called lines, each having n + 1 points,
such that every two points determine a unique line. If q is a prime power, we
constructed a projective plane of order q by adjoining a line at infinity to (

�
q )

2.
We now give a second construction of a projective plane. Let k be a field and

let W = k3. A line L in k3 through the origin consists of all the scalar multiples
of any one of its nonzero vectors: if v = (a, b, c) ∈ L and v 6= (0, 0, 0), then

L = {rv = (ra, rb, rc) : r ∈ k}.
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Of course, if v′ is another nonzero vector in L , then L = {rv′ : r ∈ k}. Thus,
both v and v′ span L if and only if both are nonzero and v′ = tv for some
nonzero t ∈ k. Define a relation on the set of all nonzero vectors in k3 by:

v = (a, b, c)∼ v′ = (a′, b′, c′) if there exists t ∈ k with v′ = tv.

Note that t 6= 0 lest tv = (0, 0, 0). It is easy to check that ∼ is an equivalence
relation on W − {(0, 0, 0)}, and we denote the equivalence class of v = (a, b, c)
by

[v] = [a, b, c].

An equivalence class [v] is called a projective point, and the set of all projective
points is called the projective plane over k, denoted by

�
2(k). If π is a plane in

k3 through the origin (that is, if π is a 2-dimensional subspace of k3), then we
define the projective line [π ] to consist of all the projective points [v] for which
v ∈ π .

Corollary 4.27. Let k be a field.

(i) Every two distinct projective points [v] and [v′] in
�

2(k) lie in a unique
projective line.

(ii) Two distinct projective lines [π ] and [π ′] in
�

2(k) intersect in a unique
projective point.

Proof.
(i) That [v] and [v′] are projective points says that v and v′ are nonzero vectors in
k3; that [v] 6= [v′] says that v 6∼ v′; that is, there is no scalar t 6= 0 with v′ = tv,
so that v, v′ is a linearly independent list. Therefore, there is a unique plane
π = 〈v, v′〉 through the origin containing v and v′, and so [π ] is a projective line
containing [v] and [v′]. This projective line is unique, for if [v], [v′] ∈ [π ′], then
v, v′ ∈ π ′, and so π ⊆ π ′. Corollary 4.25(ii) gives π = π ′, and so [π ] = [π ′].
(ii) Consider π and π ′ in k3. By Exercise 4.18 on page 344,

dim(π + π ′)+ dim(π ∩ π ′) = dim(π)+ dim(π ′).

Since π 6= π ′, we have π � π + π ′; hence, 2 = dim(π) < dim(π + π ′) ≤ 3 =
dim(k3), and so dim(π +π ′) = 3. Hence, dim(π ∩π ′) = 2 + 2 − 3 = 1, so that
[π ∩ π ′] = [π ] ∩ [π ′] is a projective point. The point of intersection is unique,
lest we contradict part (i). •

Proposition 4.28. If q = pn for some prime p, then there exists a projective
plane of order q.
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Proof. Let X = �
2(k), where k = �

q . Now |k3| = q3, and so there are q3 − 1
nonzero vectors in k3. If v ∈ k3 is nonzero, then |[v]| = q − 1, for there are
exactly q − 1 nonzero scalars in k. Thus, |X | = (q3 − 1)/(q − 1) = q2 + q + 1.
Finally, a plane π through the origin in k3 has q2 − 1 nonzero vectors, and so
|[π ]| = (q2 − 1)/(q − 1) = q + 1. By Corollary 4.27, X is a projective plane of
order q. •

Here is the usual definition of a projective plane.

Definition. Let X be a set and let � be a family of subsets of X , called lines.
Then (X, � ) is a projective plane if

(i) Every two lines intersect in a unique point.

(ii) Every two points determine a unique line.

(iii) There exist 4 points in X no three of which are collinear.

(iv) There are 4 lines in � no three of which contain the same point.

In the special case when X is finite, this definition is equivalent to the defi-
nition given in Chapter 3.

Define the dual of a statement S about (X, � ) to be the statement obtained
from S in which the terms point and line are interchanged as are the terms con-
taining and contained in. The dual of each axiom in the definition of projective
plane is another axiom. We conclude that any theorem about projective planes
yields a dual theorem whose proof is obtained from the original proof by dual-
izing each of the statements in its proof.

One can also see duality by comparing the construction of
�

2(k) with the
construction of k2 ∪ ω in Chapter 3, where

ω = {ω` : ` is a line through the origin}

is the line at infinity. In more detail, let ` = {r(a, b) : r ∈ k} be a line in k2

through the origin, where (a, b) 6= (0, 0). We may denote ` by [a, b] and

ω` = ω[a,b].

Note that this notation is consistent with [a, b, c] ∈ �
2(k); that is, if ` =

{r(a′, b′) : r ∈ k}, then there is a nonzero t ∈ k with (a ′, b′) = t (a, b). Define a
function ϕ : �

2(k) → k2 ∪ ω by

ϕ([a, b, c]) =
{
(ac−1, bc−1) if c 6= 0;

ω[a,b] if c = 0.

It is straightforward to check that ϕ is a (well-defined) bijection.
A proof of the following lemma is not difficult.
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Lemma. A subset π ⊆ k3 is a plane through the origin if and only if there
are p, q, r ∈ k, not all zero, with π = {(a, b, c) ∈ k3 : pa + qb + rc = 0}.
Moreover, if π ′ = {(a, b, c) ∈ k3 : p′a + q ′b + r ′c = 0}, then π = π ′ if and
only if there is a nonzero t ∈ k with (p′, q ′, r ′) = t (p, q, r).

Projective points almost have coordinates: if v = (a, b, c), then we call
[a, b, c] the homogeneous coordinates of the projective point [v] (these are de-
fined only up to nonzero scalar multiple). In light of the Lemma, projective lines,
too, almost have coordinates: if π = {(a, b, c) ∈ k3 : pa+qb+rc = 0}, then we
call [p, q, r ] the homogeneous coordinates of the projective line [π ] (these are
defined only up to nonzero scalar multiple). The bijection ϕ : �

2(k) → k2 ∪ ω
preserves lines, and the duality in projective planes can be viewed as replacing a
projective point with homogeneous coordinates [a, b, c] with the projective line
having these same homogeneous coordinates. �

We are now going to apply linear algebra to fields.

Proposition 4.29 (= Proposition 3.119). If E is a finite field, then |E | = pn

for some prime p and some n ≥ 1.

Proof. By Lemma 3.120(i), the prime field of E is isomorphic to
�

p for some
prime p. Since E is finite, it is finite-dimensional; say, dim(E) = n. If v1, . . . , vn
is a basis, then there are exactly pn vectors a1v1+· · ·+anvn ∈ E , where ai ∈ �

p
for all i . •

Definition. If k is a subfield of a field K , then we usually say that K is an
extension of k . We abbreviate this by writing “K/k is an extension.” 4

If K/k is an extension, then K may be regarded as a vector space over k,
as in Example 4.1(iii). We say that K is a finite extension of k if K is a finite-
dimensional vector space over k. The dimension of K , denoted by [K : k], is
called the degree of K/k.

Here is the reason [K : k] is called the degree.

Proposition 4.30. Let E/k be an extension, let z ∈ E be a root of an irreducible
polynomial p(x) ∈ k[x], and let k(z) be the smallest subfield of E containing k
and z. Then

[k(z) : k] = dimk(k(z)) = deg(p).

Proof. Proposition 3.116(iv) says that each element in k(z) has a unique ex-
pression of the form

b0 + b1z + · · · + bn−1zn−1,

4We pronounce K/k as “K over k”; there should be no confusing this notation with that
of a quotient ring, for K is a field and hence it has no proper nonzero ideals.
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where bi ∈ k and n = deg(p). In the language of linear algebra (which was not
available in Chapter 3), the list 1, z, z2, . . . , zn−1 is a basis of k(z)/k. •

The following formula is quite useful, especially when one is proving a the-
orem by induction on degrees.

Theorem 4.31. Let k ⊆ K ⊆ E be fields, with K a finite extension of k and E
a finite extension of K . Then E is a finite extension of k, and

[E : k] = [E : K ][K : k]

Proof. If A = a1, . . . , an is a basis of K over k and if B = b1, . . . , bm is a
basis of E over K , then it suffices to prove that a list X of all ai b j is a basis of
E over k.

To see that X spans E , take e ∈ E . Since B is a basis of E over K , there
are scalars λ j ∈ K with e =

∑
j λ j b j . Since A is a basis of K over k, there are

scalars µ j i ∈ k with λ j =
∑

i µ j i ai . Therefore, e =
∑

i j µ j i ai b j , and X spans
E over k.

To prove that X is linearly independent over k, assume that there are scalars
µ j i ∈ k with

∑
i j µ j i ai b j = 0. If we define λ j =

∑
i µ j i ai , then λ j ∈ K and∑

j λ j b j = 0. Since B is linearly independent over K , it follows that

0 = λ j =
∑

i

µ j i ai

for all j . Since A is linearly independent over k, it follows that µ j i = 0 for all j
and i , as desired. •

Definition. Assume that K/k is an extension and that z ∈ K . We call z alge-
braic over k if there is some nonzero polynomial f (x) ∈ k[x] having z as a root;
otherwise, z is called transcendental over k.

When one says that a real number is transcendental, one usually means that
it is transcendental over

�
. For example, F. Lindemann (1852–1939) proved,

in 1882, that π is transcendental, so that [
�
(π) :

�
] is infinite (see A. Baker,

Transcendental Number Theory, p. 5). Using this fact, we can see that
�

, viewed
as a vector space over

�
, is infinite-dimensional. (For a proof of the irrationality

of π , a more modest result, we refer the reader to Niven and Zuckerman, An
Introduction to the Theory of Numbers.)

Proposition 4.32. If K/k is a finite extension, then every z ∈ K is algebraic
over k.
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Proof. If [K : k] = n, then the list 1, z, z2, . . . , zn has length n + 1, by Corol-
lary 4.23. Hence, there are ai ∈ k, not all zero, with

∑n
i=0 ai zi = 0. If we

define f (x) =
∑n

i=0 ai x i , then f (x) is not the zero polynomial and f (z) = 0.
Therefore, z is algebraic over k. •

EXERCISES

*4.1 (i) If f : k → k is a function, where k is a field, and if α ∈ k, define a new
function α f : k → k by a 7→ α f (a). Prove that with this definition of
scalar multiplication, the ring � (k) of all functions on k is a vector space
over k.

(ii) If � (k) ⊆ � (k) denotes the family of all polynomial functions a 7→
anan + · · · + α1a + α0, prove that � (k) is a subspace of � (k).

4.2 Prove that the only subspaces of a vector space V are {0} and V itself if and only
if dim(V ) ≤ 1.

4.3 Prove, in the presence of all the other axioms in the definition of vector space, that
the commutative law for vector addition is redundant; that is, if V satisfies all the
other axioms, then u + v = v + u for all u, v ∈ V .

4.4 Is L a subspace of Matn(k) if L ⊆ Matn(k) is the subset consisting of all the n × n
Latin squares?

4.5 If V is a vector space over � 2 and if v1 6= v2 are nonzero vectors in V , prove that
v1, v2 is linearly independent. Is this true for vector spaces over any other field?

4.6 Prove that the columns of an m × n matrix A over a field k are linearly dependent
in km if and only if the homogeneous system Ax = 0 has a nontrivial solution.

*4.7 (i) Prove that the list of polynomials 1, x, x 2, x3, . . . , x100 is a linearly in-
dependent list in k[x], where k is a field.

(ii) Define Vn = 〈1, x, x2, . . . , xn〉. Prove that 1, x, x2, . . . , xn is a basis of
Vn , and conclude that dim(Vn) = n + 1.

4.8 It is shown in analytic geometry that if `1 and `2 are lines with slopes m1 and m2,
respectively, then `1 and `2 are perpendicular if and only if m1m2 = −1. If

`i = {αvi + ui : α ∈ � },

for i = 1, 2, prove that m1m2 = −1 if and only if the dot product v1 · v2 = 0.
(Since both lines have slopes, neither of them is vertical.)

4.9 (i) In calculus, a line in space passing through a point u is defined as

{u + αw : α ∈ � } ⊆ � 3 ,

where w is a fixed nonzero vector. Show that every line through u is a
coset of a one-dimensional subspace of � 3 .

(ii) In calculus, a plane in space passing through a point u is defined as the
subset

{v ∈ � 3 : (v − u) · n = 0} ⊆ � 3 ,
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where n 6= 0 is a fixed normal vector and (v − u) · n is a dot product.
Prove that a plane through u is a coset of a two-dimensional subspace
of � 3 .

4.10 (i) Prove that dim(Matm×n(k)) = mn.
(ii) Determine dim(S), where S is the subspace of Matn(k) consisting of all

the symmetric matrices.
4.11 Let A ∈ Matn(k). If the characteristic of k is not 2, then A is called skew-

symmetric if AT = −A, where AT is the transpose of A. In case k has char-
acteristic 2, then A is skew-symmetric if it is symmetric and if all its diagonal
entries are 0.

(i) Prove that the subset K of Matn(k), consisting of all the skew-symmetric
matrices, is a subspace of Matn(k).

(ii) Determine dim(K ).
4.12 If p is a prime with p ≡ 1 mod 4, prove that there is a nonzero vector v ∈ ( � p )

2

with (v, v) = 0, where (v, v) is the usual inner product of v with itself [see Exam-
ple 4.4(i)].

*4.13 Let k be a field, and let kn have the usual inner product. Prove that if v = a1e1 +
· · · + anen , then ai = (v, ei ) for all i .

*4.14 If f (x) = c0 + c1x + · · · + cm xm ∈ k[x] and if A ∈ Matn(k), define

f (A) = c0 I + c1 A + · · · + cm Am ∈ Matn(k).

Prove that there is some nonzero f (x) ∈ k[x] with f (A) = 0.
4.15 (i) If U is a subspace of a vector space V over a field k, define a scalar

multiplication on the cosets in the quotient group V/U by

α(v + U ) = αv + U,

where α ∈ k and v ∈ V . Prove that this is a well-defined function that
makes V/U into a vector space over k (V/U is called a quotient space).

(ii) Prove that the natural map π : V → V/U , defined by π(v) = v + U , is
a linear transformation.

*4.16 If V is a finite-dimensional vector space and U is a subspace, prove that

dim(U )+ dim(V/U ) = dim(V ).

*4.17 Let Ax = b be a linear system of equations, and let s be a solution. If U is the
solution space of the homogeneous linear system Ax = 0, prove that every solution
of Ax = b has a unique expression of the form s + u for u ∈ U . Conclude that the
solution set of Ax = b is the coset s + U .

*4.18 If U and W are subspaces of a vector space V , define

U + W = {u +w : u ∈ U and w ∈ W }.

(i) Prove that U + W is a subspace of V .
(ii) If U and U ′ are subspaces of a finite-dimensional vector space V , prove

that
dim(U )+ dim(U ′) = dim(U ∩ U ′)+ dim(U + U ′).
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(iii) A subspace U ⊆ V has a complement S if S ⊆ V is a subspace such that
U + S = V and U ∩ S = {0}; one says that U is a direct summand of V
if U has a complement. If V is finite-dimensional, prove that every sub-
space U of V is a direct summand. (This is true for infinite-dimensional
vector spaces as well, but a proof requires Zorn’s lemma.)

*4.19 If U and W are vector spaces over a field k, define their direct sum to be the set of
all ordered pairs,

U ⊕ W = {(u, w) : u ∈ U and w ∈ W },

with addition (u, w) + (u ′, w′) = (u + u ′, w + w′) and scalar multiplication
α(u, w) = (αu, αw).

(i) Prove that U ⊕ W is a vector space.
(ii) If U and W are finite-dimensional vector spaces over a field k, prove that

dim(U ⊕ W ) = dim(U )+ dim(W ).

*4.20 Assume that V is an n-dimensional vector space over a field k, and that V has a
nondegenerate inner product. If W is an r -dimensional subspace of V , prove that
V = W ⊕ W ⊥. (See Example 4.5.) Conclude that dim(W ⊥) = n − r .

4.21 Here is a theorem of Pappus holding in k2, where k is a field. Let ` and m be
distinct lines, let A1, A2, A3 be distinct points on `, and let B1, B2, B3 be distinct
points on m. Define C1 to be A2 B3 ∩ A3 B2, C2 to be A1 B3 ∩ A3 B1, and C3 to be
A1 B2 ∩ A2 B1. Then C1,C2,C3 are collinear.

State the dual of the theorem of Pappus.

Gaussian Elimination
The following homogeneous system of equations over a field k can be solved at
once:

x1 + b1,m+1xm+1 + · · · + b1nxn = 0

x2 + b2,m+1xm+1 + · · · + b2nxn = 0

...
...

...

xm + bm,m+1xm+1 + · · · + bmnxn = 0.

Replacing xm+1, . . . , xn by constants cm+1, . . . , cn ∈ k, we have

xi = −
n∑

j=m+1

bi j c j for all i ≤ m,

so that an arbitrary solution has the form

(
−

n∑

j=m+1

b1 j c j , . . . ,−
n∑

j=m+1

bmj c j , cm+1, . . . , cn

)
.
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The coefficient matrix B of this system,

B =




1 0 . . . 0 b1,m+1 . . . b1n
0 1 . . . 0 b2,m+1 . . . b2n

...
...

...

0 0 . . . 1 bm,m+1 . . . bmn


 ,

is an example of a matrix in echelon form.

Definition. An m × n matrix B is in row reduced echelon form5 if

(i) each row of all zeros, if any, lies below every nonzero row;

(ii) the leading entry of each nonzero row (its first nonzero entry) is 1;

(iii) every other entry in a leading column (a column containing a leading en-
try) is 0;

(iv) the leading columns are COL(t1), . . ., COL(tr ), where t1 < t2 < · · · < tr
and r ≤ m.

We say that B is in echelon form if the leading columns are COL(1), . . ., COL(r );
that is, ti = i for all i ≤ r .

Definition. There are three elementary row operations A
o−→ A′ changing a

matrix A into a matrix A′:

Type I : o adds a scalar multiple of one row of A to another row; that is,
o replaces ROW(i) by ROW(i)+ cROW( j ), where c ∈ k and j 6= i ;

Type II : o multiplies one row of A by a nonzero c ∈ k; that is, o replaces
ROW(i) by cROW(i), where c ∈ k and c 6= 0.

Type III : o interchanges two rows of A.

There are analogous elementary column operations on a matrix.

An interchange (Type III) can be accomplished by operations of types I and
II (in spite of this redundancy, interchanges are still regarded as elementary op-
erations because they arise frequently). We indicate this schematically.
[

a b
c d

]
→

[
a − c b − d

c d

]
→

[
a − c b − d

a b

]
→

[
−c −d
a b

]
→

[
c d
a b

]

5The word echelon means “wing,” for the staggering of the leading entries suggests the
shape of a bird’s wing.



VECTOR SPACES 347

Proposition 4.33. If A → A′ is an elementary row operation, then A and A′

have the same row space: Row(A) = Row(A′).

Proof. Suppose that A → A′ is an elementary operation of Type I. The row
space of A is Row(A) = 〈α1, . . . , αm〉, where αi is the i th row of A; the row
space Row(A′) is spanned by αi + cα j and α1, . . . , α̂i , . . . , αm , where c ∈ k
and j 6= i . It is obvious that Row(A′) ⊆ Row(A). For the reverse inclusion,
observe that αi = (αi + cα j )− cα j ∈ Row(A′).

If A → A′ is an elementary operation of Type II, then Row(A′) is spanned
by cαi and α1, . . . , α̂i , . . . , αm , where c 6= 0. It is obvious that Row(A′) ⊆
Row(A). For the reverse inclusion, observe that αi = c−1(cαi) ∈ Row(A′).

There is no need to consider elementary operations of Type III, for we have
already seen that any such can be obtained as a sequence of elementary opera-
tions of the other two types. •

Definition. If A is an m ×n matrix over a field k with row space Row(A), then

rank(A) = dim(Row(A)).

Corollary 4.34. If A → A′ is an elementary row operation, then

rank(A) = rank(A′).

Proof. Even more is true; the row spaces of A and of A′ are equal, and so they
certainly have the same dimension. •

We remark that if A → A′ is an elementary row operation, then A and A′

may not have the same column space. For example, consider
[

1 0
1 0

]
→

[
1 0
0 0

]
.

It is not obvious, but it is true, that both the row space and the column space
of a matrix have the same dimension (see Corollary 4.83).

We are going to show that if A → A′ is an elementary row operation, then
the homogeneous systems Ax = 0 and A′x = 0 have the same solution space.
To prove this, we introduce elementary matrices.

Definition. Let o be an elementary row operation, so that A′ can be denoted by
A′ = o(A). An elementary matrix is an m × m matrix E of the form E = o(I ),
where I is the m × m identity matrix. If o is of Type I, II, or III, then we say that
o(I ) is an elementary matrix of Type I, II, or III.

Here are the 2 × 2 elementary matrices.
[

1 0
c 1

]
,

[
1 c
0 1

]
,

[
c 0
0 1

]
,

[
1 0
0 c

]
,

[
0 1
1 0

]
.
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Applying elementary column operations to the identity matrix yields the
same family of elementary matrices.

The next lemma shows that the effect of an elementary row operation on a
matrix A is the same as multiplying A on the left by an elementary matrix, while
the effect of an elementary column operation on A is the same as multiplying A
on the right by an elementary matrix.

Lemma 4.35. If A is an m × n matrix and if A
o−→ A′ is an elementary row

operation, then o(A) = o(I )A; if A
o−→ A′ is an elementary column operation,

then o(A) = Ao(I ).

Proof. We will merely illustrate the result, leaving the proof to the reader.

Type I




1 0 0
0 1 0
u 0 1






a b c
d e f
g h i


 =




a b c
d e f

ua + g ub + h uc + i


 ;

Type II




1 0 0
0 u 0
0 0 1






a b c
d e f
g h i


 =




a b c
ud ue u f
g h i


 .

As before, the result is true for elementary row operations of Type III.
We illustrate an elementary column operation.

Type I




a b c
d e f
g h i






1 0 0
0 1 0
u 0 1


 =




a + cu b c
d + d f e f
g + iu h i


 . •

Recall that an n × n matrix A is nonsingular if there exists an m × m matrix
B such that AB = I and B A = I ; one calls B the inverse of A and denotes it
by A−1.

Proposition 4.36. Every elementary matrix E is a nonsingular matrix. In fact,
E−1 is an elementary matrix of the same type as E.

Proof. If o is an elementary row operation of Type I, then o replaces ROW(i ) by
ROW(i)+cROW( j ). Define o′ to be the elementary row operation which replaces
ROW(i ) by ROW(i)− cROW( j ). The inverse of the elementary matrix E = o(I )
is o′(E), for o′(o(I )) = I , so that o′(o(I )) = o′(E) = E ′E , and o(o′(I )) = I ,
so that o(o′(I )) = o(E ′) = E E ′. Note that E ′ is an elementary matrix of Type I.

If o is an elementary row operation of Type II, then o replaces ROW(i ) by
cROW(i). Define o′ to be the elementary row operation which replaces ROW(i )
by c−1ROW(i) (this is why we insist that c 6= 0). The inverse of the elementary
matrix E = o(I ) is o′(E), for o′(o(I )) = I , so that o′(o(I )) = o′(E) = E ′E ,
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and o(o′(I )) = I , so that o(o′(I )) = o(E ′) = E E ′. Note that E ′ is an elemen-
tary matrix of Type II.

An elementary matrix E of Type III is equal to its own inverse: E E = I . •

The next proposition is the key to Gaussian elimination.

Proposition 4.37. If A → A′ is an elementary row operation, then the linear
systems Ax = 0 and A′x = 0 have the same solution space.

Proof. Let S and S ′ be the solution spaces of Ax = 0 and A′x = 0, respectively.
If A′ = o(A), then A′ = E A, by Lemma 4.35, where E is the elementary matrix
o(I ). If v ∈ S, then Av = 0; hence, 0 = E Av = A′v, and so v ∈ S ′. The reverse
inclusion follows from the equation A = E−1 A′, for E−1 is also an elementary
matrix. •

Corollary 4.38. If A and B are m × n matrices over a field k, and if there is a
sequence of elementary row operations

A = A0 → A1 → · · · → A p = B,

then there is a nonsingular matrix P with B = P A. If there is a sequence of
elementary column operations

B = B0 → B1 → · · · → Bq = C,

then there is a nonsingular matrix Q with C = B Q.

Proof. There are elementary matrices Ei with Ai = Ei Ai−1 for all i ≥ 1.
Therefore, B = E p · · · E2 E1 A. Define P = E p · · · E2 E1, so that B = P A.
Now P is nonsingular, for the product of nonsingular matrices is nonsingular
[(E p · · · E2 E1)

−1 = E−1
1 E−1

2 · · · E−1
p ]. The second statement is proved simi-

larly. •

Definition. If σ ∈ Sn is a permutation, then an n × n matrix Qσ is called a
permutation matrix if it arises from the n × n identity matrix I by permuting its
columns by σ .

If τ ∈ Sn is a transposition, then Qτ interchanges two columns, and so it
is an elementary matrix of Type III. Since every permutation σ is a product of
transpositions (Proposition 2.35), Qσ is a product of elementary matrices.

If Ax = 0 is a homogeneous system, then the columns of A correspond
to the labels on the variables: COL(i) corresponds to xi . Thus, AQσ , which is
the matrix whose columns have been permuted by σ , corresponds to the “same”
homogeneous system (AQσ )y = 0 with variables yi = xσ (i).
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Definition. A matrix A is Gaussian equivalent to a matrix B if there is a
sequence of elementary row operations

A = A0 → A1 → · · · → A p = B.

It is easy to show that Gaussian equivalence is an equivalence relation on the
set of all m × n matrices.

Theorem 4.39 (Gaussian Elimination).

(i) Every m × n matrix A over a field k is Gaussian equivalent to a matrix B
in row reduced echelon form.

(ii) The matrix B in part (i) is uniquely determined by A.

(iii) There is a permutation matrix Qσ with P AQσ in echelon form.

Proof.
(i) The proof is by induction on n, the number of columns of A. Let n = 1. If
A = 0, we are done. If A 6= 0, then a j1 6= 0 for some j . Multiply ROW( j ) by
a−1

j1 , and then interchange ROW( j ) with ROW(1), so that the new matrix A′ =
[a′

p1] has a′
11 = 1. For each p > 1, replace a′

p1 by a′
p1 − a′

p1a′
11 = 0. We have

arrived at an m × 1 row reduced echelon matrix, for the entry in its first row is 1,
while all the other rows are 0.

For the inductive step, let A be an m × (n + 1) matrix. If the first column
of A is 0, then put the matrix comprised of the last n columns into row reduced
echelon form, by induction. The resulting matrix is itself in row reduced echelon
form. If the first column of A is not 0, put its first column in row reduced echelon
form (as in the base step), so that the new matrix A′ =

[
1 Y
0 M

]
, where M is an

(m − 1)× n matrix. Your first guess is to apply the inductive hypothesis to the
matrix comprised of the last n columns, as in the first case. This may not be
convenient, for one of the elementary row operations may have added a multiple
of ROW(1) to another row, thereby changing the first column. Instead, we use
the inductive hypothesis to replace M by D, where D is a row reduced echelon
matrix Gaussian equivalent to M . Thus, A′ is Gaussian equivalent to N =

[
1 Y
0 D

]
.

Let the leading columns of N be COL(t2), . . ., COL(tr ), where 2 ≤ t2 < · · · < tr
(the first column of D is the second column of N ). It is possible that the entry
yi,t2 6= 0. If so, replace ROW(1) of N by ROW(1)−yi,t1 ROW(2) (the first row of
D is the second row of N ). Since the leading entry of COL(t2) has only 0 entries
to its left, this operation does not change any columns of N to the left of COL(t2).
Thus, the leading entry of COL(t2) is now the only nonzero entry in its column,
while COL(1) has not been changed. Next, make y1,t3 = 0 in the same way
(so that COL(1) and COL(t2) are unchanged), and continue until all y1,ti = 0.
We have arrived at a row reduced echelon matrix with leading columns COL(1),
COL(t2), . . ., COL(tr ).
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(ii) Suppose that B is a row reduced echelon matrix Gaussian equivalent to A.
Let the nonzero rows of B be β1, . . . , βr , let the leading columns of B be
COL(t1), . . ., COL(tr ), and let βi = eti + ui , where ui ∈ 〈eν : ν > ti 〉 (as usual,
e1, . . . , en is the standard basis of kn ). We claim that COL(t1), . . ., COL(tr ) are
precisely those columns of B in which the leading entry of a nonzero vector in
〈β1, . . . , βr 〉 = Row(B) can occur. It will then follow that the leading columns
are determined by Row(B). Clearly, COL(ti ) contains a leading entry (namely,
that of βi ). On the other hand, if γ is a nonzero vector in 〈β1, . . . , βr〉, then
γ = c1β1 + · · · + crβr . If we picture each βi as the i th row of B, then multiply
ROW(i) by ci and add: γ is the sum, and its j th coordinate is just the sum of the
entries in the j th column. Thus, for each i , the ti coordinate of γ is ci , for there
is no other nonzero entry in COL(ti ). Since γ 6= 0, some ci 6= 0; we claim that
the first such, cti0

, is its leading coefficient. Now all ci = 0 for i < i0, and so
γ = cit0

eit0
+ ω, where ω =

∑
i>i0 ci ui ∈ 〈eν : ν > ti0〉. Hence, the leading

coefficient of γ lies in COL(ti0).
If B ′ is another row reduced echelon matrix Gaussian equivalent to A, then

Row(B ′) = Row(B), by Proposition 4.33. Since we have just proved that the
row space determines the leading columns, it follows that the leading columns
of B ′ and of B are the same. Let the nonzero rows of B ′ be β ′

1, . . . , β
′
r . Now

β ′
i ∈ Row(B) = Row(B ′), so there are cν ∈ k with β ′

i =
∑
ν cνβν . But we saw

in the preceding paragraph that for each ν, the tν th coordinate of β ′
i is cν . Hence,

ci = 1 and all other cν = 0, so that β ′
i = βi for all i . Therefore, B ′ = B.

(iii) Choose σ to be a permutation with σ(ti ) = i for i = 1, . . . , r . •

Corollary 4.40. Let A be an m×n matrix over a field k. If B is the row reduced
echelon form of A, then a basis of Row(A) consists of the nonzero rows of B.

Proof. NowRow(A) = Row(B), by Proposition 4.33, and so it is spanned
by the rows of B. But it is obvious that the nonzero rows of B are linearly
independent, and so they form a basis. •

Definition. If B is an m × n matrix in row reduced echelon form with leading
columns COL(t1), . . ., COL(tr ), then xt1 , . . . , xtr are called fixed variables (or
lead variables) and the other variables are called free variables.

Recall that Gaussian elimination is the method of solving problems in linear
algebra by replacing a matrix A by the row reduced echelon matrix U which is
Gaussian equivalent to it. For example, if one replaces the coefficient matrix A
of the system Ax = 0, then Proposition 4.37 says that U x = 0 has the same
solution space as Ax = 0. Now U x = 0 is easily solved, as on page 345.

The next theorem looks more complicated than it really is, and we shall
simplify its statement after the proof.
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Theorem 4.41. Let Ax = 0 be a system of linear equations, where A is an
m × n matrix over a field k, and let B be the (unique) row reduced echelon
form Gaussian equivalent to A. Let the fixed variables be xt1 , . . . , xtr , let the
free variables be x p1, . . . , x pn−r , and let the nonzero rows of B be βi = eti + ui ,
where ui =

∑
` bi,p`ep` . Then Sol(A), the solution space of Ax = 0, consists of

all vectors of the form
∑

`

c`ep` −
∑

i

bi p`cp`eti .

Proof. By Proposition 4.37, an n-tuple s = (c1, . . . , cn) is a solution of Ax = 0
if and only if it is a solution of Bx = 0. Now the i th entry of the n × 1 matrix
Bs is cti +

∑
` bi p`cp` , where p` ranges over all the free variables. Therefore,

s is a solution if and only if cti = −
∑
` bi p`cp` for all i . •

The notation describing the solutions of Bx = 0 would be simpler if B were
in echelon form; that is, if the leading columns of B were its first r columns.
By Theorem 4.39, there is a permutation σ such that B Qσ is in echelon form.
But permuting the columns merely relabels the variables, and so it is no loss in
generality to consider the notationally simpler case in which the first r variables
are the fixed variables and the last n − r variables are the free variables. In this
case, the solutions are

(
−

n∑

`=r+1

b1`c`, . . . ,−
n∑

`=r+1

br`c`, cr+1, . . . , cn

)
.

The next result is often called the rank-nullity theorem.

Theorem 4.42. Let A be an m×n matrix over a field k. If Sol(A) is the solution
space of the homogeneous linear system Ax = 0, then

dim(Sol(A)) = n − r,

where r = rank(A).

Proof. Let us assume that the variables have been relabeled so that the fixed
variables precede all the free variables. For each ` with 1 ≤ ` ≤ n − r , define s`
to be the solution (c1, . . . , cn) with cp` = 1 and cpν = 0 for all ν 6= `. Thus,

s1 = (−b1,r+1,−b2,r+1 . . . ,−br,r+1, 1, 0, . . . , 0)

s2 = (−b1,r+2,−b2,r+2 . . . ,−br,r+2, 0, 1, . . . , 0)

...

sn−r = (−b1,n,−b2,n . . . ,−br,n, 0, 0, . . . , 1).
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These n−r vectors are linearly independent (look at their last n−r coordinates),
while Theorem 4.41 shows that they span Sol(A):

(
−

n∑

`=r+1

b1`c`, . . . ,−
n∑

`=r+1

br`c`, cr+1, . . . , cn

)
=

n∑

`=r+1

c`s`. •

The dimension n − r of the system Ax = 0 is often called the number of
degrees of freedom in the general solution.

Example 4.43.
Consider the matrix

A =




0 0 1 1 0
−2 −4 1 0 −3
3 6 −1 1 5


 .

Find rank(A), find a basis of its row space, and find a basis of the solution space
of the homogeneous system Ax = 0.

The matrix A is Gaussian equivalent to

B =




1 2 0 0 1
0 0 1 0 −1
0 0 0 1 1


 .

Thus, rank(A) = 3 and a basis of the row space is (1, 2, 0, 0, 1), (0, 0, 1, 0,−1),
(0, 0, 0, 1, 1). Note that the rows of A are also linearly independent, for they
span a 3-dimensional space (see Corollary 4.24). The fixed variables are x1, x3,
and x4, while the free variables are x2 and x5. The solution space has dimension
5 − 3 = 2. The system Bx = 0 is

x1 + 2x2 + x5 = 0

x3 − x5 = 0

x4 + x5 = 0.

The general solution is (−2c − d, c, d,−d, d). �

Theorem 4.42, the rank-nullity theorem, should be compared with Exer-
cise 4.20 on page 345. If W = Sol(A), then dim(W ) = n − dim(Sol(A))⊥. But
we reported, in Example 4.5, that Sol(A)⊥ = Row(A), and so dim(Sol(A)⊥) =
dim(Row(A)) = rank(A).

The exercises will show how to use Gaussian elimination to solve other prob-
lems in linear algebra.
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EXERCISES

4.22 (i) Prove that a list v1, . . . , vm in a vector space V is linearly independent if
and only if it spans an m-dimensional subspace of V .

(ii) Determine whether the list v1 = (1, 1,−1, 2), v2 = (2, 2,−3, 1), v3 =
(−1,−1, 0,−5) in k4 is linearly independent.

4.23 Do the vectors v1 = (1, 4, 3), v2 = (−1,−2, 0), v3 = (2, 2, 3) span k3?
4.24 Let k be a field, and let A be an n × m matrix over k. Call an (inhomogeneous)

linear system Ax = β , where β ∈ km , consistent if there is v ∈ kn with Av = β .
Prove that Ax = β is consistent if and only if β lies in the column space of A.
(Recall Exercise 4.17 on page 344: the solution set of a consistent inhomogeneous
system Ax = b is a coset of the solution space of Ax = 0.)

4.25 If A is an n × n nonsingular matrix, prove that any system Ax = b has a unique
solution, namely, x = A−1b.

4.26 Let α1, . . . , αm be the columns of an n ×m matrix A over a field k, and let β ∈ km .
(i) Prove that β ∈ 〈α1, . . . , αm〉 if and only if the inhomogeneous system

AT x = β has a solution.
(ii) Define the augmented matrix [AT |βT ] to be the n × (m + 1) matrix

whose first m columns are AT and whose last column is βT . Prove that β
lies in the column space of AT if and only if rank([AT |βT ]) = rank(A).

(iii) Does β = (0,−3, 5) lie in the subspace spanned by α1 = (0,−2, 3),
α2 = (0,−4, 6), α3 = (1, 1,−1)?

4.27 (i) Prove that an n × n matrix A over a field k is nonsingular if and only if it
is Gaussian equivalent to the identity I .

(ii) Find the inverse of

A =




2 3 1
−1 1 0
1 0 1


 .

4.2 EUCLIDEAN CONSTRUCTIONS

There are myths in several ancient civilizations in which the gods demand pre-
cise solutions of mathematical problems in return for granting relief from catas-
trophes. We quote from van der Waerden, Geometry and Algebra in Ancient
Civilizations.

In the dialogue ‘Platonikos’ of Eratosthenes, a story was told about
the problem of doubling the cube. According to this story, as Theon
of Smyrna recounts it in his book ‘Exposition of mathematical things
useful for the reading of Plato’, the Delians asked for an oracle in
order to be liberated from a plague. The god (Apollo) answered
through the oracle that they had to construct an altar twice as large
as the existing one without changing its shape. The Delians sent a
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delegation to Plato, who referred them to the mathematicians Eu-
doxos and Helikon of Kyzikos.

The altar was cubical in shape, and so the problem involves constructing 3
√

2.
The gods were cruel, for although there is a geometric construction of

√
2 (it

is the length of the diagonal of a square with sides of length 1), we are going to
prove that it is impossible to construct 3

√
2 by the methods of euclidean geometry

– that is, by using only straightedge and compass. (Actually, the gods were not
so cruel, for the Greeks did use other methods. Thus, Menaechmus constructed
3
√

2 with the intersection of the parabolas y2 = 2x and x2 = y; this is elementary
for us, but it was an ingenious feat when there was no analytic geometry and no
algebra. There was also a solution found by Nicomedes.)

There are several other geometric problems handed down from the Greeks.
Can one trisect every angle? Can one construct a regular n-gon? Can one “square
the circle”; that is, can one construct a square whose area is equal to the area of
a given circle?

Notation. Let P and Q be points in the plane; we denote the line segment with
endpoints P and Q by P Q, and we denote the length of this segment by |P Q|.

Let L[P, Q] denote the line determined by P and Q, and let C[P; P Q]
denote the circle with center P and radius |P Q|.

If we do not give a precise definition of constructibility, then some of the
classical problems appear ridiculously easy. For example, a 60◦ angle can be
trisected using a protractor: just find 20◦ and draw the angle. Thus, it is essential
to state the problems carefully and to agree on certain ground rules. The Greek
problems specify that only two tools are allowed, and each must be used in only
one way. Given distinct points P and Q in the plane, a straightedge is a tool that
can draw the line L[P, Q]; a compass is a tool that draws the circle C[P; P Q]
with radius |P Q| and center P or the circle C[Q; Q P] = C[Q; P Q] with center
Q and radius |Q P|. Since every construction has only a finite number of steps,
we shall be able to define “constructible” points inductively.

What we are calling a straightedge, others call a ruler; we use the first term
to avoid possible confusion, for a ruler has the following extra property: one
can mark two points on it, say, U and V , and the marked point U is allowed to
slide along a circle. This added function of a ruler makes it a more powerful
instrument. For example, Nicomedes solved the Delian problem of doubling
the cube using a ruler and compass; both Nicomedes and Archimedes were able
to trisect arbitrary angles with these tools (we present Archimedes’s proof later
in this section). On the other hand, we are going to show that both of these
constructions are impossible to do using only a straightedge and compass. (Some
angles, e.g., 90◦ and 45◦, can be trisected using a straightedge and compass;
however, we are saying that there are some angles, e.g., 60◦, that can never be so
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trisected.) When we say impossible, we mean what we say; we do not mean that
it is merely very difficult. The reader should ponder how one might prove that
something is impossible. About 425 B.C., Hippias of Elis was able to square the
circle by drawing a certain curve as well as lines and circles. We shall see that
this construction is also impossible using only straightedge and compass.

Given the plane, we establish a coordinate system by first choosing two dis-
tinct points, A and Ā; call the line they determine the x-axis. Use a compass
to draw the two circles C[A; A Ā] and C[ Ā; Ā A] of radius |A Ā| with centers
A and Ā, respectively. These two circles intersect in two points; the line they
determine is called the y-axis; it is the perpendicular bisector of A Ā, and it inter-
sects the x-axis in a point O, called the origin. We define the distance |O A| to
be 1. We have introduced coordinates in the plane; in particular, A = (1, 0) and
Ā = (−1, 0).

A AO

_

Figure 4.1 The First Constructible Points

Informally, one constructs a new point T from (not necessarily distinct) old
points P, Q, R, and S by using the first pair P, Q to draw a line or circle, the
second pair R, S to draw a line or circle, and then obtaining T as one of the points
of intersection of the two drawn lines, the drawn line and the drawn circle, or the
two drawn circles. More generally, a point is called constructible if it is obtained
from A and Ā by a finite number of such steps. Given a pair of constructible
points, we do not assert that every point on the drawn line or the drawn circles
they determine is constructible.

Here is the formal discussion. Recall that if P and Q are distinct points in
the plane, then L[P, Q] is the line they determine and C[P; P Q] is the circle
with center P and radius |P Q|.

Definition. Let E 6= F and G 6= H be points in the plane. A point Z is built
from E, F,G, and H if one of the following conditions hold:

(i) Z ∈ L[E, F] ∩ L[G, H ], where L[E, F] 6= L[G, H ];
(ii) Z ∈ L[E, F] ∩ C[G; G H ] or Z ∈ L[G, H ] ∩ C[E; E F];
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(iii) Z ∈ C[E; E F] ∩ C[G; G H ], where C[E; E F] 6= C[G; G H ].

Declare, once for all, that two points A and Ā are constructible. A point Z is
constructible if Z = A or Z = Ā or if there are points P1, . . . , Pn with Z = Pn
so that, for all j ≥ 1, the point P j+1 is built from points in {A, Ā, P1, . . . , Pj }.

Example 4.44.
Let us show that Z = (0, 1) is constructible. We have seen, in Figure 4.1, that
the points P2 = (0,

√
3) and P3 = (0,−

√
3) are constructible, for both lie in

C[A; A Ā] ∩ C[ Ā; ĀA], and so the y-axis L[P2, P3] can be drawn. Finally,

Z = (0, 1) ∈ L[P2, P3] ∩ C[O; O A]. �

In our discussion, we shall freely use any standard result of euclidean geom-
etry. For example, every angle can be bisected with straightedge and compass;
i.e., if (cos θ, sin θ) is constructible, then so is (cos 1

2θ, sin 1
2θ).

Definition. A complex number z = x + i y is constructible if the point (x, y)
is a constructible point.

Example 4.44 shows that the numbers 1,−1, 0, i
√

3,−i
√

3, i , and −i are
constructible numbers.

Lemma 4.45. A complex number z = x + i y is constructible if and only if its
real part x and its imaginary part y are constructible.

Proof. If z is constructible, then a standard euclidean construction draws the
vertical line L through (x, y) which is parallel to the y-axis. It follows that x is
constructible, for the point (x, 0) is constructible, being the intersection of L and
the x-axis. Similarly, the point (0, y) is the intersection of the y-axis and a line
L ′ through (x, y) which is parallel to the x-axis. It follows that P = (y, 0) is
constructible, for it is in the intersection of C[O; O P] with the x-axis. Hence, y
is a constructible number.

Conversely, assume that x and y are constructible numbers; that is, Q =
(x, 0) and P = (y, 0) are constructible points. The point (0, y) is constructible,
being the intersection of the y-axis and C[O; O P]. One can draw the vertical
line through (x, 0) as well as the horizontal line through (0, y), and (x, y) is
the intersection of these lines. Therefore, (x, y) is a constructible point, and so
z = x + i y is a constructible number. •

Definition. We denote by K the subset of
�

consisting of all the constructible
numbers.
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Theorem 4.46. The set of all constructible real numbers K ∩ �
is a subfield of�

that is closed under square roots of its positive elements.

Proof. Let a and b be constructible reals.

(i) −a is constructible. If P = (a, 0) is a constructible point, then (−a, 0) is
the other intersection of the x-axis and C[O; O P].
(ii) a + b is constructible.

I b Q

1

a b

O P S

Figure 4.2 a + b

Assume that a and b are positive. Let I = (0, 1), P = (a, 0) and Q = (b, 1).
Now Q is constructible: it is the intersection of the horizontal line through I and
the vertical line through (b, 0) [the latter point is constructible, by hypothesis].
The line through Q parallel to I P intersects the x-axis in S = (a + b, 0), as
desired.

To construct b−a, let P = (−a, 0) in Figure 4.2. Thus, both a+b and −a+b
are constructible; by part (i), both −a − b and a − b are also constructible.
(iii) ab is constructible.

D

C

A BO

1 a
b

Figure 4.3 ab

By part (i), we may assume that both a and b are positive. In Figure 4.3,
A = (1, 0), B = (1 + a, 0), and C = (0, b). Define D to be the intersection of
the y-axis and the line through B parallel to AC . Since the triangles1O AC and
1O B D are similar,

|O B|/|O A| = |O D|/|OC|;



EUCLIDEAN CONSTRUCTIONS 359

hence (a + 1)/1 = (b + |C D|)/b, and |C D| = ab. Therefore, b + ab is
constructible. Since −b is constructible, by part (i), we have ab = (b + ab)− b
constructible, by part (ii).
(iv) If a 6= 0, then a−1 is constructible. Let A = (1, 0), S = (0, a), and T =

A BO

1

T

1

S
a

Figure 4.4 a−1

(0, 1 + a). Define B as the intersection of the x-axis and the line through T
parallel to AS; thus, B = (1 + u, 0) for some u. Similarity of the triangles
1OS A and1OT B gives

|OT |/|OS| = |O B|/|O A|.

Hence, (1 + a)/a = (1 + u)/1, and so u = a−1. Therefore, 1 + a−1 is construc-
tible, and so (1 + a−1)− 1 = a−1 is constructible.
(v) If a ≥ 0, then

√
a is constructible. Let A = (1, 0) and P = (1 + a, 0);

R

O A Q P

Figure 4.5
√

a

construct Q, the midpoint of O P . Define R as the intersection of the circle
C[Q; QO] with the vertical line through A. The (right) triangles 1AO R and
1AR P are similar, so that

|O A|/|AR| = |AR|/|AP|,

and, hence, |AR| =
√

a. •

Corollary 4.47. The set K of all constructible numbers is a subfield of
�

that
is closed under square roots.
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Proof. If z = a + ib and w = c + id are constructible, then a, b, c, d are
constructible, by Theorem 4.46, and so a, b, c, d ∈ K ∩ �

. Hence, a +c, b+d ∈
K ∩ �

, because K ∩ �
is a subfield of

�
, and so (a + c) + i(b + d) ∈ K , by

Lemma 4.45. Similarly, zw = (ac − bd) + i(ad + bc) ∈ K . If z 6= 0,
then z−1 = (a/zz) − i(b/zz). Now a, b ∈ K ∩ �

, by Lemma 4.45, so that
zz = a2 + b2 ∈ K ∩ �

, because K ∩ �
is a subfield of

�
. Therefore, z−1 ∈ K ,

and so K is a subfield of
�

.
If z = a+ib ∈ K , then a, b ∈ K ∩ �

, by Lemma 4.45, and so r 2 = a2+b2 ∈
K ∩ �

. Since r2 is nonnegative, we have
√

r ∈ K ∩ �
. Now z = reiθ , so that

eiθ = r−1z ∈ K , because K is a subfield of
�

. That every angle can be bisected
gives eiθ/2 ∈ K , and so

√
z =

√
reiθ/2 ∈ K , as desired. •

Corollary 4.48. If a, b, c are constructible, then the roots of the quadratic
ax2 + bx + c are also constructible.

Proof. This follows from the quadratic formula and Corollary 4.47. •
We are now going to give an algebraic characterization of the geometric idea

of constructibility. Recall that if K/k is an extension of fields (that is, k is a
subfield of a field K ), then K may be regarded as a vector space over k. The
dimension of K , denoted by [K : k], is called the degree of K/k. In particular,
if E/k be an extension and z ∈ E is a root of an irreducible polynomial p(x) ∈
k[x], then Proposition 4.30 gives [k(z) : k] = dimk(k(z)) = deg(p).

Definition. A 2-tower is a tower of subfields of
�

,
�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn,

with [F j : F j−1] ≤ 2 for all j ≥ 1. A complex number z is polyquadratic if
there is a 2-tower

�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn with z ∈ Fn . Denote the set of

all polyquadratic complex numbers by � .

We now begin a series of lemmas which culminates in Theorem 4.53, which
says that a complex number is constructible if and only if it is polyquadratic.

Lemma 4.49. If F/k is a field extension, then [F : k] = 2 if and only F = k(u),
where u ∈ F is a root of some quadratic polynomial f (x) ∈ k[x].
Proof. If [F : k] = 2, then F 6= k and there is some u ∈ F with u /∈ k. By
Proposition 4.32, there is some (irreducible) polynomial f (x) ∈ k[x] having u
as a root. We have 2 = [F : k] = [F : k(u)][k(u) : k], by Theorem 4.31. Now
[k(u) : k] ≥ 2, for [k(u) : k] 6= 1 because k(u) 6= k; hence, [F : k(u)] = 1 and
F = k(u). Moreover, Proposition 4.30 gives deg( f ) = 2, so that u is a root of a
quadratic polynomial.
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Conversely, let F = k(u), where u is a root of a quadratic polynomial
f (x) ∈ k[x]. (We may assume that f (x) is irreducible, lest u ∈ k and F = k,
contradicting [F : k] = 2.) A basis for k(u) over k is 1, u, by Proposition 4.30,
and so [F : k] = [k(u) : u] = 2. •

Lemma 4.50.

(i) � is a subfield of
�

that is closed under square roots.

(ii) A complex number z = a + ib, where a, b ∈ �
, is polyquadratic if and

only if both a and b are polyquadratic.

Proof.
(i) If z, z′ ∈ � , then there are 2-towers

�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn and�

(i) = F ′
0 ⊆ F ′

1 ⊆ · · · ⊆ F ′
m with z ∈ Fn and z′ ∈ F ′

m . Now [F j : F j−1] ≤ 2
implies F j = F j−1(u j ), where u j ∈ F j is a root of some quadratic f j (x) ∈
F j−1[x]. For all j with 1 ≤ j ≤ n, define F ′′

j = F ′
m(u1, . . . , u j ). Since F ′′

j =
F ′′

j−1(u j ), we have F j−1 = F ′
0(u1, . . . , u j−1) ⊆ F ′

m(u1, . . . , u j ) = F ′′
j−1, so

that f j (x) ∈ F ′′
j−1[x] and [F ′′

j : F ′′
j−1] ≤ 2. Hence,

�
(i) = F ′

0 ⊆ F ′
1 ⊆ · · · ⊆ F ′

m ⊆ F ′′
1 ⊆ · · · ⊆ F ′′

n

is a 2-tower. Of course, every element of F ′′
n is polyquadratic; since F ′′

n contains
both z and z′, it contains their inverses and their sum and product. Therefore, �
is a subfield.

Let z ∈ � . If
�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn is a 2-tower with z ∈ Fn , then�

(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ Fn(
√

z) is also a 2-tower.
(ii) If both a, b ∈ � , then z = a + ib ∈ � , for � is a subfield containing i .
Conversely, let

�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn be a 2-tower with z ∈ Fn . Since

complex conjugation is an automorphism of
�

,
�
(i) = F 0 ⊆ F1 ⊆ · · · ⊆ Fn is

a 2-tower with z ∈ Fn ; hence, z is polyquadratic. Therefore, a = 1
2 (z + z) ∈ �

and b = 1
2i (z − z) ∈ � . •

Lemma 4.51. Let P = a + ib, Q = c + id ∈ � .

(i) The line L[P, Q] has equation x = a if it is vertical (c = a) or y = mx+q
if it is not vertical (c 6= a), where m, q ∈ � .

(ii) The circle C[P; P Q] has equation (x − a)2 + (y − b)2 = r2, where
a, b, r ∈ � .

Proof. Lemma 4.50 gives a, b, c, d ∈ � .
(i) If L[P, Q] is not vertical, then its equation is y = mx + q, where m =
(d − b)/(c − a) and q = −ma + b. Hence m, q ∈ � .
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(ii) The circle C[P; P Q] has equation (x − a)2 + (y − b)2 = r2, where r is the
distance from P to Q. Now a, b ∈ � , by Lemma 4.50(ii), and since � is closed
under square roots, r =

√
(c − a)2 + (d − b)2 ∈ � . •

Proposition 4.52. Every polyquadratic number z is constructible.

Proof. If z ∈ � , then there is a 2-tower
�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn

with z ∈ Fn; we prove that z ∈ K by induction on n ≥ 0. The base step is
true, for F0 =

�
(i) ⊆ K , by Corollary 4.47. Now Fn = Fn−1(u), where

u is a root of a quadratic f (x) = x2 + bx + c ∈ Fn−1[x]. The quadratic
formula gives u ∈ Fn−1

(√
b2 − 4c

)
; but K is closed under square roots, by

Corollary 4.47, so that
√

b2 − 4c ∈ K . The inductive hypothesis Fn−1 ⊆ K
now gives z ∈ Fn−1

(√
b2 − 4c

)
⊆ K

(√
b2 − 4c

)
⊆ K . •

Here is the result we have been seeking.

Theorem 4.53. A number z ∈
�

is constructible if and only if z is polyquadratic.

Proof. In light of Proposition 4.52, � ⊆ K , and so it suffices to prove that every
constructible z is polyquadratic: K ⊆ � . There are complex numbers 1, w0 =
−1, w1, . . . , wm = z with w j built from w0, w1, . . . , w j−1 for all j ≥ 0. We
prove, by induction on m ≥ 0, that wm is polyquadratic. Since w0 = −1 is
polyquadratic, we may pass to the inductive step. By the inductive hypothesis,
we may assume that w0, . . . , wm−1 are polyquadratic, and so it suffices to prove
that if z is built from P, Q, R, S, where P, Q, R, S are polyquadratic, then z is
polyquadratic.

Case 1: z ∈ L[P, Q] ∩ L[R, S].

If L[P, Q] is vertical, then it has equation x = a; if L[P, Q] is not vertical,
then Lemma 4.31says that L[P, Q] has equation y = mx + q, where m, q ∈ � .
Similarly, L[R, S] has equation x = c or y = m ′x + p, where m ′, p ∈ � . Since
these lines are not parallel, one can solve the linear system

y = mx + q

y = m′x + p

for z = x0 + i y0 ∈ L[P, Q] ∩ L[R, S]. Therefore, z = x0 + i y0 ∈ � .

Case 2: z ∈ L[P, Q] ∩ C[R; RS].

If R = (u, v) and S = (s, t), the circle C[R; RS] has equation (x − u)2 +
(y − v)2 = ρ2, where ρ2 = (u − s)2 + (v − t)2; moreover, all coefficients lie
in � , by Lemma 4.51. If the line L[P, Q] is vertical, its equation is x = a. If
z = x0 + i y0 ∈ L[P, Q] ∩ C[R; RS], then (x0 − u)2 + (y0 − v)2 = ρ2, so that
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y0 is a root of a quadratic in � [x], and z = a + i y0 ∈ � . If the line L[P, Q] is
not vertical, its equation is y = mx + q, where m, q ∈ � . If z = x0 + i y0 ∈
L[P, Q]∩C[R; RS], then (x0−u)2+(mx0+q −v)2 = ρ2, and so x0 ∈ � , for it
is a root of a quadratic in � [x]. Hence, y0 = mx0+q ∈ � and z = x0 +i y0 ∈ � .

Case 3: z ∈ C[P; P Q] ∩ C[R; RS].

If R = (u, v) and S = (s, t), the circle C[R; RS] has equation (x − u)2 +
(y − v)2 = ρ2, where ρ2 = (u − s)2 + (v − t)2; similarly, if P = (a, b) and
Q = (c, d), the circle C[P; P Q] has equation (x − a)2 + (y − b)2 = r2, where
r2 = (u − s)2 + (v − t)2. By Lemma 4.51, all the coefficients lie in � . If
z = x0 + i y0 ∈ C[P; P Q] ∩ C[R; RS], then expanding the equations of the
circles gives an equation of the form

x2
0 + y2

0 + αx0 + βy0 + γ = 0 = x2
0 + y2

0 + α′x0 + β ′y0 + γ ′.

Canceling x2
0 + y2

0 gives a linear equation λx + µy + ν = 0 with λ, µ, ν ∈ � ;
indeed, λx + µy + ν = 0 is the equation of a line L[P ′, Q′] with P ′, Q′ ∈ �
[for example, take P ′ = (0,−ν/µ) and Q ′ = (−ν/λ, 0)]. Thus, the points
z ∈ C[P; P Q] ∩ C[R; RS] are the points of intersection of the line L[P ′, Q′]
and either circle. The argument in Case 2 now shows that z ∈ � . •

Corollary 4.54. If a complex number z is constructible, then [
�
(z) :

�
] is a

power of 2.

Remark. The converse of this corollary is false; it can be shown that there are
nonconstructible numbers z with [

�
(z) :

�
] = 4. �

Proof. This follows from Theorems 4.53 and 4.31. •

Remark. It was proved by G. Mohr in 1672 and, independently, by L. Mascheroni,
in 1797, that every geometric construction carried out by straightedge and com-
pass can be done without the straightedge. There is a short proof of this theorem
given by N. Hungerbühler in The American Mathematical Monthly, 101 (1994),
pp. 784–787. �

Two of the classical Greek problems were solved by P. L. Wantzel (1814–
1848) in 1837.

Theorem 4.55 (Wantzel). It is impossible to duplicate the cube using only
straightedge and compass.
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Proof. 6 The question is whether z = 3
√

2 is constructible. Since x3 − 2 is
irreducible, [

�
(z) :

�
] = 3, by Corollary 4.54; but 3 is not a power of 2. •

Consider how ingenious this proof is. At the beginning of this section, we
asked the reader to ponder how one might prove impossibility. The idea here is
to translate the problem of constructibility into a statement of algebra, and then
to show that the existence of a geometric construction produces an algebraic
contradiction.

A student in one of my classes, imbued with the idea of continual progress
through technology, asked me, “Will it ever be possible to duplicate the cube
with straightedge and compass?” Impossible here is used in its literal sense.

Theorem 4.56 (Wantzel). It is impossible to trisect a 60◦ angle using only
straightedge and compass.

Proof. We may assume that one side of the angle is on the x-axis, and so the
question is whether z = cos 20◦ + i sin 20◦ is constructible. If z is constructible,
then Lemma 4.45 would show that cos 20◦ is constructible. Corollary 1.23, the
triple angle formula, gives cos 3α = 4 cos3 α−3 cosα. Setting α = 20◦, we have
cos 3α = 1

2 , so that z = cos 20◦ is a root of 4x3 −3x − 1
2 ; equivalently, cos 20◦ is

a root of f (x) = 8x3 − 6x − 1 ∈ � [x]. Now f (x) ∈ � [x] is irreducible in
�

[x]
because f (x) is irreducible mod 7 (Theorem 3.98). Therefore, 3 = [

�
(z) :

�
],

by Theorem 3.116(iv), and so z = cos 20◦ is not constructible, because 3 is not
a power of 2. •

If the rules of constructibility are relaxed, then an angle can be trisected.

Theorem 4.57 (Archimedes). Every angle can be trisected using ruler and
compass. (Recall that a ruler is a straightedge on which points U and V can be
marked; moreover, the point U is allowed to slide along a circle.)

Proof. Since it is easy to construct 30◦, 60◦, and 90◦, it suffices to trisect an
acute angle α, for if 3β = α, then 3(β+30◦) = α+90◦, 3(β+60◦) = α+180◦,
and 3(β + 90◦) = α + 270◦.

Draw the given angle α = 6 AO E , where the origin O is the center of the
unit circle. Take a ruler on which the distance 1 has been marked; that is, there
are points U and V on the ruler with |U V | = 1. There is a chord through A
parallel to E F ; place the ruler so that this chord is AU . Since α is acute, U lies
in the first quadrant. Keeping A on the sliding ruler, move the point U down
the circle; the ruler intersects the extended diameter E F in some point X with

6The notion of dimension of a vector space was not known in the early 19th century; in
place of Corollary 4.54, Wantzel proved that if a number is constructible, then it is a root of
an irreducible polynomial in � [x] of degree 2n for some n.
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A
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U V

X
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Figure 4.6 A Ruler Sliding

|U X | > 1. Continue moving U down the circle, keeping A on the sliding ruler,
until the ruler intersects E F in the point X = C .

A

E
O

B

C
α

F
β

ε

δ

 γ

Figure 4.7 Trisecting α

Relabel the points as in Figure 4.7, so that U = B and |BC| = 1. We claim
that β = 6 BC O = 1

3α. Now

α = δ + β,

because α is an exterior angle of 1AOC , and hence it is the sum of the two
opposite internal angles. Since 1O AB is isosceles (O A and O B are radii),
δ = ε, and so

α = ε + β.

But ε = γ + β = 2β, for it is an exterior angle of the isosceles triangle1BC O;
therefore,

α = 2β + β = 3β. •
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Theorem 4.58 (Lindemann). It is impossible to square the circle with straight-
edge and compass.

Proof. The problem is whether one can construct a square whose area is the
same as the area of the unit circle. If a side of the square has length z, then
one is asking whether z =

√
π is constructible. Now

�
(π) is a subspace of�

(
√
π). We have already mentioned that Lindemann proved that π is transcen-

dental (over
�

), so that [
�
(π) :

�
] is infinite. It follows from Corollary 4.25(ii)

that [
�
(
√
π) :

�
] is also infinite. Thus, [

�
(
√
π) :

�
] is surely not a power of 2,

and so
√
π is not constructible. •

Sufficiency of the following result was discovered, around 1796, by Gauss,
when he was still in his teens (he wrote that this result led to his decision to be-
come a mathematician). He claimed necessity as well, but none of his published
papers contains a complete proof of it. The first published proof of necessity is
due to P. L. Wantzel, in 1837.

Theorem 4.59 (Gauss–Wantzel). Let p be an odd prime. A regular p-gon is
constructible if and only if p = 22t + 1 for some t ≥ 0.

Proof. We only prove necessity; for sufficiency, see Theorem 5.41. The prob-
lem is whether z = e2π i/p is constructible. Now z is a root of the cyclotomic
polynomial8p(x), which is an irreducible polynomial in

�
[x] of degree p − 1,

by Corollary 3.104.
Since z is constructible, p − 1 = 2s for some s (by Corollary 4.54), so that

p = 2s + 1.

We claim that s itself is a power of 2. Otherwise, there is an odd number k > 1
with s = km. Now k odd implies that −1 is a root of x k + 1; in fact, there is a
factorization in

� [x]:

xk + 1 = (x + 1)(xk−1 − xk−2 + xk−3 − · · · + 1).

Thus, setting x = 2m gives a forbidden factorization of p in
�

:

p = 2s + 1 = (2m)k + 1

= [2m + 1][(2m)k−1 − (2m)k−2 + (2m)k−3 − · · · + 1]. •

Gauss constructed a regular 17-gon explicitly, a feat the Greeks would have
envied. On the other hand, it follows, for example, that it is impossible to con-
struct regular 7-gons, 11-gons, or 13-gons.

Numbers Ft of the form Ft = 22t + 1 are called Fermat primes if they are
prime. For 0 ≤ t ≤ 4, one can check that Ft is, indeed, prime; they are

3, 5, 17, 257, and 65,537.
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It is known that the next few values of t give composite numbers, and it is un-
known whether any other Fermat primes exist.

The following result is known.

Theorem. A regular n-gon is constructible if and only if n is a product of a
power of 2 and distinct Fermat primes.

Proof. See Theorem 5.41. •

4.3 LINEAR TRANSFORMATIONS

Homomorphisms between vector spaces are called linear transformations.

Definition. A function T : V → W , where V and W are vector spaces over
a field k, is a linear transformation if, for all vectors u, v ∈ V and all scalars
a ∈ k,

(i) T (u + v) = T (u)+ T (v);

(ii) T (av) = aT (v).

We say that a linear transformation T is nonsingular (or is an isomorphism) if
T is a bijection. Two vector spaces V and W over k are isomorphic, denoted by
V ∼= W , if there is a nonsingular linear transformation T : V → W .

It is easy to see that a linear transformation T preserves all linear combina-
tions:

T (a1v1 + · · · + amvm) = a1T (v1)+ · · · + am T (vm).

Example 4.60.

(i) The identity function 1V : V → V on any vector space V is a nonsingular
linear transformation.

(ii) If T : U → V and S : V → W are linear transformations, then so is their
composite S ◦ T : U → W . Moreover, if T is nonsingular, then its inverse
function T −1 : V → U is also a linear transformation.

(iii) If V and W are vector spaces over a field k, write

Homk(V ,W ) =
{
all linear transformations V → W

}
.

Define S + T by S + T : v 7→ S(v)+ T (v) for all v ∈ V , and define cT ,
where c ∈ k, by cT : v 7→ cT (v) for all v ∈ V . It is routine to check that
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both S + T and cT are linear transformations and that Homk(V ,W ) is a
vector space over k.

(iv) The function TA : kn → km , defined by TA(x) = Ax , where x is an n × 1
column vector and Ax is matrix multiplication, is easily seen to be a linear
transformation. We shall see, in Proposition 4.63, that every linear trans-
formation kn → km is equal to TA for some m × n matrix A. �

We now show how to construct linear transformations T : V → W , where
V and W are vector spaces over a field k. The next theorem says that there is a
linear transformation that does anything to a basis.

Theorem 4.61. Let v1, . . . , vn be a basis of a vector space V over a field k.
If W is a vector space over k and w1, . . . , wn is a list in W , then there exists a
unique linear transformation T : V → W with T (vi ) = wi for all i .

Proof. By Theorem 4.15, each v ∈ V has a unique expression of the form
v =

∑
i aivi , and so T : V → W , given by T (v) =

∑
aiwi , is a (well-

defined!) function. It is now a routine verification to check that T is a linear
transformation.

To prove uniqueness of T , assume that S : V → W is a linear transformation
with S(vi ) = wi = T (vi ) for all i . If v ∈ V , then v =

∑
aivi and

S(v) = S
(∑

aivi
)

=
∑

S(aivi )

=
∑

ai S(vi ) =
∑

ai T (vi ) = T (v).

Since v is arbitrary, S = T . •

Corollary 4.62. If linear transformations S, T : V → W agree on a basis, then
S = T .

Proof. If v1, . . . , vn is a basis of V and if S(vi) = T (vi ) for all i , then the
uniqueness statement in Theorem 4.61 gives S = T . •

Linear transformations kn → km are easy to describe; every one arises from
matrix multiplication, as in Example 4.60(iv).

Proposition 4.63. If T : kn → km is a linear transformation, then there exists
a unique m × n matrix A such that

T (y) = Ay

for all y ∈ kn (here, y is an n×1 column matrix and Ay is matrix multiplication).
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Proof. If e1, . . . , en is the standard basis of kn and e′
1, . . . , e′

m is the standard
basis of km , define A = [ai j ] to be the matrix whose j th column is the coordinate
list of T (e j ). If S : kn → km is defined by S(y) = Ay, then S = T because they
agree on a basis: T (e j ) =

∑
i ai j e′

i = Ae j = S(e j), the j th column of A.
Uniqueness of A follows from Corollary 4.62, for the j th column of A is the

coordinate list of T (e j ). •
Let T : V → W be a linear transformation, and let X = v1, . . . , vn and

Y = w1, . . . , wm be bases of V and W , respectively. The matrix for T is set up
from the equation

T (v j ) = a1 jw1 + a2 jw2 + · · · + amjwm =
∑

i

ai jwi .

This is the reason we write T (v j ) =
∑

i ai jwi instead of T (v j ) =
∑

i a j iwi ,
which appears to be more natural.

Example 4.64.
We show that Rψ : � 2 → � 2 , counterclockwise rotation about the origin by ψ
radians, is a linear transformation. If we identify

� 2 with
�

, then every point
can be written (in polar form) as (r cos θ, r sin θ), and we have the formula:

Rψ (r cos θ, r sin θ) = (r cos(θ + ψ), r sin(θ + ψ)).

Denote the standard basis of
� 2 by e1, e2, where

e1 = (1, 0) = (cos 0, sin 0) and e2 = (0, 1) = (cos π2 , sin π
2 ).

Thus,
Rψ (e1) = Rψ (cos 0, sin 0) = (cosψ, sinψ),

and

Rψ (e2) = Rψ (cos π2 , sin π
2 )

= (cos(π2 + ψ), sin(π2 + ψ))

= (− sinψ, cosψ).

On the other hand, if T is the linear transformation with

T (e1) = (cosψ, sinψ) and T (e2) = (− sinψ, cosψ),

then the addition formulas for cosine and sine give

T (r cos θ, r sin θ) = r cos θT (e1)+ r sin θT (e2)

= r cos θ(cosψ, sinψ)+ r sin θ(− sinψ, cosψ)

= (r [cos θ cosψ − sin θ sinψ], r [cos θ sinψ + sin θ cosψ])
= (r cos(θ + ψ), r sin(θ + ψ)

= Rψ (r cos θ, r sin θ).
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Therefore, Rψ = T , and so Rψ is a linear transformation.
We gave a geometric proof that Rψ is a linear transformation in Proposi-

tion 2.57. �

Proposition 4.63 establishes the connection between linear transformations
and matrices.

Definition. Let X = v1, . . . , vn be a basis of V and let Y = w1, . . . , wm
be a basis of W . If T : V → W is a linear transformation, then the matrix of
T with respect to X and Y is the m × n matrix A = [ai j ] whose j th column
a1 j , a2 j , . . . , amj is the coordinate list of T (v j ) relative to Y : T (v j ) = a1 jw1 +
· · · + anjwn . The matrix A does depend on the choice of bases X and Y , and we
denote it by

A = Y [T ]X .

In case V = W , we usually let the bases X = v1, . . . , vn and w1, . . . , wm
coincide. If 1V : V → V , given by v 7→ v, is the identity linear transformation,
then X [1V ]X is the n × n identity matrix In (usually, the subscript n is omitted),
defined by

I = [δi j ],

where δi j is the Kronecker delta:

δi j =
{

1 if i = j ;

0 if i 6= j .

Thus, I has 1’s on the diagonal and 0’s elsewhere. On the other hand, if X and
Y are different bases, then Y [1V ]X is not the identity matrix; its columns are
the coordinate lists of the x’s with respect to the basis Y (such a matrix is often
called the transition matrix from X to Y ).

Example 4.65.
Let V be a vector space with basis X = v1, . . . , vn , and let σ ∈ Sn be a per-
mutation. By Theorem 4.61, there is a linear transformation T : V → V with
T (vi ) = vσ (i) for all i . The reader should check that Pσ = X [T ]X is the permu-
tation matrix obtained from the n ×n identity matrix I by permuting its columns
by σ . �

Example 4.66.
Let k be a field and let kn be equipped with the usual inner product: if v =
(a1, . . . , an) and u = (b1, . . . , bn), then (v, u) = a1b1 + · · · + anbn. Define
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the adjoint7 of a linear transformation T : kn → kn to be a linear transformation
T ∗ : kn → kn such that

(T u, v) = (u, T ∗v)

for all u, v ∈ kn .
We begin by showing that T ∗ exists. Let E = e1, . . . , en be the standard

basis. If T ∗ does exist, then it would have to satisfy

(T e j , ei ) = (e j , T ∗ei )

for all i, j . But if T e j = a j1e1 + · · · + a jnen , then (T e j , ei ) = a j i , by Exer-
cise 4.13 on page 344. With this in mind, let us define T ∗ei = a1i e1 +· · ·+ani en
for each i . By Theorem 4.61, we have defined a linear transformation T ∗.

If A = [ai j = E [T ]E , then the defining equation for T ∗ shows that E [T ∗]E =
AT ; that is, the matrix of the adjoint of A is the transpose of A.

The definition of adjoint can be generalized. If T : V → W is a linear
transformation, where V and W are vector spaces equipped with inner products,
then its adjoint is a linear transformation T ∗ : W → V satisfying (T v, w) =
(v, T ∗w) for all v ∈ V and w ∈ W . �

Example 4.67.

(i) In Example 4.64, we considered Rψ : � 2 → � 2 , counterclockwise rota-
tion about the origin by ψ radians. The matrix of Rψ with respect to the
standard basis E = e1, e2 is

E [Rψ ]E =
[

cosψ − sinψ
sinψ cosψ

]
.

(ii) This example shows that matrices assigned to a given linear transformation
can actually be different. Let T : � 2 → � 2 be counterclockwise rotation
about the origin by π

2 radians. As in part (i), the matrix of T relative to the
standard basis X = e1, e2 is

X [T ]X =
[

0 −1
1 0

]
.

The list Y = v1, v2, where v1 = (4, 1)T and v2 = (−2, 1)T are column
vectors, is a basis. We compute Y [T ]Y by writing T (v1) and T (v2) as

7There is another notion of adjoint, unrelated to this notion, on page 387.
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linear combinations of v1, v2. Now

T (v1) =
[

0 −1
1 0

][
4
1

]
=
[
−1
4

]

T (v2) =
[

0 −1
1 0

][
−2
1

]
=
[
−1
−2

]
.

We must find numbers a, b, c, d with

T (v1) =
[
−1
4

]
= av1 + bv2

T (v2) =
[
−1
−2

]
= cv1 + dv2.

Each of these vector equations gives a system of linear equations:

4a − 2b = −1

a + b = 4

and

4c − 2d = −1

c + d = −2.

These are easily solved:

a = 7
6 , b = 17

6 , c = − 5
6 , d = − 7

6 .

It follows that

Y [T ]Y = 1
6

[
7 −5

17 −7

]
.

These computations will be revisited in Example 4.74. �

Example 4.68.
We have illustrated, given a linear transformation T : V → V and a basis X
of V , how to set up the matrix A = X [T ]X . We now reverse the procedure and
show how to construct a linear transformation from an n × n matrix over k.

Consider the matrix

C =




0 0 8
1 0 −6
0 1 12


 .

To define a linear transformation T : k3 → k3, it suffices to specify T (ei ) for
each vector in the standard basis E = e1, e2, e3. Using the columns of C , we
define

T (e1) = e2, T (e2) = e3, T (e3) = 8e1 − 6e2 + 12e3.
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Of course, C = E [T ]E .
We now find the matrix of T with respect to a new basis. Define X =

x0, x1, x2 by

x0 = e1, x1 = (C − 2I )e1, x2 = (C − 2I )2e1.

We prove that X spans k3 by showing that 〈X〉 = k3 . Clearly, e1 = x0 ∈ 〈X〉,
while x1 = Ce1 − 2e1 = e2 − 2x0; hence,

e2 = 2x0 + x1 ∈ 〈X〉.

Now x2 = C2e1 − 4Ce1 + 4e1 = e3 − 4e2 + 4e1, so that

e3 = x2 + 4e2 − 4e1

= x2 + 4(2x0 + x1)− 4x0

= 4x0 + 4x1 + x2 ∈ 〈X〉.

But a spanning list of 3 vectors in a 3-dimensional space must be a basis, and so
X is a basis of k3.

What is the matrix J = X [T ]X ? Using the equations above, the reader may
verify that

T (x0) = 2x0 + x1

T (x1) = 2x1 + x2

T (x2) = 2x2.

It follows that the matrix of T with respect to the basis X is:

J =




2 0 0
1 2 0
0 1 2


 . �

The following proposition is a paraphrase of Theorem 4.61.

Proposition 4.69. Let V and W be vector spaces over a field k, and let X and
Y be bases of V and W , respectively. The function

µX,Y : Homk(V ,W ) → Matm×n(k),

given by
T 7→ Y [T ]X ,

is an isomorphism of vector spaces.
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Proof. First, let us show that µX,Y is surjective. Given a matrix A, its columns
define vectors in W . In more detail, if X = v1, . . . , vn and Y = w1, . . . , wm ,
then the j th column of A is (a1 j , . . . , amj )

T ; define z j =
∑m

i=1 ai jwi . By Theo-
rem 4.61, there exists a linear transformation T : V → W with T (v j ) = z j , and
Y [T ]X = A. To see that µX,Y is injective, suppose that Y [T ]X = A = Y [S]X .
Since the columns of A determine T (v j ) and S(v j ) for all j , Corollary 4.62 gives
S = T .

Finally, we show that µX,Y is a linear transformation. Since, for all j , the
j th column of S + T is (S + T )(v j ) = S(v j)+ T (v j ), we have µX,Y (S + T ) =
µX,Y (S)+µX,Y (T ). A similar argument shows that µX,Y (cT ) = cµX,Y (T ). •

The next proposition shows where the definition of matrix multiplication
comes from: the product of two matrices is the matrix of a composite.

Proposition 4.70. Let T : V → W and S : W → U be linear transformations.
Choose bases X = x1, . . . , xn of V , Y = y1, . . . , ym of W , and Z = z1, . . . , z`
of U. Then

Z [S ◦ T ]X =
(

Z [S]Y
)(

Y [T ]X
)
.

Proof. Let Y [T ]X = [ai j ], so that T (x j ) =
∑

p apj yp, and let Z [S]Y = [bqp],
so that S(yp) =

∑
q bqpzq . Then

(S ◦ T )(x j) = S(T (x j )) = S
(∑

p

apj yp
)

=
∑

p

apj S(yp) =
∑

p

∑

q

apj bqpzq =
∑

q

cq j zq ,

where cq j =
∑

p bqpapj . Therefore,

Z [S ◦ T ]X = [cq j ] =
(

Z [S]Y
)(

Y [T ]X
)
. •

Corollary 4.71. Matrix multiplication is associative: A(BC) = (AB)C.

Proof. Let A be an m ×n matrix, let B be an n × p matrix, and let C be a p ×q
matrix. By Theorem 4.61, there are linear transformations

kq T→ k p S→ kn R→ km

with C = [T ], B = [S], and A = [R] (in order that the proof not be cluttered,
we abbreviate notation by omitting bases: we write [T ] instead of Y [T ]X ).

Then

[R ◦ (S ◦ T )] = [R][S ◦ T ] = [R]([S][T ]) = A(BC).
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On the other hand,

[(R ◦ S) ◦ T ] = [R ◦ S][T ] = ([R][S])[T ] = (AB)C.

Since composition of functions is associative,

R ◦ (S ◦ T ) = (R ◦ S) ◦ T ,

and so
A(BC) = [R ◦ (S ◦ T )] = [(R ◦ S) ◦ T ] = (AB)C. •

We can prove Corollary 4.71 directly, although it is rather tedious. The con-
nection with composition of linear transformations is the real reason why matrix
multiplication is associative.

Corollary 4.72. Let T : V → W be a linear transformation of vector spaces
V and W over a field k, and let X and Y be bases of V and W , respectively. If T
is nonsingular and A = Y [T ]X , then A is a nonsingular matrix and the matrix
of T −1 is

X [T −1]Y = A−1 = (Y [T ]X )
−1.

Proof.
I = Y [1W ]Y =

(
Y [T ]X

)(
X [T −1]Y

)

and
I = X [1V ]X =

(
X [T −1]Y

)(
Y [T ]X

)
. •

The next corollary determines all the matrices arising from the same linear
transformation.

Corollary 4.73. Let T : V → V be a linear transformation on a vector space
V over a field k. If X and Y are bases of V , then there is a nonsingular matrix
P with entries in k, namely, P = Y [1V ]X , so that

Y [T ]Y = P
(

X [T ]X
)
P−1.

Conversely, if B = P AP−1, where B, A, and P are n × n matrices with entries
in k and P is nonsingular, then there is a linear transformation T : kn → kn and
bases X and Y of kn such that B = Y [T ]Y and A = X [T ]X .

Proof. The first statement follows from Proposition 4.70 and associativity:

Y [T ]Y = Y [1V T 1V ]Y = (Y [1V ]X )(X [T ]X )(X [1V ]Y ).

Set P = Y [1V ]X , and note that Corollary 4.72 gives P−1 = X [1V ]Y .
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For the converse, let E = e1, . . . , en be the standard basis of kn , and define
T : kn → kn by T (e j ) = Ae j (remember that vectors in kn are column vectors,
so that Ae j is matrix multiplication; indeed, Ae j is the j th column of A). It
follows that A = E [T ]E . Define a list Y = y1, . . . , yn by y j = P−1e j ; that is,
the vectors in Y are the columns of P−1. If Y is a basis, then it suffices to prove
that B = Y [T ]Y ; that is, T (y j) =

∑
i bi j yi , where B = [bi j ].

T (y j) = Ay j

= AP−1e j

= P−1 Be j

= P−1
∑

i

bi j ei

=
∑

i

bi j P−1ei

=
∑

i

bi j yi

Let us show that Y = P−1e1, . . . , P−1en is a basis of kn . If
∑

j a j P−1e j =
0, then P−1(

∑
j a j e j ) = 0; multiplying on the left by P gives

∑
j a j e j = 0, and

linear independence of the standard basis gives all a j = 0. Thus, Y is linearly
independent. To see that Y spans kn , take w ∈ kn . Now Pw =

∑
j b j e j , and so

w = P−1 Pw =
∑

j b j P−1e j ∈ 〈Y 〉. Therefore, Y is a basis. •

Definition. Two n × n matrices B and A over a field k are similar if there is a
nonsingular matrix P over k with B = P AP−1.

Corollary 4.73 says that two matrices are similar if and only if they arise
from the same linear transformation on a vector space V (from different choices
of basis). For example, the matrices C and J in Example 4.68 are similar. The
first matrix C arises from a linear transformation T : k3 → k3 relative to the
standard basis E ; that is, C = E [T ]E . The second matrix J arises from the basis
X in that example; that is, J = X [T ]X .

Example 4.74.
We can now simplify the calculations in Example 4.67(ii). Recall that we have
two bases of

� 2 : the standard basis E = e1, e2 and F = v1, v2, where v1 =
[

4
1

]

and v2 =
[−2

1

]
, and the linear transformation T : � 2 → � 2 , rotation by 90◦,

with matrix

E [T ]E =
[

0 −1
1 0

]
.
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Now the transition matrices are

P−1 = E [1]F =
[

4 −2
1 1

]

and

P = F [1]E = E [1]−1
F = 1

6

[
1 2

−1 4

]
.

Therefore,

F [T ]F = P E [T ]E P−1 = 1
6

[
7 −5

17 −7

]
,

which agrees with our earlier result on page 371. �

Just as for group homomorphisms and ring homomorphisms, we can define
the kernel and image of linear transformations.

Definition. If T : V → W is a linear transformation, then the kernel (or the
null space) of T is

ker T = {v ∈ V : T (v) = 0},

and the image of T is

im T = {w ∈ W : w = T (v) for some v ∈ V }.

As in Example 4.60(iv), an m × n matrix A with entries in a field k deter-
mines a linear transformation TA : kn → km , namely, TA(y) = Ay, where y is
an n × 1 column vector. The kernel of TA is the solution space Sol(A) [see
Example 4.3(iv)], and the image of TA is the column space Col(A).

The proof of the next proposition is routine.

Proposition 4.75. Let T : V → W be a linear transformation.

(i) ker T is a subspace of V , and im T is a subspace of W .

(ii) T is injective if and only if ker T = {0}.

We can now give a new proof of Corollary 4.20 that a homogeneous system
over a field k with r equations in n unknowns has a nontrivial solution if r < n.
If A is the r × n coefficient matrix of the system, then T : x 7→ Ax is a linear
transformation T : kn → kr . If there is only the trivial solution, then ker T =
{0}, so that kn is isomorphic to a subspace of kr , contradicting Corollary 4.25(i).
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Lemma 4.76. Let T : V → W be a linear transformation.

(i) Let T be nonsingular. For every basis X = v1, v2, . . . , vn of V , we have
T (X) = T (v1), T (v2), . . . , T (vn) is a basis of W .

(ii) Conversely, if there exists some basis X = v1, v2, . . . , vn of V for which
T (X) = T (v1), T (v2), . . . , T (vn) is a basis of W , then T is nonsingular.

Proof.
(i) If

∑
ci T (vi ) = 0, then T (

∑
civi ) = 0, and so

∑
civi ∈ ker T = {0}.

Hence each ci = 0, because X is linearly independent. If w ∈ W , then the
surjectivity of T provides v ∈ V with w = T (v). But v =

∑
aivi , and so

w = T (v) = T (
∑

aivi ) =
∑

ai T (vi ). Therefore, T (X) is a basis of W .
(ii) If w ∈ W , then w =

∑
ci T (vi ) = T (

∑
civi ), since T (v1), . . . , T (vn) is a

basis of W , and so T is surjective. If
∑

civi ∈ ker T , then
∑

ci T (vi ) = 0, and
so linear independence gives all ci = 0; hence,

∑
civi = 0 and ker T = {0}.

Therefore, T is nonsingular. •

Theorem 4.77. If V is an n-dimensional vector space over a field k, then V is
isomorphic to kn .

Proof. Choose a basis v1, . . . , vn of V . If e1, . . . , en is the standard basis of kn ,
then Theorem 4.61 says that there is a linear transformation T : V → kn with
T (vi ) = ei for all i ; by Lemma 4.76, T is nonsingular. •

Theorem 4.77 says more than that every finite-dimensional vector space is
essentially the familiar vector space of all n-tuples. It says that a choice of basis
in V is tantamount to a choice of coordinate list for each vector in V . We want
the freedom to change coordinates because the usual coordinates may not be the
most convenient ones for a given problem, as the reader has probably seen (in a
calculus course) when rotating axes to simplify the equation of a conic section.

Corollary 4.78. Two finite-dimensional vector spaces V and W over a field k
are isomorphic if and only if dim(V ) = dim(W ).

Proof. Assume that there is a nonsingular T : V → W . If X = v1, . . . , vn
is a basis of V , then Lemma 4.76 says that T (v1), . . . , T (vn) is a basis of W .
Therefore, dim(W ) = |X | = dim(V ).

If n = dim(V ) = dim(W ), then there are isomorphisms T : V → kn and
S : W → kn , by Theorem 4.77. It follows that the composite S−1 ◦ T : V → W
is an isomorphism. •

Proposition 4.79. Let V be a finite-dimensional vector space over a field k
with dim(V ) = n, and let T : V → V be a linear transformation. The following
statements are equivalent:
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(i) T is an isomorphism;
(ii) T is surjective;

(iii) T is injective.

Remark. Compare this proposition with the pigeonhole principle, Exercise 2.12
on page 102. �

Proof.
(i) ⇒ (ii) This implication is obvious.
(ii) ⇒ (iii) Assume that T is surjective. If X = v1, . . . , vn is a basis of V , we
claim that T (X) = T (v1), . . . , T (vn) spans V . If w ∈ V , then surjectivity of
T gives v ∈ V with w = T (v). Now v =

∑
i aivi for scalars ai ∈ k, and so

w = T (v) =
∑

i ai T (vi ). Since dim(V ) = n, it follows from Corollary 4.24
that T (X) is a basis of V . Lemma 4.76 now says that T is an isomorphism, and
so T is injective.
(iii) ⇒ (i) Assume that T is injective. If X = v1, . . . , vn is a basis of V , then we
claim that T (X) = T (v1), . . . , T (vn) is linearly independent. If

∑
ci T (vi ) = 0,

then T (
∑

i ci T vi ) = 0, so that
∑

i civi ∈ ker T = {0}. Hence,
∑

i civi = 0,
and linear independence of X gives all ci = 0. Therefore, T (X) is linearly
independent. Since dim(V ) = n, it follows from Corollary 4.24 that T (X) is a
basis of V . Lemma 4.76 now says that T is an isomorphism. •

Call a linear transformation T : V → V singular if it is not nonsingular.

Corollary 4.80. Let V be a finite-dimensional vector space, and let T : V → V
be a linear transformation on V . Then T is singular if and only if there exists a
nonzero vector v ∈ V with T (v) = 0.

Proof. If T is singular, then ker T 6= {0}, by Proposition 4.79. Conversely, if
there is a nonzero vector v with T (v) = 0, then ker T 6= {0} and T is singular.

•

This corollary says that an n × n linear system Ax = 0 with a singular
coefficient matrix A always has a nontrivial solution.

Recall that an n×n matrix A with entries in a field k is nonsingular if there is
a matrix B (its inverse) with entries in k with AB = I = B A. The next corollary
shows that “one-sided inverses” are enough.

Corollary 4.81. Let A and B be n × n matrices with entries in a field k. If
AB = I , then B A = I . Therefore, A is nonsingular and B = A−1.
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Proof. There are linear transformations T , S : kn → kn with X [T ]X = A and
X [S]X = B, where X is the standard basis. Let us abbreviate X [T ]X to [T ] in
this proof. Since AB = I , Proposition 4.69 gives

[T ◦ S] = [T ][S] = I = [1kn ].

Since T 7→ [T ] is a bijection, by Proposition 4.69, it follows that T ◦S = 1kn . By
Proposition 2.9, T is a surjection and S is an injection. But Proposition 4.79 says
that both T and S are isomorphisms, so that S = T −1 and T ◦ S = 1kn = S ◦ T .
Therefore, I = [S ◦ T ] = [S][T ] = B A, as desired. •

Proposition 4.82. Let T : V → W be a linear transformation, where V and
W are vector spaces over a field k of dimension n and m, respectively. Then

dim(ker T )+ dim(im T ) = n.

Proof. Choose a basis u1, . . . , u p of ker T , and extend it to a basis of V by ad-
joining vectorsw1, . . . , wq . Now im T is spanned by the list T (u1), . . . , T (u p),
T (w1), . . . , T (wq); but T (ui ) = 0 for all i , so that im T is spanned by the
shorter list T (w1), . . . , T (wq). Since dim(ker T ) = p and p + q = n, it suffices
to prove that T (w1), . . . , T (wq) is a linearly independent list.

If c1T (w1) + · · · + cq T (wq) = 0, then T (c1w1 + · · · + cqwq) = 0 and
c1w1 + · · · + cqwq ∈ ker T . Hence, there are a1, . . . , ap ∈ k with

c1w1 + · · · + cqwq = a1u1 + · · · + apu p.

Since u1, . . . , u p, w1, . . . , wq is a basis of V , it is a linearly independent list,
so that 0 = c1 = · · · = cq (and also 0 = a1 = · · · = ap). Therefore,
T (w1), . . . , T (wq) is a basis of im T , and dim(im T ) = q. •

Corollary 4.83. If A is an m × n matrix over a field k, then

rank(A) = rank(AT );

the row space Row(A) and the column space Col(A) have the same dimension.

Proof. Define TA : kn → km by TA(v) = Av. Now ker TA is the solution
space of the linear system Ax = 0, so that Theorem 4.42 gives dim(ker TA) =
n − r , where r = rank(A) [recall that rank(A) = dim(Row(A))]. However,
dim(ker TA) = n − dim(im TA), by Proposition 4.82. Therefore,

rank(A) = r = dim(im TA).

Finally, note that im TA is the set of all the linear combinations of the columns of
A; that is, im TA = Col(A) = Row(AT ). Therefore, rank(A) = dim(Col(A)).

•
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Definition. If V is a vector space over a field k, then the general linear group,
denoted by GL(V ), is the set of all nonsingular linear transformations V → V .

A composite S ◦ T of linear transformations S and T is again a linear trans-
formation, and S ◦ T is nonsingular if both S and T are; moreover, the inverse of
a nonsingular linear transformation is again nonsingular. It follows that GL(V )
is a group with composition as operation, for composition of functions is always
associative.

Definition. The set of all nonsingular n × n matrices with entries in a field k is
denoted by GL(n, k).

It is easy to prove that GL(n, k) is a group under matrix multiplication.
A choice of basis gives an isomorphism between the general linear group

and the group of nonsingular matrices.

Proposition 4.84. Let V be an n-dimensional vector space over a field k, and
let X = v1, . . . , vn be a basis of V . Then µ : GL(V ) → GL(n, k), defined by
T 7→ X [T ]X , is an isomorphism of groups.

Proof. By Proposition 4.69, the function µX,X : T 7→ [T ] = X [T ]X is an
isomorphism of vector spaces

Homk(V , V ) → Matn(k).

Moreover, Proposition 4.70 says that µX,X (T ◦ S) = µX,X (T )µX,X (S) for all
T , S ∈ Homk(V , V ).

If T ∈ GL(V ), then µX,X (T ) = X [T ]X is a nonsingular matrix, by Corol-
lary 4.72; thus, if µ is the restriction of µX,X , then µ : GL(V ) → GL(n, k) is
an injective homomorphism.

It remains to prove that µ is surjective. Since µX,X is surjective, if A ∈
GL(n, k), then A = X [T ]X for some T : V → V . It suffices to show that T is
an isomorphism, for then T ∈ GL(V ). Since A is a nonsingular matrix, there is
a matrix B with AB = I . Now B = X [S]X for some S : V → V , and

µX,X (T ◦ S) = µX,X (T )µX,X (S) = AB = I = µX,X (1V ).

Therefore, T ◦ S = 1V , since µX,X is an injection, and so T ∈ GL(V ), by
Corollary 4.81. •

The center of the general linear group is easily identified; we now generalize
Exercise 2.74 on page 167.
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Definition. A linear transformation T : V → V is a scalar transformation if
there is c ∈ k with T (v) = cv for all v ∈ V ; that is, T = c1V . A scalar matrix
is a matrix of the form cI , where c ∈ k and I is the identity matrix.

A scalar transformation T = c1V is nonsingular if and only if c 6= 0 (its
inverse is c−11V ).

Corollary 4.85.

(i) The center of the group GL(V ) consists of all the nonsingular scalar trans-
formations.

(ii) The center of the group GL(n, k) consists of all the nonsingular scalar
matrices.

Proof.
(i) If T ∈ GL(V ) is not scalar, then there is some vector v ∈ V with T (v)
not a scalar multiple of v. Of course, this forces v 6= 0. We claim that the
list X = v, T (v) is linearly independent. We know that T (v) is not a scalar
multiple of v. If v = dT (v), for some d ∈ k, then d 6= 0 (lest v = 0), and
so T (v) = d−1v, a contradiction. Hence, v, T (v) is a linearly independent list,
by Example 4.12(iii). By Proposition 4.22, this list can be extended to a basis
v, T (v), u3,. . ., un of V . It is easy to see that v, v + T (v), u3, . . . , un is also a
basis of V , and so there is a nonsingular linear transformation S with S(v) = v,
S(T (v)) = v + T (v), and S(ui) = ui for all i . Now S and T do not commute,
for ST (v) = v+ T (v) while T S(v) = T (v). Therefore, T is not in the center of
GL(V ).
(ii) If f : G → H is any group isomorphism between groups G and H , then
f (Z(G)) = Z(H). In particular, if T = c1V is a nonsingular scalar transforma-
tion, then X [T ]X is in the center of GL(n, k) for any basis X = v1, . . . , vn of V .
But T (vi ) = cvi for all i , so that X [T ]X = cI is a scalar matrix. •

EXERCISES

4.28 Let k be a field, let V = k[x], the polynomial ring viewed as a vector space over k,
and let Vn = 〈1, x, x2, . . . , xn〉. By Exercise 4.7 on page 343, we know that
Xn = 1, x, x2, . . . , xn is a basis of Vn .

(i) Prove that differentiation T : V3 → V3, defined by T ( f (x)) = f′(x), is a
linear transformation, and find the matrix A = X3

[T ]
X3

of differentiation.

(ii) Prove that integration S : V3 → V4, defined by S( f ) =
∫ x

0 f (t) dt , is a
linear transformation, and find the matrix A = X4

[S]
X3

of integration.

4.29 If σ ∈ Sn and P = Pσ is the corresponding permutation matrix (see Exam-
ple 4.65), prove that P−1 = PT .
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4.30 Let A be an n × n real symmetric matrix.
(i) Give an example of a nonsingular matrix P for which P AP−1 is not

symmetric.
(ii) Prove that O AO−1 is symmetric for every n×n real orthogonal matrix O .

*4.31 Let V and W be vector spaces over a field k, and let S, T : V → W be linear
transformations.

(i) If V and W are finite-dimensional, prove that

dim(Homk(V ,W )) = dim(V ) dim(W ).

(ii) The dual space V ∗ of a vector space V over k is defined by

V ∗ = Homk(V , k).

If X = v1, . . . , vn is a basis of V , define δ1, . . . , δn ∈ V ∗ by

δi (v j ) =
{

0 if j 6= i

1 if j = i .

Prove that δ1, . . . , δn is a basis of V ∗ (it is called the dual basis arising
from v1, . . . , vn ).

(iii) If dim(V ) = n, prove that dim(V ∗) = n, and hence that V ∗ ∼= V .

Remark. Here is a convincing reason why targets are necessary in a function’s defini-
tion. In linear algebra, one considers a vector space V and its dual space V ∗ = {all linear
functionals on V } (which is also a vector space). Moreover, every linear transformation
S : V → W defines a linear transformation

S∗ : W ∗ → V ∗,

and the domain of S∗, being W ∗, is determined by the target W of S. (In fact, if a matrix
for S is A, then a matrix for S∗ is AT , the transpose of A.) Thus, changing the target of
S changes the domain of S∗, and so S∗ is changed in an essential way, and so the target
is an essential part of the definition of function. �

4.32 (i) If S : V → W is a linear transformation and f ∈ W ∗, then the composite

V
S−→ W

f−→ k lies in V ∗. Prove that S∗ : W ∗ → V ∗, defined by
S∗ : f 7→ f ◦ S, is a linear transformation.

(ii) If X = v1, . . . , vn and Y = w1, . . . , wm are bases of V and W , respec-
tively, denote the dual bases by X ∗ and Y ∗ (see Exercise 4.31). Prove
that if S : V → W is a linear transformation, then the matrix of S∗ is a
transpose:

X∗[S∗]Y ∗ =
(

Y [S]X
)T
.

4.33 (i) If A =
[

a b
c d

]
, define det(A) = ad − bc. Given a system of linear equa-

tions Ax = 0 with coefficients in a field,

ax + by = p

cx + dy = q,
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prove that there exists a unique solution if and only if det(A) 6= 0.
(ii) If V is a vector space with basis X = v1, v2, define T : V → V by

T (v1) = av1 +bv2 and T (v2) = cv1 +dv2. Prove that T is a nonsingular
linear transformation if and only if det(X [T ]X ) 6= 0.

*4.34 Let U be a subspace of a vector space V .
(i) Prove that the natural map π : V → V/U , given by v 7→ v + U , is

a linear transformation with kernel U . (Quotient spaces were defined in
Exercise 4.15 on page 344.)

(ii) State and prove the first isomorphism theorem for vector spaces.
4.35 Let V be a finite-dimensional vector space over a field k, and let � denote the

family of all the bases of V . Prove that � is a transitive GL(V )-set.
4.36 Recall that if U and W are subspaces of a vector space V such that U ∩ W = {0}

and U + W = V , then U is called a direct summand of V and W is called a
complement of U . In Exercise 4.19 on page 345, we saw that every subspace of a
finite-dimensional vector space is a direct summand.

(i) Let U = {(a, a) : a ∈ � }. Find all the complements of U in � 2 .
(ii) If U is a subspace of a finite-dimensional vector space V , prove that any

two complements of U are isomorphic.
4.37 Let T : V → W be a linear transformation between vector spaces over a field k,

and define
rank(T ) = dim(im T ).

(i) Let A be an m × n matrix over k. If TA : kn → km is the linear trans-
formation defined by TA(x) = Ax , where x is an n × 1 column vector,
prove that rank(A) = rank(TA). Conclude that one can compute the rank
of a linear transformation T : V → W by rank(T ) = rank(A), where
A = Y [T ]X for bases X of V and Y of W .

(ii) Prove that similar n × n matrices have the same rank.
(iii) If A is an m × n matrix and B is an p × m matrix, prove that

rank(B A) ≤ rank(A).

4.38 Let � n be equipped with the usual inner product: if v = (a1, . . . , an) and u =
(b1, . . . , bn), then (v, u) = a1b1 + · · · + anbn .

(i) A linear transformation U : � n → � n is called orthogonal if (Uv,Uw) =
(v,w) for all v,w ∈ � n .
Prove that every orthogonal transformation is nonsingular.

(ii) An orthonormal basis of kn is a basis v1, . . . , vn such that

(vi , v j ) = δi j ,

where (vi , v j ) is the inner product and δi j is the Kronecker delta. For
example, the standard basis is an orthonormal basis for the usual inner
product.
Prove that a linear transformation U : � n → � n is orthogonal if and
only if U (v1), . . . ,U (vn) is an orthonormal basis whenever v1, . . . , vn is
an orthonormal basis.
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(iii) If w ∈ � n and v1, . . . , vn is an orthonormal basis, then w =
∑n

i=1 civi .
Prove that ci = (w, vi ).

4.39 Let U : � n → � n be an orthogonal transformation, and let X = v1, . . . , vn be an
orthonormal basis. If O = X [U ]X , prove that O−1 = OT . (The matrix O is called
an orthogonal matrix.)

4.4 DETERMINANTS

We introduce determinants of square matrices, and we will use them to investi-
gate invertibility. Several important results in this section will be stated without
proof.

The usual, though inelegant, definition of the determinant of an n × n real
matrix A = [ai j ] is

det(A) =
∑

σ∈Sn

sgn(σ )aσ (1),1aσ (2),2 · · · aσ (n),n.

Recall that sgn(σ ) = ±1: it is +1 if σ is an even permutation, and it is −1 if σ is
odd. The term aσ (1),1aσ (2),2 · · · aσ (n),n has exactly one factor from each column
of A because all the second subscripts are distinct, and it has exactly one factor
from each row because all the first subscripts are distinct. One often calls this
formula the complete expansion of the determinant. From this definition, we see
that the formula for det(A)makes sense for n × n matrices A with entries in any
commutative ring R.

A better way to view the determinant is to consider it as a function

D = Dn : Matn(R) → R.

We now axiomatize some desirable properties of D, prove that these properties
characterize D and, finally, prove that such a function D exists. Regard an n × n
matrix A = [ai j ], not as n2 entries, but rather as the list α1, . . . , αn of its rows,
where αi = (ai1, . . . , ain) ∈ R n (here, we view R n , the set of all n-tuples with
entries in R, as an additive abelian group). Given any function of n variables, we
can construct functions of one variable by fixing n − 1 variables. In more detail,
given α1, . . . , αn, there are functions di : R n → R, one for each i , defined by

di (β) = D(α1, . . . , αi−1, β, αi+1, . . . , αn);

of course, the notation di is too abbreviated: it depends on D and on the list of
rows α1, . . . , α̂i , . . . , αn.
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Definition. Let R be a commutative ring. An n × n determinant function is a
function D : Matn(R) → R with the following properties:

(i) D is alternating: D(A) = D(α1, . . . , αn) = 0 if two rows of A are equal;

(ii) D is multilinear: for each list α1, . . . , αn, the functions di : R n → R,
given by di (β) = D(α1, . . . , αi−1, β, αi+1, . . . , αn), satisfy

di (β + γ ) = di (β)+ di (γ ) and di (cβ) = cdi(β)

for all c ∈ R;

(iii) D(e1, . . . , en) = 1, where e1, . . . , en is the standard basis; that is, if I is
the identity matrix, then D(I ) = 1.

One can prove that any determinant function D satisfies the following prop-
erties:

D(AB) = D(A)D(B) (1)

and

D(AT ) = D(A), (2)

where AT is the transpose of A. Moreover, it can be shown that D(A)must equal
the complete expansion, and so D is unique, if it exists. Let us be more precise.
For each n ≥ 1, there is at most one determinant function D : Matn(R) → R.

The rather long proof of existence of a determinant function Matn(R) → R
is by induction on n ≥ 1 (see Curtis, Linear Algebra, for example, which con-
siders the special case when R is a field. There is a proof for arbitrary commu-
tative rings, using exterior algebra, in my book, Advanced Modern Algebra). If
A = [a11] is a 1 × 1 matrix, define det(A) = a11. For the inductive step, as-
sume that there exists a (necessarily unique) determinant function defined on all
(n − 1)× (n − 1) matrices over R. Define, for any fixed i ,

det(A) =
∑

j

(−1)i+ jai j det(Ai j ), (3)

where Ai j denotes the (n − 1)× (n − 1) matrix obtained from A by deleting its
i th row and j th column.

Definition. Formula (3) is called the Laplace expansion of det(A) across the
i th row.

Since, for any i , Laplace expansion across the i th row is a determinant func-
tion, uniqueness implies that the determinant can be computed using Laplace ex-
pansion across any row. Moreover, Eq. (2), d(A) = d(AT ), implies that det(A)
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can be computed by Laplace expansion down any column (for transposing inter-
changes rows and columns). One of the key virtues of Laplace expansion is that
it is amenable to inductive proofs. For example, Exercise 4.44 on page 398 states
that if A = [ai j ] is a triangular matrix (either all entries below the diagonal are 0
or all entries above the diagonal are 0), then det(A) = a11a22 · · · ann , the product
of the diagonal entries.

When k is a field, there is an efficient way of computing det(A), using ele-
mentary row operations A → A′ that change a matrix A into a matrix A′:

Type I : add a scalar multiple of one row of A to another row;

Type II : multiply one row of A by a nonzero c ∈ k;

Type III : interchange two rows of A.

Recall that Gaussian elimination is the process of changing one matrix into an-
other by repeated application of elementary row operations.

If A → A′ is an elementary row operation, then det(A′) = r det(A) for
some r ∈ k: if the operation is of type II, then the multilinearity in the definition
of a determinant function shows that r = c; Exercise 4.40 shows that r = 1
for an elementary operation of type I; Exercise 4.42 shows that r = −1 for an
elementary operation of type III. When k is a field, one can put A into triangular
form by Gaussian elimination: there is a sequence of elementary row operations

A → A1 → A2 → · · · → Aq = 1,

where1 is triangular. Therefore, we can compute det(A) in terms of det(1) and
this sequence of operations, for Exercise 4.44 on page 398 shows that det(1) is
the product of its diagonal entries.

Let us return to matrices with entries in an arbitrary commutative ring R.
We now generalize the definition of an elementary operation of Type II so that it
multiplies one row of A by a unit c ∈ k.

We say that an n × n matrix A over a commutative ring R is invertible if
there exists a matrix B (with entries in R) with AB = I = B A. (When R is a
field, invertible is usually called nonsingular.)

Definition. Let A = [ai j ] be an n × n matrix with entries in a commutative
ring R. Then the adjoint8 of A is the matrix

adj(A) = [ci j ],

where
c j i = (−1)i+ j det(Ai j )

8There is another notion of adjoint, unrelated to this notion, on page 371.
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and Ai j denotes the (n − 1)× (n − 1)matrix obtained from A by deleting its i th
row and j th column.

The reversing of indices is deliberate. In words, adj(A) is the transpose of
the matrix whose i j entry is (−1)i+ j det(Ai j ). We often call ci j the i j -cofactor
of A.

Proposition 4.86. If A is an n × n matrix with entries in a commutative ring
R, then

A adj(A) = det(A)I = adj(A)A.

Proof. If A = [ai j ], let us write (A)i j = ai j in this proof. Thus, if C = [ci j ],
then (AC)i j =

∑
k aikck j . If we now define C = [ci j ] by ci j = (−1)i+ j det(A j i )

[so that C = adj(A)], then Laplace expansion across the i th row of A gives

(AC)i i =
∑

k

(−1)i+kaik det(Aik) = det(A).

We pause a moment before computing (AC)i j for j 6= i . Define M = [m pq ]
to be the matrix obtained from A by replacing its j th row (a j1, . . . , a jn) by its
i th row (ai1, . . . , ain); thus, m jk = aik for all k. Note that M jk = A jk for
all k (because M and A differ only in the j th row, which is deleted to obtain the
smaller matrices M jk and A jk).

When j 6= i ,

(AC)i j =
∑

k

aik(−1)i+k det(A jk)

=
∑

k

(−1)i+km jk det(M jk)

= det(M),

because aik = m jk and A jk = M jk . But det(M) = 0, because two of its rows
are equal. Therefore, A adj(A) = AC is the scalar matrix have diagonal entries
all equal to det(A). •

Corollary 4.87. If A is an n × n matrix with entries in a commutative ring R,
then A is invertible if and only if det(A) is a unit in R. Moreover,

det(A−1) = det(A)−1.Proof. If A is invertible, then there is a matrix B with AB = I . By Eq. (1), 1 =
det(I ) = det(AB) = det(A) det(B), so that det(A) is a unit in R. Conversely,
assume that det(A) is a unit in R. If B = det(A)−1adj(A), then Proposition 4.86
shows that AB = I = B A.

Now I = A A−1 gives 1 = det(I ) = det(A A−1) = det(A) det(A−1). There-
fore, det(A−1) = det(A)−1. •
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In the special case when R is a field, we see that A is invertible (i.e., A is
nonsingular) if and only if det(A) 6= 0 (a familiar result from a standard linear
algebra course). On the other hand, if A is an n ×n matrix with entries in

�
, then

A is invertible if and only if det(A) = ±1; that is, A−1 has only integer entries
if and only if det(A) = ±1. If R = k[x], where k is a field, then A is invertible
if and only if its determinant is a nonzero constant.

Proposition 4.88. Let P and M be n×n matrices with entries in a commutative
ring R. If P is invertible, then

det(P M P−1) = det(M).

Proof. We have det(P−1) = det(P)−1,by Corollary 4.87. Since determinants
lie in the commutative ring R,

det(P M P−1) = det(P) det(M) det(P−1)

= det(M) det(P) det(P−1) = det(M). •

Corollary 4.89. Let T : V → V be a linear transformation on a vector space V
over a field k, and let X and Y be bases of V . If A = X [T ]X and B = Y [T ]Y ,
then det(A) = det(B).

Proof. By Corollary 4.73, A and B are similar; that is, there is a nonsingular
(hence, invertible) matrix P with B = P AP−1. •

It follows from this corollary that every matrix associated to a linear transfor-
mation T has the same determinant, and so we can now define the determinant
of a linear transformation.

Definition. If T : V → V is a linear transformation on a finite-dimensional
vector space V , then

det(T ) = det(A),

where A = X [T ]X for some basis X of V .

As we have just remarked, this definition does not depend on the choice of X .
Perhaps the simplest linear transformations T : V → V are the scalar trans-

formations T = c1V ; that is, there is a scalar c ∈ k such that T (v) = cv for all
v ∈ V . We now ask, for an arbitrary linear transformation T : V → V , whether
there exists c ∈ k with T (v) = cv for some v ∈ V (of course, this can only be
interesting if v 6= 0).
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Definition. Let T : V → V be a linear transformation, where V is a finite-
dimensional vector space over a field k. A scalar c ∈ k is called an eigenvalue9

of T if there exists a nonzero vector v, called an eigenvector, with

T (v) = cv.

Proposition 4.90. Let T : V → V be a linear transformation, where V is a
vector space over a field k, and let c1, . . . , cr be distinct eigenvalues of T lying
in k. If vi is an eigenvector of T for ci , then the list X = v1, . . . , vr is linearly
independent.

Proof. We use induction on r ≥ 1. The base step r = 1 is true, for any
nonzero vector is a linearly independent list of length 1, and eigenvectors are, by
definition, nonzero. For the inductive step, assume that

a1v1 + · · · + ar+1vr+1 = 0.

Applying T to this equation gives

a1c1v1 + · · · + ar+1cr+1vr+1 = 0.

Multiply the first equation by cr+1, and then subtract from the second to obtain

a1(c1 − cr+1)v1 + · · · + ar (cr − cr+1)vr = 0.

By the inductive hypothesis, ai (ci − cr+1) = 0 for all i ≤ r . Since all the
eigenvalues are distinct, ci − cr+1 6= 0, and so ai = 0 for all i ≤ r . The original
equation now reads ar+1vr+1 = 0, and so ar+1 = 0, by the base step. Thus, all
the coefficients ai are zero, and v1, . . . , vr+1 is linearly independent. •

If T : V → V is a linear transformation, then so is c1V − T for any c ∈ k.
Thus, if v is an eigenvector of T , then (c1V − T )(v) = 0; that is, c1V − T
is singular. Conversely, if c1V − T is singular, then Corollary 4.80 provides a
nonzero vector v with (c1V − T )(v) = 0; that is, T (v) = cv. We have been
led to linear transformations of the form cI − T for scalar c ∈ k, and this leads
us to consider matrices x I − A, where A is a matrix representing T . Since we
have been treating matrices with entries in commutative rings, it is legitimate for
us to compute the determinant of x I − A, a matrix whose entries lie in k[x]. Of
course, det(x I − A) is a polynomial in k[x].

9The word eigenvalue is a partial translation of the original German word Eigenwert (Wert
means value). A translation of eigen is characteristic or proper, and one often sees char-
acteristic value used instead of eigenvalue. This partial translation also explains the terms
eigenvector and characteristic vector.
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Definition. If A is an n×n matrix with entries in a field k, then its characteristic
polynomial10 is

h A(x) = det(x I − A).

If R is a commutative ring and A is an n × n matrix with entries in R,
then det(A) ∈ R. In particular, the entries of x I − A lie in k[x], and so
hT (x) = det(x I − T ) ∈ k[x]; that is, the characteristic polynomial really is
a polynomial. Every eigenvalue of T is a root of hT (x), but there may be roots
of the characteristic polynomial that do not lie in k. For example,

[
0 1

−1 0

]
has no

real eigenvalues (its characteristic polynomial is x 2 + 1). Almost everyone ex-
tends the definition of eigenvalue to include such roots (of course, nothing new
occurs if all the roots of hT (x) lie in k).

The next proposition will enable us to speak of the characteristic polynomial
of a linear transformation.

Proposition 4.91. If A and B are similar n×n matrices with entries in a field k,
then

det(x I − A) = det(x I − B),

and so similar matrices have the same eigenvalues (occurring with the same
multiplicities).

Proof. If B = P AP−1, then

P(x I − A)P−1 = Px I P−1 − P AP−1 = x I − B.

Therefore, det(P(x I − A)P−1) = det(x I − B). But

det(P(x I − A)P−1) = det(P) det(x I − A) det(P−1) = det(x I − A). •

Thus, it makes sense to define det(x I − T ) to be det(x I − A), where A is
any matrix representing T .

Definition. If T : V → V is a linear transformation on a finite-dimensional
vector space V over a field k, then an eigenvalue of T is a root of its characteristic
polynomial hT (x).

10No one calls the characteristic polynomial the eigenpolynomial.
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Remark. Regard A =
[

0 1
−1 0

]
as a matrix over

�
. Its characteristic polynomial

h A(x) = x2 +1, and its eigenvalues are ±i . Since these eigenvalues do not lie in�
, there is no eigenvector in

� 2 for either of them; there do not exist real numbers
a and b with

[
0 1

−1 0

] [ a
b

]
=
[

ia
ib

]
. However, if we regard A as a complex matrix

(whose entries happen to be real), then we can find eigenvectors; for example,
(1, i)T is an eigenvector.

More generally, let A be an n × n matrix over a field k, and let T : kn → kn

be the linear transformation T (x) = Ax , where x ∈ kn is a column vector. By
Kronecker’s theorem (Theorem 3.118), there is an extension field K/k contain-
ing all the roots of h A(x); that is, K contains all the eigenvalues of A. Now
T̃ : K n → K n , defined by T̃ (̃x) = Ax̃ , is a linear transformation, where x̃ ∈ K n

is a column vector. Our original discussion of eigenvalues shows that if c ∈ K is
an eigenvalue of A, then there is an eigenvector ṽ ∈ K n with T̃ (̃v) = cṽ. �

Proposition 4.92. If T : V → V is a linear transformation, where dim(V ) = n,
then T has at most n eigenvalues.

Proof. If dim(V ) = n, then deg(hT ) = n, and the result follows from Theo-
rem 3.50. •

Definition. If A = [ai j ] is an n × n matrix, then its trace is the sum of its
diagonal entries:

tr(A) =
n∑

i=0

ai i .

Proposition 4.93. Let k be a field, and let A be an n × n matrix with entries
in k. Then h A(x) is a monic polynomial of degree n. Moreover, the coefficient of
xn−1 in h A(x) is − tr(A) and the constant term is (−1)n det(A).

Proof. Let A = [ai j ] and let B = x I − A; thus, B = [bi j ] = [xδi j − ai j ]
(where δi j is the Kronecker delta). The complete expansion is

det(B) =
∑

σ∈Sn

sgn(σ )bσ (1),1bσ (2),2 · · · bσ (n),n.

If σ is the identity (1) ∈ Sn, then the corresponding term in the complete expan-
sion of B = x I − A is

(x − a11)(x − a22) · · · (x − ann) =
∏

i

(x − ai i ),

a monic polynomial in k[x] of degree n. If σ 6= (1), then the σ th term in
the complete expansion cannot have exactly n − 1 factors from the diagonal of
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x I − A, for if σ fixes n − 1 indices, then σ = (1). Therefore, the sum of the
terms over all σ 6= (1) is either 0 or a polynomial in k[x] of degree at most n −2,
so that deg(h A) = n. By Exercise 3.99 on page 305, the coefficient of x n−1 is
−
∑

i ai i = − tr(A), and the constant term of h A(x) is h A(0) = det(−A) =
(−1)n det(A). •

Corollary 4.94. If A and B are similar n × n matrices with entries in a field k,
then A and B have the same trace and the same determinant.

Proof. Now A and B have the same characteristic polynomial, by Proposi-
tion 4.91, and so Proposition 4.93 applies to give tr(A) = tr(B) and det(A) =
det(B). •

Let A and B be similar matrices. Another proof that tr(A) = tr(B) is de-
scribed in Exercise 4.50 on page 399, while Proposition 4.88 shows that det(A) =
det(B).

The next corollary interprets the trace as the sum (with multiplicities) of
the eigenvalues and the determinant as the product (with multiplicities) of the
eigenvalues.

Corollary 4.95. Let A = [ai j ] be an n × n matrix with entries in a field k, and
let h A(x) =

∏n
i=1(x − αi ) be its characteristic polynomial. Then

tr(A) =
∑

i

αi and det(A) =
∏

i

αi .

Proof. By Exercise 3.99 on page 305, if f (x) =
∑

j c j x j ∈ k[x] is a monic
polynomial with f (x) =

∏n
i=1(x − αi ), then cn−1 = −

∑
j α j and c0 =

(−1)n
∏

j α j . This is true, in particular, for f (x) = h A(x). The result now
follows from Proposition 4.93, which identifies cn−1 with − tr(A) and c0 with
(−1)n det(A) (in each case, the sign cancels). •

Example 4.96.
Consider A =

[
1 2
3 4

]
as a matrix in Mat2(

�
). Its characteristic polynomial is

h A(x) = det

([
x − 1 −2
−3 x − 4

])
= x2 − 5x − 2.

The eigenvalues 1
2

(
5 ±

√
33
)

of A can be found by the quadratic formula. Note
that

− tr(A) = − 1
2

(
5 +

√
33
)
+ 1

2

(
5 −

√
33
)

= 5;
det(A) = 1

2

(
5 +

√
33
) 1

2

(
5 −

√
33
)

= −2. �
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If scalar matrices are the simplest matrices, then diagonal matrices are the
next simplest, where an n × n matrix D = [di j ] is diagonal if all its off-diagonal
entries di j = 0 for i 6= j .

Definition. An n × n matrix A is diagonalizable if A is similar to a diagonal
matrix.

Of course, every diagonal matrix is diagonalizable.

Proposition 4.97.

(i) An n × n matrix A over a field k is diagonalizable if and only if there is a
basis of kn comprised of eigenvectors of A.

(ii) If A is similar to a diagonal matrix D, then the diagonal entries of D are
the eigenvalues of A (with the same multiplicities).

Proof.
(i) As usual, define a linear transformation T : kn → kn by T (v) = Av. If A
is similar to a diagonal matrix D = [di j ], then there is a basis X = v1, . . . , vn
of kn with D = X [T ]X ; that is, T (v j ) = d1 jv1 + · · · + dnjvn . Since D is
diagonal, however, we have T (v j ) = d j jv j , and so the basis X is comprised of
eigenvectors. (All the vi are nonzero, for 0 is never a part of a basis.)

Conversely, let X = v1, . . . , vn be a basis of kn be comprised of eigen-
vectors; say, T (v j ) = c jv j for all j . The j th column of B = X [T ]X is
[0, . . . , 0, c j , 0, . . . , 0]T , for all j , and so B is a diagonal matrix with diago-
nal entries c1, . . . , cn. Finally, A and B are similar, for both represent the linear
transformation T relative to different bases.
(ii) If D is a diagonal matrix with diagonal entries di i , then det(x I − D) =∏

i (x − di i ), and so the eigenvalues of D are its diagonal entries. Since A and
D are similar, Proposition 4.91 shows that they have the same eigenvalues (with
the same multiplicities). •

Corollary 4.98. Let A be an n × n matrix over a field k which contains all the
eigenvalues of A. If the characteristic polynomial of A has no repeated roots,
then A is diagonalizable.

Proof. Since deg(h A) = n, the hypothesis gives n distinct eigenvalues c1, . . . , cn.
As these eigenvalues all lie in k, there are corresponding eigenvectors v1, . . . , vn
in kn ; that is, Avi = civi . By Proposition 4.90, the list v1, . . . , vn is linearly
independent, and hence it is a basis of kn . The result now follows from Proposi-
tion 4.97. •
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The converse of Corollary 4.98 is false. For example, the 2 × 2 identity
matrix I is obviously diagonalizable (it is actually diagonal), yet its characteristic
polynomial x2 − 2x + 1 has repeated roots.

Example 4.99.
Let A =

[
a b
b c

]
be a real (symmetric) matrix. We claim that the eigenvalues of A

are real. Now h A(x) = x2 − (a + c)x + (ac − b2). By the quadratic formula,
the eigenvalues are

x = 1
2

[
(a + c)±

√
(a + c)2 − 4(ac − b2)

]
.

But (a + c)2 − 4(ac − b2) = (a − c)2 + 4b2 ≥ 0, and so its square root is real.
Thus, the eigenvalues x are real. �

It is not clear how to generalize the argument in Example 4.99 for n ≥ 3,
but the result is true: the eigenvalues of a symmetric real matrix are real. The
theorem is called the principal axis theorem because of an application of it to
find normal forms for (higher dimensional) conic sections.

Recall Example 4.66: if T : � n → � n is a linear transformation, then its
adjoint is the linear transformation T ∗ : � n → � n such that

(T u, v) = (u, T ∗v)

for all u, v ∈ � n , where (u, v) is the usual inner product. This example also
shows that if A = E [T ]E , then E [T ∗]E = AT . Hence, if A is a symmetric
matrix, then T = T ∗.

Since eigenvalues of a real polynomial may be complex, we begin by ex-
tending the inner product on

� n (almost) to an inner product on
� n .

Definition. If u = (a1, . . . , an), v = (c1, . . . , cn) ∈
� n , define

(u, v) = a1c1 + · · · + ancn.

It is easy to check that (u + u′, v) = (u, v) + (u′, v) and that (qu, v) =
q(u, v), where u, u′, v ∈

� n and q ∈
�

. However, this is not an inner product
because it is not symmetric. Instead of (v, u) = (u, v), we now have (v, u) =
(u, v). It follows that

(u, qv) = q(u, v).

Theorem 4.100 (Principal Axis Theorem). If A is an n × n real symmetric
matrix, then all its eigenvalues are real, and A is diagonalizable.
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Proof. Define T :
� n →

� n by T (u) = Au. Since A is a symmetric matrix,
we see that T = T ∗; that is, for all u, v ∈

� n ,

(T u, v) = (u, T v).

We first prove that all the eigenvalues of A (and T ) are real. Let c be an eigen-
value of T , so that there is a nonzero v ∈

� n with T v = cv (these exist because�
is algebraically closed). We evaluate (T v, v) in two ways. On the one hand,

(T v, v) = (cv, v) = c(v, v). On the other hand, since T = T ∗, we have
(T v, v) = (v, T v) = (v, cv) = c(v, v). Now (v, v) 6= 0 because v 6= 0, so that
c = c; that is, c is real.

We prove that A is diagonalizable by induction on n ≥ 1. Since the base
step n = 1 is obvious, we proceed to the inductive step. Choose an eigenvalue
c of A; since c is real, there is an eigenvector v ∈ � n with Av = cv. Note that� n = 〈v〉⊕ 〈v〉⊥, by Exercise 4.20 on page 345, so that dim(〈v〉⊥) = n − 1. We
claim that T (〈v〉⊥) ⊆ 〈v〉⊥. If w ∈ 〈v〉⊥, then (w, v) = 0; we must show that
(Tw, v) = 0. Now (Tw, v) = (w, T ∗v) = (w, T v), since A is symmetric. But
(w, T v) = (w, cv) = c(w, v) = 0, so that Tw ∈ 〈v〉⊥, as desired. If T ′ is the
restriction of T to 〈v〉⊥, then T ′ : 〈v〉⊥ → 〈v〉⊥. Since (T u, w) = (u, Tw) for
all u, w ∈ � n , we have the equation (T ′u, w) = (u, T ′w), in particular, for all
u, w ∈ 〈v〉⊥. Therefore, the inductive hypothesis applies, and T ′ is diagonaliz-
able. Proposition 4.97 says that there is a basis v2, . . . , vn of 〈v〉⊥ consisting of
eigenvectors of T ′, hence of T . But v, v2, . . . , vn is a basis of

� n = 〈v〉 ⊕ 〈v〉⊥,
and so A is diagonalizable (using Proposition 4.97 again). •

Example 4.101.
Here is an example of an n × n matrix that is not diagonalizable. View Rψ , a
rotation about the origin by ψ (where ψ 6= 0◦ and ψ 6= 180◦), as a function�

→
�

(instead of as a function
� 2 → � 2 ). Now Rψ rotates every line ` =

{reiθ : r ∈ � } to the new line {rei(θ+ψ) : r ∈ � }. But if v = eiθ is an eigenvalue
of Rψ , then Rψ would carry the line ` = {reiθ : r ∈ � } into itself. �

To understand why some matrices are not diagonalizable, it is best to con-
sider the more general question when two arbitrary n × n matrices are similar.
If V is a finite-dimensional vector space over a field k, a linear transforma-
tion T : V → V yields many matrices, all of the form X [T ]X for some basis
X = v1, . . . , vn of V . By Corollary 4.73, if A and B are two such matrices, say,
A = X [T ]X and B = Y [T ]Y (where X and Y are bases of V ), then A and B are
similar; that is, there is a nonsingular matrix P = Y [1V ]X with B = P AP−1.
The basic idea is, given a matrix A, to find a “simplest” matrix C similar to A;
such a matrix C will be called a canonical form for A. One’s first candidate
for a canonical form is a diagonal matrix, but Example 4.101 says this is not
adequate. It turns out that every matrix has two canonical forms: its rational
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canonical form and its Jordan canonical form. The first type is built from com-
panion matrices (see Exercise 4.53 on page 399); the second type is built from
Jordan blocks, which are matrices of the form cI + L , where L consists of all
0’s except for 1’s just above the diagonal.

Here are some theorems proved using canonical forms.

Theorem. Let A and B be n × n matrices over a field k and let K/k be a field
extension. If A and B are similar over K , then they are similar over k. That
is, if there is a nonsingular matrix P over K with P AP−1 = B, then there is a
nonsingular matrix Q over k with Q AQ−1 = B.

For example, two real matrices that are similar over
�

must be similar over
the reals.

Theorem. Every n × n matrix is similar to its transpose.

Theorem (Cayley-Hamilton). Let A be an n × n matrix with characteristic
polynomial h A(x) = c0 + c1x + c2x2 + · · · + xn . Then

c0 I + c1 A + c2 A2 + · · · + An = 0.

There are proofs of the Cayley-Hamilton theorem without using canonical
forms (see, for example, Birkhoff–Mac Lane), but I prefer a proof that uses them.

EXERCISES

*4.40 Let R be a commutative ring, let D : Matn(R) → R be a determinant function,
and let A be an n × n matrix with rows α1, . . . , αn . Define di : R n → R by
di (β) = D(αi , . . . , αi−1, β, αi+1, . . . , αn).

(i) If i 6= j and r ∈ R, prove that

di (rα j ) = 0.

(ii) If i 6= j and r ∈ R, prove that di (αi + rα j ) = D(A).
(iii) If r j ∈ R, prove that

di (αi +
∑

j 6=i

r jα j ) = D(A).

4.41 If O is an orthogonal matrix, prove that det(O) = ±1.
*4.42 If A′ is obtained from an n × n matrix by interchanging two of its rows, prove that

det(A′) = − det(A).
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4.43 If A is an n × n matrix over a commutative ring R and if r ∈ R, prove that
det(r A) = rn det(A). In particular, det(−A) = (−1)n det(A).

*4.44 If A = [ai j ] is an n × n triangular matrix, prove that

det(A) = a11a22 · · · ann .

*4.45 If u0, . . . , un is a list in a field k, then the corresponding Vandermonde matrix is
the (n + 1)× (n + 1) matrix

V = V (u0, . . . , un−1) =




1 u0 u2
0 u3

0 · · · un
0

1 u1 u2
1 u3

1 · · · un
1

1 u2 u2
2 u3

2 · · · un
2

...
... · · · · · ·

...
...

1 un u2
n u3

n · · · un
n



.

(i) Prove that
det(V ) =

∏

i< j

(u j − ui ).

Conclude that V is nonsingular if all the u i are distinct.
(ii) If ω is a primitive nth root of unity (ωn = 1 and ωi 6= 1 for i < n), prove

that V (1, ω, ω2, . . . , ωn−1) is nonsingular and that

V (1, ω, ω2, . . . , ωn−1)−1 = 1
n V (1, ω−1, ω−2, . . . , ω−n+1).

(iii) Let f (x) = a0 + a1x + a2x2 + · · · + an xn ∈ k[x], and let yi = f (u i ).
Prove that the coefficient vector a = (a0, . . . , an) is a solution of the
linear system

V x = y, (4)

where y = (y0, . . . , yn). Conclude that if all the u i are distinct, then
f (x) is determined by Eq. (4).

4.46 Define a tridiagonal matrix to be an n × n matrix of the form

T [x1, . . . , xn] =




x1 1 0 0 · · · 0 0 0 0
−1 x2 1 0 · · · 0 0 0 0
0 −1 x3 1 · · · 0 0 0 0
0 0 −1 x4 · · · 0 0 0 0

...
. . .

...

0 0 0 0 · · · xn−3 1 0 0
0 0 0 0 · · · −1 xn−2 1 0
0 0 0 0 · · · 0 −1 xn−1 1
0 0 0 0 · · · 0 0 −1 xn




.

(i) If Dn = det(T [x1, . . . , xn ]), prove that D1 = x1, D2 = x1x2 + 1, and,
for all n > 2,

Dn = xn Dn−1 + Dn−2.
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(ii) Prove that if all xi = 1, then Dn = Fn+1, the nth Fibonacci number.
(Recall that F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2.)

4.47 Let k be a field and let k× be its multiplicative group of nonzero elements. Prove
that det : GL(n, k) → k× is a surjective group homomorphism whose kernel is
SL(n, k). Conclude that GL(n, k)/SL(n, k) ∼= k×.

4.48 Let R be a commutative ring, let A be an n × n with entries in R, let B be an
m × m matrix, and let D be the (n + m)× (n + m) matrix D =

[
A 0
0 B

]
. Prove that

det(D) = det(A) det(B).
*4.49 If A is an m × n matrix over a field k, prove that rank(A) ≥ d if and only if A has

a nonsingular d × d submatrix. Conclude that rank(A) is the maximum such d .
*4.50 (i) If A and B are n ×n matrices with entries in a commutative ring R, prove

that tr(AB) = tr(B A).
(ii) Using part (i) of this exercise, give another proof of Corollary 4.94: if A

and B are similar matrices with entries in a field k, then tr(A) = tr(B).
*4.51 If k is a field and A is an n × n matrix with entries in k, then we saw, in Exer-

cise 3.38 on page 248, that the map ϕ : k[x] → k[A], defined by f (x) 7→ f (A), is
a surjective ring homomorphism.

(i) Prove that ker ϕ = (m A). Conclude that k[A] ∼= k[x]/(m A).
(ii) If k is an algebraically closed field, proved that the following statements

are equivalent:

1. k[A] is a field;
2. k[A] is a domain;
3. A is a scalar matrix.

*4.52 Let A1, . . . , At be square matrices with entries in a commutative ring R. Prove
that det(A1 ⊕ · · · ⊕ At ) = det(A1) · · · det(At ), where the direct sum of an n × n
matrix A and an m × m matrix B is defined to be the (m + n)× (m + n) matrix

A ⊕ B =
[

A 0
0 B

]
.

*4.53 If g(x) = x + c0, then its companion matrix C(g) is the 1 × 1 matrix [−c0]; if
s ≥ 2 and g(x) = x s + cs−1x s−1 + · · · + c1x + c0, then its companion matrix
C(g) is the s × s matrix




0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c1
0 1 0 · · · 0 −c2
0 0 1 · · · 0 −c3
...

...
...

...
...

...

0 0 0 · · · 1 −cs−1



.

If C = C(g) is the companion matrix of g(x) ∈ k[x], prove that the characteristic
polynomial hC (x) = det(x I − C) = g(x).

*4.54 If A1, . . . , At and B1, . . . , Bt are square matrices with Ai similar to Bi for all i ,
prove that A1 ⊕ · · · ⊕ At is similar to B1 ⊕ · · · ⊕ Bt . (The direct sum of matrices
is defined in Exercise 4.52.)
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4.55 Prove that an n × n matrix A with entries in a field k is singular if and only if 0 is
an eigenvalue of A.

4.56 Let A be an n × n matrix over a field k. If c is an eigenvalue of A, prove, for all
m ≥ 1, that cm is an eigenvalue of Am .

4.57 Find all possible eigenvalues of n × n matrices A over � for which A and A2 are
similar.

4.58 An n × n matrix N is called nilpotent if N m = 0 for some m ≥ 1. Prove that all
the eigenvalues of a nilpotent matrix are 0. (The converse is also true, but it uses
the Cayley-Hamilton theorem: if all the eigenvalues of a matrix A are 0, then A is
nilpotent.)

4.59 If N is a nilpotent matrix, prove that I + N is nonsingular.

4.5 CODES

When we discussed codes earlier, in Example 1.73, our emphasis was on se-
curity: how can we guarantee that a message not be decoded by unauthorized
readers? We now leave the world of spies in order to consider the accuracy of a
received message. Suppose that Pat asks Mike for Ella’s phone number, but that a
dog barks as Mike answers. Because of this noise, Pat isn’t sure whether he heard
the number correctly, and he asks Mike to repeat the number. Most likely, one or
two repetitions will ensure that Pat will have Ella’s number. But simply repeating
a message several times may not be practical. A better paradigm involves sci-
entists on Earth wanting to see photographs sent from Mars or Saturn. In 2004,
robotic cameras sent to these planets encoded each photograph as a bitstring in
the following way. A photograph is divided into 1024×1024 pixels pi j (these are
the numbers actually used); thus, there are 210 × 210 = 220 = 1, 048, 576 pix-
els. Each pixel, pi j , is equipped with a 12-digit binary number ci j describing its
color, intensity, etc. The 210×210 matrix [ci j ] is then written as a single bitstring:
row 1, row 2, . . ., row 1024. In this way, one photograph is converted into a mes-
sage having roughly 12,000,000 bits. This binary number must be transmitted
across space, and space is “noisy” because cosmic rays interfere with electronic
signals. Clearly, it is not economical to send such a long message across space
several times and, even if it were sent repeatedly, it is most likely that no two
of the received messages would be identical. Still, as we saw with Ella’s phone
number, it is natural to repeat, and redundancy is the key to accurate reception.
We seek some practical ways of encoding messages efficiently so that mistakes
in the received message can be detected and, even better, corrected. This is what
is done to enable us to see reasonably faithful photographs sent from the planets.

Block Codes
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Sending a message over a noisy channel involves three steps: encoding the mes-
sage (incorporating some redundancy); transmitting the message; decoding the
received message. This mathematical study of codes began, in the 1940s, with
the work of C. E. Shannon, R. W. Hamming, and M. J. E. Golay.

Notation. We will usually denote the finite field
�

2 by � in this section.

Definition. Call a finite set � an alphabet, and call its elements letters. If m
and n are positive integers, then an encoding function is an injective function
E : � m → � n . The elements w = (a1, . . . , am) ∈ � m are called words, the
set C = im E ⊆ � n is called an [n,m]-block code11 over � , and the elements
of C are called codewords. (If � = � , then an [n,m]-block code is called a
binary code.) A function T : � n → � n is called a transmission function, and a
function D : � n → � m is called a decoding function.

Since encoding involves redundancy, it is usually the case that m < n. The
choice of m is not restrictive, for any long message can be subdivided into shorter
subwords of lengths ≤ m. A transmission function T may be sending a photo-
graph from outer space to Earth. Of course, we want to read the original message.
Were there no noise in the transmission, then any codeword c = E(w) could be
decoded as w = E−1(c), for encoding functions are injective. Since errors may
be introduced, however, the task is to equip a code with sufficient redundancy so
that one can recapture a codeword from its transmitted version; that is, we want
D ◦ T ◦ E = 1 � m .

Example 4.102.

(i) Parity Check [m + 1,m]-Code

Define an encoding function E : � m → � m+1 as follows: if w =
(a1, . . . , am) ∈ � m , then

E(w) = (a1, . . . , am, b),

where b =
∑m

i=1 ai . It is clear that E is injective, and it is easy to check
that the code C = im E ⊆ � m+1 is given by

C =
{
(b1, . . . , bm+1) ∈ � m+1 : b1 + · · · + bm+1 = 0

}
.

11This is called a block code because all code words have the same length, namely, n; it is
not difficult to modify block codes to allow words of varying length.
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If w ∈ � m , then the parity of E(w) is even in the sense that the sum of its
coordinates in � is 0. If one receives a message of odd parity (the coordi-
nate sum is 1), then one knows that there has been a mistake in transmis-
sion. Thus, this code can detect the presence of single errors; however, a
double error in the received message cannot be detected because the parity
is unchanged if, for example, two 0s are replaced by two 1s.

(ii) Triple Repetition [12, 4]-Code

Consider the encoding function E : � 4 → � 12 defined by E(w) =
(w,w,w); that is, C consists of all words of the form

E(a1, a2, a3, a4) = (a1, a2, a3, a4, a1, a2, a3, a4, a1, a2, a3, a4).

Now let T : � 12 → � 12 be a transmission function, and let the received
message be (r1, . . . , r12). Because of interference, it is possible that

T E(a1, a2, a3, a4) = (r1, . . . , r12) 6= E(a1, a2, a3, a4).

Define a decoding function D : � 12 → � 4 by

D(r1, . . . , r12) = (b1, b2, b3, b4)

as follows. If there were no errors in transmission, then r1 = r5 = r9.
In any event, since there are only two possible values for each ri , at least
two of these must be the same; define b1 to be this value. Similarly, define
b2, b3, and b4. (Messages must be decoded, and so we do not consider a
double repetition [8, 4]-code, for there is no natural candidate for decoding
(r1, . . . , r8) if, say, r1 6= r5.) Notice that this coding scheme can detect
errors: if ri , ri+4, ri+8 are not all equal, then there has been an error (alas,
a really bad error may not be detected). Indeed, this code can correct an
error in the sense that the decoding function replaces a mistake.

(iii) Two-dimensional Parity [9, 4]-Code

Let us write a word w = (r1, . . . , r9) ∈ � 9 as a 3 × 3 matrix



r1 r2 r3
r4 r5 r6
r7 r8 r9


 .

Consider the encoding function E : � 4 → � 9 defined by

E(a, b, c, d)=




a b r3
c d r6
r7 r8 r9


 =




a b a + b
c d c + d

a + c b + d a + b + c + d


 .

Thus, r3 and r6 are parity checks for the first two rows, r7 and r8 are parity
checks for the first two columns, and r9 is the parity check for r7 and r8
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as well as for r3 and r6. We have constructed a [9, 4]-code C = im E
consisting of all 3 × 3 matrices over � whose rows and columns are even.
Suppose that a received matrix is




1 0 1
1 1 1
1 1 0


 .

We see that the second row has an error, as does the first column, for their
entries do not sum to 0 in � . Hence, an error in the 2,1 entry has been de-
tected, and it can be corrected. We now show that 2 errors can be detected.
For example, suppose the received matrix is




1 0 1
1 0 1
1 1 0


 .

The parity checks on the rows are correct, but the parity checks detect
errors in the first two columns.

Comparing the triple repetition [12, 4]-code with this one, we see that
the present code is more efficient in that a word of length 4 is encoded into
a word of length 9 instead of a longer word of length 12. �

We are going to measure the distance between words in � n .

a b

c

detour

Figure 4.8 The Triangle Inequality

Definition. If X is a set, then a metric on X is a function δ : X × X → �
such

that:

(i) δ(a, b) ≥ 0 for all a, b ∈ X , and δ(a, b) = 0 if and only if a = b;

(ii) δ(a, b) = δ(b, a) for all a, b ∈ X ;

(iii) Triangle inequality
δ(a, b) ≤ δ(a, c)+ δ(c, b) for all a, b, c ∈ X .
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A metric has the essential properties that any self-respecting notion of dis-
tance should have. Distances are nonnegative, for two points should not be
−5 units apart, but there should be a positive distance between distinct points.
The distance from Urbana to Chicago should be the same as the distance from
Chicago to Urbana. The triangle inequality says that a “straight line” is the short-
est path between two points.

Example 4.103.

(i) If X = �
, then δ(x, y) = |x − y| is a metric.

This is the reason why absolute value is introduced in calculus.

(ii) Euclidean metric

If X = � n and x = (x1, . . . , xn), then δ(x, y) =
√∑n

i=1(xi − yi)
2 is a

metric. Note that
√

x2 = |x |, so that this definition agrees with the metric
in part (i) when n = 1.

(iii) L2 metric
Let L2[a, b] be the set of all square-integrable functions on [a, b]; that

is, L2[a, b] = { f : [a, b] → � :
∫ b

a f 2(x) dx < ∞}. Then

δ( f, g) =

√∫ b

a

(
f (x)− g(x)

)2
dx

is a metric on L2[a, b].
(iv) p-adic metric

If p is a prime and n ∈ �
, then n = pku, where k ≥ 0 and p � u; that

is, pk is the largest power of p dividing n. Write k = k(n). If we define
δ(n,m) = p−k(n−m), then δ is a metric on

�
. �

Definition. Let � be an alphabet. The Hamming distance12 is the function
δ : � n × � n → �

defined by

δ(w,w′) = the number of i with wi 6= w′
i ,

where w = (a1, . . . , an), w
′ = (a′

1, . . . , a′
n) ∈ � n .

Proposition 4.104. If � is an alphabet, then the Hamming distance is a metric
on � n .

12After R. W. Hamming.
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Proof. Let w = (a1, . . . , an), w
′ = (a′

1, . . . , a′
n) ∈ � n . Clearly, δ(w,w′) ≥ 0

and δ(w,w) = 0. On the other hand, if δ(w,w′) = 0, then ai = a′
i for all i , and

w = w′. Plainly, δ(w,w′) = δ(w′, w), and it remains only to prove the triangle
inequality.

If we define δi (w,w
′) = 1 if ai 6= a′

i and δi (w,w
′) = 0 if ai = a′

i , then

δ(w,w′) =
n∑

i=1

δi (w,w
′).

It suffices to prove δi (w,w
′) ≤ δi (w, z) + δi (z, w′) for each i , where z =

(b1, . . . , bn). Clearly, this inequality holds when δi (w,w
′) = 0. If δi (w,w

′) 6=
0, then ai 6= a′

i . Now δi (w, z)+ δi (z, w′) is either 0, 1, or 2, so that it suffices to
prove δi (w, z)+ δi (z, w′) 6= 0. If this sum is 0, then δi (w, z) = 0 = δi (z, w′);
that is, ai = bi and bi = a′

i , contradicting ai 6= a′
i . •

Definition. If � is an alphabet and C ⊆ � n is a code, then its minimum
distance is

d = d(C) = min
w,w′∈C
w 6=w′

δ(w,w′),

where δ is the Hamming distance.

The minimum distance is important enough that it is usually incorporated in
the parameters used to describe codes.

Notation. An (n, M, d)-code over � is a code C ⊆ � n , where � is an alpha-
bet, M = |C|, and d is its minimum distance.

Note that if � = q, then M = qm , for the encoding function E : � m → � n

is an injection. Thus, an (n, M, d)-code is an [n, logq M]-code in our earlier
notation.

We now give precise definitions of error detecting and error correcting.

Definition. Let � be an alphabet, and let C ⊆ � n be a code. The code C can
detect up to s errors if changing a codeword c ∈ C in at most s places does not
give a codeword. The code C can correct up to t errors if changing a codeword
c in at most t places gives a word w ∈ � n whose closest codeword is c.

For example, the parity check [m + 1,m]-code can detect up to 1 error be-
cause changing one coordinate of a codeword converts an even word into an odd
word.

These definitions can be restated in terms of the Hamming distance. The
code C detects up to s errors if, for each c ∈ C andw ∈ � n , we have δ(c, w) ≤ s
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implies w /∈ C . Similarly, the code C corrects up to t errors if δ(c, w) ≤ t
implies that no codeword is closer tow than c. Thus, the correction is the closest
codeword if there exists a unique such, and this uniqueness says that D : � n →

� m , which sends a received word T (E(w)) to its closest codeword, is a well-
defined function. We are not saying that this closest codeword is actually E(w),
but it is the best (and most natural) candidate for the truth.

Proposition 4.105. Let � be an alphabet, and let C ⊆ � n be an (n, M, d)-
code.

(i) If d ≥ s + 1, then C can detect up to s errors.

(ii) If d ≥ 2t + 1, then C can correct up to t errors.

Proof.
(i) If w 6= c differs from c in at most s places, then 0 < δ(c, w) ≤ s. But if
w ∈ C , then

s ≥ δ(c, w) ≥ d > s,

a contradiction.
(ii) If w is obtained from c by changing at most t places, then δ(c, w) ≤ t . If
there is a codeword c′ with δ(c′, w) < δ(c, w), then the triangle inequality gives

2t + 1 ≤ d

≤ δ(c, c′)

≤ δ(c, w)+ δ(w, c′)

≤ 2δ(c, w) ≤ 2t.

This contradiction shows that C corrects up to t errors. •

Example 4.106.

(i) The parity check [m + 1,m]-code of Example 4.102(i), consisting of all
words in � m+1 having an even number of 1’s, is an (m + 1, 2m, 2)-code.
The minimum distance is at least 2, for changing one place in a word with
an even number of 1’s yields a word with an odd number of 1’s. By Propo-
sition 4.105, this code detects 1 error. However, we see no error correcting.

(ii) The triple repetition [3m,m]-code of Example 4.102(ii), consisting of all
words in � 3m of the form (w,w,w), where w ∈ � m , is a (3m, 2m, 3)-
code, for one must change a codeword in at least 3 places to obtain another
codeword. By Proposition 4.105, this code detects 2 errors and corrects 1
error.
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(iii) The two-dimensional parity [9, 4]-code C in Example 4.102(iii) consists
of all 3 × 3 matrices over � such that the sum of the entries in each row
is 0 and the sum of the entries in each of column 1 and of column 2 are
0. Exercise 4.61 on page 427 asks you to check that at least 3 changes are
needed to pass from one codeword (here, a matrix) to another codeword.
Thus, d ≥ 3, and so C detects 2 errors and corrects 1 error. �

A code with large minimum distance d can correct many errors. For ex-
ample, a 101-times binary repetition code C is a [101m,m]-code with encoding
function E : � m → � 101m which repeats an m-letter word 101 times. Here,
d = 101, and so Proposition 4.105 shows that C can correct up to 50 errors.
Obviously, C is a rather impractical code. We can measure this impracticality.

Definition. The rate of information of an [n,m]-code is m/n. If | � | = q, then
we have seen that k = qm , and so the rate of information of an (n, M, d)-code
is (logq M)/n.

This notion of rate is a natural one: it says that n letters are used to send
an m-letter message. The multiple repetition [101m,m]-code just described is
inefficient, for it has rate 1

101 : sending a short message requires a very large
number of letters. On the other hand, the irredundant [m,m]-code with E =
1 � m : � m → � m , which merely repeats a message verbatim, has rate 1. Thus,
small rates can correct many errors, but they are inefficient; large rates (i.e., rates
near 1) may not even detect errors. An (n, M, d)-code over � can correct t
errors if d ≥ 2t + 1; hence, it is more accurate when d is large. Exercise 4.62
on page 428 gives the Singleton bound: if | � | = q, then M = qm ≤ qn−d+1.
Therefore, m + d ≤ n + 1. If m is large, then the rate m/n is close to 1, but now
d is small. On the other hand, if m is small, then the rate is small, but now d is
large; that is, the code can correct many errors. Thus, we seek a compromise:
(n, M, d)-codes in which both M and d are “large,” for such codes are both
efficient and accurate. There are other bounds on the number of codewords in an
(n, M, d)-code over an alphabet � with | � | = q:

qn

∑d−1
i=0

(n
i

)
(q − 1)i

≤ M ≤
qn

∑ t
i=0

(n
i

)
(q − 1)i

(see Exercises 4.63 and 4.64 on page 428). The lower bound is called the Gilbert-
Varshamov Bound; the upper bound is called the Hamming Bound (or the Sphere-
Packing Bound).

Linear Codes
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If � is an arbitrary set, then defining a function E : � m → � n can be quite
complicated. On the other hand, if � is a field, then � m and � n are vector spaces
equipped with the standard bases. Moreover, if E is a linear transformation, then
it can be efficiently described by a formula: there is an n × m matrix A with
E(w) = wA, where w is an 1 × m row vector.

Definition. An [n,m]-linear code over a finite field k is an m-dimensional
subspace of kn . When dealing with a linear code, we assume that the encod-
ing function E : km → kn and the decoding function D : kn → km are linear
transformations.

One usually has no control over transmission functions, and so it is not rea-
sonable to assume that a transmission function of a linear code is a linear trans-
formation.

In contrast to earlier sections, we will now view vectors w ∈ kn as 1 × n
rows, and we will denote n × 1 columns as wT .

If k = �
q is the finite field with q elements, then an [n,m]-linear code is

an (n, qm, d)-code, where d is its minimum distance. In a linear code, there is
another way of finding its minimum distance.

Definition. If w = (a1, . . . , an) ∈ kn , where k is a field, then the support of w
is defined by

Supp(w) = {i : ai 6= 0}.

If C is a linear (n, M, d)-code, then the Hamming weight of w is

wt(w) = | Supp(w)|;

that is, wt(w) is the number of nonzero coordinates in w.

Note that wt(w) = δ(w, 0), where δ is the Hamming distance and 0 =
(0, . . . , 0) (which lies in C because C is a subspace of kn ).

Proposition 4.107. If C is a linear (n, M, d)-code over a finite field
�

q , then

d = min
c∈C
c 6=0

{
wt(c) : c ∈ C

}
.

Thus, d is the smallest weight among nonzero codewords.
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Proof. Since C is a subspace, w,w′ ∈ C implies w − w′ ∈ C . Thus,

d = min
w,w′∈C
w 6=w′

δ(w,w′)

= min
w,w′∈C
w 6=w′

{
wt(w − w′) : w,w′ ∈ C

}

= min
c∈C
c 6=0

{
wt(c) : c ∈ C

}
. •

We are going to introduce a matrix which describes a given linear code, but
we first introduce a partition notation for a matrix U .

Notation. If A is an m × r matrix and B is an m × s matrix, then

U = [A|B]
is the m × (r + s)matrix whose first r columns give the matrix A and whose last
s columns give the matrix B.

It follows from the formula defining matrix multiplication that if N is any
p × m matrix, where p ≥ 1, then

N [A|B] = [N A|N B].
Let σ ∈ Sn be a permutation, and let Pσ be the n × n permutation matrix

obtained from the identity matrix I by permuting its columns by σ . If k is a field
and c = (a1, . . . , an) ∈ kn is a 1 × n row matrix, then

cPσ = (a1, . . . , an)Pσ = (aσ (1), . . . , aσ (n)).

[For example, the first coordinate of cPσ is the dot product of c with the first
column of Pσ . But c · eσ (1) = (a1, . . . , an) · (0, . . . , 1, . . . , 0), where 1 occurs in
the σ(1)th coordinate. Thus, this entry is aσ (1).] If Pσ is an n × n permutation
matrix, define σ∗ : kn → kn by

σ∗(c) = cPσ .

Definition. Two [n,m]-linear codes C,C ′ over a field k are permutation-
equivalent if there is σ ∈ Sn with σ∗(C) = C ′; that is, c = (a1, . . . , an) ∈ C if
and only if (aσ (1), . . . , aσ (n)) ∈ C ′.

It is easy to see that permutation-equivalence is an equivalence relation on
the family of all linear codes in kn . Permutation-equivalent codes are essentially
the same. For example, if all words in a code C are reversed, then the new,
reversed, code has the same parameters as the original code.

If E : km → kn is an encoding functions with C = im E , then E ′ = σ∗ ◦ E
is an encoding function for C ′.
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Proposition 4.108. If C is a linear [n,m]-code over a field k, then there are a
linear code C ′ permutation-equivalent to C and an m × n matrix G of the form
G = [I |B], where I is the m × m identity matrix, such that

C ′ =
{
w′G : w′ ∈ km}.

Proof. If e1, . . . , em is the standard basis of km and c1, . . . , cm is some basis
of C , define a linear transformation E : km → kn by E(ei ) = ci . Now E is
an injection, by Lemma 4.76(ii); in fact, E is an isomorphism km → C . By
Proposition 4.63, E(w) = AwT , where w ∈ km is viewed as an 1 × m row,
and A is the n × m matrix whose columns are the vectors E(ei )

T . Since it
is customary in coding theory to consider vectors in km as rows instead of as
columns, we write E(w) = wN , where N = AT is an m × n matrix.

By Proposition 4.39, Gaussian elimination converts the matrix N to a matrix
G in echelon form. There is a nonsingular m × m matrix Q and an n × n
permutation matrix Pσ with G = Q N Pσ = [U |B] for an m × m matrix U in
echelon form and an m × (n − m) matrix B. Since E is injective, the matrix U
has no zero rows, and so it is the identity; thus, G = [I |B]. Define

C ′ = {w′G : w′ ∈ km }.

Now e1G, . . . , emG is a linearly independent list, and so m ≤ dim(C ′). We
claim that C and C ′ are permutation-equivalent; that is, C ′ = σ∗(C). Let c′ =
w′G ∈ C ′, define w = w′Q, and define c = wN . Note that c ∈ C because
wN = E(w) ∈ C . Then

c′ = w′G

= w′Q N Pσ
= wN Pσ
= cPσ
= σ∗(c).

Therefore, C ′ ⊆ σ∗(C). Hence, m ≤ dim(C ′) ≤ dim(σ∗(C)) = dim(C) = m.
By Corollary 4.25(ii), we have C ′ = σ∗(C), and so C and C ′ are permutation-
equivalent. •

Definition. If C is an [n,m]-linear code over a field k, then an m × n matrix
G with C = {wG : w ∈ kn} is called a generating matrix of C . An echelon
generating matrix of C is a generating matrix of the form G = [I |B], where I
is the m × m identity matrix.

Every linear code C has a generating matrix: let G be an m ×n matrix whose
rows form a basis of C . In light of Proposition 4.108, we may assume that every
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linear code has an echelon generating matrix. A generating matrix for a code C
gives an encoding function for it: define E(w) = wG.

The examples of codes we have given so far are, in fact, binary linear codes;
that is, they are linear codes over k = � .

Example 4.109.

(i) Consider the parity check [m + 1,m]-code C in Example 4.102(i). The
codewords are all those c = (b1, . . . , bm+1) ∈ � m+1 for which

∑
bi = 0;

the codewords form a subspace, and so C is a linear code. Recall that the
encoding function E : � m → � m+1 is defined by

E(a1, . . . , am) = (a1, . . . , am, b),

where b =
∑m

i=1 ai . It is easy to see that E is a linear transformation.
Moreover, an echelon generating matrix is the m × (m + 1) matrix

G =




1 0 0 · · · 0 1
0 1 0 · · · 0 1

...
...

...
...

0 0 0 · · · 1 1


 .

In partition notation, G = [I |B], where I is the m × m identity matrix and
B is the column of all 1’s.

(ii) Consider the two-dimensional parity [9, 4]-code in Example 4.102(iii).
By definition,

E : (a, b, c, d) 7→




a b a + b
c d c + d

a + c b + d a + b + c + d


 ;

it is easy to check that E is a linear transformation. We find a generating
matrix G by evaluating E on the standard basis of � 4 , for the i th row of G
is ei G.

G =




1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 1
0 0 1 0 0 1 1 0 1
0 0 0 1 0 1 0 1 1


 .

Thus, G is an echelon generating matrix.

(iii) Consider the triple repetition [3m,m]-code in Example 4.102(ii). An ech-
elon generating matrix for C is G = [I |I |I ], where I is the m ×m identity
matrix.
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(iv) The examples above are too simple. Given a linear [n.m]-code C with en-
coding function E : km → kn , one generating matrix N for C has rows
E(e1), . . . , E(em), where e1, . . . , em is the standard basis of km . In gen-
eral, Gaussian elimination is needed to convert N into an echelon generat-
ing matrix for C (or a linear code C ′ permutation-equivalent to C). �

If G = [I |B] is an echelon generating matrix of a linear [n,m]-code C , then

wG = w[I |B] = [w|wB]

for allw ∈ km . If there were no errors in transmitting C , then it is obvious how to
decode a codewordwG: just take its first m coordinates. The last n −m columns
of an echelon generating matrix G = [I |B] should be viewed as generalizing the
last column of the echelon generating matrix of the [m +1,m]-parity check code
in Example 4.109(i). Thus, the last columns B in G = [I |B] are a generalized
parity check providing redundancy to help decode a message sent over a noisy
channel.

In Example 4.109, we started with a linear code and found an echelon gen-
erating matrix for it. Now we start with an echelon generating matrix G and use
it to construct a code C = {wG : w ∈ km }.

Example 4.110.
Consider the 4 × 7 matrix

G =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 ,

and define the Hamming [7, 4]-code to be C = {wG : w ∈ � 4 }.
Obviously, the rate of information is r = 4

7 . Let us compute the minimum
distance d of C . Denote the rows of G by γ1, γ2, γ3, γ4. Since k = � here,
linear combinations

∑
i aiγi are just sums (for ai is either 0 or 1). By Proposi-

tion 4.107, we can compute d by computing weights of codewords. Now

wt(γ1) = 3; wt(γ2) = 3; wt(γ3) = 3; wt(γ4) = 4.

There are
(4

2

)
= 6 sums of two rows, and a short calculation shows that the

minimum weight of these is 3; there are
(4

3

)
= 4 sums of three rows, and the

minimum weight is 3; the sum of all four rows has weight 7. We conclude that
the minimum distance d of C is 3, and so C detects 2 errors and corrects 1 error,
by Proposition 4.105

This construction can be generalized. If ` ≥ 3, there are 2` − 1 nonzero
words in � ` . Define a (2` − 1 − `) × (2` − 1) matrix G = [I |B], where the
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columns of B are all w ∈ � 2`−1−` with wt(w) ≥ 2. Define the Hamming
[2` − 1, 2` − 1 − `]-code to be C = {wG : w ∈ � 2`−1−`}. Of course, G is an
echelon generating matrix for C . The rate of information of a Hamming code is

2` − 1 − `

2` − 1
= 1 −

`

2` − 1
;

as ` gets large, the rate of information of the `th Hamming code gets very close
to 1. It can be shown that the minimum distance of every Hamming code is 3, as
in the [7, 4]-code. �

We now wish to construct (linear) codes which can correct many errors and
which also have high rates of information.

Recall Theorem 3.115: If k is a field, if f (x) ∈ k[x], and if I = ( f (x)) is the
principal ideal generated by f (x), then the quotient ring k[x]/I is a vector space
over k with basis the list 1, z, z2, . . . , zn−1, where z = x + I . Thus, k[x]/I is
n-dimensional, and there is a (vector space) isomorphism kn → k[x]/I . Let us
denote words in kn by (a0, a1, . . . , an−1) instead of by (a1, a2, . . . , an), for then
(a0, a1, . . . , an−1) 7→ a0+a1z+· · ·+an−1zn−1 is an isomorphism kn → k[x]/I .

Definition. A cyclic code of length n over a field is a linear code C such that

(a0, a1, . . . , an−1) ∈ C implies (an−1, a0, . . . , an−2) ∈ C.

That k[x]/I is a commutative ring in addtion to being a vector space will
now be exploited. As above, identify a word (a0, a1, . . . , an−1) ∈ kn with the
(coset of) a polynomial a0 + a1z + · · · + an−1zn−1 + I ∈ k[x]/I .

Proposition 4.111. Let k be a finite field, let I = (x n − 1) be the principal
ideal in k[x] generated by xn − 1, and let z = x + I . Then C ⊆ k[x]/I is a
cyclic code if and only if C is an ideal in the commutative ring k[x]/I . Moreover,
C = (g(z)), where g(x) is a monic divisor of xn − 1 in k[x].

Proof. Let C be an ideal in k[x]/I , and let c = a0 +a1z +· · ·+an−1zn−1 ∈ C .
Since C is an ideal, C contains zc = a0z +a1z2 +· · ·+an−2zn−1 +an−1zn . But
zn = 1 (because z is a root of xn −1). Hence, an−1 +a0z +· · ·+an−2zn−1 ∈ C ,
and C is cyclic.

Conversely, assume that C is a cyclic code. Since C is a linear code, C is
closed under addition and scalar multiplication by elements in k. As we have just
seen, multiplication by z corresponds to shifting coefficients one step to the right
(and making an−1 the constant term). The reader may prove, by induction on i ,
that C is closed under multiplication by all elements b0 +b1z +· · ·+bi−1zi−1 ∈
k[x]/I . Therefore, C is an ideal.
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Let β : k[x] → k[x]/I be the natural map, and consider the inverse image
J = β−1(C) = { f (x) ∈ k[x] : f (z) ∈ C}. By Exercise 3.45 on page 248, J is
an ideal in k[x] containing xn − 1. But every ideal in k[x] is a principal ideal,
by Theorem 3.59, so that there is a monic g(x) ∈ k[x] with J = (g(x)). Since
xn − 1 ∈ J , we have xn − 1 = h(x)g(x) for some polynomial h(x); that is,
g(x) | (xn − 1). Finally, since J is generated by g(x), its image C = β(J ) is
generated by β(g(x)) = g(z). •

Definition. Let C ⊆ k[x]/I be a cyclic code, where I = (x n − 1). A monic
polynomial g(x) ∈ k[x] is called a generating polynomial for C if C = (g(z)),
where z = x + I .

As in Proposition 4.111, a generating polynomial g(x) of a cyclic code of
length n is a divisor of xn − 1.

Corollary 4.112. If C is a cyclic code of length n over a field k with generating
polynomial g(x), then dim(C) = n − deg(g).

Proof. Since g(x) | (xn − 1), there is an inclusion of ideals I = (xn − 1) ⊆
(g(x)) = J . Regarding k[x] and its quotients merely as vector spaces over k,
we see that “enlargement of coset” γ : k[x]/I → k[x]/J , given by h(x)+ I 7→
h(x) + J , is a surjective linear transformation. To compute ker γ , consider the
diagram

k[x] α //

β
$$HH

HHH
HH

HH
k[x]/I

γ

��
k[x]/J,

where α and β are the natural maps. Now β = γ ◦ α and α, β, and γ are
surjective. Thus, the hypothesis of Exercise 2.91 on page 188 holds, and so

ker γ = α(kerβ) = α((g(x)) = (g(z)) = C,

where z = x + I . As vector spaces, (k[x]/I )/C ∼= k[x]/J (this is just the first
isomorphism theorem). Hence,

dim(k[x]/I ) − dim((C) = dim(k[x]/J ).

But dim(k[x]/I ) = deg(xn − 1) = n and dim(k[x]/J ) = dim(k[x]/(g(x)) =
deg(g), so that dim(C) = n − deg(g). •
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Corollary 4.113. If C is a cyclic code of length n with generating polynomial
g(x) = g0 + g1x + · · · + gs x s , then a generating matrix for C is the (n − s)× n
matrix:

G =




g0 g1 g2 · · · gs 0 0 · · · 0
0 g0 g1 g2 · · · gs 0 · · · 0
0 0 g0 g1 g2 · · · gs · · · 0

...
...

...

0 0 · · · 0 g0 g1 g2 · · · gs



.

Proof. Since C is an ideal, g(x), xg(x), x2g(x), . . . , xn−sg(x) are codewords,
and these codewords correspond to the rows of G. Write G = [T |B], where T is
the (n − s)× (n − s) submatrix consisting of the first n − s columns of G. As T
is an upper triangular matrix with all diagonal entries g0, we have det(T ) = gs

0,
by Exercise 4.44 on page 398. Now g0 is, to sign, the product of all the roots
of g(x); but the roots of g(x) are roots of unity, because g(x) | (x n − 1), and
so g0 6= 0. Hence, det(T ) 6= 0, and the list of n − s rows of G is linearly
independent. Since dim(C) = n − s, by Corollary 4.112, the list of rows of G is
a basis of C , and so G is a generating matrix for C . •

The roots of xn − 1 are nth roots of unity. Recall that an element z in a field
k is a primitive nth root of unity if zn = 1 but zi 6= 1 for all i with 0 < i < n.

Lemma 4.114. Let
�

q denote the finite field of q elements. If n is a positive
integer, then there exists a primitive nth root of unity in some extension field of
�

q if and only if (n, q) = 1.

Proof. Assume that (n, q) = 1, and let E/
�

q be a splitting field of f (x) =
xn − 1 over

�
q (actually, we need only that f (x) splits over E , which follows

from Kronecker’s Theorem 3.118). Now the derivative f ′(x) = nxn−1 − 1 6= 0,
so that ( f, f ′) = 1 (they have no common root); hence, f (x) has no repeated
roots, by Exercise 3.63 on page 271. Thus, if K is the set of all the roots of
f (x) = xn − 1, then K is a multiplicative group of order n. But K is cyclic, by
Theorem 3.122, and a generator of K must be a primitive nth root of unity.

Conversely, assume that there exists a primitive nth root of unity. Now q =
ps for some prime p. If (n, q) 6= 1, then p | n; that is, n = pu for some
integer u. Hence, xn − 1 = x pu − 1 = (xu − 1)p, and so the multiplicative
group of all nth roots of unity has fewer than n elements. Therefore, there is no
primitive nth root of unity. •

The following theorem will enable us to construct codes that can correct
many errors.
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Theorem 4.115 (Bose-Chaudhuri-Hocquenghem). Let
�

q be the field of
q elements, let n be a positive integer with (n, q) = 1, and let C be a cyclic
code with generating polynomial g(x). If ζ is a primitive nth root of unity, and if
consecutive powers ζ u , ζ u+1, . . . , ζ u+` are roots of g(x), where u + ` < n, then
d = d(C) ≥ `+ 2.

Proof. A codeword c = (c0, c1, . . . , cn−1) ∈ ( �
q )

n is identified with the poly-
nomial c0 + c1x + . . .+ cn−1xn−1 ∈ �

q [x], and its weight wt(c) is the number
of its nonzero coefficients. By Proposition 4.107, it suffices to prove that ev-
ery nonzero codeword has at least ` + 2 nonzero coefficients. Suppose, on the
contrary, that there exists a nonzero codeword c(x) with wt(c) < ` + 2; thus,
c(x) = ci1 x i1 + · · · + ci`+1 x i`+1 , where i1 < · · · < i`+1. If α ∈ �

q , then c(α) is
the dot product

c(α) = [ci1 ci2 . . . ci`+1 ][1 αi1 αi2 . . . αi`+1 ]T .

Now form the (`+ 1)× (`+ 1) matrix W whose j th row, for 0 ≤ j ≤ `, arises
from ζ u+ j :

W =




ζ ui1 ζ ui2 . . . ζ ui`+1

ζ (u+1)i1 ζ (u+1)i2 . . . ζ (u+1)i`+1

...
...

ζ (u+`)i1 ζ (u+`)i2 . . . ζ (u+`)i`+1



.

Thus, if c∗ = [ci1 ci2 . . . ci`+1 ], then

W cT
∗ = [c(ζ u) c(ζ u+1) . . . c(ζ u+`)]T = 0.

Factoring out ζ ui j from the j th column of W gives the (transpose of the)
(`+ 1)× (`+ 1) Vandermonde matrix

V =




1 1 . . . 1

ζ i1 ζ i2 . . . ζ i`+1

ζ 2i1 ζ 2i2 . . . ζ 2i`+1

...
...

ζ `i1 ζ `i2 . . . ζ `i`



.

By Exercise 4.45 on page 398, we have

det(W ) = ζ ui1 · · · ζ ui` det(V ) = ζ ui1 · · · ζ ui`
∏

j<k

(ζ ik − ζ i j ).

We claim that all the ζ i j are distinct. If j < k, then 0 ≤ ik − i j < n (because
i j < ik < n), and so ζ ik−i j = 1. Hence, if ζ ik = ζ i j , then we contradict ζ being
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a primitive nth root of unity. We conclude that det(W ) 6= 0. But cT
∗ 6= 0 and

W cT
∗ = 0, contradicting the nonsingularity of W . Therefore, no codeword of

weight < `+ 2 exists, and d(C) ≥ `+ 2. •

Definition. A linear code over a field k is a BCH-code of length n if it is a
cyclic code having a generating polynomial g(x) which has consecutive powers
ζ u , ζ u+1, . . . , ζ u+` among its roots, where ζ is a primitive nth root of unity and
0 ≤ u ≤ u + ` < n.

Corollary 4.116. Let C be a BCH-code of length n with generating polynomial
g(x). If consecutive powers ζ u , ζ u+1, . . . , ζ u+` occur among the roots of g(x),
where ` = 2t or ` = 2t + 1 and u + ` < n, then C corrects up to t errors.

Proof. By Theorem 4.115, we have d(C) ≥ ` + 2 ≥ 2t + 1, and so Proposi-
tion 4.105 applies. •

Corollary 4.117. For any prime p and any positive integer t , there exists a
BCH-code C over

�
p which corrects up to t errors.

Proof. Let k = �
q , where q is a power of p and 2t + 1 ≤ q − 1. By Theo-

rem 3.122, the multiplicative group k× is a cyclic group of order q−1, and a gen-
erator ζ is a primitive (q−1)th root of unity; hence, ζ, ζ 2, . . . , ζ 2t+1 are distinct.
For each j , Corollary 3.117 gives a monic irreducible polynomial h j (x) ∈ k[x]
having ζ j as a root. Finally, define

g(x) = lcm{h1(x), . . . , h2t+1(x)},

and define C to be the BCH-code with generating polynomial g(x). The result
now follows from Corollary 4.116. •

To see whether a cyclic code is a BCH-code, we must determine the roots of
its generating polynomial. Thus, finite fields must be investigated in more detail.

Example 4.118.
Let us describe

�
8 . We know that its multiplicative group of nonzero elements

is cyclic of order 7, and a generator ζ is a primitive 7th root of unity. There
is an irreducible polynomial m(x) ∈ �

2 [x] having ζ as a root. As in Proposi-
tion 3.116, deg(m) = 3 = dim � 2 (

�
8 ). In Example 3.99, we saw that there are

only two irreducible cubics in
�

2 [x], namely, x3 + x + 1 and x3 + x2 + 1. To be
explicit, we choose ζ to be a root of the first, so that

ζ 3 = ζ + 1.
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+ 1 ζ ζ 2 ζ 3 ζ 4 ζ 5 ζ 6

1 0 ζ 3 ζ 6 ζ ζ 5 ζ 4 ζ 2

ζ 0 ζ 4 1 ζ 3 ζ 6 ζ 5

ζ 2 0 ζ 5 ζ ζ 3 1

ζ 3 0 ζ 6 ζ 2 ζ 4

ζ 4 0 1 ζ 3

ζ 5 0 ζ

ζ 6 0

Table 4.1: Addition Table for
�

8

We now give the addition table for
�

8 . Since
�

8 has characteristic 2, the diagonal
entries have the form ζ i + ζ i = 2ζ i = 0; since addition is commutative, the
addition table is a symmetric matrix, and so it is only necessary to compute its
upper triangular half. Let us compute the first row of Table 4.1 consisting of
ζ j + 1 for 1 ≤ j ≤ 6. We have ζ + 1 = ζ 3, and ζ 3 + 1 = (ζ + 1) + 1 = ζ .
Next,

ζ 2 + 1 = (ζ + 1)2 = (ζ 3)2 = ζ 6;
ζ 4 + 1 = (ζ 2 + 1)2 = (ζ 6)2 = ζ 12 = ζ 5;
ζ 6 + 1 = (ζ 3 + 1)2 = ζ 2.

It follows that ζ 5 +1 = ζ 4, for all the other powers of ζ have occurred. Now use
the first row to compute the second row. For example, ζ j + ζ = ζ(ζ j−1 + 1).
The reader is invited to verify the remaining entries. �

Example 4.119.

(i) The factorization into irreducibles of x 7 − 1 in
�

2 [x] is

x7 − 1 = x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).

Let C be the cyclic binary code of length 7 having generating polynomial
g(x) = x3 + x + 1. Now one root of g(x) is a primitive 7th root of unity,
say, ζ . To find the other roots, we use the division algorithm to obtain

g(x) = x3 + x + 1 = (x + ζ )(x2 + ζ x + ζ 6).

The quadratic formula does not apply over fields of characteristic 2. How-
ever, by evaluating f (ζ i ) for each i , using Table 4.1, we can show that ζ 2
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and ζ 4 are the roots of x2 + ζ x + ζ 6. Thus, ζ, ζ 2 are consecutive roots of
g(x), and so C is a BCH-code with ` = 1. In fact, C is a [7, 4]-code (for
7 − deg(g) = 4) with d(C) ≥ `+ 2 = 3. By Corollary 4.113, a generating
matrix for C is

G =




1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


 .

The echelon form of G is

G′ =




1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


 .

Thus, C is the Hamming [7, 4]-code in Example 4.110, and so this code
is a BCH-code. (It can be proved that all the Hamming codes are BCH-
codes.)

(ii) Consider the cyclic binary code C of length 7 having generator polynomial

g(x) = (x + 1)(x3 + x + 1) = x4 + x3 + x2 + 1.

Now 1 = ζ 0, ζ, ζ 2 are roots of g(x), and so C is a BCH-code; in fact, C is
a [7, 3]-code with d(C) ≥ 4. By Corollary 4.113, a generating matrix for
C is

G =




1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1


 . �

It is not obvious how to compute the degree of the generating polynomial
of a BCH-code, although there are extensive tables of them. The degrees of
generating polynomials of the following BCH-codes can be computed easily,
because a primitive nth root of unity lies in the ground field.

Definition. A Reed-Solomon code over the finite field
�

q is a BCH-code with
generating polynomial

g(x) = (x − ζ )(x − ζ 2) · · · (x − ζ d−1),

where 1 < d < q − 1 and ζ is a primitive (q − 1)th root of unity in
�

q .

By Theorem 4.115, we have d(C) ≥ d + 1 (for ` = d − 2) if C is a Reed-
Solomon code with minimum distance d(C).
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Corollary 4.120 (Reed-Solomon). There exists a t-error correcting BCH-
code over

�

22t+1 with rate 1 − [2t/(22t+1 − 1)].

Proof. Let ζ be a primitive element of
�

q , where q = 22t+1, and define

g(x) = (x − ζ )(x − ζ 2) · · · (x − ζ 2t ) ∈ �
q [x].

The Reed-Solomon-code C with generating polynomial g(x) has d ≥ 2t + 1, by
Theorem 4.115, and so it is a t-error correcting code, by Proposition 4.105. Now
deg(g) = 2t and C is a code of length q − 1 = 22t+1 − 1. Thus, the rate of C is
(q − 1)/(q − 1 − 2t) = 1 − [2t/(22t+1 − 1)]. •

Example 4.121.
The Reed-Solomon code C over

�
5 having generating polynomial

g(x) = (x − 2)(x − 22)(x − 23)(x − 24) = (x − 1)(x − 2)(x − 3)(x − 4)

is a [4, 2]-code over
�

5 with d(C) ≥ 5, and so it detects up to 4 errors and it
corrects up to 2 errors. A generating matrix for C is

G =
[

3 4 1 0
0 3 4 1

]
. �

Variants of Reed-Solomon codes are used to send photographs from outer
space. One reason is that they can correct bursts. Suppose that a string of s con-
secutive bits in a received message is suspect (perhaps a cosmic ray intercepted
a part of the message). Let us illustrate how a Reed-Solomon code can deal with
this. Suppose that C is a Reed-Solomon code of length 255 over

�
256 having

generating polynomial g(x) =
∏10

i=1(x − ζ i ). If γ is a primitive 255th root of
unity, then C corrects up to 5 errors. Each codeword c ∈ C lies in (

�
256 )

255,
and each letter in c ∈ �

256 . Now construct a binary code which replaces each
letter in a codeword in C by a bitstring of length 8. If an interval of length 33,
say, in this new code is suspicious, rewrite the word as a word in the original
Reed-Solomon code. The rewritten word involves at most 5 errors, and hence
it can be corrected. In this way, Reed-Solomon codes use finite fields to correct
error bursts.

The next proposition gives a criterion for testing whether a word is a code-
word.

Proposition 4.122. If G = [I |B] is an m × n echelon generating matrix of a
linear code C over a field k, thenw ∈ kn lies in C if and only ifw[−BT |I ]T = 0.
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Proof. If w ∈ C , then w is a linear combination of the rows of G. Now the
i th row of G is ei G, where e1, . . . , em is the standard basis of km . Hence, if
G[−BT |I ]T = 0, then (ei G)[−BT |I ]T = 0 for all i , and so w[−BT |I ]T = 0.
Now the i th row of G is ei G = ei [I |B] = [ei |ei B]; the j th column of [−BT |I ]T

is [−BT |I ]T eT
j , which is the j th row of e j [−BT |I ] = [−e j BT |e j ]. Hence,

using the partition notation introduced on page 409 in the special case of 1 × n
matrices, the i j entry of G[−BT |I ]T is the dot product

(ei | bi1, . . . , bi,n−m) · (−b1 j , . . . ,−bn−m, j | e j ) = bi j − bi j = 0.

Therefore, w[−BT |I ]T = 0.
Conversely, consider the homogeneous system [−B T |I ]T x = 0 and its

solution space S = {vT ∈ kn : [−BT |I ]T vT = 0}. Now v ∈ S if and only
if v[−BT |I ] = 0, so that the first part of the proof shows that C ⊆ S. But
dim(C) = m, while dim(S) = n − r , where r = rank([−BT |I ]T ) = n − m. By
Theorem 4.42, we have dim(S) = n − r = m, and so C = S, by Corollary 4.25.
Therefore, if w[−BT |I ]T = 0, then w ∈ S, hence, w ∈ C . •

Definition. If G = [I |B] is an m × n echelon generating matrix of a linear
code C , then the n × m matrix H = [−BT |I ]T is called a parity check matrix
for C .

Remark. If C ⊆ kn is a code, define its dual code to be the orthogonal com-
plement

C⊥ = {y ∈ kn : (y, c) = 0 for all c ∈ C},

where (y, c) = a1b1 + · · · + anbn is the usual dot product, y = (a1, . . . , an),
and c = (b1, . . . , bn). It turns out that if G = [I |B] is a generating matrix for C ,
then the parity check matrix H = [−BT |I ]T is a generating matrix for the dual
code C⊥. �

Until now, we have considered linear codes and their encoding functions. A
decoding function must, of course, override the errors introduced by a transmis-
sion function.

Definition. Let C ⊆ kn be a linear code. If y ∈ kn and c ∈ C , then the error
vector is

ε = ε(y, c) = y − c.

Of course, wt(ε) is the number of nonzero coordinates in which y and c disagree.

Let us now try to decode a received message in a special case.
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Example 4.123.
Suppose that we are using a Reed-Solomon-code C of length n over a field k
whose generating polynomial g(x) has 1, ζ, ζ 2, ζ 3 among its roots, where ζ is a
primitive nth root of unity lying in k. Assume further that ζ ∈ k. Thus, ` = 3
and C corrects up to t = 2 errors, by Corollary 4.116. We assume that there is
a (necessarily unique) codeword c so that δ(y, c) ≤ 2; indeed, we assume that
δ(y, c) = 2, so that y = c + ε, where c is a codeword, ε is the error vector,
and wt(ε) = 2. Can we recover c? As usual, words y = (a0, a1, . . . , an−1) of
length n are encoded as polynomials a0 + a1x + · · · + an−1xn−1; a codeword c
corresponds to a polynomial divisible by g(x), and so 1, ζ, ζ 2, ζ 3 are also roots
of c. This suggests that we try to find c by using a Vandermonde matrix, as in
the proof of Theorem 4.115, the BCH theorem.

Let
ε = y − c = (h0, h1, . . . , hn−1).

Thus, Supp(ε) = {i, j }; we do not know i, j, h i, h j . As a polynomial, ε(x) =
hi x i + h j x j . Define a 3 × n matrix

U =




1 1 1 . . . 1
1 ζ ζ 2 . . . ζ n−1

1 ζ 2 ζ 4 . . . ζ 2(n−1)


 .

Now U yT = [y(1) y(ζ ) y(ζ 2)]T is known. It follows that UcT = 0, for
1, ζ, ζ 2 are roots of c (thus, the matrix U T resembles the parity check matrix
H in Proposition 4.122; however, we do not say, conversely, that if U y T = 0,
then y ∈ C). Hence, U yT = UcT + UεT = UεT , and so there is a system of
equations





hi + h j = y(1)

hiζ
i + h jζ

j = y(ζ )

hiζ
2i + h jζ

2 j = y(ζ 2).

(1)

Since we not know i and j , we do not know ζ i and ζ j ; we introduce new notation
for them:

z1 = ζ i and z2 = ζ j .

Rewrite the system in this notation:

hi + h j = y(1)

hi z1 + h j z2 = y(ζ )

hi z
2
1 + h j z

2
2 = y(ζ 2).
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Consider the polynomial f (x) = (x − z1)(x − z2) = x2 + ax + b. Of course,
f (z1) = 0 = f (z2), and we use these equations to find a and b. Now

by(1) = b(h i + h j ) = bhi + bh j

ay(ζ ) = a(h i z1 + h j z2) = ahi z1 + ah j z2

y(ζ 2) = hi z
2
1 + h j z22.

Adding the columns,

by(1)+ ay(ζ )+ y(ζ 2) = hi f (z1)+ h j f (z2) = 0.

We claim that by(ζ )+ ay(ζ 2)+ y(1) = 0.

by(ζ ) = bhi z1 + bh j z2

ay(ζ 2) = ahi z
2
1 + ah j z22

y(ζ 3) = hi z
3
1 + ah j z23.

Hence,

by(ζ )+ ay(ζ 2)+ y(1) = hi (bz1 + az2
1 + z3

1)+ h j (bz2 + az2
2 + z3

2)

= hi z1(b + az1 + z2
1)+ h j z2(b + az2 + z2

2)

= 0.

We are going to solve for a and b. In fact, (a, b) is a solution of the linear system
[

hi + h j hi z1 + h j z2

hi z1 + h j z2 hi z2
1 + h j z2

2

][
a

b

]
= 0. (2)

But the coefficient matrix can be factored:
[

hi + h j hi z1 + h j z2

hi z1 + h j z2 hi z2
1 + h j z2

2

]
= hi h j

[
1 1
z1 z2

] [
1 z1
1 z2

]
.

Now all the 2 × 2 submatrices of the 2 × n matrix

V =
[

1 1 1 . . . 1

1 ζ ζ 2 . . . ζ n

]

are nonsingular. In particular, the coefficient matrix of Eq. (2) is of the form
SST , where S is such a submatrix, and so the system can be solved for a and
b (note that h i 6= 0 and h j 6= 0 because wt(ε) = 2). We can now find z1 and
z2, for they are the roots of f (x) = x2 + ax + b, and they are known to lie
in

�
q . If q is odd, we find z1 and z2 by the quadratic formula; if q is even,
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then we can find the roots by trial and error (there are only q − 1 candidates).
But z1 = ζ i and z2 = ζ j , and so we can find i and j . Finally, we can find h i

and h j from the first two equations in Eq. (1), for the coefficient matrix
[

1 1
ζ i ζ j

]

is nonsingular. In sum, we have used the Vandermonde-like matrices U and V
to find the error vector ε whose only nonzero coordinates are h i and h j . One
decodes y by defining D(y) = w, where c = y − ε, c = E(w), and E is
the encoding function. The method gives the codeword c by correcting y, and
codewords can always be decoded. �

We now generalize Example 4.123 to decode Reed-Solomon-codes.
Let C be a Reed-Solomon-code of length n over a field k with generating

polynomial g(x), and assume that consecutive powers 1, ζ, ζ 2, . . . , ζ 2t−1 occur
among the roots of g(x), where ζ is a primitive nth root of unity lying in the
field k. We define a (t + 1)× n matrix U :

U =




1 1 1 1 . . . 1
1 ζ ζ 2 . . . . . . ζ (n−1)

1 ζ 2 ζ 4 . . . . . . ζ 2(n−1)

... · · ·
...

1 ζ t ζ 2t . . . . . . ζ t (n−1)




(3)

and a t × n matrix V :

V =




1 1 1 . . . 1

1 ζ ζ 2 . . . ζ n

... · · ·
...

1 ζ t−1 ζ 2(t−1) . . . ζ n(t−1)



. (4)

Recall that if u = (a0, a1, . . . , an−1) and v = (b0, b1, . . . , bn−1) are vectors
in kn , then their Hadamard product is defined by

u ◦ v = (a0b0, a1b1, . . . , an−1bn−1).

It is easy to see that

(u + u′) ◦ v = u ◦ v + u′ ◦ v.

Definition. Let C be a Reed-Solomon-code of length n which corrects up to
t errors. If [ROWU (i) ◦ ROWV (µ)]cT = 0 for all i, µ and all c ∈ C , then the
matrices U and V in Eqs. (3) and (4) are called the decoding pair for C .
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Lemma 4.124. Let C be a Reed-Solomon-code of length n over a field k whose
generating polynomial has 1, ζ, ζ 2, . . . , ζ 2t−1 among its roots, where ζ is a
primitive nth root of unity lying in k, and 2t − 1 < n.

(i) The matrices U and V in Eqs. (3) and (4) form a decoding pair for C; that
is,

[ROWU (i) ◦ ROWV (µ)]cT = 0

for all i and µ and every codeword c ∈ C.

(ii) rank(U ) = t + 1.

(iii) Every t columns of V form a linearly independent list.

Proof.
(i) Now

ROWU (i) =
(
1 ζ i ζ 2i . . . ζ i(n−1)),

where 0 ≤ i ≤ t , and

ROWV (µ) =
(
1 ζµ ζ 2µ . . . ζ (n−1)µ),

where µ ≤ t . Therefore,

ROWU (i) ◦ ROWV (µ) =
(
1 ζ i+µ ζ 2(i+µ) . . . ζ (n−1)(i+µ)).

Since i + µ ≤ 2t < n, we have ζ i+µ a root of g(x), and hence it is a root of any
codeword c = c(x). Therefore,

[ROWU (i) ◦ ROWV (µ)]cT = c(ζ i+µ) = 0.

(ii) It suffices to show that U has a nonzero (t + 1) × (t + 1) minor, by Exer-
cise 4.49 on page 399. But the first t + 1 columns of U form a Vandermonde
matrix V (1, ζ, ζ 2, . . . , ζ t ) which is nonsingular, by Exercise 4.45 on page 398.
(iii) Columns j1, . . . , jt form a Vandermonde matrix V (ζ j1 , ζ j2, . . . , ζ jt ), and
this matrix is nonsingular because ζ j1 , ζ j2, . . . , ζ jt are all distinct. It follows
that the corresponding columns form a linearly independent list. •

Theorem 4.125. Let C be a Reed-Solomon-code of length n over a field k
whose generating polynomial has 1, ζ, ζ 2, . . . , ζ 2t−1 among its roots, where ζ
is a primitive nth root of unity lying in k, and 2t − 1 < n.

Let y = (y0, . . . , yn−1) = c + ε, where c ∈ C and wt(ε) ≤ t . If (U, V ) is
the decoding pair for C, then there exists a nonzero vector u = (u0, . . . , un−1) ∈
Row(U ) which is a solution of

n−1∑

i=0

(yiζ
iµ)ui = 0 for all µ = 0, 1, . . . , t − 1. (5)
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Moreover, u ∈ Row(U ) is a solution of Eq. (5) if and only if

ε ◦ u = (0, . . . , 0).

Proof. Eq. (5) is a homogeneous system Au = 0, where A is the t × n matrix
whose µth row, for µ = 0, 1, . . . , t − 1, is the Hadamard product y◦ROWV (µ)

[because (1 ζµ . . . ζ (n−1)µ) =ROWV (µ)]. If rank(A) = r , then r ≤ t and so
dim(Sol(A)) = n − r ≥ n − t . If Sol(A) ∩ Row(U ) = {0}, then Exercise 4.19
on page 345 gives

dim[Sol(A)+ Row(U )] = dim[Sol(A)] + dim[Row(U )]
= (n − r)+ (t + 1)

≥ (n − t)+ (t + 1)

> n,

contradicting Sol(A) + Row(U ) ⊆ kn . Therefore, Sol(A) ∩ Row(U ) 6= {0},
and so there exists nonzero vectors u ∈ Sol(A)∩ Row(U ), as claimed.

We claim that Eq. (5) has the same solutions as

n−1∑

i=0

(hiζ
iµ)ui = 0 for all µ = 0, 1, . . . , t − 1, (6)

where ε = (h0, h1, . . . , hn−1). If u is a solution of Eq. (5) and c is a codeword,
then

ROWU (i) ◦ ROWV (µ)y
T = ROWU (i) ◦ ROWV (µ)c

T + ROWU (i) ◦ ROWV (µ)ε
T

= ROWU (i) ◦ ROWV (µ)ε
T ,

because ROWU (i) ◦ ROWV (µ)cT = 0, by Lemma 4.124. Hence, u is a solution
of Eq. (6). Similarly, any solution of Eq. (6) is a solution of Eq.(5).

Let u ∈ Row(U ). If ε ◦ u = (0, . . . , 0), then h i ui = 0 for all i , and so∑n−1
i=0 (hiζ

iµ)ui =
∑n−1

i=0 (hi ui )ζ
iµ = 0 for all µ = 0, 1, . . . , t − 1. Therefore,

u satisfies Eq. (6), and hence it satisfies Eq. (5).
Conversely, If u satisfies Eq. (6), then

∑n−1
i=0 (hi ui )ζ

iµ = 0 for all µ =
0, 1, . . . , n−1. Thus,

∑n−1
i=0 (hi ui )βi = 0 (of course, 0 denotes the zero column),

where β0, . . . , βn−1 are the columns of V . Let wt(ε) ≤ t , so that there at most
t nonzero h i ; call them hi1, . . . , hit . It follows that

∑t
ν=1 hiνuiνβiν = 0. But

any t columns of V form a linearly independent list, by Lemma 4.124. Hence,
hiνuiν = 0 for all ν = 1, . . . , t . Now h i ui = 0 for all i 6= iν , because hi = 0 for
these indices, so that h i ui = 0 for all i . Therefore, ε ◦ u = (0, . . . , 0). •
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Remark. Vectors u given in Theorem 4.125 should be viewed as error locator
vectors. If i ∈ Supp(ε), then h i 6= 0. But ε ◦ u = (h0u0, . . . , hn−1un−1) =
(0, . . . , 0) implies that ui = 0. Thus, Supp(ε) ⊆ �

(u), where
�
(u) = {indices i : ui = 0}.

Thus, finding u corresponds to finding the indices i and j in Example 4.123.
Note, however, that Supp(ε) ⊆ Supp(u), and it is possible that u gives “extra”
indices in

�
(u) that do not correspond to error positions. �

Let (U, V ) be the decoding pair for a Reed-Solomon-code C of length n
whose generating polynomial has 1, ζ, ζ 2, . . . , ζ 2t−1 among its roots, where ζ
is a primitive nth root of unity lying in k, and 2t − 1 < n. Let y ∈ kn be a word.
If ε has weight ≤ t , then there is a unique codeword c with y = c + ε which can
be found by solving the system of linear equations

y − ε ∈ C and ε ◦ u = 0.

Of course, the condition y − ε ∈ C can be written explicitly using the rows of
a generating matrix of C . Thus, Reed-Solomon-codes can be decoded by linear
algebra.

Suppose that C is a BCH-code over a field k. If one redefines a decoding
pair of matrices (U, V ) as matrices with entries in k satisfying the conclusions
of Lemma 4.124, then it can be shown that every BCH-code has a decoding pair
which can be used to decode it.

EXERCISES

4.60 Let � be an alphabet with | � | = q ≥ 2, let T : � n → � n be a transmission
function, and let the probability of error in each letter of a transmitted word be p,
where 0 < p < 1.

(i) Prove that the probability of the occurrence of exactly ` erroneous letters
in a transmitted word of length n is

(
p

q − 1

)`
(1 − p)n−`.

(ii) Prove that the probability is
(

n

`

)
p`(1 − p)n−`,

and conclude that this probability is independent of q .
*4.61 Prove that d ≥ 3, where d is the minimum distance of the two-dimensional parity

code in Example 4.102(iii).
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*4.62 Let � be an alphabet with | � | = q , and let C ⊆ � n be an (n, k, d)-code.
(i) Define π : C → � n−d+1 by π(c1, . . . , cn) = (cd , . . . , cn). Prove that π

is an injection.
(ii) (Singleton Bound.) Prove that

k ≤ qn−d+1.

*4.63 If � is an alphabet with | � | = q , and if u ∈ � n , define the (closed) ball of radius
r with center u by

Br (u) = {w ∈ � n : δ(w, u) ≤ r},
where δ is the Hamming distance.

(i) Prove that

∣∣{w ∈ � n : δ(u, w) = i
}∣∣ =

(
n

i

)
(q − 1)i .

(ii) Prove that

|Br (u)| =
r∑

i=0

(
n

i

)
(q − 1)i .

(iii) (Gilbert-Varshamov Bound.) If C ⊆ � n is an (n, k, d)-code, where
| � | = q , prove that

qn

∑d−1
i=0

(n
i

)
(q − 1)i

≤ k.

*4.64 (Hamming Bound) If C ⊆ � n is an (n, k, d)-code, where | � | = q and d = 2t +1,
prove that

k ≤
qn

∑ t
i=0

(n
i

)
(q − 1)i

.

4.65 An (n, k, d)-code over an alphabet � with | � | = q is called a perfect code if it
attains the Hamming bound:

k =
qn

∑ t
i=0

(n
i

)
(q − 1)i

.

Prove that the Hamming [2` − 1, 2` − 1 − `]-codes in Example 4.110 are perfect
codes.

4.66 If C ⊆ � n is a linear code and w ∈ � n , define r = minc∈C δ(w, c). Give an
example of a linear code C ⊆ � n and a word w ∈ � n with w /∈ C such that
there are distinct codewords c, c′ ∈ C with δ(w, c) = r = δ(x, c′). Conclude that
correcting a transmitted word by choosing the codeword nearest to it may not be
well-defined.

4.67 Let C be an [n,m]-linear code over a finite field � , and let G be a generating matrix
of C. Prove that an m × n matrix A is also a generating matrix of C if and only if
A = G H for some matrix H ∈ GL(n, � ).
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4.68 Prove that the BCH-code of length m + 1 over � 2 having generating polynomial
x − 1 is the [m + 1,m]-parity check code.

4.69 (i) Write x15 − 1 as a product of irreducible polynomials in � 2 [x].
(ii) Find an irreducible quartic polynomial g(x) ∈ � 2 [x], and use it to define

a primitive 15th root of unity ζ ∈ � 16 .
(iii) Find a BCH-code C over � 2 of length 15 having minimum distance

d(C) ≥ 3.
4.70 Let C be the Reed-Solomon [4, 2]-code in Example 4.121. Decode the received

word y = (3, 3, 1, 1).



5
Fields

The study of the roots of polynomials is intimately related to the study of fields.
If f (x) ∈ k[x], where k is a field, then it is natural to consider the relation
between k and the larger field E , where E is obtained from k by adjoining all the
roots of f (x). For example, if E = k, then f (x) is a product of linear factors in
k[x]. We shall see that the pair E and k has a Galois group, Gal(E/k), and that
this group determines whether there exists a formula for the roots of f (x) which
generalizes the quadratic formula.

5.1 CLASSICAL FORMULAS

Revolutionary events were changing the western world in the early 1500s: the
printing press had just been invented; trade with Asia and Africa was flourishing;
Columbus had just discovered the New World; and Martin Luther was challeng-
ing papal authority. The Reformation and the Renaissance were beginning.

The Italian peninsula was not one country but a collection of city states with
many wealthy and cosmopolitan traders. Public mathematics contests, sponsored
by the dukes of the cities, were an old tradition; there are records from 1225 of
Leonardo of Pisa (c. 1180–c. 1245), also called Fibonacci, approximating roots
of x3 + 2x2 + 10x − 20 with good accuracy. One of the problems frequently set
involved finding roots of a given cubic equation

X3 + bX2 + cX + d = 0,

where a, b, and c were real numbers, usually integers.1

1Around 1074, Omar Khayyam (1048–1123), a Persian mathematician now more famous
for his poetry, used intersections of conic sections to give geometric constructions of roots of
cubics.

430
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Modern notation did not exist in the early 1500s, and so the feat of finding
the roots of a cubic involved not only mathematical ingenuity but also an ability
to surmount linguistic obstacles. Designating variables by letters was invented
in 1591 by F. Viète (1540–1603) who used consonants to denote constants and
vowels to denote variables (the modern notation of using letters a, b, c, . . . at
the beginning of the alphabet to denote constants and letters x, y, z at the end of
the alphabet to denote variables was introduced in 1637 by R. Descartes in his
book La Géométrie). The exponential notation A2, A3, A4, . . . was essentially
introduced by J. Hume in 1636 (he used Aii, Aiii, Aiv, . . . ). The symbols +,−,
and √ , as well as the symbol / for division, as in a/b, were introduced by
J. Widman in 1486. The symbol × for multiplication was introduced by W.
Oughtred in 1631, and the symbol ÷ for division by J. H. Rahn in 1659. The
symbol = was introduced by the Oxford don Robert Recorde in 1557, in his
Whetstone of Wit:

And to avoide the tediouse repetition of these woordes: is equal to:
I will lette as I doe often in woorke use, a paire of paralleles, or
gemowe lines of one lengthe, thus: =, because noe 2 thynges, can
be moare equalle.

(Gemowe is an obsolete word meaning twin or, in this case, parallel.) These
symbols were not adopted at once, and often there were competing notations.
Most of this notation did not become universal in Europe until the next century,
with the publication of Descartes’s La Géométrie.

Let us return to cubic equations. The lack of good notation was a great
handicap. For example, the cubic equation X 3 + 2X2 + 4X − 1 = 0 would be
given, roughly, as follows:

Take the cube of a thing, add to it twice the square of the thing, to
this add 4 times the thing, and this must all be set equal to 1.

Complicating matters even more, negative numbers were not accepted; an equa-
tion of the form X 3 − 2X2 − 4X + 1 = 0 would only be given in the form
X3 + 1 = 2X2 + 4X . Thus, there were many forms of cubic equations, depend-
ing (in our notation) on whether coefficients were positive, negative, or zero.

About 1515, Scipione del Ferro of Bologna discovered a method for finding
the roots of several forms of a cubic. Given the competitive context, it was
natural for him to keep his method secret. Before his death in 1526, Scipione
shared his result with some of his students.

The following history is from the excellent account in J.-P. Tignol, Galois’
Theory of Equations.
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In 1535, Niccolò Fontana (c. 1500–1557), nicknamed “Tartaglia”
(“Stammerer”), from Brescia, who had dealt with some very partic-
ular cases of cubic equations, was challenged to a problem-solving
contest by Antonio Maria Fior, a former pupil of Scipione del Ferro.
When he heard that Fior had received the solution of cubic equa-
tions from his master, Tartaglia threw all his energy and skill into the
struggle. He succeeded in finding the solution just in time to inflict
upon Fior a humiliating defeat.

The news that Tartaglia had found the solution of cubic equation
reached Giralamo Cardano (1501–1576), a very versatile scientist,
who wrote a number of books on a wide variety of subjects, includ-
ing medicine, astrology, astronomy, philosophy, and mathematics.
Cardano then asked Tartaglia to give him his solution, so that he
could include it in a treatise on arithmetic, but Tartaglia flatly re-
fused, since he was himself planning to write a book on this topic.
It turns out that Tartaglia later changed his mind, at least partially,
since in 1539 he handed on to Cardano the solution of x 3 + qx = r ,
x3 = qx + r , and a very brief indication of x3 + r = qx in verses.
. . . Having received Tartaglia’s poem, Cardano set to work. Not only
did he find justifications for the formulas, but he also solved all the
other types of cubics. He then published his results, giving due credit
to Tartaglia and to del Ferro, in the epoch-making book Ars Magna,
sive de regulis algebraicis (The Great Art, or the Rules of Algebra).

Let us now derive the formulas for the roots of polynomials of low degree.
The usual way to derive the quadratic formula is by “completing the square,”
which can be taken literally. Consider the quadratic equation x 2 + bx + c = 0
with b ≥ 0, and view x2 + bx as the area pictured in Figure 5.1. One completes

x

x1
2 b

1
2 b

Figure 5.1 Completing the Square
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the square by adding on the corner square having area 1
4 b2. The area of the

large square is (x + 1
2 b)2; if c + 1

4 b2 ≥ 0, then we have constructed a square
with sides of length x + 1

2 b and area c + 1
4 b2. This geometric construction can

be done algebraically without assuming that certain quantities are non-negative.
Let f (x) = x2 + bx + c.

x2 + bx + c = x2 + bx + 1
4 b2 + c − 1

4 b2

= (x + 1
2 b)2 + 1

4 (4c − b2).

Therefore, if z is a root of f (x), then

z + 1
2 b = ± 1

2

√
b2 − 4c.

We now present a different derivation of the quadratic formula which begins
by replacing a given polynomial by a simpler one.

Definition. A polynomial f (x) ∈ � [x] of degree n is reduced if it has no x n−1

term; that is, f (x) = anxn + an−2xn−2 + · · · + a0.

Lemma 5.1. The substitution X = x − 1
n an−1 changes

f (X) = Xn + an−1 Xn−1 + h(X),

where h(X) = 0 or deg(h) ≤ n − 2, into a reduced polynomial

f̃ (x) = f (x − 1
n an−1);

moreover, if u is a root of f̃ (x), then u − 1
n an−1 is a root of f (X).

Proof. The substitution X = x − 1
n an−1 gives

f̃ (x) = f (x − 1
n an−1)

= (x − 1
n an−1)

n + an−1(x − 1
n an−1)

n−1 + h(x − 1
n an−1)

=
(
xn − an−1xn−1 + g1(x)

)
+ an−1

(
xn−1 + g2(x)

)
+ h(x − 1

n an−1)

= xn + g1(x)+ an−2g2(x)+ h(x − 1
n an−1),

where each of g1(x), g2(x), h(x− 1
n an−1), and g1(x)+an−2g2(x)+h(x− 1

n an−1)

is either 0 or a polynomial of degree ≤ n −2. Obviously, the polynomial f̃ (x) =
f (x − 1

n an−1) is reduced.
Finally, if u is a root of f̃ (x), then 0 = f̃ (u) = f (u − 1

n an−1); that is,
u − 1

n an−1 is a root of f (X). •
Here is another proof of the quadratic formula.
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Corollary 5.2 (Quadratic Formula). If f (X) = X 2 + bX + c, then its roots
are

1
2

(
−b ±

√
b2 − 4c

)
.

Proof. Define x by X = x − 1
2 b. Now

f̃ (x) = (x − 1
2 b)2 + b(x − 1

2 b)+ c.

The linear terms cancel, the reduced polynomial is

f̃ (x) = x2 − 1
4 (b

2 − 4c),

and the roots of f̃ (x) are u = ± 1
2

√
b2 − 4c. But Lemma 5.1 says that the roots

of f (X) are u − 1
2 b; that is, the roots of f (X) are 1

2

(
−b ±

√
b2 − 4c

)
. •

The following consequence of the quadratic formula will be used in deriving
the cubic formula.

Corollary 5.3. Given numbers c and d, there exist numbers α and β with
α + β = c and αβ = d.

Proof. If d = 0, choose α = 0 and β = c. If d 6= 0, then α 6= 0 and we may
set β = d/α. Substituting, c = α + β = α + d/α, so that

α2 − cα + d = 0.

The quadratic formula now shows that such an α exists, as does β = d/α. (Of
course, α and β might be complex numbers.) •

Lemma 5.1 simplifies the original polynomial and, at the same time, keeps
control of its roots. In particular, if n = 3, then f̃ (x) has the form x3 + qx + r .

The “trick” in solving a reduced cubic is to write a root u of x 3 + qx + r as

u = α + β,

and then to find α and β. Now

0 = u3 + qu + r

= (α + β)3 + q(α + β)+ r.

Note that

(α + β)3 = α3 + 3α2β + 3αβ2 + β3

= α3 + β3 + 3αβ(α + β)

= α3 + β3 + 3αβu.
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Therefore, 0 = α3 + β3 + 3αβu + qu + r , and so

0 = α3 + β3 + u(3αβ + q)+ r. (1)

We have already set α + β = u; by Corollary 5.3, we may impose a second
condition

αβ = − 1
3 q (2)

which makes the u term in Eq. (1) go away, leaving

α3 + β3 = −r. (3)

Cubing each side of Eq. (2) gives

α3β3 = − 1
27 q3. (4)

Equations (3) and (4) in the two unknowns α3 and β3 can be solved, as in Corol-
lary 5.3. Substituting2 β3 = −q3/(27α3) into Eq. (3) gives

α3 −
q3

27α3
= −r,

which may be rewritten as

α6 + rα3 − 1
27 q3 = 0, (5)

a quadratic y2 + r y − 1
27 q3 in α3. The quadratic formula gives

α3 = 1
2

(
−r +

√
D
)
, (6)

where D = r2 + 4
27 q3. Note that β3 is also a root of the quadratic in Eq. (5), so

that

β3 = 1
2

(
−r −

√
D
)
, (7)

Now take a cube root3 to obtain α. By Eq. (2), β = −q/(3α), and so u = α+ β

has been found.
What are the other two roots? Theorem 3.49 says that if u is a root of a

polynomial f (x), then f (x) = (x − u)g(x) for some polynomial g(x). After
finding one root u = α + β, divide x3 + qx + r by x − u, and use the quadratic

2If α = 0, then q = 0, and the polynomial is f (x) = x3 + r = 0; of course, the roots in
this case are the cube roots of −r .

3The number z = 1
2 (−r +

√
D) might be complex. The easiest way to find a cube root of

z is to write it in polar form seiθ , where s ≥ 0; a cube root is then 3
√

s eiθ/3.
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formula on the quadratic quotient g(x) to find the other two roots [any root of
g(x) is a root of f (x)].

Here is an explicit formula for the other two roots of f (x) (instead of the
method just given for finding them). There are three cube roots of unity, namely,

1, ω = − 1
2 + i

√
3

2 , and ω2 = − 1
2 − i

√
3

2 . It follows that the other cube roots of α3

are ωα and ω2α. If β is the “mate” of α, that is, if β = −q/(3α), as in Eq. (2),
then the mate of ωα is

−q/(3ωα) = β/ω = ω2β,

and the mate of ω2α is

−q/(3ω2α) = β/ω2 = ωβ.

Therefore, explicit formulas for the roots of f (x) are α + β, ωα + ω2β, and
ω2α + ωβ.

We have proved the cubic formula (also called Cardano’s formula).

Theorem 5.4 (Cubic Formula). The roots of x 3 + qx + r are

α + β, ωα + ω2β, and ω2α + ωβ,

where α3 = 1
2 (−r +

√
D), β = − 1

3
q
α

, D = r2 + 4
27 q3, and ω = − 1

2 + i
√

3
2 is a

cube root of unity.

Proof. We have just given the proof when α 6= 0. By Eq. (2), we have αβ =
−q/3, and so α = 0 forces q = 0; that is, the reduced cubic is x 3 + r . In this
case, β3 = −r , the roots are β, ωβ, and ω2β, and the cubic formula holds in this
case as well. •

Recall that Eq. (7) gives β3 = 1
2 (−r −

√
D).

Example 5.5 (Good Example).
We find the roots of x3−15x −126. The polynomial is already reduced, for there
is no x2 term, and so it is in the form to which the cubic formula applies (were
it not reduced, one would first reduce it, as in Lemma 5.1). Here, q = −15,
r = −126, D = (−126)2 + 4

27 (−15)3 = 15,376, and
√

D = 124. Hence, α3 =
1
2 [−(−126)+ 124] = 125 and α = 5, while β = −q/3α = 15/(3 · 5) = 1. The
roots are thus α+β = 6, ωα+ω2β = −3+2i

√
3, andω2α+ωβ = −3−2i

√
3.

Alternatively, having found u = 6 to be a root, the division algorithm gives

x3 − 15x − 126 = (x − 6)(x2 + 6x + 21),

and the quadratic formula gives −3 ± 2i
√

3 as the roots of the quadratic factor.
�
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The quadratic and cubic formulas are not valid over arbitrary coefficient
fields. For example, since 2 = 0 in fields k of characteristic 2, the quadratic
formula does not make sense for quadratics in k[x] because 1

2 is not defined.
Similarly, the cubic formula (and the quartic formula below) does not apply to
polynomials with coefficients in fields of characteristic 2 or characteristic 3 be-
cause the formulas involve 1

2 and 1
3 , one of which is not defined in these fields.

Definition. If u, v, and w are the roots of f (x) = x 3 + qx + r , let 1 =
(u − v)(u −w)(v − w), and define

12 = [(u − v)(u −w)(v − w)]2;

the number12 is called the discriminant 4 of f (x).

It is natural to consider 12 instead of 1, for 1 is a number depending not
only on the roots but also on the order in which they are listed. Had we listed the
roots as u, w, v, for example, then (u − w)(u − v)(w − v) = −1, because the
factor w− v = −(v−w) has changed sign. Squaring eliminates this difference.

Note that if 12 = 0, then 1 = 0 and the cubic has a repeated root. Can
we detect this without first computing the roots? The cubic formula allows us to
compute12 in terms of q and r .

Lemma 5.6. The discriminant12 of f (x) = x3 + qx + r is

12 = −27r2 − 4q3 = −27D.

Proof. If the roots of f (x) are u, v, and w, then the cubic formula gives

u = α + β; v = ωα + ω2β; w = ω2α + ωβ,

where ω = − 1
2 − i

√
3

2 , D = r2 + 4
27 q3, α = [ 1

2 (−r +
√

D)]1/3, and β = − 1
3

q
α

.
One checks easily that:

u − v = α + β − ωα − ω2β = (1 − ω)(α − ω2β);
u −w = α + β − ω2α − ωβ = −ω2(1 − ω)(α − ωβ);
v −w = ωα + ω2β − ω2α − ωβ = ω(1 − ω)(α − β).

Therefore,
1 = −ω3(1 − ω)3(α − β)(α − ωβ)(α − ω2β).

4More generally, if f (x) = (x −ut )(x −u2) . . . (x −un) is a polynomial of degree n, then
the discriminant of f (x) is defined to be 12, where 1 =

∏
i< j (ui − u j ) (one takes i < j

so that each difference ui − u j occurs just once in the product). In particular, the quadratic

formula shows that the discriminant of x2 + bx + c is b2 − 4c.
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Of course, −ω3 = −1, while

(1 − ω)3 = 1 − 3ω + 3ω2 − ω3 = −3(ω − ω2).

But ω = − 1
2 + i

√
3

2 and ω2 = ω = − 1
2 − i

√
3

2 , so that (1 − ω)3 =
−3(ω − ω2) = −i3

√
3, and

−ω3(1 − ω)3 = i3
√

3.

Finally, Exercise 3.78 on page 278 gives

(α − β)(α − ωβ)(α − ω2β) = α3 − β3 =
√

D.

Therefore, 1 = i3
√

3
√

D, and

12 = −27D = −27r2 − 4q3. •

It follows, for example, that the cubic formula is not needed to see that the
cubic f (x) = x3 − 3x + 2 has a repeated root, for −27r 2 − 4q3 = 0. It also
follows that if f (x) ∈ k[x], then its discriminant lies in k as well.

We are now going to use the discriminant to detect whether the roots of a
cubic are all real.

Lemma 5.7. Every f (x) ∈ � [x] of odd degree has a real root.

Remark. The proof we give assumes that f (x) has a complex root (which
follows from the Fundamental Theorem of Algebra). �

Proof. The proof is by induction on n ≥ 0, where deg( f ) = 2n + 1. The base
step n = 0 is obviously true. Let n ≥ 1 and let u be a complex root of f (x). If u
is real, we are done. Otherwise u = a + ib, and Exercise 5.7 on page 447 shows
that the complex conjugate u = a − ib is also a root; moreover, u 6= u because
u is not real. Both x − u and x − u are divisors of f (x); as these divisors are
relatively prime, their product is also a divisor; there is a factorization in

�
[x]

f (x) = (x − u)(x − u)g(x).

Now (x −u)(x −u) = x2 −2ax +a2 +b2 ∈ � [x], and so the division algorithm
gives g(x) = f (x)/(x − u)(x − u) ∈ � [x]. Since deg(g) = (2n + 1) − 2 =
2(n − 1)+ 1, the inductive hypothesis says that g(x), and hence f (x), has a real
root. •
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Theorem 5.8. All the roots u, v, w of x3 + qx + r ∈ � [x] are real numbers if
and only if the discriminant 12 ≥ 0; that is, 27r2 + 4q3 ≤ 0.

Proof. If u, v, and w are real numbers, then 1 = (u − v)(u − w)(v − w) is a
real number. Therefore, −27r 2 − 4q3 = 12 ≥ 0, and 27r2 + rq3 ≤ 0.

Conversely, assume that w = s + ti is not real (i.e., t 6= 0); by Exercise 5.7
on page 447, the complex conjugate of a root is also a root, say, v = s − ti ; by
Lemma 5.7, the other root u is real. Now

1 = (u − s + ti)(u − s − ti)(s − ti − [s + ti ])
= (−2ti)[(u − s)2 + t2)].

Since u, s, and t are real numbers,

12 = (−2ti)2[(u − s)2 + t2)]2

= 4t2i2[(u − s)2 + t2)]2

= −4t2[(u − s)2 + t2)]2 < 0,

and so 0 > 12 = −27r2 − 4q3. We have shown that if there is a nonreal root,
then 27r2 + 4q3 > 0; equivalently, if there is no nonreal root (i.e., if all the roots
are real), then 27r 2 + 4q3 < 0. •

Example 5.9 (Bad Example).
In Example 5.5, the cubic formula gave the roots of x 3 − 15x − 126 in a routine
way. Let us now try the cubic formula on the polynomial

x3 − 7x + 6 = (x − 1)(x − 2)(x + 3)

whose roots are, obviously, 1, 2, and −3. There is no x 2 term, q = −7, r = 6,
and D = r2 + 4

27 q3 = − 400
27 < 0 (notice that 27D = 27r 2 + 4q3 is negative, as

Theorem 5.8 predicts). The cubic formula gives a messy answer: the roots are

α + β, ωα + ω2β, ω2α + ωβ,

where α3 = 1
2 (−6 +

√
− 400

27 ) and β3 = 1
2 (−6 −

√
− 400

27 ). Something strange
has happened. There are three curious equations saying that each of 1, 2, and −3
is equal to one of the messy expressions displayed above; thus,

ω
3

√
1
2

(
−6 +

√
− 400

27

)
+ ω2 3

√
1
2

(
−6 −

√
− 400

27

)

is equal to 1, 2, or −3. Aside from the complex cube roots of unity, this expres-
sion involves square roots of the negative number − 400

27 .
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Until the Middle Ages, mathematicians had no difficulty in ignoring square
roots of negative numbers when dealing with quadratic equations. For example,
consider the problem of finding the sides x and y of a rectangle having area A
and perimeter p. The equations

x y = A and 2x + 2y = p

lead to the quadratic equation 2x2 − px + 2A = 0, and, as in Corollary 5.3, the
quadratic formula gives the roots

x = 1
4

(
p ±

√
p2 − 16A

)
.

If p2 − 16A ≥ 0, one has found x (and y); if p2 − 16A < 0, one merely says
that there is no rectangle whose perimeter and area are in this relation. But the
cubic formula does not allow one to discard “imaginary” roots, for we have just
seen that an “honest” real and positive root, even a positive integer, can appear
in terms of complex numbers.5 The Pythagoreans in ancient Greece considered
number to mean positive integer. By the Middle Ages, number came to mean
positive real number (although there was little understanding of what real num-
bers are). The importance of the cubic formula in the history of mathematics is
that it forced mathematicians to take both complex numbers and negative num-
bers seriously.

The physicist R. P. Feynman (1918–1988), one of the first winners of the
annual Putnam national mathematics competition (and also a Nobel laureate in
physics), suggested another possible value of the cubic formula. As mentioned
earlier, the cubic formula was found in 1515, a time of great change. One of
the factors contributing to the Dark Ages was an almost slavish worship of the
classical Greek and Roman civilizations. It was believed that that earlier era
had been the high point of man’s accomplishments; contemporary man was in-
ferior to his forebears (a world view opposite to the modern one of continual
progress!). The cubic formula was essentially the first instance of a mathemat-
ical formula unknown to the ancients, and so it may well have been a powerful
example showing that sixteenth-century man was the equal of his ancestors. �

The quartic formula, discovered by Lodovici Ferrari (1522–1565) in the
early 1540s, also appeared in Cardano’s book, but it was given much less at-
tention there than the cubic formula. The reason given by Cardano is that cu-
bic polynomials have an interpretation as volumes, whereas quartic polynomials
have no such obvious justification. Cardano wrote,

5We saw a similar phenomenon in Theorem 1.12: the integer terms of the Fibonacci se-
quence are given in terms of

√
5.
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As the first power refers to a line, the square to a surface, and the
cube to a solid body, it would be very foolish for us to go beyond
this point. Nature does not permit it. Thus, . . . , all those matters up
to and including the cubic are fully demonstrated, but for the others
which we will add, we do not go beyond barely setting out.

We present the derivation of the quartic formula given by Descartes.

Theorem 5.10 (Quartic Formula). There is a method to compute the four
roots of a quartic

X4 + bX3 + cX2 + d X + e.

Proof. As with the cubic, the quartic can be simplified, by setting X = x − 1
4 b,

to

x4 + qx2 + r x + s; (8)

moreover, if a number u is a root of the second polynomial, then u = 1
4 b is a

root of the first.
Factor the quartic in Eq. (8) into quadratics:

x4 + qx2 + r x + s = (x2 + j x + `)(x2 − j x + m) (9)

(the coefficient of x in the second factor is − j because the quartic has no x 3

term). If j , `, and m can be found, then the quadratic formula can be used to find
the roots of the quartic in Eq. (8).

Expanding the right-hand side of Eq. (9) and equating coefficients of like
terms gives the equations





m + `− j 2 = q;
j (m − `) = r;
`m = s.

(10)

Adding and subtracting the top two equations in Eqs. (10) yield
{

2m = j 2 + q + r/j ;
2` = j 2 + q − r/j.

(11)

Now substitute these into the bottom equation of Eqs. (10):

4s = 4`m = ( j 2 + q + r/j )( j 2 + q − r/j )

= ( j 2 + q)2 − r2/j 2

= j 4 + 2 j 2q + q2 − r2/j 2.
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Clearing denominators and transposing gives

j 6 + 2q j 4 + (q2 − 4s) j 2 − r2 = 0, (12)

a cubic equation in j 2. The cubic formula allows one to solve for j 2, and one
then finds ` and m using Eqs. (11). •

Example 5.11.
Consider

x4 − 2x2 + 8x − 3 = 0,

so that q = −2, r = 8, and s = −3. If we factor this quartic into

(x2 + j x + `)(x2 − j x + m),

then Eq. (12) gives
j 6 − 4 j 4 + 16 j 2 − 64 = 0.

One could use the cubic formula to find j 2, but this would be very tedious, for
one must first get rid of the j 4 term before doing the rest of the calculations. It
is simpler, in this case, to observe that j = 2 is a root, for the equation can be
rewritten

j 6 − 4 j 4 + 16 j 2 − 64 = j 6 − 22 j 4 + 24 j 2 − 26 = 0

(many elementary texts are fond of saying, in such circumstances, that j = 2 is
found “by inspection”). We now find ` and m using Eqs. (11).

2` = 4 − 2 + (8/2) = 6

2m = 4 − 2 − (8/2) = −2.

Thus, the original quartic factors into

(x2 − 2x + 3)(x2 + 2x − 1).

The quadratic formula now gives the roots of the quartic:

−1 + i
√

2, −1 − i
√

2, 1 + i
√

2, 1 − i
√

2. �

Do not be misled by this example; it is difficult to find a quartic whose roots
are given by the quartic formula in recognizable form. For example, the quartic
formula gives complicated versions of the roots of x 4 − 25x2 + 60x − 36 =
(x − 1)(x − 2)(x − 3)(x + 6), as the reader may check.

It is now very tempting, as it was for our ancestors, to seek the roots of a
quintic g(X) = X 5 + bX4 + cX3 + d X2 + eX + f . Begin by reducing the
polynomial with the substitution X = x − 1

5 b. It is natural to expect that some
further ingenious substitution together with the formulas for the roots of lower
degree polynomials will yield the roots of g(X). But quintics resisted all such
attempts for almost 300 years. We shall continue this story later in this chapter.
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Viète’s Cubic Formula

A formula involving extraction of roots is not necessarily the simplest way to
find the roots of a cubic. We shall now give another formula for the roots of
x3 + qx + r , due to Viète, which replaces the operations of extraction of roots
(which are, after all, “infinitary” in the sense that their evaluation requires limits)
by evaluation of cosines. By Corollary 1.23, we have

cos(3θ) = 4 cos3 θ − 3 cos θ.

It follows that one root of the cubic

y3 − 3
4 y − 1

4 cos(3θ) (13)

is u = cos θ . By Exercise 5.9 on page 447, the other two roots of this particular
cubic are u = cos(θ + 120◦) and u = cos(θ + 240◦).

Now let f (x) = x3 + qx + r be a cubic all of whose roots are real (Theo-
rem 5.8 gives a way of checking when this is the case). We want to force f (x)
to look like Eq. (13). If v is a root of f (x), set

v = tu,

where t and u will be chosen6 in a moment. Substituting,

0 = f (tu) = t3u3 + qtu + r,

and so
u3 + (q/t2)u + r/t3 = 0;

that is, u is a root of g(y) = y3 + (q/t2)y + r/t3. If we can choose t so that

q/t2 = − 3
4 (14)

and

r/t3 = − 1
4 cos(3θ) (15)

for some θ , then g(y) = y3 − 3
4 y − 1

4 cos(3θ) and its roots are

u = cos θ, u = cos(θ + 120◦), u = cos(θ + 240◦).

But if u3 +(q/t2)u +r/t3 = 0, then t3u3 +qtu +r = 0; that is, the roots v = tu
of f (x) = x3 + qx + r = 0 are

v = tu = t cos θ, v = t cos(θ + 120◦), v = t cos(θ + 240◦).

6Scipio’s trick writes a root as a sum α + β, while Vi ète’s trick writes it as a product.
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We now find t and u. Eq. (14) gives t2 = −4q/3, and so

t =
√

−4q/3. (16)

One immediate consequence of Theorem 5.8, 27r 2 + rq3 ≤ 0, is

4q3 ≤ −27r2;

as the right side is negative, q must also be negative. Therefore −4q/3 is posi-
tive, and

√
−4q/3 is a real number. Eq. (15) gives

cos(3θ) = −4r/t3,

and this determines θ if | − 4r/t3| ≤ 1. Since 27r2 ≤ −4q3, we have 9r2/q2 ≤
−4q/3; taking square roots,

∣∣∣∣
3r

q

∣∣∣∣ ≤
√

−4q

3
= t,

because Eq. (16) gives t =
√

−4q/3. Now t2 = −4q/3, and so
∣∣∣∣
−4r

t3

∣∣∣∣ =
∣∣∣∣

−4r

(−4q/3)t

∣∣∣∣ =
∣∣∣∣
3r

q
·

1

t

∣∣∣∣ ≤
t

t
= 1,

as desired. We have proved the following theorem.

Theorem 5.12 (Viète). Let f (x) = x3 + qx + r be a cubic polynomial for
which 27r2 + 4q3 ≤ 0. If t =

√
−4q/3 and cos 3θ = −4r/t3, then the roots of

f (x) are
t cos θ, t cos(θ + 120◦), and t cos(θ + 240◦).

Example 5.13.
Consider once again the cubic x3 − 7x + 6 = (x − 1)(x − 2)(x + 3) that
was discussed in Example 5.9; of course, its roots are 1, 2, and −3. The cubic
formula gave rather complicated expressions for these roots in terms of cube

roots of complex numbers involving
√

− 400
27 . Let us now find the roots using

Theorem 5.12 (which applies because 27r 2 + 4q3 = −400 ≤ 0). We first
compute t and θ :

t =
√

−4q/3 =
√

−4(−7)/3 =
√

28/3 ≈ 3.055

and
cos(3θ) = −4r/t3 ≈ −24/(3.055)3 ≈ −.842;
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since cos(3θ) ≈ −.842, a trigonometric table gives 3θ ≈ 148◦ and

θ ≈ 49◦.

The roots of the cubic equation are, approximately,

3.055 cos 49◦, 3.055 cos 169◦, and 3.055 cos 289◦.

These are good approximations to the true answers. Using a trigonometric table
once again, we find that

cos 49◦ ≈ .656 and 3.055 cos 49◦ ≈ 2.004 ≈ 2.00;
cos 169◦ ≈ −.982 and 3.055 cos 169◦ ≈ −3.00;
cos 289◦ ≈ .326 and 3.055 cos 289◦ ≈ .996 ≈ 1.00. �

Remark. By Lemma 5.7, every cubic f (x) ∈ � [x] has a real root; a variation
of the proof of Viète’s theorem shows how to find it in case f (x) has complex
roots; that is, when the discriminant condition is

−4q3 < 27r2.

Recall the hyperbolic functions

cosh θ = 1
2 (e

θ + e−θ )

and
sinh θ = 1

2 (e
θ − e−θ ).

One can prove that cosh θ ≥ 1 for all θ , while sinh θ can take on any real number
as a value.

These functions satisfy cubic equations (see Exercise 5.8 on page 447):

cosh(3θ) = 4 cosh3(θ)− 3 cosh(θ)

and
sinh(3θ) = 4 sinh3(θ)+ 3 sinh(θ).

From the first of these cubic equations, we see that h(y) = y3 − 3
4 y − 1

4 cosh(3θ)
has u = cosh(θ) as a root. To force f (x) = x3 + qx + r to look like h(y), we
write the real root v of f (x) as v = tu. As in the proof of Viète’s theorem, we
want t2 = −4q/3 and cosh(3θ) = −4r/t3.

If −4q/3 ≥ 0, then t is real. Using the discriminant condition −4q3 < 27r2,
one can show that −4r/t3 ≥ 1, and so there is a number ϕ with cosh(ϕ) =
−4r/t3. It follows that the real root of f (x) is given by

v = t cosh(ϕ/3),
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where t =
√

−4q/3. [Of course, the other two (complex) roots of f (x) are the
roots of the quadratic f (x)/(x − v).]

If −4q/3 < 0, then we use the hyperbolic sine. We know that sinh(θ) is a
root of k(y) = y3 + 3

4 y − 1
4 sinh(3θ). To force f (x) to look like k(y), we write

the real root v of f (x) as v = tu, where t =
√

4q/3 (our present hypothesis
gives 4q/3 > 0) and sinh(3θ) = −4r/t3. As we remarked earlier, there exists a
number γ with sinh(γ ) = −4r/t3, and so the real root of f (x) in this case is

v = t sinh(γ /3). �

EXERCISES

5.1 Assume that 0 ≤ 3α < 360◦.
(i) If cos 3α is positive, show that there is an acute angle β with 3α = 3β or

3α = 3(β + 90◦), and that the sets of numbers

cosβ, cos(β + 120◦), cos(β + 240◦)

and
cos(β + 90◦), cos(β + 210◦), cos(β + 330◦)

coincide.
(ii) If cos 3α is negative, there is an acute angle β with 3α = 3(β + 30◦) or

3α = 3(β + 60◦), and that the sets of numbers

cos(β + 30◦), cos(β + 150◦), cos(β + 270◦)

and
cos(β + 60◦), cos(β + 180◦), cos(β + 270◦)

coincide.
5.2 (i) Find the roots of f (x) = x3 − 3x + 1.

(ii) Find the roots of f (x) = x3 − 9x + 28. Answer: −4, 2 ± i
√

3.

(iii) Find the roots of f (x) = x3 − 24x2 − 24x − 25. Answer: 17,− 1
2 ± i

√
3

2 .

5.3 (i) Find the roots of f (x) = x3 − 15x − 4 using the cubic formula. Answer:
g = 3

√
2 +

√
−121 and h = 3

√
2 −

√
−121.

(ii) Find the roots of f (x) using the trigonometric formula. Answer: 4,−2±√
3.

5.4 Find the roots of f (x) = x3 − 6x + 4. Answer: 2,−1 ±
√

3.
5.5 Find the roots of x4 − 15x2 − 20x − 6. Answer: −3,−1, 2 ±

√
6.

*5.6 The following castle problem appears in an old Chinese text; it was solved by the
mathematician Qín Jiǔsh áo in 1247.

There is a circular castle whose diameter is unknown; it is provided
with four gates, and two lengths out of the north gate there is a large
tree, which is visible from a point six lengths east of the south gate.
What is the length of the diameter?
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Figure 5.2 The Castle Problem

(i) Prove that the radius r of the castle is a root of the cubic X 3 + X2 − 36.
(ii) Show that one root of f (X) = X 3 + X2 − 36 is an integer and find the

other two roots. Compare your method with Cardano’s formula and with
the trigonometric solution.

*5.7 Show that if u is a root of a polynomial f (x) ∈ � [x], then the complex conjugate
u is also a root of f (x).

*5.8 (i) Prove that cosh(3θ) = 4 cosh3(θ)− 3 cosh(θ).
(ii) Prove that sinh(3θ) = 4 sinh3(θ)+ 3 sinh(θ).

*5.9 Show that if cos 3θ = r , then the roots of 4x 3 − 3x − r are

cos θ, cos(θ + 120◦), and cos(θ + 240◦).

5.10 Find the roots of x3 − 9x + 28.
5.11 Find the roots of x3 − 24x2 − 24x − 25.
5.12 (i) Find the roots of x3 − 15x − 4 using the cubic formula.

(ii) Find the roots using the trigonometric formula.
5.13 Find the roots of x3 − 6x + 4.
5.14 Find the roots of x4 − 15x2 − 20x − 6.

5.2 INSOLVABILITY OF THE GENERAL QUINTIC

For almost 300 years, mathematicians sought some generalization of the quad-
ratic, cubic, and quartic formulas that would give the roots of any polynomial.
Finally, P. Ruffini (1765–1822), in 1799, and N. H. Abel (1802–1829), in 1824,
proved that no such formula exists for the general quintic polynomial (both
proofs had some gaps, but Abel’s proof was accepted by his contemporaries and
Ruffini’s proof was not). Just before his untimely death, E. Galois (1811–1832)
was able to determine precisely those polynomials whose roots can be found by
a formula involving square, cube, fourth, . . . roots of numbers as well as the
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usual field operations of adding, subtracting, multiplying, and dividing. In so
doing, he also founded the Theory of Groups.

If f (x) ∈ k[x] is a monic polynomial, where k is a field containing the roots
z1, z2, . . . , zn (with possible repetitions), then

f (x) = xn + an−1xn−1 + · · · + a1x + a0 = (x − z1) . . . (x − zn).

By induction on n ≥ 1, one can easily generalize Exercise 3.99 on page 305:





an−1 = −
∑

i zi

an−2 =
∑

i< j zi z j

an−3 = −
∑

i< j<k zi z j zk
...

a0 = (−1)nz1z2 · · · zn.

(1)

Notice that −an−1 is the sum of the roots and that ±a0 is the product of the
roots. Given the coefficients of f (x), can one find its roots; that is, given the
a’s, can one solve the system (11) of n equations in n unknowns? If n = 2, the
answer is “yes”: the quadratic formula works (this is precisely Corollary 5.3). If
n = 3 or 4, the answer is still “yes,” for the cubic and quartic formulas work.
But if n ≥ 5, we shall see that no analogous solution exists.

We did not say that no solution of system (1) exists if n ≥ 5; we said that
no solution analogous to the solutions of the classical formulas exists. We have
already seen that the classical Greek problems are impossible to solve if we limit
ourselves to using particular tools in a particular way; but these problems can be
solved if we relax the restrictions (for example, we have seen how Archimedes
trisected angles). Similarly, it is quite possible that there is some way of finding
the roots of a polynomial if one does not limit oneself to field operations and ex-
traction of roots only. For example, we have seen Viète’s trigonometric solution
of the cubic. Indeed, one can find the roots of any f (x) ∈ � [x] by Newton’s
method: If r is a real root of a polynomial f (x) and if x0 is a “good” approxima-
tion to r , then r = limn→∞ xn , where one defines xn+1 = xn − f (xn)/ f ′(xn).
There is a method of Hermite finding roots of quintics using elliptic modular
functions, and there are methods for finding the roots of many polynomials of
higher degree using hypergeometric functions. We are going to show, if n ≥ 5,
that finding roots “by radicals” is not always possible.

Let us remind the reader of several definitions and propositions from earlier
chapters. If k is a subfield of a field K , then we also say that K is an extension of
k. We abbreviate this by writing “K/k is an extension.” If K/k is an extension,
then K may be regarded as a vector space over k, as in Example 4.1(iii). One
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says that K is a finite extension of k if K is a finite-dimensional vector space
over k. The dimension of K , denoted by [K : k], is called the degree of K/k.

Example 5.14.
Let p(x) ∈ k[x] be an irreducible polynomial of degree n, where k is a field,
and let k(z)/k be an extension obtained by adjoining a root z of p(x). Proposi-
tion 3.116(iv) says that each element in k(z) has a unique expression of the form
b0 + b1z + · · · + bn−1zn−1, where bi ∈ k. Thus, the list 1, z, z2, . . . , zn−1 is a
basis of k(z)/k, and so dim(k(z)) = n = deg(p). �

Theorem 4.31. Let k ⊆ K ⊆ E be fields, with K a finite extension of k and E
a finite extension of K . Then E is a finite extension of k, and

[E : k] = [E : K ][K : k]

Definition. Assume that K/k is an extension and that z ∈ K . We call z alge-
braic over k if there is some nonzero polynomial f (x) ∈ k[x] having z as a root;
otherwise, z is called transcendental over k.

In Chapter 3, we considered adjoining one element to a field, examining
k(z) in some detail. Let us now generalize this construction of adjoining one
element to a field to adjoining a set of elements to a field. This will be especially
interesting when we adjoin the set of all roots of a given polynomial.

Definition. Let k be a subfield of a field K and let {z1, . . . , zn} be a sub-
set of K . The subfield of K obtained by adjoining z1, . . . , zn to k, denoted
by k(z1, . . . , zn), is the intersection of all the subfields of K containing k and
z1, . . . , zn .

Of course, k(z1, . . . , zn) is the smallest subfield of K containing k and all
the zi in the sense that if S is any other subfield of K containing k and the zi ,
then k(z1, . . . , zn) ⊆ S.

Proposition 4.32. If K/k is a finite extension, then every z ∈ K is algebraic
over k. Conversely, if K = k(z1, . . . , zn), and if each zi is algebraic over k, then
K/k is a finite extension.

By Kronecker’s theorem, given f (x) ∈ k[x], where k is a field, there is an
extension K/k containing all the roots of f (x); that is, the polynomial f (x) is a
product of linear factors in K [x].
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Definition. Let k be a subfield of a field K , and let f (x) ∈ k[x]. We say that
f (x) splits over K if

f (x) = a(x − z1) . . . (x − zn),

where z1, . . . , zn are in K and a ∈ k is nonzero.
An extension E/k is called a splitting field of f (x) over k if f (x) splits over

E , but f (x) does not split over any proper subfield of E .

Example 5.15.
Let m ≥ 1, let k be a field, and let f (x) = xm − 1 ∈ k[x]. By Kronecker’s
theorem, there is an extension K/k over which f (x) splits. The roots of f (x)
are, of course, the mth roots of unity. Recall Theorem 3.122, which says that K
contains a primitive mth root of unity; that is, there is some mth root of unity,
say, z ∈ K , with every mth root of unity being a power of z.

Let p be a prime, and consider g(x) = x p − 1. If k has characteristic 6= p,
then g(x) has no repeated roots [by Exercise 3.63 on page 271, g(x) has no
repeated roots if and only if (g, g′) = 1, where g′(x) is the derivative of g(x)].
On the other hand, if k has characteristic p, then x p −1 = (x −1)p, and so there
is only one pth root of unity, namely, 1.

Now consider h(x) = x p − a ∈ k[x], and let k(u) be the extension ob-
tained from k by adjoining u, where u p = a. If k has characteristic 6= p
and if k contains the pth roots of unity, then we claim that k(u) is a splitting
field of h(x) over k. If z is a primitive root of unity, then the roots of h(x) are
u, zu, z2u, . . . , z p−1u. Therefore, k(u) is a splitting field of h(x) over k. On the
other hand, if k has characteristic p, then h(x) = x p −a = x p −u p = (x −u)p.
Thus, there is only one root of h(x), and so k(u) is a splitting field of h(x) over
k in this case as well. �

Proposition 5.16. If f (x) ∈ k[x], where k is a field, then a splitting field E/k
of f (x) exists.

Proof. By Kronecker’s theorem, Theorem 3.118, there exists an extension K/k
with f (x) = a(x − z1) · · · (x − zn) in K [x]. If we define E = k(z1, . . . , zn),
where z1, . . . , zn are the roots of f (x), then f (x) splits over E . If B � E is
a proper subfield of E , then some zi /∈ B, and so f (x) does not split over B.
Therefore, E is a splitting field of f (x). •

A splitting field of f (x) ∈ k[x] is the smallest subfield E of K containing k
and all the roots of f (x). For example, consider f (x) = x 2 + 1 ∈

�
[x]. The

roots of f (x) are ±i , and so f (x) splits over
�

; that is, f (x) = (x − i)(x + i)
is a product of linear polynomials in

�
[x]. However,

�
is not a splitting field
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because
�

is not the smallest field containing
�

and all the roots of f (x); here,�
(i) is a splitting field.

The reason we say “a” splitting field instead of “the” splitting field is that the
definition involves not only f (x) and k, but the larger field K as well. If f (x)
splits in K [x], where K/k is a field extension, then the proof of Proposition 5.16
shows that there is a unique splitting field E of f (x) contained in K , namely,
E = k(z1, . . . , zn). However, if no such extension K is given, then splitting
fields may be distinct. In Theorem 5.23, we shall see that any two splitting fields
of f (x) over k are, in fact, isomorphic. Analysis of this technical point will
enable us to prove that any two finite fields with the same number of elements
are isomorphic.

Example 5.17.
Let E = F(y1, . . . , yn) be the field of all rational functions in n variables
y1, . . . , yn with coefficients in a field F ; that is, E = Frac(F[y1, . . . , yn]),
the fraction field of the polynomial ring in n variables. The coefficients of
f (x) = (x − y1)(x − y2) . . . (x − yn), which we denote by ai , are given explicitly
in terms of the y’s by Eqs. (1) on page 448. Define k = F(a0, . . . , an−1). Notice
that E is a splitting field of f (x) over k, for it arises from k by adjoining to it all
the roots of f (x), namely, all the y’s. �

Definition. Let E be a field containing a subfield k. An automorphism7 of E is
an isomorphism σ : E → E ; we say that σ fixes k if σ(a) = a for every a ∈ k.

Remark. If E/k is a field extension, then Example 4.1(iii) shows that E is a
vector space over k. If σ : E → E is an automorphism fixing k, then σ is a linear
transformation. Clearly, σ(z + z′) = σ(z) + σ(z′) for all z, z′ ∈ E , but σ also
preserves scalar multiplication: if a ∈ k, then

σ(az) = σ(a)σ (z) = aσ(z),

because σ fixes k. �

We have seen that a splitting field of x2 + 1 ∈
�

[x] is E =
�
(i). Complex

conjugation σ : a 7→ a is an example of an automorphism of E fixing
�

.

Proposition 5.18. Let k be a subfield of a field K , let

f (x) = xn + an−1xn−1 + · · · + a1x + a0 ∈ k[x],
7The word automorphism is made up of two Greek roots: auto meaning “self” and morph

meaning “shape” or “form.” Just as an isomorphism carries one group onto an identical
replica, an automorphism carries a group onto itself.
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and let E = k(z1, . . . , zn) be a splitting field. If σ : E → E is an automorphism
fixing k, then σ permutes the roots z1, . . . , zn of f (x).

Proof. If z is a root of f (x), then

0 = f (z) = zn + an−1zn−1 + · · · + a1z + a0.

Applying σ to this equation gives

0 = σ(z)n + σ(an−1)σ (z)
n−1 + · · · + σ(a1)σ (z)+ σ(a0)

= σ(z)n + an−1σ(z)
n−1 + · · · + a1σ(z)+ a0,

because σ fixes k. Therefore, σ(z) is a root of f (x); if Z is the set of all the roots,
then σ ′ : Z → Z , where σ ′ is the restriction σ |Z . But σ ′ is injective (because σ
is), so that Exercise 2.12 on page 102 says that σ ′ is a permutation. •

Corollary 5.19. Let k ⊆ B ⊆ F be a tower of fields, where B is the splitting
field of some polynomial f (x) ∈ k[x]. If σ : F → F is an automorphism
fixing k, then σ(B) = B.

Proof. By Proposition 5.18, σ permutes the roots z1, . . . , zn of f (x), so that
σ(B) ⊆ B. As vector spaces over k, we have B ∼= σ(B), for σ is an injective
linear transformation. Since [B : k] < ∞, by Exercise 5.23 on page 468, both B
and σ(B) are finite-dimensional and dim(B) = dim(σ (B)). Corollary 4.25(ii)
now gives B = σ(B). •

The following proposition will be useful.

Proposition 5.20. Let E = k(z1, . . . , zn). If σ : E → E is an automorphism
fixing k and if σ(zi ) = zi for all i , then σ is the identity.

Proof. We prove the proposition by induction on n ≥ 1. If n = 1, then each
u ∈ E has the form f (z1)/g(z1), where f (x), g(x) ∈ k[x] and g(z1) 6= 0. But σ
fixes zi as well as the coefficients of f (x) and of g(x), so that σ fixes all u ∈ E .
For the inductive step, write K = k(z1, . . . , zn−1), and note that E = K (zn) [for
K (zn) is the smallest subfield containing k and z1, . . . , zn−1, zn]. The inductive
step is just a repetition of the base step with k replaced by K . •

Definition. Let k be a subfield of a field E . The Galois group of E over k,
denoted by Gal(E/k), is the set of all those automorphisms of E that fix k. If
f (x) ∈ k[x], and if E = k(z1, . . . , zn) is a splitting field, then the Galois group
of f (x) over k is defined to be Gal(E/k).
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It is easy to check that Gal(E/k) is a group with operation composition of
functions. This definition is due to E. Artin (1898– 1962), in keeping with his
and E. Noether’s emphasis on “abstract” algebra. Galois’s original version (a
group isomorphic to this one) was phrased, not in terms of automorphisms, but
in terms of certain permutations of the roots of a polynomial.

If f (x) = x2 + 1 ∈
�

[x], then complex conjugation σ is an automorphism
of its splitting field

�
(i), which fixes

�
(it interchanges the roots i and −i ).

Since Gal(
�
(i)/

�
) is a subgroup of the symmetric group S2, which has order

2, it follows that Gal(
�
(i)/

�
) = 〈σ 〉 ∼=

�
2. One should regard the elements of

Gal(E/k) as generalizations of complex conjugation.

Theorem 5.21. If f (x) ∈ k[x] has degree n, then its Galois group Gal(E/k)
is isomorphic to a subgroup of Sn.

Proof. Let E/k be a splitting field of f (x) over k, and let X = {z1, . . . , zn}
be the set of roots of f (x) in E . If σ ∈ Gal(E/k), then Proposition 5.18
shows that its restriction σ |X is a permutation of X ; that is, σ |X ∈ SX . De-
fine ϕ : Gal(E/k) → SX by ϕ : σ 7→ σ |X . To see that ϕ is a homomor-
phism, note that both ϕ(στ) and ϕ(σ)ϕ(τ) are functions X → X , and hence
they are equal if they agree on each zi ∈ X . But ϕ(στ) : zi 7→ (στ)(zi), while
ϕ(σ)ϕτ) : zi 7→ σ(τ(zi )), and these are the same.

The image of ϕ is a subgroup of SX
∼= Sm , where m = |X | ≤ n (if f (x) has

repeated roots, then m < n). The kernel of ϕ is the set of all σ ∈ Gal(E/k) such
that σ is the identity permutation on X ; that is, σ fixes each of the roots z i . As σ
also fixes k, by definition of the Galois group, Proposition 5.20 gives kerϕ = {1}.
Therefore, ϕ is injective; that is, Gal(E/k) is isomorphic to a subgroup of Sm .
If m = n, the proof is done. If m < n, that is, if f (x) has repeated roots, note
that Sm is isomorphic to a subgroup of Sn. For example, Sm is isomorphic to
the subgroup of all permutations in Sn that fix each of m + 1, . . . , n. Thus, the
theorem is true even if f (x) has repeated roots. •

We are now going to compare different splitting fields of a polynomial over
a given field k. The definition of a splitting field E of f (x) ∈ k[x] was given
in terms of some field extension K/k over which f (x) is a product of linear
factors. But what if K is not given at the outset? For example, suppose that
k =

�
(x) and f (y) = y2 − x , or that k = �

3 and f (x) = x9 − x ∈ �
3 [x].

Now Kronecker’s theorem, Theorem 3.118, gives a field extension of
�
(x)/

�
containing

√
x , and it gives a field extension K/

�
3 containing all the roots of

f (x). Neither of these field extensions is unique; for example, several splitting
fields of x9 − x over

�
3 are given in Example 3.125. Nevertheless, we are going

to show that, to isomorphism, splitting fields do not depend on the choice of
extension field K .
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The next result constructs automorphisms in Gal(E/k), and it also counts
the number of them when k has characteristic 0.

Recall Exercise 3.44 on page 248: if R and S are commutative rings and
ϕ : R → S is a homomorphism, then ϕ∗ : R[x] → S[x], defined by

ϕ∗ : f (x) = r0 + r1x + r2x2 + · · ·
7→ ϕ(r0)+ ϕ(r1)x + ϕ(r2)x

2 + · · · = f ∗(x),

is a homomorphism; if ϕ is an isomorphism, so is ϕ∗.

Proposition 5.22. Let f (x) ∈ k[x], and let E be a splitting field of f (x)
over k. Let ϕ : k → k′ be an isomorphism of fields, let ϕ∗ : k[x] → k′[x] be the
isomorphism g(x) 7→ g∗(x) given by Exercise 3.44 on page 248, and let E ′ be
a splitting field of f ∗(x) over k′.

(i) There exists an isomorphism8 : E → E ′ extending ϕ.

E
8 // E ′

k ϕ
// k′

(ii) If k has characteristic 0, there are exactly [E; k] isomorphism8 : E → E ′

extending ϕ.

Proof.
(i) The proof is by induction on [E : k]. If [E : k] = 1, then f (x) is a product of
linear polynomials in k[x], and it follows easily that f ∗(x) is also a product of
linear polynomials in k′[x]. Thus, we may set 8 = ϕ.

For the inductive step, choose a root z of f (x) in E that is not in k, and let p(x)
be the irreducible polynomial in k[x] of which z is a root [Proposition 3.116(i)].
Since z /∈ k, deg(p) > 1; moreover, [k(z) : k] = deg(p), by Example 5.14. Let
p∗(x) be the corresponding polynomial in k′[x], and let z′ be a root of p∗(x) in
E ′. Note that p∗(x) is irreducible, because the isomorphism k[x] → k′[x] takes
irreducible polynomials to irreducible polynomials.

By Exercise 3.97 on page 304, there is an isomorphism ϕ̃ : k(z) → k′(z′)
extending ϕ with ϕ̃(z) = z′. We now regard f (x) as a polynomial in k(z) (for
k ⊆ k(z) implies k[x] ⊆ k(z)[x]). We claim that E is is a splitting field of f (x)
over k(z); that is,

E = k(z)(z1, . . . , zn),

where z1, . . . , zn are the roots of f (x). Clearly,

E = k(z1, . . . , zn) ⊆ k(z)(z1, . . . , zn).
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For the reverse inclusion, since z ∈ E , we have

k(z)(z1, . . . , zn) ⊆ k(z1, . . . , zn) = E .

But [E : k(z)] < [E : k], by Theorem 4.31, so that the inductive hypothesis
gives an isomorphism 8 : E → E ′ that extends ϕ̃, and hence ϕ.
(ii) The proof in this part is again by induction on [E : k]. If [E : k] = 1, then
E = k and there is only one extension, namely, 8 = ϕ. If [E : k] > 1, let
f (x) = p(x)g(x) in k[x], where p(x) is an irreducible factor of largest degree,
say, d . We may assume that d > 1, otherwise f (x) splits over k and [E : k] = 1.
Choose a root z ∈ E of p(x) [this is possible because E/k is a splitting field of
f (x) = p(x)g(x)]. As in part (i), the polynomial p∗(x) ∈ k′[x] is irreducible,
and there is some root z′ of p∗(x) in E ′. Since k has characteristic 0, Exer-
cise 3.91 on page 304 shows that p(x) and p∗(x) have no repeated roots; that is,
each has d distinct roots. By Proposition 3.116(iii), there exist d isomorphisms
ϕ̃ : k(z) → k′(z′) extending ϕ, one for each of the roots z ′; there are no other
isomorphisms extending ϕ, for any such extension must send z into some z ′, in
which case Proposition 5.20 shows it is already one of the ϕ̃. As in part (i), E
is a splitting field of f (x) over k(z), and E ′ can be viewed as a splitting field of
f ∗(x) over k′(z′). But [E : k] = [E : k(z)][k(z) : k] = [E : k(z)]d , so that
[E : k(z)] < [E : k]. By induction, each ϕ̃ has exactly [E : k(z)] extensions
8 : E → E ′. Thus, we have exhibited [E : k(z)][k(z) : k] = [E : k] such
extensions 8. If τ : E → E ′ is another extension of ϕ, then τ(z) = z′ for some
root z′ of p∗(x), and so τ is an extension of that ϕ̃ with ϕ̃(z) = z ′. But all such
extensions E → E ′ have already been counted. •

Theorem 5.23. If k is a field and f (x) ∈ k[x], then any two splitting fields of
f (x) over k are isomorphic.

Proof. Let E and E ′ be splitting fields of f (x) over k. If ϕ is the identity, then
Proposition 5.22(i) applies at once. •

Corollary 5.24. The Galois group Gal(E/k) of a polynomial f (x) ∈ k[x] with
splitting field E depends only on f (x) and k, but not upon the choice of E.

Proof. If ϕ : E → E ′ is an isomorphism fixing k, then there is an isomorphism
Gal(E/k) → Gal(E ′/k) given by σ 7→ ϕσϕ−1. •

It is remarkable that the next theorem was not proved until the 1890s, 60
years after Galois discovered finite fields.

Corollary 5.25 (E. H. Moore). Any two finite fields having exactly pn ele-
ments are isomorphic.
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Proof. If E is a field with q = pn elements, then Lagrange’s theorem applied
to the multiplicative group E× shows that aq−1 = 1 for every a ∈ E×. It
follows that every element of E , including a = 0, is a root of f (x) = x q − x =
x(xq−1 − 1) ∈ �

p [x], and so E is a splitting field of f (x) over
�

p . •

It follows that if g(x), h(x) ∈ �
p [x] are irreducible polynomials of degree n,

then
�

p [x]/(g(x)) ∼=
�

p [x]/(h(x)), for both are fields with exactly pn elements.
E. H. Moore (1862–1932) began his mathematical career as an algebraist, but

he did important work in many other parts of mathematics as well; for example,
Moore–Smith convergence is named in part after him.

We can now compute the order of the Galois group Gal(E/k) when k has
characteristic 0.

Theorem 5.26. If E/k is the splitting field of some polynomial in k[x], where
k is a field of characteristic 0, then | Gal(E/k)| = [E : k].

Proof. This is the special case of Proposition 5.22(ii) when k = k′, E = E ′,
and ϕ = 1k . •

Remark. Theorem 5.26 may not be true if k is a field of characteristic p > 0. It
is true if k is a finite field, but it is false for k = �

p (x), all rational functions over
�

p . The key to investigating this question involves the notion of separability. A
counterexample to Theorem 5.26 when char(k) = p is described in Exercise 5.31
on page 469. �

Corollary 5.27. Let f (x) ∈ k[x] be an irreducible polynomial of degree n,
where k is a field of characteristic 0. If E/k is a splitting field of f (x) over k,
then n is a divisor of | Gal(E/k)|.

Proof. If z ∈ E is a root of f (x), then [k(z) : k] = n, as in Example 5.14. But
[E : k] = [E : k(z)][k(z) : k], so that n | [E : k]. Since k has characteristic 0,
Theorem 5.26 gives | Gal(E/k)| = [E : k]. •

If k is a field, then the factorization into irreducibles of a polynomial in k[x]
can change as one enlarges the ground field k.

Lemma 5.28. Let B/k be a splitting field of some polynomial g(x) ∈ k[x]. If
p(x) ∈ k[x] is irreducible, and if

p(x) = q1(x) · · ·qt (x)

is the factorization of p(x) into irreducibles in F[x], then all the qi (x) have the
same degree.
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Proof. Regard p(x) as a polynomial in B[x] (for k ⊆ B implies k[x] ⊆ B[x]),
and let E = B(z1, . . . , zn) be a splitting field of p(x), where z1, . . . , zn are the
roots of p(x). If p(x) does not factor in B[x], we are done. Otherwise, choose
z1 to be a root of q1(x) and, for each j 6= 1, choose z j to be a root of q j (x).
Since both z1 and z j are roots of the irreducible p(x), Proposition 3.116(iii)
gives an isomorphism ϕ j : k(z1) → k(z j ) with ϕ j (z1) = z j which fixes k point-
wise. Now Proposition 5.22(i) says that ϕ j extends to an automorphism 8 j of
E , and Corollary 5.19 gives 8 j (B) = B. Hence, 8 j induces an isomorphism
8∗

j : B[x] → B[x] (by letting 8 j act on the coefficients of a polynomial). It
follows that

p∗(x) = q∗
1 (x) · · ·q∗

t (x),

where p∗(x) = 8∗
j (p) and q∗

i (x) = 8∗
j (qi) for all i . Note that all the q∗

i (x) are
irreducible, because isomorphisms take irreducible polynomials into irreducible
polynomials. Now p∗(x) = p(x), because 8 j fixes k pointwise, and so unique
factorization in B[x] gives q∗

1 (x) = q`(x) for some `. But z j = 8 j (z1) is a root
of q∗

1 (x), so that q∗
1 (x) = q j (x). Therefore, deg(q1) = deg(q∗

1 ) = deg(q j ), and
all the q j have the same degree. •

This lemma allows us to characterize those field extensions which are split-
ting fields.

Theorem 5.29. Let E/k be a finite field extension. Then E/k is a splitting field
of some polynomial in k[x] if and only if every irreducible polynomial in k[x]
having a root in E must split in E[x].

Proof. Suppose that E/k is a splitting field of some polynomial in k[x]. Let
p(x) ∈ k[x] be irreducible, and let p(x) = q1(x) · · · qt (x) be its factorization
into irreducibles in E[x]. If p(x) has a root in E , then it has a linear factor in
E[x]; by Lemma 5.28, all the qi (x) are linear, and so p(x) splits in E[x].

Conversely, assume that every irreducible polynomial in k[x] having a root
in E must split in E[x]. Choose β1 ∈ E with β1 /∈ k. Since E/k is finite,
Proposition 3.116(i) gives an irreducible polynomial p1(x) ∈ k[x] having β1 as
a root. By hypothesis, p1(x) splits in E[x]; let B1 ⊆ E be a splitting field of
p1(x). If B1 = E , we are done. Otherwise, choose β2 ∈ E with β2 /∈ B1. As
above, there is an irreducible p2(x) ∈ k[x] having β2 as a root. Define B2 ⊆ E
to be the splitting field of p1(x)p2(x), so that k ⊆ B1 ⊆ B2 ⊆ E . Since E/k is
finite, this process eventually ends with E = Br for some r ≥ 1. •

Definition. A field extension E/k is a normal extension if every irreducible
polynomial p(x) ∈ k[x] having a root in E splits in E[x].
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Here is the basic strategy for showing that there are polynomials of degree 5
for which there is no formula, analogous to the classical formulas, giving their
roots. First, we will translate the classical formulas (giving the roots of f (x) ∈
k[x]) in terms of subfields of a splitting field E over k. Second, this translation
into the language of fields will itself be translated into the language of groups: If
there is a formula for the roots of f (x), then Gal(E/k) must be a solvable group
(which we will soon define). Finally, polynomials of degree at least 5 can have
Galois groups that are not solvable.

Formulas and Solvability by Radicals

Without further ado, here is the translation of the existence of a formula for the
roots of a polynomial in terms of subfields of a splitting field.

Definition. A pure extension of type m is an extension k(u)/k, where um ∈ k
for some m ≥ 1. An extension K/k is a radical extension if there is a tower of
fields

k = K0 ⊆ K1 ⊆ · · · ⊆ Kt = K (2)

in which each K i+1/Ki is a pure extension of type m i . One calls Eq. (2) a radical
tower.

It is easy to see that any field extension K/k with [K : k] ≤ 2 is a pure
extension. By Theorem 4.53, a complex number z is constructible if and only if
it is polyquadratic; that is, there is a tower of fields

�
(i) = F0 ⊆ F1 ⊆ · · · ⊆ Fn

with z ∈ Fn and with [Fi : Fi−1] ≤ 2 for all i . Exercise 5.16 on page 468 asks
you to prove that

�
(i, z)/

�
is a radical extension.

When we say that there is a formula for the roots of a polynomial f (x)
analogous to the quadratic, cubic, and quartic formulas, we mean that there is
some expression giving the roots of f (x) in terms of the coefficients of f (x).
As in the classical formulas, the expression may involve the field operations,
constants, and extraction of roots, but it should not involve any other operations
involving cosines, definite integrals, or limits, for example. We maintain that a
formula as informally described above exists precisely when f (x) is solvable by
radicals in the following sense.

Definition. Let f (x) ∈ k[x] have a splitting field E . We say that f (x) is
solvable by radicals if there is a radical extension

k = K0 ⊆ K1 ⊆ · · · ⊆ Kt

with E ⊆ Kt .
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Example 5.30.
For every field k and every m ≥ 1, we show that the polynomial f (x) = x m−1 ∈
k[x] is solvable by radicals. Recall that the set 0m of all mth roots of unity in a
splitting field E/k of f (x) is a cyclic group; a generator ζ is called a primitive
root of unity. Note that |0m | = m unless k has characteristic p > 0 and p | m,
in which case |0m | = m′, where m = pem′ and p � m′. Now E = k(ζ ), so
that E is a pure extension of k, and hence E/k is a radical extension. Therefore,
f (x) = xm − 1 is solvable by radicals. �

Let us illustrate this definition by considering the classical formulas for the
polynomials of small degree.

Quadratics

Let f (x) = x2 + bx + c ∈
�

[x]. Define K1 =
�
(u), where u =

√
b2 − 4c.

Then K1 is a radical extension of
�

, for u2 ∈
�

. Moreover, the quadratic formula
implies that K1 is the splitting field of f (x), and so f (x) is solvable by radicals.

Cubics

Let f (X) = X3 + bX2 + cX + d ∈
�

[x]. The change of variable X =
x − 1

3 b yields a new polynomial f̃ (x) = x3 + qx + r ∈
�

[x] having the same
splitting field E [for if u is a root of f̃ (x), then u − 1

3 b is a root of f (x)].

Define K1 =
�
(
√

D), where D = r2 + 4
27 q3, and define K2 = K1(α), where

α3 = 1
2 (−r +

√
D). The cubic formula shows that K2 contains the root α + β

of f̃ (x), where β = −q/3α. Finally, define K3 = K2(ω), where ω3 = 1. The
other roots of f̃ (x) are ωα + ω2β and ω2α + ωβ, both of which lie in K3, and
so E ⊆ K3.

An interesting aspect of the cubic formula is the so-called casus irreducibilis;
the formula for the roots of an irreducible cubic in

�
[x] having all roots real (as

in Example 5.9) requires the presence of complex numbers (see Rotman, Galois
Theory, 2d ed.).

Casus Irreducibilis. If f (x) = x3+qx+r ∈
�

[x] is an irreducible polynomial
having real roots, then any radical extension K t/

�
containing the splitting field

of f (x) is not real; that is, K t � �
.

It follows that one cannot modify the definition of f (x) being solvable by
radicals so that a splitting field E is equal to the last term K t in a tower of pure
extensions (instead of E ⊆ K t ).

Quartics

Let f (x) = X4 + bX3 + cX2 + d X + e ∈
�

[x]. The change of variable
X = x − 1

4 b yields a new polynomial f̃ (x) = x4 + qx2 + r x + s ∈
�

[x];
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moreover, the splitting field E of f (x) is equal to the splitting field of f̃ (x), for
if u is a root of f̃ (x), then u − 1

4 b is a root of f (x). Recall

f̃ (x) = x4 + qx2 + r x + s = (x2 + j x + `)(x2 − j x + m),

and Eq. (12) shows that j 2 is a root of a cubic,

( j 2)3 + 2q( j 2)2 + (q2 − 4s) j 2 − r2.

Define pure extensions
�

= K0 ⊆ K1 ⊆ K2 ⊆ K3,

as in the cubic case, so that j 2 ∈ K3. Define K4 = K3( j ), and note that
Eqs. (11) on page 441 give `,m ∈ K4. Finally, define K5 = K4(

√
j 2 − 4`)

and K6 = K5(
√

j 2 − 4m). The quartic formula gives E ⊆ K6 (this tower can
be shortened).

We have seen that quadratics, cubics, and quartics are solvable by radicals.
Conversely, if f (x) ∈

�
[x] is a polynomial that is solvable by radicals, then

there is a formula of the desired kind that expresses its roots in terms of its
coefficients. For suppose that

�
= K0 ⊆ K1 ⊆ · · · ⊆ Kt

is a radical extension with splitting field E ⊆ K t . Let z be a root of f (x). Now
Kt = Kt−1(u), where u is an mth root of some element α ∈ K t−1; hence, z can
be expressed in terms of u and K t−1; that is, z can be expressed in terms of m

√
α

and Kt−1. But Kt−1 = Kt−2(v), where some power of v lies in K t−2. Hence,
z can be expressed in terms of u, v, and K t−2. Ultimately, z is expressed by a
formula analogous to those of the classical formulas.

Translation into Group Theory

The second stage of the strategy involves investigating the effect of f (x) being
solvable by radicals on its Galois group.

Suppose that k(u)/k is a pure extension of type 6; that is, u6 ∈ k. Now
k(u3)/k is a pure extension of type 2, for (u3)2 = u6 ∈ k, and k(u)/k(u3) is
obviously a pure extension of type 3. Thus, k(u)/k can be replaced by a tower
of pure extensions k ⊆ k(u3) ⊆ k(u) of types 2 and 3. More generally, one may
assume, given a tower of pure extensions, that each field is of prime type over its
predecessor: if k ⊆ k(u) is of type m, then factor m = pt . . . pq , where the p’s
are (not necessarily distinct) primes, and replace k ⊆ k(u) by

k ⊆ k(um/p1 ) ⊆ k(um/p1 p2) ⊆ · · · ⊆ k(u).
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The next theorem, a key result allowing us to translate solvability by radicals
into the language of Galois groups, shows why normal extensions are so called.
The reader should recognize that extensions of fields seem to be playing the same
role as do subgroups of groups.

Theorem 5.31. Let k ⊆ K ⊆ E be a tower of fields, where both K/k and E/k
are normal extensions. Then Gal(E/K ) is a normal subgroup of Gal(E/k), and

Gal(E/k)/Gal(E/K ) ∼= Gal(K/k).

Proof. Since K/k is a normal extension, it is a splitting field of some poly-
nomial in k[x], by Theorem 5.29. Hence, if σ ∈ Gal(E/k), then σ(K ) = K ,
by Corollary 5.19. Define ρ : Gal(E/k) → Gal(K/k) by σ 7→ σ |K . It is
easy to see, as in the proof of Theorem 5.21, that ρ is a homomorphism and
that kerρ = Gal(E/K ). It follows that Gal(E/K ) is a normal subgroup of
Gal(E/k). Now ρ is surjective: if τ ∈ Gal(K/k), then Proposition 5.22(i) ap-
plies to show that there is σ ∈ Gal(E/k) extending τ ; that is, ρ(σ) = σ |K = τ .
The first isomorphism theorem completes the proof. •

The next result will be needed when we apply Theorem 5.31.

Lemma 5.32. Let B be a finite extension of a field k.

(i) There is a finite extension F/B with F/k a normal extension.

(ii) If B is a radical extension of k, then there is a tower of fields k ⊆ B ⊆ F
with F/k both a normal extension and a radical extension. Moreover, the
set of types of the pure extensions occurring in a radical tower of F/k is
the same as the set of types in the radical tower of B/k.

Proof.
(i) Since B is a finite extension, B = k(z1, . . . , z`) for elements z1, . . . , z`.
For each i , Theorem 3.116 gives an irreducible polynomial pi (x) ∈ k[x] with
pi (zi ) = 0. Define f (x) = p1(x) · · · p`(x) ∈ k[x] ⊆ B[x], and define F to be a
splitting field of f (x) over B. Since f (x) ∈ k[x], we have F/k a splitting field
of over k as well, and so F/k is a normal extension.
(ii) Now

F = k(z1, z′
1, z′′

1, . . . ; z2, z′
2, z′′

2, . . . ; . . . ; z`, z′
`, z′′

` , . . .),

where zi , z′
i , z′′

i , . . . are the roots of pi (x). We claim that

F = k
(
{σ(z1), . . . , σ (z`) : σ ∈ Gal(F/k)}

)
.

Clearly, the right hand side is contained in F , and so it suffices to prove the re-
verse inclusion. In fact, it suffices to prove that z ′

i = σ(zi) [where z′
i now denotes
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any root of pi (x) for some i ]. By Proposition 3.116(iii), there is an isomorphism
γ : k(zi ) → k(z′

i ) fixing k and taking zi 7→ z′
i , and, by Proposition 5.22(i), each

such γ extends to an isomorphism σ ∈ Gal(F/k). Therefore, z ′
i = σ(zi ), as

desired.
Since B is a radical extension of k, there are u1, . . . , ut ∈ B and a radical

tower,

k ⊆ k(u1) ⊆ k(u1, u2) · · · ⊆ k(u1, . . . , ut ) = B, (3)

with each k(u1, . . . , ui+1) a pure extension of k(u1, . . . , ui ). We now show that
F is a radical extension of k. Let Gal(F/k) = {1 = σ1, σ2, . . . , σn}. Define

B1 = k(u1, σ2(u1), σ3(u1), . . . , σn(u1)).

There is a radical tower

k ⊆ k(u1) ⊆ k(u1, σ2(u1)) ⊆ k(u1, σ2(u1), σ3(u1)) ⊆ · · · ⊆ B1

displaying B1 as a radical extension of k. In more detail, if u p
1 lies in k, then

σ j (u
p
1 ) = σ j (u1)

p ∈ σ j (k) = k ⊆ k(u1, σ2(u1), . . . , σ j−1(u1)). Note that these
pure extensions all have the same type, namely, p, which is a type in the original
radical tower (3). Define

B2 = k(u2, σ2(u2), σ3(u2), . . . , σn(u2));

there is a radical tower:

B1 ⊆ B1(u2) ⊆ B1(u2, σ2(u2)) ⊆ B1(u2, σ2(u2), σ3(u2)) ⊆ · · · ⊆ B2.

Now B2 is a radical extension of B1: if uq
2 ∈ k(u1) ⊆ B1, then σ j (u

q
2) =

σ j (u2)
q ∈ σ j (B1) ⊆ B1 ⊆ B1(u2, σ2(u2), . . . , σ j−1(u2)). Again, these pure

extensions have the same type, namely, q, which is a type in the radical tower (3).
Since B1 is a radical extension of k, the radical tower from k to B1 followed by
the radical tower from B1 to B2 displays B2 as a radical extension of k. For each
i ≥ 2, define Bi+1 to be Bi with ui , σ2(ui ), σ3(ui ), . . . adjoined. The argument
above shows that Bi+1 is a radical extension of k. Finally, since F = Bt , we
have shown that F is a radical extension of k, and that the statement about the
types of its pure extensions is correct. •

Lemma 5.33. Let k(u)/k be a pure extension of prime type p distinct from
the characteristic of k. If k contains the pth roots of unity and if u /∈ k, then
Gal(k(u)/k) ∼=

�
p.
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Proof. Denote Gal(k(u)/k) by G. Let a = u p ∈ k. If ω is a primitive pth root
of unity, then the roots 1, ω, . . . , ω p−1 are distinct [because p 6= char(k)], and
the roots of f (x) = x p − a are u, ωu, ω2u, . . . , ω p−1u; since ω ∈ k, it follows
that k(u) is the splitting field of f (x) over k. If σ ∈ G, then σ(u) = ωi u for
some i , by Theorem 5.18(i). Define ϕ : G → �

p by ϕ(σ) = [i ], the congruence
class of i mod p. To see that ϕ is a homomorphism, suppose that τ ∈ G and
ϕ(τ) = [ j ]. Then στ(u) = σ(ω j u) = ωi+ j u, so that ϕ(στ) = [i + j ] =
[i ] + [ j ] = ϕ(σ)+ ϕ(τ). Now kerϕ = {1}, for if ϕ(σ) = [0], then σ(u) = u;
since σ fixes k, by the definition of G = Gal(k(u)/k), Proposition 5.20 gives
σ = 1. Finally, we show that ϕ is a surjection. Since u /∈ k, the automorphism
taking u 7→ ωu is not the identity, so that imϕ 6= {[0]}. But

�
p, having prime

order p, has no subgroups aside from {[0]} and
�

p, so that imϕ = �
p. Therefore,

ϕ is an isomorphism. •

Here is the heart of the translation we have been seeking.

Theorem 5.34. Let k = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kt be a radical extension of
a field k. Assume, for each i , that each K i is a pure extension of prime type pi
over Ki−1, where pi 6= char(k), and that k contains all the pi th roots of unity.

(i) If Kt is a splitting field over k, then there is a sequence of subgroups

Gal(Kt/k) = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gt = {1},

with each G i+1 a normal subgroup of G i and with G i/Gi+1 cyclic of
prime order.

(ii) If f (x) is solvable by radicals, then its Galois group Gal(E/k) is a quo-
tient of a solvable group.

Proof.
(i) Defining G i = Gal(Kt/Ki ) gives a sequence of subgroups of Gal(K t/k).
Since K1 = k(u), where u p1 ∈ k, the assumption that k contains a primitive pth
root of unity shows that K1 is a splitting field of x p1 − u p1 (see Example 5.15).
We may thus apply Theorem 5.31 to see that G1 = Gal(Kt/K1) is a normal
subgroup of G0 = Gal(Kt/k) and that G0/G1 ∼= Gal(K1/k) = Gal(K1/K0).
By Lemma 5.33, G0/G1

∼=
�

p1. This argument can be repeated for each i .
(ii) There is a radical tower,

k = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kt ,

with each Ki/Ki+1 a pure extension of prime type, and with E ⊆ K t . By
Lemma 5.32, this radical tower can be lengthened; there is a radical tower

k = K0 ⊆ K1 ⊆ · · · ⊆ Kt ⊆ · · · ⊆ F,



464 FIELDS CH. 5

where F/k is a normal extension. Moreover, the (prime) types of the pure ex-
tensions in this longer radical extension are the same as those occurring in the
original radical tower. Therefore, k contains all those roots of unity required in
the hypothesis of part (i) to show that Gal(F/k) is a solvable group.

Since E is a splitting field, if σ ∈ Gal(F/k), then σ |E ∈ Gal(E/k), and so
ρ : σ 7→ σ |E is a homomorphism Gal(F/k) → Gal(E/k). Finally, Proposi-
tion 5.22(i) shows that ρ is surjective; since F is a splitting field over k, every
σ ∈ Gal(E/k) extends to some σ̃ ∈ Gal(F/k). •

We shall see that not every group satisfies the conclusion of Theorem 5.34(i);
those groups that do enjoy that property have a name.

Definition. A normal series of a group G is a sequence of subgroups

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gt = {1}

with each G i+1 a normal subgroup of G i ; the factor groups of this series are the
quotient groups

G0/G1,G1/G2, . . . ,Gt−1/Gt .

A finite group G is called solvable if G = {1} or if G has a normal series each
of whose factor groups has prime order.

In this language, Theorem 5.34 says that Gal(K t/k) is a solvable group if
Kt is a radical extension of k and k contains appropriate roots of unity.

Example 5.35.

(i) S4 is a solvable group.

Consider the chain of subgroups

S4 ≥ A4 ≥ V ≥ W ≥ {1},

where V is the four-group and W is any subgroup of V of order 2. This
is a normal series: first, it begins with S4 and ends with {1}; second, each
term is a normal subgroup of its predecessor: A4 � S4; � � A4 (in fact,
� � S4 , a stronger statement); W � V because V is abelian. Now |S4/A4| =
|S4|/|A4| = 24/12 = 2, |A4/V| = |A4|/|V| = 12/4 = 3, |V/W | =
|V|/|W | = 4/2 = 2, and |W/{1}| = |W | = 2. Thus, each factor group has
prime order, and so S4 is solvable.

(ii) Every finite abelian group G is solvable.

We prove this by induction on |G|; the base step |G| = 1 is trivially
true. For the inductive step, recall Proposition 2.122: if G is a finite abelian
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group, then G has a subgroup of order d for every divisor d of |G|. Since
|G| > 1, there is a factorization |G| = pd for some prime p, and so there
is a subgroup H of G of order d . Now H � G, because G is abelian, and
|G/H | = |G|/|H | = pd/d = p. By induction, there is a normal series
from H to {1} with factor groups of prime orders, from which it follows
that G is a solvable group.

(iii) S5 is not a solvable group (in fact, Sn is not solvable for all n ≥ 5).

In Exercise 2.123 on page 205, we saw, for all n ≥ 5, that An is the
only proper nontrivial normal subgroup of Sn (the key fact in the proof is
that An is a simple group). It follows that Sn has only one normal series,
namely,

Sn > An > {1}

(this is not quite true; another normal series is Sn > An ≥ An > {1},
which repeats a term; of course, this repetition only contributes the new
factor group An/An = {1}). But the factor groups of this normal series are
Sn/An

∼=
�

2 and An/{1} ∼= An , and the latter group is not of prime order.
Therefore, Sn is not a solvable group for n ≥ 5. �

Theorem 5.36. Every quotient G/N of a solvable group G is itself a solvable
group.

Remark. One can also prove that every subgroup of a solvable group is itself
a solvable group. �

Proof. By the first isomorphism theorem for groups, quotient groups are iso-
morphic to homomorphic images, and so it suffices to prove that if f : G → H
is a surjection (for some group H ), then H is a solvable group.

Let G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gt = {1} be a sequence of subgroups as
in the definition of solvable group. Then

H = f (G0) ≥ f (G1) ≥ f (G2) ≥ · · · ≥ f (Gt ) = {1}

is a sequence of subgroups of H . If f (xi+1) ∈ f (Gi+1) and ui ∈ f (Gi ), then
ui = f (xi ) and ui f (xi+1)u

−1
i = f (xi) f (xi+1) f (xi)

−1 = f (xi xi+1x−1
i ) ∈

f (Gi ), because G i+1 � Gi ; that is, f (Gi+1) is a normal subgroup of f (G i ).
The map ϕ : Gi → f (Gi )/ f (Gi+1), defined by xi 7→ f (xi ) f (Gi+1), is a sur-
jection, for it is the composite of the surjections G i → f (Gi ) and the natural
map f (Gi ) → f (Gi )/ f (Gi+1). Since Gi+1 ≤ kerϕ, this map induces a sur-
jection Gi/Gi+1 → f (Gi )/ f (Gi+1), namely, xi Gi+1 7→ f (xi) f (Gi+1). Now
Gi/Gi+1 is cyclic of prime order, so that its quotient f (G i )/ f (Gi+1) is a cyclic
group of order 1 or order a prime. Thus, deleting any repetitions if necessary,
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H = f (G) has a series in which all the quotient groups are cyclic of prime order;
therefore, H is a solvable group. •

Here is the main criterion.

Theorem 5.37 (Galois). Let k be a field and let f (x) ∈ k[x]. If f (x) is
solvable by radicals, then its Galois group Gal(E/k) is a solvable group if k has
“enough” roots of unity.

Remark. By “enough” roots of unity, we mean those arising from types of
a radical tower displaying f (x) being solvable by radicals. Exercise 5.27 on
page 468 shows how to eliminate this hypothesis. �

Proof. By Lemma 5.34(ii), Gal(E/k) is a quotient of a solvable group and, by
Theorem 5.36, any quotient of a solvable group is itself solvable. •

If k has characteristic 0, then the converse of Theorem 5.37 is true; it was also
proved by Galois (see my book Advanced Modern Algebra, p. 235). However,
the converse is false in characteristic p. If f (x) = x p − x − t ∈ k[x], where
k = �

p (t), then the Galois group of f (x) over k is cyclic of order p, but f (x) is
not solvable by radicals (see Proposition 4.56 in Advanced Modern Algebra).

In 1827, Abel proved a theorem saying, in group-theoretic language not
known to him, that if the Galois group of a polynomial f (x) is commutative,
then f (x) is solvable by radicals. This is why abelian groups are so called.
Since every finite abelian group is solvable [Example 5.35(ii)], Abel’s theorem
is a special case of Galois’ theorem.

It is not difficult to prove that every subgroup of S4 is a solvable group.
Since S2 and S3 are subgroups of S4, Theorem 5.21 shows that the Galois group
of every quadratic, cubic, and quartic polynomial is a solvable group. Thus,
the converse of Galois’ theorem shows that if k has characteristic 0, then every
polynomial f (x) ∈ k[x] with deg( f ) ≤ 4 is solvable by radicals (of course, we
already know this because we have proved the classical formulas).

We now complete the discussion by showing, for n ≥ 5, that the general
polynomial of degree n is not solvable by radicals.

Theorem 5.38 (Abel-Ruffini). For all n ≥ 5, the general polynomial of
degree n,

f (x) = (x − y1)(x − y2) · · · (x − yn),

is not solvable by radicals.

Proof. In Example 5.17, we saw that if F is a field, E = F(y1, . . . , yn) is the
field of all rational functions in n variables y1, . . . , yn with coefficients in F ,
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and k = F(a0, . . . , an), where the ai are the coefficients of f (x), then E is the
splitting field of f (x) over k. In particular, if we choose F =

�
, then k is an

extension field of
�

, and hence k contains all the roots of unity.
We claim that Sn is (isomorphic to) a subgroup of Gal(E/k). Recall Exer-

cise 3.50(ii) on page 249: If A and R are domains and ϕ : A → R is an iso-
morphism, then [a, b] 7→ [ϕ(a), ϕ(b)] is an isomorphism Frac(A) → Frac(R).
If σ ∈ Sn, then there is an isomorphism σ̃ of F[y1, . . . , yn] with itself defined
by f (y1, . . . , yn) 7→ f (yσ1, . . . , yσn); that is, σ̃ just permutes the variables of
a polynomial in several variables. By Exercise 3.50 on page 249, σ̃ extends to
an automorphism σ ∗ of E , for E = Frac(F[y1, . . . , yn]). Eqs. (1) on page 448
show that σ ∗ fixes k, and so σ ∗ ∈ Gal(E/k). Using Proposition 5.20, it is easy to
see that σ 7→ σ ∗ is an isomorphism of Sn with a subgroup of Gal(E/k); in fact,
Theorem 5.21 shows that Gal(E/k) ∼= Sn. Therefore, if n ≥ 5, then Gal(E/k)
is not a solvable group, and Theorem 5.37 shows that f (x) is not solvable by
radicals. •

We have proved that there is no generalization of the classical formulas to
polynomials of degree n ≥ 5.

Example 5.39.
Here is an explicit example of a quintic polynomial which is not solvable by
radicals. If f (x) = x5 − 4x + 2 ∈

�
[x], then f (x) is irreducible over

�
,

by Eisenstein’s criterion (Theorem 3.103). If E/
�

is the splitting field of f (x)
contained in

�
and G = Gal(E/

�
), then Corollary 5.27 gives |G| = [E :

�
]

divisible by 5.
We now use some calculus. There are exactly two real roots of the derivative

f ′(x) = 5x4 −4, namely, ± 4
√

4/5 ∼ ±.946, and so f (x) has two critical points.
Now f ( 4

√
4/5) < 0 and f (− 4

√
4/5) > 0, so that f (x) has one relative maximum

and one relative minimum. It follows easily that f (x) has exactly three real
roots (although we will not need to know their values, they are, approximately,
−1.5185, 0.5085, and 1.2435; the complex roots are −.1168 ± 1.4385i.)

The Galois group G is isomorphic to a subgroup of SX ∼= S5, where X is the
set of 5 roots of f (x). Now G has an element σ of order 5, by Cauchy’s theorem
(Theorem 2.145), which must be a 5-cycle, for these are the only elements of
order 5 in S5. The restriction of complex conjugation to E , call it τ , is a transpo-
sition, for τ interchanges the two complex roots while it fixes the three real roots.
But S5 is generated by any transposition and any 5-cycle, by Exercise 2.115 on
page 205, so that G = Gal(E/

�
) ∼= S5. Therefore, Gal(E/

�
) is not a solvable

group, by Example 5.35(iii), and so Theorem 5.37 says that f (x) is not solvable
by radicals. �

An (impractical) algorithm computing Galois groups is given in van der
Waerden, Modern Algebra, vol. I, pp. 189-192. However, more advanced ex-



468 FIELDS CH. 5

positions of Galois theory show how to compute explicitly Galois groups of
f (x) ∈

�
[x] when deg( f ) ≤ 4.

EXERCISES

*5.15 Let ϕ : A → H be a group homomorphism. If B � A and B ≤ ker ϕ, prove
that the induced map ϕ∗ : A/B → H , given by a B 7→ ϕ(a), is a well-defined
homomorphism with imϕ∗ = im ϕ.

*5.16 If z ∈ � is a constructible number, prove that � (i, z)/ � is a radical extension.
5.17 Let k be a field and let f (x) ∈ k[x]. Prove that if E and E′ are splitting fields of

f (x) over k, then Gal(E/k) ∼= Gal(E ′/k).
5.18 Prove that � 3 [x]/(x3 − x2 − 1) ∼= � 3 [x]/(x3 − x2 + x − 1).
5.19 Is � 4 a subfield of � 8 ?
5.20 Let k be a field of characteristic p > 0, and define the Frobenius map F : k → k

by F : a 7→ a p.
(i) Prove that F : k → k is an injection.
(ii) When k is finite, prove that F is an automorphism fixing the prime field

� p . Conclude that F ∈ Gal(k/ � p ).
(iii) Prove that if k is finite, then every a ∈ k has a pth root; that is, there is

b ∈ k with b p = a.
5.21 Let q = pn for some prime p and some n ≥ 1.

(i) If α is a generator of � ×
q , prove that � q = � p (α).

(ii) Prove that the irreducible polynomial p(x) ∈ � p [x] of α has degree n.
(iii) Prove that if G = Gal( � q / � p ), then |G| ≤ n.
(iv) Prove that Gal( � q / � p ) is cyclic of order n with generator the Frobe-

nius F .
5.22 Prove that the following statements are equivalent for a quadratic f (x) = ax 2 +

bx + c ∈ � [x].
(i) f (x) is irreducible.

(ii)
√

b2 − 4ac is not rational.
(iii) Gal( � (

√
b2 − 4ac), � ) has order 2.

*5.23 Let E/k be a splitting field of a polynomial f (x) ∈ k[x]. If deg( f ) = n, prove
that [E : k] ≤ n!. Conclude that E/k is a finite extension.

5.24 What is the degree of the splitting field of x30 − 1 over � 5 ?
5.25 Prove that if f (x) ∈ � [x] has a rational root a, then its Galois group is the same

as the Galois group of f (x)/(x − a).
*5.26 (i) Let H be a normal subgroup of a finite group G . If both H and G/H are

solvable groups, prove that G is a solvable group.
(ii) If H and K are solvable groups, prove that H × K is solvable.

*5.27 We are going to improve Theorem 5.37 by eliminating the hypothesis involving
roots of unity: if k is a field and f (x) ∈ k[x] is solvable by radicals, then its Galois
group Gal(E/k) is a solvable group.
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Since f (x) is solvable by radicals, there is a radical tower k = K0 ⊆ · · · ⊆ F
with E ⊆ F ; moreover, we were able to assume that F/k a splitting field of
some polynomial. Finally, if k contains a certain set � of mth roots of unity, then
Gal(E/k) is solvable.

(i) Define E∗/E to be a splitting field of xm − 1, and define k∗ = k(�).
Prove that E∗ is a splitting field of f (x) over k∗, and conclude that
Gal(E∗/k∗) is solvable.

(ii) Prove that Gal(E∗/k∗) � Gal(E∗/k), and that Gal(E∗/k)/Gal(E∗/k∗) ∼=
Gal(k∗/k).

(iii) Use Exercise 5.26 to prove that Gal(E ∗/k) is solvable.
(iv) Prove that Gal(E∗/E) � Gal(E∗/k), and that Gal(E∗/k)/Gal(E∗/E) ∼=

Gal(E/k), and conclude that Gal(E/k) is solvable.
*5.28 Let f (x) ∈ � [x] be an irreducible cubic with Galois group G .

(i) Prove that if f (x) has exactly one real root, then G ∼= S3.
(ii) Find the Galois group of f (x) = x3 − 2 ∈ � [x].
(iii) Find a cubic polynomial g(x) ∈ � [x] whose Galois group has order 3.

*5.29 (i) If k is a field and f (x) ∈ k[x] has derivative f′(x), prove that either
f ′(x) = 0 or deg( f ′) < deg( f ).

(ii) If k is a field of characteristic 0, prove that an irreducible polynomial
p(x) ∈ k[x] has no repeated roots; that is, if E is the splitting field of
p(x), then there is no a ∈ E with (x − a)2 | p(x) in E [x].

*5.30 Let k be a field of characteristic p.
(i) Prove that if f (x) =

∑
i ai x i ∈ k[x], then f ′(x) = 0 if and only if the

only nonzero coefficients are those ai with p | i .
(ii) If k is finite and f (x) =

∑
i ai x i ∈ k[x], prove that f ′(x) = 0 if and

only if there is g(x) ∈ k[x] with f (x) = g(x)p .
(iii) Prove that if k is a finite field, then every irreducible polynomial p(x) ∈

k[x] has no repeated roots.
*5.31 (i) If k = � p (t), the field of rational functions over � p , prove that x p − t ∈

k[t] has repeated roots. (It can be shown that x p − t is an irreducible
polynomial.)

(ii) Prove that E = k(α) is a splitting field of xp − t over k.
(iii) Prove that Gal(E/k) = {1}.

5.3 EPILOG

Further investigation of these ideas is the subject of Galois theory, which studies
the relationship between extension fields and their Galois groups. Aside from its
intrinsic beauty, Galois theory is used extensively in algebraic number theory.

The following technical notion turns out to be important.
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Definition. A polynomial f (x) ∈ k[x] is separable if its irreducible factors
have no repeated roots.

We have seen that k is separable if it has characteristic 0 [Exercise 5.29(ii)
on page 469] or if it is finite [Exercise 5.30(iii)]. On the other hand, there are
inseparable polynomials, as we have seen in Exercise 5.31. The following gen-
eralization of Theorem 5.26 shows why separable polynomials are interesting
(there is a proof in my book Advanced Modern Algebra, Theorem 4.7).

Theorem. Let k be a field and let f (x) ∈ k[x] be a separable polynomial. If
E/k is a splitting field of f (x), then | Gal(E/k)| = [E : k].

Definition. Let E/k be a field extension with Galois group G = Gal(E/k). If
H ≤ G, then the fixed field E H is defined by

E H = {u ∈ E : σ(u) = u for all σ ∈ H}.

The following theorems can be proved (for example, see Section 4.2 of my
book Advanced Modern Algebra). Theorem 5.29, which characterizes splitting
fields, can be modified in the presence of separability.

Theorem. Let E/k be a field extension with Galois group G = Gal(E/k).
Then the following statements are equivalent.

(i) E is a splitting field of some separable polynomial f (x) ∈ k[x].
(ii) Every irreducible p(x) ∈ k[x] having one root in E is separable and it

splits in E[x].
(iii) k = EG; that is, if a ∈ E and σ(a) = a for all σ ∈ G, then a ∈ k.

Definition. A finite field extension E/k is a Galois extension if it satisfies any
of the equivalent conditions in this theorem.

The following theorem shows that there is an intimate connection between
the intermediate fields B in a Galois extension E/k (that is, subfields B with
k ⊆ B ⊆ E) and the subgroups of the Galois group.

Theorem (Fundamental Theorem of Galois Theory). Let E/k be a finite
Galois extension with Galois group G = Gal(E/k).

(i) The function H 7→ E H is a bijection, from the set of all subgroups of
Gal(E/k) to the set of all intermediate fields, which reverses inclusions:

H ≤ L i f and only i f E L ⊆ E H .
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For every intermediate field B and every H ≤ G,

EGal(E/B) = B and Gal(E/E H ) = H.

(ii) For every intermediate field B and every subgroup H of G,

[B : k] = [G : Gal(E/B)] and [G : H ] = [E H : k].

(iii) An intermediate field B is a Galois extension of k if and only if Gal(E/B)
is a normal subgroup of G.

Here are some consequences.

Theorem (Theorem of the Primitive Element). If E/k is a finite separable
extension, then there is primitive element α ∈ E; that is, E = k(α).

In particular, every finite extension of
�

has a primitive element. This fol-
lows from a theorem of E. Steinitz which says, given a finite extension E/k, that
there exists α ∈ E with E = k(α) if and only if there are only finitely many
intermediate fields k ⊆ B ⊆ E .

Theorem. The finite field
�

q , where, q = pn , has exactly one subfield of order
pd for every divisor d of n, and no others.

This follows from Gal(
�

q /
�

p ) being cyclic of order n.

Theorem. If E/k is a Galois extension whose Galois group is abelian, then
every intermediate field is a Galois extension.

This follows because every subgroup of an abelian group is normal.
There are many proofs of the Fundamental Theorem of Algebra, and there is

one using Galois theory.

Theorem (Fundamental Theorem of Algebra). If f (x) ∈
�

[x] is not a
constant, then f (x) has a root in

�
.

We now use the Fundamental Theorem of Galois Theory to complete the
discussion of constructibility in Chapter 4.

Recall that a prime p is a Fermat prime if p has the form p = 2m + 1 (in
which case m = 2t ; see the proof of Corollary 3.104). We end with a proof
of Gauss’ theorem that if p is a Fermat prime, then a regular p-gon can be
constructed with straightedge and compass.
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Lemma 5.40. Let E/k be a Galois extension with Galois group G = Gal(E/k).
Given subgroups G ≥ H ≥ L, then

[E L : E H ] = [H : L].

Proof. Since H 7→ E H is order-reversing, there is a tower of fields

k = EG ⊆ E H ⊆ E L ⊆ E

(we have k = EG because E/k is a Galois extension). Theorem 4.31 gives
[E L : k] = [E L : E H ][E H : k], and so the Fundamental Theorem of Galois
Theory gives

[E L : E H ] =
[E L : k]
[E H : k]

=
[G : L]
[G : H ]

=
|G|/|L|
|G|/|H |

=
|H |
|L|

= [H : L]. •

Theorem 5.41 (Gauss). Let p be an odd prime. A regular p-gon is con-
structible if and only if p = 2m + 1 for some m ≥ 0.

Proof. Necessity was proved in Theorem 4.59, where it was shown that m must
be a power of 2 when m > 0.

If p is a prime, then x p − 1 = (x − 1)8p(x), where 8p(x) is the pth
cyclotomic polynomial. A primitive pth root of unity ζ is a root of 8 p(x) and,
since 8p(x) is an irreducible polynomial of degree p − 1 (Corollary 3.104), we
have [

�
(ζ )/

�
] = p − 1 = 2m . By Theorem 5.26, we have | Gal(

�
(ζ )/

�
)| =

2m . As any 2-group, Gal(
�
(ζ )/

�
) has a normal series

Gal(
�
(ζ )/

�
) = G0 ≥ G1 ≥ · · · ≥ Gt = {1}

with every factor group of order 2; that is, [G i−1 : Gi ] = 2 for all i ≥ 1. By the
Fundamental Theorem of Galois Theory, there is a tower of subfields

�
= K0 ⊆ K1 ⊆ · · · ⊆ Kt =

�
(ζ ).

Moreover, Lemma 5.40 gives [K i : Ki−1] = [Gi−1 : Gi ] = 2 for all i ≥ 1. This
says that ζ is polyquadratic, and hence ζ is constructible, by Theorem 4.53. •
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Groups II

6.1 FINITE ABELIAN GROUPS

We continue our study of groups by considering finite abelian groups; as is cus-
tomary, these groups are written additively. We are going to prove that every
finite abelian group is a direct sum of cyclic groups, and so we begin by consid-
ering direct sums.

Definition. The external direct sum of two abelian groups S and T is the
abelian group S × T whose underlying set is the cartesian product of S and T
and whose operation is given by (s, t)+ (s ′, t ′) = (s + s′, t + t ′).

It is routine to check that the external direct sum is an (abelian) group. For
example, the plane

� 2 is a group under vector addition, and
� 2 = � × �

.

Definition. If S and T are subgroups of an abelian group G, then G is the
internal direct sum, denoted by G = S ⊕ T , if each element g ∈ G has a unique
expression of the form g = s + t , where s ∈ S and t ∈ T .

If S and T are subgroups of an abelian group G, define

S + T = {s + t : s ∈ S and t ∈ T }.

Now S + T is always a subgroup of G, for it is 〈S ∪ T 〉, the subgroup generated
by S and T (see Exercise 6.2 on page 485). Saying that G = S + T means that
each g ∈ G has an expression of the form g = s + t , where s ∈ S and t ∈ T ;
saying that G = S ⊕ T means that such expressions are unique.

Here is the additive version of Proposition 2.125. We need not say that S and
T are normal subgroups, for every subgroup of an abelian group is normal.

473
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Lemma 6.1. If S and T are subgroups of an abelian group G, then G = S ⊕ T
if and only if S + T = G and S ∩ T = {0}.
Proof. Assume that G = S ⊕ T . Every g ∈ G has a unique expression of the
form g = s + t , where s ∈ S and t ∈ T ; hence, G = S + T . If x ∈ S ∩ T ,
then x has two expressions as s + t , namely, x = x + 0 and x = 0 + x . Since
expressions are unique, we must have x = 0, and so S ∩ T = {0}.

Conversely, G = S + T implies that each g ∈ G has an expression of the
form g = s + t , where s ∈ S and t ∈ T . To see that this expression is unique,
suppose also that g = s ′ + t ′, where s′ ∈ S and t ′ ∈ T . Then s + t = s ′ + t ′

gives s − s′ = t ′ − t ∈ S ∩ T = {0}. Therefore, s = s ′ and t = t ′, as desired. •

Definition. A subgroup S of an abelian group G is called a direct summand
if there exists a subgroup T of G with G = S ⊕ T ; that is, S + T = G and
S ∩ T = {0}.

Note that S × T cannot equal S ⊕ T , for neither S nor T is a subgroup of
S × T ; indeed, they are not even subsets of the cartesian product. This is easily
remedied. Given abelian groups S and T , define subgroups S∗ and T ∗ of the
external direct sum S × T by

S∗ =
{
(s, 0) : s ∈ S

}
and T ∗ =

{
(0, t) : t ∈ T

}
.

Of course, S ∼= S∗ via s 7→ (s, 0) and T ∼= T ∗ via t 7→ (0, t). It is easy to see
that S × T = S∗ ⊕ T ∗, for S∗ + T ∗ = S × T , because (s, t) = (s, 0)+ (0, t), and
S∗ ∩ T ∗ = {(0, 0)}. Thus, the external direct sum can be viewed as an internal
direct sum (of subgroups isomorphic to S and to T ). The next result shows,
conversely, that an internal direct sum is isomorphic to an external one.

Proposition 6.2. Let S and T be subgroups of an abelian group G with G =
S + T . If G = S ⊕ T (that is, S ∩ T = {0}), then there is an isomorphism
ϕ : S ⊕ T → S × T with ϕ(S) = S∗ and ϕ(T ) = T ∗.

Proof. If g ∈ S ⊕ T , then Lemma 6.1 says that g has a unique expression
of the form g = s + t . Define ϕ : S ⊕ T → S × T by ϕ(g) = ϕ(s + t) =
(s, t). Uniqueness of the expression g = s + t implies that ϕ is a well-defined
function. It is obvious that ϕ(S) = S∗ and ϕ(T ) = T ∗. Let us check that ϕ is a
homomorphism. If g′ = (s′, t ′), then (s, t)+ (s ′, t ′) = (s + s′, t + t ′); hence,

ϕ(g + g′) = ϕ(s + s′ + t + t ′)

= (s + s′, t + t ′)

= (s, t)+ (s′, t ′)

= ϕ(g)+ ϕ(g′).
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If ϕ(g) = (s, t) = (0, 0), then s = 0, t = 0, and g = s + t = 0; hence, ϕ is
injective. Finally, ϕ is surjective, for if (s, t) ∈ S × T , then ϕ(s + t) = (s, t). •

We now extend this discussion to more than two summands.

Definition. The external direct sum of abelian groups S1, S2, . . . , Sn is the
abelian group S1 × S2 × · · · × Sn whose underlying set is the cartesian product
of S1, S2, . . . , Sn, and whose operation is given by

(s1, s2, . . . , sn)+ (s′
1, s′

2, . . . , s′
n) = (s1 + s′

1, s2 + s′
2, . . . , sn + s′

n).

For example, euclidean n-space
� n is the external direct sum of

�
with itself

n times:
� n = � × · · · × �

. .

Definition. If S1, . . . , Sn are subgroups of an abelian group G, then G is the
internal direct sum, denoted by

G = S1 ⊕ · · · ⊕ Sn,

if, for each g ∈ G, there are unique si ∈ Si with g = s1 + · · · + sn .

Example 6.3.
Let k be a field and let G = kn be the external direct sum of k with itself n times.
As usual, let e1, . . . , en be the standard basis; that is, ei = (0, . . . , 0, 1, 0, . . . , 0),
the n-tuple having i th coordinate 1 and all other coordinates 0. If Vi is the one-
dimensional subspace spanned by ei , that is, Vi = {aei : a ∈ k}, then kn is the
internal direct sum kn = V1 ⊕· · ·⊕ Vn , for every vector has a unique expression
as a linear combination of a basis. �

We now show that every external direct sum can be viewed as an internal
direct sum. If S1, . . . , Sn are abelian groups, define, for each i ,

S∗
i =

{
(0, . . . , 0, si , 0, . . . , 0) : si ∈ Si

}
⊆ S1 × · · · × Sn;

that is, S∗
i consists of all those n-tuples in the cartesian product whose only non-

zero coordinates occur in the i th position. Of course, Si and S∗
i are isomorphic,

for all i , via si 7→ (0, . . . , 0, si , 0, . . . , 0). Let us check that G is the internal
direct sum

G = S∗
1 ⊕ · · · ⊕ S∗

n .

If g = (s1, . . . , sn) ∈ S1 × · · · × Sn, then

g = (s1, 0. . . . , 0)+ (0, s2, 0, . . . , 0)+ · · · + (0, . . . , 0, sn).

Such an expression is unique, for if (s1, . . . , sn) = (t1, . . . , tn), then the defini-
tion of equality of n-tuples gives si = ti for all i .
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Given subgroups S1, S2, . . . , Sn which generate an abelian group G, how
do we generalize Lemma 6.1 to several summands? One’s first guess is that
assuming Si ∩ S j = {0} for all i 6= j should imply that G = S1 ⊕ · · · ⊕ Sn, but
we now show that this is not adequate.

Let V be a 2-dimensional vector space over a field k, and let x, y be a basis;
hence, V = 〈x〉 ⊕ 〈y〉. It is easy to check that the intersection of any two of
the subspaces 〈x〉, 〈y〉, and 〈x + y〉 is {0}. On the other hand, we do not have
V = 〈x〉 ⊕ 〈y〉 ⊕ 〈x + y〉 because 0 has two expressions in 〈x〉 + 〈y〉 + 〈x + y〉,
namely, 0 = 0 + 0 + 0 and 0 = −x − y + (x + y).

We are now going to show that every internal direct sum is isomorphic to an
external one. Here is the generalization of Lemma 6.1.

Proposition 6.4. Let G = S1 + S2 +· · ·+ Sn, where the Si are subgroups; that
is, each g ∈ G has an expression of the form

g = s1 + s2 + · · · + sn,

where si ∈ Si for all i . Then the following conditions are equivalent.

(i) G = S1 ⊕ S2 ⊕ · · · ⊕ Sn; that is, for every element g ∈ G, the expression
g = s1 + · · · + sn , where si ∈ Si for all i , is unique.

(ii) There is an isomorphism ϕ : G → S1 × S2 × · · · × Sn with ϕ(Si) = S∗
i for

all i .

(iii) If we define G i = S1 + · · · + Ŝi + · · · + Sn, where Ŝi means that the term
Si is omitted from the sum, then Si ∩ Gi = {0} for each i .

Proof.
(i) ⇒ (ii) If g ∈ G and g = s1 + · · · + sn , then define ϕ : G → S1 × · · · × Sn
by ϕ(g) = ϕ(s1 + · · · + sn) = (s1, . . . , sn). Uniqueness of the expression
for g shows that ϕ is well-defined. It is straightforward to prove that ϕ is an
isomorphism with ϕ(Si) = S∗

i for all i .

(ii) ⇒ (iii) If g ∈ Si ∩ Gi , then ϕ(g) ∈ S∗
i ∩ (S∗

1 + · · · + Ŝ∗
i + · · · + S∗

n). But
if ϕ(g) ∈ S∗

1 + · · · + Ŝ∗
i + · · · + S∗

n , then its i th coordinate is 0; if ϕ(g) ∈ S∗
i ,

then its j th coordinates are 0 for all j 6= i . Therefore, ϕ(g) = 0. Since ϕ is an
isomorphism, it follows that g = 0.
(iii) ⇒ (i) Let g ∈ G, and suppose that

g = s1 + · · · + sn = t1 + · · · + tn,

where s,ti ∈ Si for all i . For each i , we have si − ti =
∑

j 6=i (t j − s j ) ∈
Si ∩ (S1 + · · · + Ŝi + · · · + Sn) = {0}. Therefore, si = ti for all i , and the
expression g =

∑
i si is unique. •
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Notation. From now on, we shall use the notation S1 ⊕ · · · ⊕ Sn to denote
either version of the direct sum, external or internal, because our point of view
is almost always internal. We will also write1

n⊕

i=1

Si = S1 ⊕ · · · ⊕ Sn.

The notation G =
∑n

i=1 Si abbreviates G = S1 + · · · + Sn = 〈S1 ∪ · · · ∪ Sn〉.
Thus, G =

∑
i Si if every g ∈ G has an expression of the form g =

∑
i si for

si ∈ Si , while G =
⊕

Si if G =
∑

i Si and expressions g =
∑

i si are unique.

It will be convenient to analyze groups “one prime at a time.”

Definition. If p is a prime, then an abelian group G is p-primary2 if, for each
a ∈ G, there is n ≥ 1 with pna = 0.

If G is any abelian group, then its p-primary component is

G p = {a ∈ G : pna = 0 for some n ≥ 1}.

If we do not want to specify the prime p, we may write that an abelian
group is primary (instead of p-primary). It is clear that primary components are
subgroups. This is not true for nonabelian groups. For example, if G = S3,
then G2 = {(1), (1 2), (1 3), (2 3)}, which is not a subgroup of S3 because
(1 2)(1 3) = (1; 3 2) /∈ G2.

Theorem 6.5 (Primary Decomposition).

(i) Every finite abelian group G is the direct sum of its p-primary components:

G =
⊕

p

G p.

(ii) Two finite abelian groups G and G ′ are isomorphic if and only if
G p

∼= G′
p for every prime p.

Proof.

1In Advanced Modern Algebra, the sequel to the previous edition of this book, I denote the
direct sum by

∑
i Si . I now think that it is clearer to denote the direct sum by

⊕
i Si (which

is one of several commonly used notations) and to denote the sum, the subgroup generated by⋃
i Si . by

∑
i Si . If I have a chance to redo the sequel, then I will adopt this notation.

2In Chapter 2, we called a finite group G a p-group if each g ∈ G has order some power
of p. Thus, a p-primary abelian group is just an abelian p-group. If one is working wholly in
the context of abelian groups, as we are now doing, then the term p-primary is used; if one is
working with general groups, then the usage of the term p-group is preferred.
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(i) Let x ∈ G be nonzero, and let its order be d . By the fundamental theo-
rem of arithmetic, there are distinct primes p1, . . . , pn and positive exponents
e1, . . . , en with

d = pe1
1 · · · pen

n .

Define ri = d/pei
i , so that pei

i ri = d . It follows that ri x ∈ G pi for each i . But the
gcd d of r1, . . . , rn is 1 (the only possible prime divisors of d are p1, . . . , pn , but
no pi is a common divisor because pi � ri ); hence, there are integers s1, . . . , sn
with 1 =

∑
i siri . Therefore,

x =
∑

i

siri x ∈ G p1 + · · · + G pn .

Write Hi = G p1 + · · · + Ĝ pi + · · · + G pn . By Proposition 6.4, it suffices to
prove that if

x ∈ G pi ∩ Hi ,

then x = 0 . Since x ∈ G pi , we have p`i x = 0 for some ` ≥ 0; since x ∈ Hi , we
have ux = 0, where u =

∏
j 6=i p

g j
j . But p`i and u are relatively prime, so there

exist integers s and t with 1 = sp`i + tu. Therefore,

x = (sp`i + tu)x = sp`i x + tux = 0.

(ii) If f : G → G ′ is a homomorphism, then f (G p) ⊆ G′
p for every prime p,

for if p`a = 0, then 0 = f (p`a) = p` f (a). If f is an isomorphism, then
f −1 : G′ → G is also an isomorphism (so that f −1(G′

p) ⊆ G p for all p). It
follows that each restriction f |G p : G p → G′

p is an isomorphism, with inverse

f −1|G′
p.

Conversely, if there are isomorphisms f p : G p → G′
p for all p, then there is

an isomorphism ϕ :
⊕

p G p →
⊕

p G′
p given by

∑
p ap 7→

∑
p f p(ap). •

Notation. If G is an abelian group and m is an integer, then

mG = {ma : a ∈ G}.
It is easy to see that mG is a subgroup of G.
The next type of subgroup will play an important role.

Definition. Let p be a prime and let G be a p-primary3 abelian group. A
subgroup S ⊆ G is a pure4 subgroup if, for all n ≥ 0,

S ∩ pnG = pn S.
3If G is not a primary group, then a pure subgroup S ⊆ G is defined to be a subgroup

which satisfies S ∩ mG = mS for all m ∈ � (see Exercises 6.3 and 6.4 on page 485).
4A polynomial equation is called pure if it has the form xn = a; pure subgroups are

defined in terms of such equations, and they are probably so called because of this.
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The inclusion S ∩ pnG ⊇ pn S is true for every subgroup S ⊆ G, and so it
is only the reverse inclusion S ∩ pnG ⊆ pn S that is significant. It says that if
s ∈ S satisfies an equation s = pna for some a ∈ G, then there exists s ′ ∈ S
with s = pns′; that is, if an equation s = pnx is solvable for x ∈ G, then it is
solvable for x ∈ S.

Example 6.6.

(i) Every direct summand S of G is a pure subgroup. Let G = S ⊕ T , and
suppose that s = png, where s ∈ S and g ∈ G. Now g = u + v, where
u ∈ S and v ∈ T , and so s = pnu + pnv. Hence, pnv = s − pnu ∈
S ∩ T = {0}, so that pnv = 0. Therefore, s = pnu, and S is pure in G.

(ii) If G = 〈a〉 is a cyclic group of order p2, where p is a prime, then S = 〈pa〉
is not a pure subgroup of G, for if s = pa ∈ S, then there is no element
s′ ∈ S with s = pa = ps ′. �

In Exercise 6.11 on page 486, we shall see that the converse of Exam-
ple 6.6(i) is true: if G is a finite abelian group and S is a subgroup of G, then S is
a pure subgroup if and only if S is a direct summand. This is the reason we have
introduced pure subgroups, for it is easier to prove that S is a direct summand by
verifying whether certain equations are solvable than to construct a subgroup T
with S + T = G and S ∩ T = {0}.

Lemma 6.7. If p is a prime and G 6= {0} is a finite p-primary abelian group,
then G has a nonzero pure cyclic subgroup.

Proof. Let G =
〈
x1, . . . , xq

〉
. The order of xi is pni for all i , because G is p-

primary. If x ∈ G, then x =
∑

i ai xi , where ai ∈ �
, so that if ` is the largest of

the ni , then p`x = 0. Now choose any y ∈ G of largest order p` (for example,
y could be one of the yi ). We claim that S = 〈y〉 is a pure subgroup of G.

Suppose that s ∈ S, so that s = mpt y, where t ≥ 0 and p � m, and let

s = pna

for some a ∈ G. If t ≥ n, define s ′ = mpt−n y ∈ S, and note that

pns′ = pnmpt−n y = mpt y = s.

If t < n, then

p`a = p`−n pna = p`−ns = p`−nmpt y = mp`−n+t y.

But p � m and ` − n + t < `, because −n + t < 0, and so p`a 6= 0. This
contradicts y having largest order, and so this case cannot occur. •
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Proposition 6.8. If G is an abelian group and p is a prime, then G/pG is a
vector space over

�
p which is finite-dimensional when G is finite.

Proof. If [r ] ∈ �
p and a ∈ G, define scalar multiplication

[r ](a + pG) = ra + pG.

This formula is well-defined, for if k ≡ r mod p, then k = r + pm for some
integer m, and so

ka + pG = ra + pma + pG = ra + pG,

because pma ∈ pG. It is now routine to check that the axioms for a vector space
do hold. If G is finite, then so is G/pG, and it is clear that G/pG has a finite
basis. •

Definition. If p is a prime and G is a finite p-primary abelian group, then

d(G) = dim(G/pG).

Observe that d is additive over direct sums,

d(G ⊕ H) = d(G)+ d(H),

for Proposition 2.124 gives

G ⊕ H

p(G ⊕ H)
=

G ⊕ H

pG ⊕ pH
∼=

G

pG
⊕

H

pH
.

The dimension of the left side is d(G ⊕ H) and the dimension of the right side
is d(G)+ d(H), for the union of bases of G/pG and of H/pH , respectively, is
a basis of (G/pG)⊕ (H/pH).

The abelian groups G with d(G) = 1 are easily characterized.

Lemma 6.9. If G is a p-primary abelian group, then d(G) = 1 if and only if
G is cyclic.

Proof. If G is cyclic, then so is any quotient of G; in particular, G/pG is cyclic,
and so dim(G/pG) = 1.

Conversely, if G/pG = 〈z + pG〉, then G/pG ∼=
�

p. Since
�

p is a simple
group, the correspondence theorem says that pG is a maximal subgroup of G.
We claim that pG is the only maximal subgroup of G. If L ⊆ G is any maximal
subgroup, then G/L ∼=

�
p, for G/L is a simple abelian group of order a power

of p, hence has order p (by Proposition 2.151: the abelian simple groups are
precisely the cyclic groups of prime order). Thus, if a ∈ G, then p(a + L) = 0
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in G/L , so that pa ∈ L; hence pG ⊆ L . But pG is maximal, and so pG = L .
It follows that every proper subgroup of G is contained in pG (for every proper
subgroup is contained in some maximal subgroup). In particular, if 〈z〉 is a proper
subgroup of G, then 〈z〉 ⊆ pG, contradicting z+pG being a generator of G/pG.
Therefore, G = 〈z〉, and so G is cyclic. •

If G = (
�

p)
n , then pG = {0}, G/pG ∼= G, and d(G) = dim(G). More

generally, if G is a direct sum of p-primary cyclic groups, say, G =
⊕

i Ci , then
pG =

⊕
i pCi , and Proposition 2.124 gives

G/pG =
(⊕

i

Ci
)
/
(⊕

i

pCi
) ∼=

⊕

i

(Ci/pCi ).

We have just seen that d(Ci) = 1 for all i , and so additivity of d over direct sums
shows that d(G) counts the number of cyclic summands in this decomposition
of G.

Lemma 6.10. Let G be a finite p-primary abelian group.

(i) If S ⊆ G, then d(G/S) ≤ d(G).

(ii) If S is a pure subgroup of G, then

d(G) = d(S)+ d(G/S).

Proof.
(i) By the correspondence theorem, p(G/S) = (pG + S)/S, so that

(G/S)/p(G/S)= (G/S)/[(pG + S)/S] ∼= G/(pG + S),

by the third isomorphism theorem. Since pG ⊆ pG + S, there is a surjective
homomorphism (of vector spaces over

�
p ),

G/pG → G/(pG + S),

namely, g + pG 7→ g + (pG + S). Hence, dim(G/pG) ≥ dim(G/(pG + S));
that is, d(G) ≥ d(G/S).
(ii) We now analyze (pG + S)/pG, the kernel of G/pG → G/(pG + S). By
the second isomorphism theorem,

(pG + S)/pG ∼= S/(S ∩ pG).

Since S is a pure subgroup, S ∩ pG = pS. Therefore,

(pG + S)/pG ∼= S/pS,

and so dim[(pG+S)/pG] = d(S). But if W is a subspace of a finite-dimensional
vector space V , then dim(V ) = dim(W ) + dim(V/W ), by Exercise 4.16 on
page 344. Hence, if V = G/pG and W = (pG + S)/pG, we have

d(G) = d(S)+ d(G/S). •
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Theorem 6.11 (Basis Theorem). Every finite abelian group G is a direct sum
of primary cyclic groups.

Proof. By the primary decomposition, Theorem 6.5, we may assume that G is
p-primary for some prime p (for if every primary component is a direct sum of
cyclic groups, so is G). We prove that G is a direct sum of cyclic groups by
induction on d(G) ≥ 1. The base step is easy, for Lemma 6.9 shows that G must
be cyclic in this case.

To prove the inductive step, we begin by using Lemma 6.7 to find a nonzero
pure cyclic subgroup S ⊆ G. By Lemma 6.10, we have

d(G/S) = d(G)− d(S) = d(G)− 1 < d(G).

By induction, G/S is a direct sum of cyclic groups, say,

G/S =
q⊕

i=1

〈x i 〉 ,

where x i = xi + S.
Let x ∈ G and let x have order p`, where x = x + S. We claim that there is

z ∈ G with z + S = x = x + S such that order z = order (x). Now x has order
pn , where n ≥ `. But p`(x + S) = p`x = 0 in G/S, so there is some s ∈ S with
p`x = s. By purity, there is s ′ ∈ S with p`xi = p`s′. If we define z = x − s ′,
then z + S = x + S and p`z = 0. Hence, if mx = 0 in G/S, then p` | m, and so
mz = 0 in G.

For each i , choose zi ∈ G with zi + S = x i = xi + S and with order
zi = order x i ; let T =

〈
z1, . . . , zq

〉
. Now S + T = G, because G is generated

by S and the zi ’s. To see that G = S⊕T , it now suffices to prove that S∩T = {0}.
If y ∈ S∩T , then y =

∑
i mi zi , where mi ∈ �

. Now y ∈ S, and so
∑

i mi x i = 0
in G/S. Since this is a direct sum, each m i x i = 0; after all, for each i ,

−mi x i =
∑

j 6=i

m j x j ∈
〈
x i
〉
∩
(

〈x1〉 + · · · + 〈̂x i 〉 + · · · +
〈
xq
〉 )

= {0}.

Therefore, m i zi = 0 for all i , and hence y = 0.
Finally, G = S⊕T implies d(G) = d(S)+d(T) = 1+d(T ), so that d(T ) <

d(G). By induction, T is a direct sum of cyclic groups, and this completes the
proof. •

When are two finite abelian groups G and G ′ isomorphic? By the basis
theorem, such groups are direct sums of cyclic groups, and so one’s first guess is
that G ∼= G′ if they have the same number of cyclic summands of each type. But
this hope is dashed by Theorem 2.126, which says that if m and n are relatively
prime, then

�
mn

∼=
�

m × �
n; for example,

�
6

∼=
�

2 × �
3. Thus, we retreat and
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try to count primary cyclic summands. But how can we do this? As in the
fundamental theorem of arithmetic, we must ask whether there is some kind of
unique factorization theorem here.

Before stating the next lemma, recall that we have defined

d(G) = dim(G/pG).

In particular, d(pG) = dim(pG/p2G) and, more generally,

d(pnG) = dim(pnG/pn+1G).

Lemma 6.12. Let G be a finite p-primary abelian group, where p is a prime,
and let G =

⊕
j C j , where each C j is cyclic. If bn is the number of summands

C j having order pn , then there is some t ≥ 1 with

d(pnG) = bn+1 + bn+2 + · · · + bt .

Proof. Let Bn be the direct sum of all C j , if any, with order pn. Thus,

G = B1 ⊕ B2 ⊕ · · · ⊕ Bt

for some t . Now
pnG = pn Bn+1 ⊕ · · · ⊕ pn Bt ,

because pn B j = {0} for all j ≤ n. Similarly,

pn+1G = pn+1 Bn+2 ⊕ · · · ⊕ pn+1 Bt .

Now Proposition 2.124 shows that pnG/pn+1G is isomorphic to
[

pn Bn+1/pn+1 Bn+1
]
⊕
[

pn Bn+2/pn+1 Bn+2
]
⊕ · · · ⊕

[
pn Bt/pn+1 Bt

]
.

Since d is additive over direct sums, we have

d(pnG) = bn+1 + bn+2 + · · · + bt . •

The numbers bn can now be described in terms of G.

Definition. If G is a finite p-primary abelian group, where p is a prime, then

Up(n,G) = d(pnG)− d(pn+1G).

Lemma 6.12 shows that

d(pnG) = bn+1 + · · · + bt

and
d(pn+1G) = bn+2 + · · · + bt ,

so that Up(n,G) = bn+1.
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Theorem 6.13. If p is a prime, then any two decompositions of a finite p-
primary abelian group G into direct sums of cyclic groups have the same number
of cyclic summands of each type. More precisely, for each n ≥ 0, the number of
cyclic summands having order pn+1 is Up(n,G).

Proof. By the basis theorem, there exist cyclic subgroups Ci with G =
⊕

i Ci .
The lemma shows, for each n ≥ 0, that the number of Ci having order pn+1

is Up(n,G), a number that is defined without any mention of the given decom-
position of G into a direct sum of cyclics. Thus, if G =

⊕
j D j is another

decomposition of G, where each D j is cyclic, then the number of D j having
order pn+1 is also Up(n,G), as desired. •

Corollary 6.14. If G and G ′ are finite p-primary abelian groups, then
G ∼= G′ if and only if Up(n,G) = Up(n,G′) for all n ≥ 0.

Proof. If ϕ : G → G ′ is an isomorphism, then ϕ(pnG) = pnG′ for all n ≥
0, and hence it induces isomorphisms of the

�
p -vector spaces pnG/pn+1G ∼=

pnG′/pn+1G′ for all n ≥ 0. Hence, their dimensions are the same; that is,
Up(n,G) = Up(n,G′).

Conversely, assume that Up(n,G) = Up(n,G′) for all n ≥ 0. If G =
⊕

i Ci
and G′ =

⊕
j C ′

j , where the Ci and C ′
j are cyclic, then Lemma 6.12 shows that

there are the same number of summands of each type, and so it is a simple matter
to construct an isomorphism G → G ′. •

Definition. If G is a p-primary abelian group, then the elementary divisors of
G are the numbers pn+1, each repeated with multiplicity Up(n,G).

If G is a finite abelian group, then its elementary divisors are the elementary
divisors of all its primary components.

For example, the elementary divisors of the abelian group
�

2 ⊕ �
2 ⊕ �

2 are
(2, 2, 2), and the elementary divisors of

�
6 are (2, 3). The elementary divisors of�

2 ⊕ �
2 ⊕ �

4 ⊕ �
8 are (2, 2, 4, 8).

Theorem 6.15 (Fundamental Theorem of Finite Abelian Groups). Finite
abelian groups G and G ′ are isomorphic if and only if they have the same ele-
mentary divisors; that is, any two decompositions of G and G ′ as direct sums of
primary cyclic groups have the same number of summands of each order.

Proof. By the primary decomposition, Theorem 6.5(ii), G ∼= G′ if and only if,
for each prime p, their primary components are isomorphic: G p ∼= G′

p . The
result now follows from Theorem 6.13. •
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The results of this section can be generalized from finite abelian groups to
finitely generated abelian groups, where an abelian group G is finitely generated
if there are finitely many elements a1, . . . , an ∈ G so that every x ∈ G is a
linear combination of them: x =

∑
i mi ai , where mi ∈ �

for all i . The basis
theorem generalizes: every finitely generated abelian group G is a direct sum of
cyclic groups, each of which is a finite primary group or an infinite cyclic group.
One calls a direct sum of infinite cyclic groups a free abelian group. Thus, every
finitely generated abelian group is a direct sum of a free abelian group and a finite
group. The fundamental theorem also generalizes: given two decompositions of
G into direct sums of infinite and primary cyclic groups, the number of cyclic
summands of each type is the same in both decompositions. The basis theorem
is no longer true for abelian groups that are not finitely generated; for example,
the additive group

�
of rational numbers is not a direct sum of cyclic groups.

EXERCISES

6.1 (i) Give an example of an abelian group G = S ⊕ T having a subgroup A
such that A 6= (S ∩ A)⊕ (T ∩ A).

(ii) Suppose that G is an abelian group and that G = S ⊕ T . If H is a
subgroup with S ⊆ H ⊆ G , prove that H = S ⊕ (T ∩ H).

*6.2 (i) If G is an (additive) abelian group and X is a nonempty subset of G ,
prove that 〈X〉, the subgroup generated by X , is the set of all linear com-
binations of elements in X with coefficients in � :

〈X〉 =
{∑

i

mi xi : xi ∈ X and m i ∈ �
}
.

Compare this exercise with Proposition 2.77.
(ii) If S and T are subgroups of G , prove that S + T = 〈S ∪ T 〉.

*6.3 Let G be an abelian group, not necessarily primary. Define a subgroup S ⊆ G to
be a pure subgroup if S ∩ mG = mS for all m ∈ � . Prove that if G is a p-primary
abelian group, where p is a prime ideal, then a subgroup S ⊆ G is pure as just
defined if and only if S ∩ pn G = pn S for all n ≥ 0 (the definition in the text).

*6.4 If G is a possibly infinite abelian group, define the torsion5 subgroup tG of G as

tG = {a ∈ G : a has finite order}.

(i) Prove that tG is a pure subgroup of G . (There exist abelian groups G
whose torsion subgroup tG is not a direct summand; hence, a pure sub-
group need not be a direct summand.)

5This terminology comes from algebraic topology. To each space X , one assigns a se-
quence of abelian groups, called homology groups, and if X is “twisted,” then there are ele-
ments of finite order in some of these groups.
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(ii) Prove that G/tG is an abelian group in which every nonzero element has
infinite order.

6.5 (i) If G and H are finite abelian groups, prove, for all primes p and all n ≥ 0,
that

Up(n,G ⊕ H) = Up(n,G)+ Up(n, H),

(ii) If A, B , and C are finite abelian groups, prove that A ⊕ B ∼= A ⊕ C
implies B ∼= C.

(iii) If A and B are finite abelian groups, prove that A ⊕ A∼= B ⊕ B implies
A ∼= B .

6.6 If n is a positive integer, then a partition of n is a sequence of positive integers
i1 ≤ i2 ≤ · · · ≤ ir with i1 + i2 + · · · + ir = n. If p is a prime, prove that the
number of abelian groups of order pn , to isomorphism, is equal to the number of
partitions of n.

6.7 To isomorphism, how many abelian groups are there of order 288?
6.8 Prove the Fundamental Theorem of Arithmetic by applying the Fundamental The-

orem of Finite Abelian Groups to G = � n.
*6.9 If G is a finite abelian group, define

νk(G) = the number of elements in G of order k.

Prove that two finite abelian groups G and G′ are isomorphic if and only if νk(G) =
νk(G ′) for all integers k. (This result is not true for nonabelian groups; see Propo-
sition 6.29.)

6.10 Prove that the additive group � is not a direct sum: � 6∼= A ⊕ B , where A and B
are nonzero subgroups.

*6.11 (i) Let S be a subgroup of a p-primary abelian group G , and let π : G →
G/S be the natural map g 7→ g + S. Prove that S is a pure subgroup
of G if and only if each g + S ∈ G/S has a pre-image g ′ ∈ G (that is,
π(g′) = g + S) with g′ and g + S having the same order.

(ii) Prove that a subgroup S of a finite p-primary abelian group G is pure if
and only if it is a direct summand.

6.12 Let G be a finite abelian group. Prove that if x ∈ G has maximal order (that is, if x
has order n, then there is no element in G having larger order), then 〈x〉 is a direct
summand of G .

6.13 Let F and F ′ be free abelian groups. If F is a direct sum of m infinite cyclic groups
and F ′ is a direct sum of n infinite cyclic groups, prove that F ∼= F ′ if and only if
m = n.

6.14 (i) If F = 〈x1〉 ⊕ · · · ⊕ 〈xn〉 is a free abelian group, prove that every z ∈ F
has a unique expression of the form z = m1x1 + · · · + mn xn , where
mi ∈ � for all i . One calls x1, . . . , xn a basis of F .

(ii) Let X = x1, . . . , xn be a basis of a free abelian group F . Prove that if A
is any abelian group and if a1, . . . , an is any list of elements in A, then
there exists a unique homomorphism f : F → A with f (xi ) = ai for
all i .
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6.2 THE SYLOW THEOREMS

We return to nonabelian groups, and so we revert to the multiplicative notation.
The Sylow theorems give an analog for finite nonabelian groups of the primary
decomposition for finite abelian groups.

Recall that a group G is simple if G 6= {1} and G has no normal subgroups
other than {1} and G itself. We saw, in Proposition 2.78, that the abelian simple
groups are precisely the cyclic groups

�
p of prime order p, and we saw, in The-

orem 2.83, that An is a nonabelian simple group for all n ≥ 5. In fact, A5 is the
nonabelian simple group of smallest order. How can one prove that a nonabelian
group G of order less than 60 = |A5| is not simple? Exercise 2.105 states that
if G is a group of order |G| = mp, where p is prime and 1 < m < p, then G
is not simple. This exercise shows that many of the numbers less than 60 are not
orders of simple groups. After throwing out all prime powers (by Exercise 2.106
on page 204, groups of prime power order are never nonabelian simple), the only
remaining possibilities are

12, 18, 24, 30, 36, 40, 45, 48, 50, 54, 56.

The solution to the exercise uses Cauchy’s theorem, which says that G has an
element of order p, hence a subgroup of order p. We shall see that if G has a
subgroup of order pe instead of p, where pe is the highest power of p dividing
|G|, then Exercise 2.105 can be generalized, and the list of candidates can be
shortened to 30, 40, and 56.

The first book on Group Theory, Traités des Substitutions et des Équations
Algébriques, by C. Jordan, was published in 1870 (more than half of it is devoted
to Galois Theory, then called the Theory of Equations). At about the same time,
but too late for publication in Jordan’s book, three fundamental theorems were
discovered. In 1868, E. Schering proved the basis theorem: every finite abelian
group is a direct product of primary cyclic groups; in 1870, L. Kronecker, un-
aware of Schering’s proof, also proved this result. In 1878, G. Frobenius and L.
Stickelberger proved the fundamental theorem of finite abelian groups. In 1872,
L. Sylow showed, for every finite group G and every prime p, that if pe is the
largest power of p dividing |G|, then G has a subgroup of order pe.

Recall that a p-group is a finite group G in which every element has order
some power of a prime p; equivalently, G has order pk for some k ≥ 0. (When
working wholly in the context of abelian groups, as in the last section, one calls
G a p-primary group.)

Definition. Let p be a prime. A Sylow p-subgroup of a finite group G is a
maximal p-subgroup P .
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Maximality means that if Q is a p-subgroup of G and P ≤ Q, then P = Q.
Sylow p-subgroups always exist: indeeed, we now show that if S is any p-
subgroup of G (perhaps S = {1}), then there exists a Sylow p-subgroup P
containing S. If there is no p-subgroup strictly containing S, then S itself is
a maximal p-subgroup; that is, S is a Sylow p-subgroup. Otherwise, there is a
p-subgroup P1 with S < P1. If P1 is maximal, it is Sylow, and we are done.
Otherwise, there is some p-subgroup P2 with P1 < P2; hence, |P1| < |P2|.
This procedure of producing larger and larger p-subgroups Pi must end after a
finite number of steps, for |G| is finite; the largest Pi must, therefore, be a Sylow
p-subgroup.

Example 6.16.
Let G be a finite group of order |G| = pem, where p is a prime and p � m.
We show that if there exists a subgroup P of order pe, then P is a Sylow p-
subgroup of G. If Q is a p-subgroup with P ≤ Q ≤ G, then |P| = pe | |Q|.
But if |Q| = pk , then pk | pem and k ≤ e; that is, |Q| = pe and Q = P . �

Definition. If H is a subgroup of a group G, then a conjugate of H is a sub-
group of G of the form

a Ha−1 = {aha−1 : h ∈ H},

where a ∈ G.

Conjugate subgroups are isomorphic: if H ≤ G, then h 7→ aha−1 is an
injective homomorphism H → G with image a Ha−1. The converse is false:
the four-group V contains several subgroups of order 2 which are, of course,
isomorphic; they cannot be conjugate because V is abelian. On the other hand,
all subgroups of order 2 in S3 are conjugate; for example, 〈(1 3)〉 = a〈(1 2)〉a−1,
where a = (2 3).

The ideas of group actions are going to be used, and so we now recall the
notions of orbit and stabilizer which we discussed in Chapter 2.

Definition. If X is a set and G is a group, then G acts on X if, for each g ∈ G,
there is a function αg : X → X , such that

(i) αg ◦ αh = αgh for all g, h ∈ G;
(ii) α1 = 1X , the identity function.

Definition. If G acts on X and x ∈ X , then the orbit of x , denoted by
�
(x), is

the subset of X �
(x) = {αg(x) : g ∈ G} ⊆ X;
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the stabilizer of x , denoted by Gx , is the subgroup of G

Gx = {g ∈ G : αg(x) = x} ≤ G.

A group G acts on X = Sub(G), the set of all its subgroups, by conjugation:
if g ∈ G, then g acts by αg(H) = gHg−1, where H ≤ G. The orbit of
a subgroup H consists of all its conjugates; the stabilizer of H is {g ∈ G :
gHg−1 = H}. This last subgroup has a name.

Definition. If H is a subgroup of a group G, then the normalizer of H in G is
the subgroup

NG (H) = {g ∈ G : gHg−1 = H}.
Of course, H � NG (H), and so the quotient group NG (H)/H is defined.

Proposition 6.17. If H is a subgroup of a finite group G, then the number of
conjugates of H in G is [G : NG (H)].
Proof. This is a special case of Theorem 2.141: the size of the orbit of an
element is the index of its stabilizer. •

Lemma 6.18. Let P be a Sylow p-subgroup of a finite group G.

(i) Every conjugate of P is also a Sylow p-subgroup of G.

(ii) |NG (P)/P| is prime to p.

(iii) If g ∈ G has order some power of p and if g Pg−1 = P, then g ∈ P.

Proof.
(i) If g ∈ G, then g Pg−1 is a p-subgroup of G; if it is not a maximal such, then
there is a p-subgroup Q with g Pg−1 < Q. Hence, P < g−1 Qg, contradicting
the maximality of P .
(ii) If p divides |NG (P)/P|, then Cauchy’s theorem shows that NG (P)/P con-
tains an element g P of order p, and hence NG (P)/P contains a (cyclic) sub-
group S∗ = 〈g P〉 of order p. By the correspondence theorem (Theorem 2.121),
there is a subgroup S with P ≤ S ≤ NG (P) such that S/P ∼= S∗. But S is a
p-subgroup of NG (P) ≤ G (by Exercise 2.88 on page 187) strictly larger than
P , and this contradicts the maximality of P . We conclude that p does not divide
|NG (P)/P|.
(iii) The element g lies in NG (P), by the definition of normalizer. If g /∈ P , then
the coset g P is a nontrivial element of NG (P)/P having order some power of
p; in light of part (ii), this contradicts Lagrange’s theorem. •

Since every conjugate of a Sylow p-subgroup is also a Sylow p-subgroup, it
is reasonable to let G act by conjugation on a set of Sylow p-subgroups.
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Theorem 6.19 (Sylow). Let G be a finite group of order pem, where p is a
prime and p � m, and let P be a Sylow p-subgroup of G.

(i) Every Sylow p-subgroup is conjugate to P.

(ii) If there are r Sylow p-subgroups, then r is a divisor of |G|/pe and

r ≡ 1 mod p.

Proof. Let X = {P1, . . . , Pr } be the set of all the conjugates of P , where we
have denoted P by P1. If Q is any Sylow p-subgroup of G, then Q acts on X by
conjugation: if a ∈ Q, then it sends

αa(Pi ) = αa(gi Pg−1
i ) = a

(
gi Pg−1

i

)
a−1 = (agi)P(agi)

−1 ∈ X.

By Corollary 2.142, the number of elements in any orbit is a divisor of |Q|; that
is, every orbit has size some power of p (because Q is a p-group). If there is
an orbit of size 1, then there is some Pi with a Pi a−1 = Pi for all a ∈ Q. By
Lemma 6.18, we have a ∈ Pi for all a ∈ Q; that is, Q ≤ Pi . But Q, being a
Sylow p-subgroup, is a maximal p-subgroup of G, and so Q = Pi . In particular,
if Q = P1, then every orbit has size an honest power of p except one, the orbit
consisting of P1 alone. We conclude that |X | = r ≡ 1 mod p.

Suppose now that there is some Sylow p-subgroup Q that is not a conjugate
of P; thus, Q 6= Pi for any i . Again, we let Q act on X , and again we ask if there
is an orbit of size 1, say, {P j }. As in the previous paragraph, this implies Q = P j ,
contrary to our present assumption that Q /∈ X . Hence, there are no orbits of size
1, which says that each orbit has size an honest power of p. It follows that |X | =
r is a multiple of p; that is, r ≡ 0 mod p, which contradicts the congruence
r ≡ 1 mod p. Therefore, no such Q can exist, and so all Sylow p-subgroups
are conjugate to P . Finally, since all Sylow p-subgroups are conjugate, we have
r = [G : NG (P)], and so r is a divisor of |G| = pem. But (r, p) = 1, because
r ≡ 1 mod p, so that r | pem implies r | m; that is, r | |G|/pe. •

Corollary 6.20. A finite group G has a unique Sylow p-subgroup P, for some
prime p, if and only if P � G.

Proof. Assume that P , a Sylow p-subgroup of G, is unique. For each a ∈ G,
the conjugate a Pa−1 is also a Sylow p-subgroup; by uniqueness, a Pa−1 = P
for all a ∈ G, and so P � G.

Conversely, assume that P � G. If Q is any Sylow p-subgroup, then Q =
a Pa−1 for some a ∈ G; but a Pa−1 = P , by normality, and so Q = P . •

The following result gives the order of a Sylow subgroup.
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Theorem 6.21 (Sylow). If G is a finite group of order pem, where p is a
prime and p � m, then every Sylow p-subgroup P of G has order pe.

Proof. We first show that p � [G : P]. Now

[G : P] = [G : NG (P)][NG (P) : P].

The first factor, [G : NG (P)] = r , is the number of conjugates of P in G,
and we know that r ≡ 1 mod p; hence, p does not divide [G : NG (P)]. The
second factor is [NG (P) : P] = |NG (P)/P|; this, too, is not divisible by p, by
Lemma 6.18(ii). Therefore, p does not divide [G : P], by Euclid’s lemma.

Now |P| = pk for some k ≤ e, and so

[G : P] = |G|/|P| = pem/pk = pe−km.

Since p does not divide [G : P], we must have k = e; that is, |P| = pe. •

Example 6.22.

(i) If G is a finite abelian group, then a Sylow p-subgroup is just its p-primary
component. Since G is abelian, every subgroup is normal, and so G has a
unique Sylow p-subgroup for every prime p.

(ii) Let G = S4. Now |S4| = 24 = 233. Thus, a Sylow 2-subgroup of S4 has
order 8. We have seen, in Exercise 2.107 on page 204, that S4 contains a
copy of the dihedral group D8 consisting of the symmetries of a square.
The Sylow theorem says that all subgroups of order 8 are conjugate, hence
isomorphic, to D8. Moreover, the number r of Sylow 2-subgroups is a
divisor of 24/8 congruent to 1 mod 2; that is, r is an odd divisor of 3.
Since r 6= 1 (see Exercise 6.15 on page 496), there are exactly 3 Sylow
2-subgroups; S4 has exactly 3 subgroups of order 8. �

Here is a second proof of the last Sylow theorem, due to Wielandt.

Theorem 6.23 (= Theorem 6.21). If G is a finite group of order pem, where
p is a prime and p � m, then G has a subgroup of order pe.

Proof. If X is the family of all those subsets of G having exactly pe elements,
then |X | =

( n
pe

)
; by Exercise 1.66 on page 56, p � |X |. Now G acts on X : define

αg(B) = gB, for g ∈ G and B ∈ X , where gB = {gb : b ∈ B}. If p divides
|

�
(B)| for every B ∈ X , then p is a divisor of |X |, for X is the disjoint union of

orbits, by Proposition 2.140. As p � |X |, there exists a subset B with |B| = pe

and with |
�
(B)| not divisible by p. If G B is the stabilizer of this subset B, then

Theorem 2.141 gives [G : G B ] = |
�
(B)|, and so |G| = |G B | · |

�
(B)|. Since
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pe | |G| and p � �
(B)|, repeated application of Euclid’s lemma gives pe | |G B |.

Therefore, pe ≤ |G B |.
To prove the reverse inequality, choose an element b ∈ B and define a func-

tion τ : G B → B by g 7→ gb. Note that τ(g) = gb ∈ gB = B, for g ∈ G B , the
stabilizer of B. If g, h ∈ G B and h 6= g, then τ(h) = hb 6= gb = τ(g); that is,
τ is an injection. We conclude that |G B | ≤ |B| = pe, and so G B is a subgroup
of G of order pe. •

If p is a prime not dividing the order of a finite group G, then a Sylow p-
subgroup of G has order p0 = 1. Thus, when speaking of Sylow p-subgroups
of G, one usually avoids this trivial case and assumes that p is a divisor of |G|.

We can now generalize Exercise 2.122 on page 205 and its solution.

Lemma 6.24. There is no nonabelian simple group G of order |G| = pem,
where p is prime and m > 1, p � m, and pe � (m − 1)!.

Proof. Suppose that such a simple group G exists. By Sylow’s theorem, G
contains a subgroup P of order pe, hence of index m. By Theorem 2.67, the rep-
resentation of G on the cosets of P , there exists a homomorphism ϕ : G → Sm
with kerϕ ≤ P . Since G is simple, however, it has no proper normal subgroups;
hence kerϕ = {1} and ϕ is an injection; that is, G ∼= ϕ(G) ≤ Sm . By Lagrange’s
theorem, pem | m!, and so pe | (m − 1)!, contrary to the hypothesis. •

Proposition 6.25. There are no nonabelian simple groups of order less than 60.

Proof. If p is a prime, then Exercise 2.106 on page 204 says that every p-group
G with |G| > p is not simple.

The reader may check that the only integers n between 2 and 59, neither a
prime power nor having a factorization of the form n = pem as in the statement
of the lemma, are n = 30, 40, and 56. By the lemma, these three numbers are
the only candidates for orders of nonabelian simple groups of order < 60.

Assume that there is a simple group G of order 30. Let P be a Sylow 5-
subgroup of G, so that |P| = 5. The number r5 of conjugates of P is a divisor
of 30/5=6 and r5 ≡ 1 mod 5. Now r5 6= 1, lest P � G, so that r5 = 6. By
Lagrange’s theorem, the intersection of any two of these is trivial (intersections
of Sylow subgroups can be more complicated; see Exercise 6.16 on page 497).
There are 4 nonidentity elements in each of these subgroups, and so there are
6×4 = 24 nonidentity elements in their union. Similarly, the number r3 of Sylow
3-subgroups of G is 10 (for r3 6= 1, r3 is a divisor of 30/3, and r3 ≡ 1 mod 3).
There are 2 nonidentity elements in each of these subgroups, and so the union of
these subgroups has 20 nonidentity elements. We have exceeded the number of
elements in G, and so G cannot be simple.
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Let G be a group of order 40, and let P be a Sylow 5-subgroup of G. If r is
the number of conjugates of P , then r | 40/5 and r ≡ 1 mod 5. These conditions
force r = 1, so that P � G. Therefore, no simple group of order 40 can exist.

Finally, assume that there is a simple group G of order 56. If P is a Sylow
7-subgroup of G, then P must have r = 8 conjugates (for r | 56/7 and r ≡
1 mod 7). Since these groups are cyclic of prime order, the intersection of any
pair of them is {1}, and so there are 48 nonidentity elements in their union. Thus,
adding the identity, we have accounted for 49 elements of G. Now a Sylow
2-subgroup Q has order 8, and so it contributes 7 more nonidentity elements,
giving 56 elements. But there is a second Sylow 2-subgroup, lest Q � G, and we
have exceeded our quota. Therefore, there is no simple group of order 56. •

The “converse” of Lagrange’s theorem is false: if G is a finite group of order
n, and if d | n, then G may not have a subgroup of order d . For example, we
proved, in Proposition 2.97, that the alternating group A4 is a group of order 12
having no subgroup of order 6.

Proposition 6.26. Let G be a finite group. If p is a prime and if pk divides |G|,
then G has a subgroup of order pk .

Proof. If |G| = pem, where p � m, then a Sylow p-subgroup P of G has order
pe. Hence, if pk divides |G|, then pk divides |P|. By Proposition 2.150, P has
a subgroup of order pk ; a fortiori, G has a subgroup of order pk . •

What examples of p-groups have we seen? Of course, cyclic groups of order
pn are p-groups, as is any direct product of copies of these. By the basis theorem,
this describes all finite abelian p-groups. The only nonabelian examples we have
seen so far are the dihedral groups D2n (which are 2-groups when n is a power
of 2), the quaternions Q of order 8 (of course, for every 2-group A, the direct
products D8 × A and Q × A are also nonabelian 2-groups), and the groups
UT(3, p) in Example 2.148 consisting of all upper triangular 3 × 3 matrices

over
�

p of the form
[

1 a b
0 1 c
0 0 1

]
. The obvious generalization of UT(3, p) gives an

interesing family of nonabelian p-groups.

Definition. If k is a field, then an n ×n unitriangular matrix over k is an upper
triangular matrix each of whose diagonal terms is 1. Define UT(n, k) to be the
set of all n × n unitriangular matrices over k.

Proposition 6.27. UT(n, k) is a subgroup of GL(n, k) for every field k.

Proof. If A ∈ UT(n, k), then A = I + N , where N is strictly upper triangular;
that is, N is an upper triangular matrix having only 0’s on its diagonal. Note that
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the sum and product of strictly upper triangular matrices is again strictly upper
triangular.

Let e1, . . . , en be the standard basis of kn . If N is strictly upper triangular,
define T : kn → kn by T (ei ) = Nei , where ei is regarded as a column matrix.
Now T satisfies the equations, for all i ,

T (e1) = 0 and T (ei+1) ∈ 〈e1, . . . , ei〉 .

It is easy to see, by induction on i , that T i (e j ) = 0 for all j ≤ i. It follows that
T n = 0 and, hence, that N n = 0. Thus, if A ∈ UT(n, k), then A = I + N ,
where Nn = 0.

We can now show that UT(n, k) is a subgroup of GL(n, k). First of all, if A
is unitriangular, then it is nonsingular. In analogy to the power series expansion
1/(1+x) = 1−x+x2−x3+· · · , we try B = I −N+N2−N3+· · · as the inverse
of A = I+N (we note that the matrix power series stops after n−1 terms because
Nn = 0), The reader may now check that B A = I ; therefore, A is nonsingular.
Moreover, since N is strictly upper triangular, so is −N + N 2 − N3 + · · · , so
that A−1 ∈ UT(n, k). Finally, (I + N)(I + M) = I + (N + M + N M) is
unitriangular, and so UT(n, k) is a subgroup of GL(n, k). •

Proposition 6.28. Let q = pe, where p is a prime. For each n ≥ 2, UT(n,
�

q )

is a p-group of order qn(n−1)/2.

Proof. The number of entries in an n × n unitriangular matrix lying strictly
above the diagonal is 1

2 (n
2 −n) = n(n −1)/2. Since each of these entries can be

any element of
�

q , there are exactly qn(n−1)/2 n × n unitriangular matrices over
�

q , and so this is the order of UT(n,
�

q ). •
In Exercise 2.111 on page 204, we showed that UT(3,

�
2 ) ∼= D8.

Recall Exercise 2.38 on page 143: if G is a group and x 2 = 1 for all x ∈ G,
then G is abelian. We now ask whether a group G satisfying x p = 1 for all
x ∈ G, where p is an odd prime, must also be abelian.

Proposition 6.29. If p is an odd prime, then there exists a nonabelian group G
of order p3 with x p = 1 for all x ∈ G.

Proof. If G = UT(3,
�

p ), then |G| = p3. If A ∈ G, then A = I + N , where
N3 = 0; hence N p = 0 because p ≥ 3. Since I N = N = N I , the binomial
theorem gives A p = (I + N)p = I p + N p = I . •

In Exercise 6.9 on page 486, we defined νk(G) to be the number of elements
of order k in a finite group G, and we proved that if G and H are abelian groups
with νk(G) = νk(H) for all k, then G and H are isomorphic. This is false in
general, for if p is an odd prime, then each of UT(3,

�
p ) and

�
p× �

p× �
p consist

of the identity and p3 − 1 elements of order p.
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Theorem 6.30. Let
�

q denote the finite field with q elements. Then

|GL(n,
�

q )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1).

Proof. Let V be an n-dimensional vector space over
�

q . We show first that
there is a bijection 8 : GL(n,

�
q ) →

�
, where

�
is the set of all bases of V .

Choose, once for all, a basis e1, . . . , en of V . If T ∈ GL(n,
�

q ), define 8(T ) =
T e1, . . . , T en. By Lemma 4.76, 8(T ) ∈

�
because T , being nonsingular, car-

ries a basis into a basis. But 8 is a bijection, for given a basis v1, . . . , vn , there
is a unique linear transformation S, necessarily nonsingular (by Lemma 4.76),
with Sei = vi for all i (by Theorem 4.61).

Our problem now is to count the number of bases v1, . . . , vn of V . There
are qn vectors in V , and so there are qn − 1 candidates for v1 (the zero vector is
not a candidate). Having chosen v1, we see that the candidates for v2 are those
vectors not in 〈v1〉, the subspace spanned by v1; there are thus qn − q candidates
for v2. More generally, having chosen a linearly independent list v1, . . . , vi , then
vi+1 can be any vector not in 〈v1, . . . , vi 〉. Thus, there are qn −q i candidates for
vi+1. The result follows by induction on n. •

Corollary 6.31. | GL(n,
�

q )| = qn(n−1)/2(qn−1)(qn−1−1) · · · (q2−1)(q−1).

Proof. The number of powers of q in the formula

| GL(n,
�

q )| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

is q1+2+···+(n−1), and 1 + 2 + · · · + (n − 1) = 1
2 n(n − 1). •

Theorem 6.32. If p is a prime and q = pm , then the unitriangular group
UT(n,

�
q ) is a Sylow p-subgroup of GL(n,

�
q ).

Proof. Now |UT(n,
�

q )| = qn(n−1)/2(qn −1)(qn−1 −1) · · · (q2 −1)(q −1), by
Corollary 6.31, so that the highest power of p dividing | GL(n,

�
q )| is qn(n−1)/2.

But |UT(n,
�

q )| = qn(n−1)/2, by Corollary 6.28. and so UT(n,
�

q ) must be a
Sylow p-subgroup. •

Corollary 6.33. If p is a prime, then every finite p-group G is isomorphic to a
subgroup of the unitriangular group UT(m,

�
p ), where m = |G|.

Proof. We show first, for every m ≥ 1, that the symmetric group Sm can be
imbedded in GL(m, k), where k is a field. Let V be an m-dimensional vector
space over k, and let v1, . . . , vm be a basis of V . Define ϕ : Sm → GL(V ) by
σ 7→ Tσ , where Tσ : vi 7→ vσ (i) for all i . It is easy to see that ϕ is an injective
homomorphism.
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By Cayley’s theorem, G can be imbedded in SG; hence, G can be imbedded
in GL(m,

�
p ), where m = |G|. Now G is contained in some Sylow p-subgroup

P of GL(m,
�

p ), for every p-subgroup lies in some Sylow p-subgroup. Since
all Sylow p-subgroups are conjugate, P = a

(
UT(m,

�
p )
)

a−1 for some a ∈
GL(m,

�
p ). Therefore,

G ∼= aGa−1 ≤ a−1 Pa ≤ UT(m,
�

p ). •

A natural question is to find the Sylow subgroups of symmetric groups. This
can be done, and the answer is in terms of a construction called wreath product.

There are other directions in group theory. In an amazing collective effort
at the end of the twentieth century, all finite simple groups were classified. We
quote from The Classification of the Finite Simple Groups, by D. Gorenstein, R.
Lyons, and R. Solomon.

The existing proof of the classification of the finite simple groups
runs to somewhere between 10,000 and 15,000 journal pages, spread
across some 500 separate articles by more than 100 mathematicians,
almost all written between 1950 and the early 1980’s. Moreover,
it was not until the 1970’s that a global strategy was developed for
attacking the complete classification problem. In addition, new sim-
ple groups were being discovered throughout the entire period, ...,
so that it was not even possible to state the full theorem in precise
form ... until the early 1980’s. ... Considering the significance of
the classification theorem, we believe that the present state of affairs
provides compelling reasons for seeking a simpler proof, more co-
herent and accessible, and with clear foundations. ... The arguments
we give ... will cover between 3,000 and 4,000 pages.

There is now a list of every finite simple group, and many important prop-
erties of each of them is known. Many questions about arbitrary finite groups
can be reduced to problems about simple groups. Thus, the classification theo-
rem can be used by checking, one by one, whether each simple group on the list
satisfies the desired result.

Another important direction is representation theory – the systematic study
of homomorphisms of a group into groups of nonsingular matrices. One of the
first applications of this theory is a theorem of Burnside: every group of order
pmqn , where p and q are primes, must be solvable.

EXERCISES

*6.15 Prove that S4 has more than one Sylow 2-subgroup.
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*6.16 Give an example of a finite group G having 3 Sylow p-subgroups (for some prime
p) P, Q and R such that P ∩ Q = {1} and P ∩ R 6= {1}.

6.17 Prove that every finite p-group is solvable.
*6.18 (Frattini argument) Let K be a normal subgroup of a finite group G . If P is a

Sylow p-subgroup of K for some prime p, prove that

G = K NG (P),

where K NG (P) = {ab : a ∈ K and b ∈ NG (P)}.
6.19 Show that a Sylow 2-subgroup of S6 is isomorphic to D8 × � 2.
6.20 Let Q be a normal p-subgroup of a finite group G . Prove that Q ≤ P for every

Sylow p-subgroup P of G .
6.21 For each prime divisor p of the order of a finite group G , choose a Sylow p-

subgroup Q p . Prove that G =
〈⋃

p Q p

〉
.

6.22 (i) Let G be a finite group and let P be a Sylow p-subgroup of G . If H � G ,
prove that H P/H is a Sylow p-subgroup of G/H and H ∩ P is a Sylow
p-subgroup of H .

(ii) Let P be a Sylow p-subgroup of a finite group G . Give an example of a
subgroup H of G with H ∩ P not a Sylow p-subgroup of H .

6.23 Prove that a Sylow 2-subgroup of A5 has exactly 5 conjugates.
6.24 Prove that there are no simple groups of order 300, 312, 616, or 1000.
6.25 Prove that if every Sylow subgroup of a finite group G is normal, then G is the

direct product of its Sylow subgroups.
6.26 For any group G , prove that if H � G , then Z(H) � G .

*6.27 If p is a prime, prove that every group G of order 2p is either cyclic or isomorphic
to D2p .

6.28 If 0 ≤ r ≤ n, define the q-binomial coefficient
[

n
r
]

q to be the number of linearly
independent r -lists in ( � q )

n .
(i) Prove that [

n
r
]

q

[ n
n−r

]
q =

[
n
n
]

q .

(These coefficients arise in the study of hypergeometric series.)
(ii) Prove that there are exactly

[ n
n−r

]
q r -dimensional subspaces of ( � q )

n .

(iii) Prove that

[
n
r
]

q =
(qn − 1)(qn−1 − 1) · · · (q − 1)

(qr − 1)(qr−1 − 1) · · · (q − 1)(qn−r−1)(qn−r − 1) · · · (q − 1)
.

(iv) Prove the analog of Lemma 1.14:
[

n
r
]

q =
[

n−1
r−1

]
q

+ qr [ n−1
r

]
q .

(v) Prove the analog of Exercise 1.29 on page 33:

[
n
r
]

q =
qn − 1

qr − 1

[
n−1
r−1

]
q
.
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6.29 Find Z(UT(3, � q )) and Z(UT(4, � q )).
6.30 (i) Prove that UT(n, � q ) has a normal series

UT(n, � q ) = G0 ≥ G1 ≥ · · · ≥ Gn = {1}

in which G i ∼= UT(i, � q ) consists of all unitriangular n × n matrixes
having all entries on the i superdiagonals 0. For example, if n = 5, then

G1 consists of all matrices of the form

[ 1 0 ∗ ∗ ∗
0 1 0 ∗ ∗
0 0 1 0 ∗
0 0 0 1 0
0 0 0 0 1

]
and G2 consists of all

matrices of the form

[ 1 0 0 ∗ ∗
0 1 0 0 ∗
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]
.

(ii) Prove that the factor groups G i−1/G i are abelian for all i ≥ 1.

6.3 ORNAMENTAL SYMMETRY

In Section 2.3, we defined an isometry of the plane to be a distance-preserving
function ϕ : � 2 → � 2 , and we saw, in Proposition 2.59, that Isom(

� 2 ), the set
of all the isometries of the plane, is a group under composition. For any subset
� of the plane, its symmetry group is defined by

6(�) = {ϕ ∈ Isom(
� 2 ) : ϕ(�) = �}.

For example, we saw, in Theorem 2.63, that the dihedral group D2n is isomorphic
to the symmetry group of a regular n-gon �. In this section, we will study
symmetry groups of certain designs called friezes. Our discussion follows that
in Burn, Groups: A Path to Geometry.

We defined three types of isometry in Example 2.55: rotations, reflections,
and translations (but see Theorem 6.42; there is a fourth type). Identify the plane� 2 with the complex numbers

�
via (a, b) 7→ a + ib. Thus, every point (x, 0)

is identified with the real number x (in particular, the origin is identified with 0),
and the x-axis is identified with

�
. We will use the notation eiθ for numbers on

the unit circle instead of the normalized notation e2π iθ . This identification of
� 2

with
�

enables us to give simple algebraic formulas for isometries.

Example 6.34.

(i) Rotation about the origin by θ is the function Rθ sending the point with
polar coordinates (r, α) to the point with polar coordinates (r, θ +α). This
isometry can now be written as Rθ : z 7→ eiθ z, for if z = reiα, then

Rθ (z) = eiθ z = eiθreiα = rei(θ+α).
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(ii) An isometry ρ` is a reflection if there is a line `, called its axis, each
of whose points is fixed by ρ`, which is the perpendicular-bisector of all
segments having endpoints z, ρ`(z). In particular, reflection about the x-
axis sends each point (a, b) to (a,−b); this is complex conjugation σ : z =
a + ib 7→ a − ib = z.

(iii) Translation by a vector c is τc : z 7→ z + c. Remember that the identity
z 7→ z is a translation; it is the only translation having a fixed point. �

Recall, if ϕ is an isometry, that ϕ(`) is a line whenever ` is a line , and that
ϕ(C) is a circle whenever C is a circle. In more detail, if ` = L[P, Q] is the line
determined by distinct points P and Q, then ϕ(L[P, Q]) = L[ϕ(P), ϕ(Q)], by
Lemma 2.56; if C = C[P; P Q] is the circle with center P and radius P Q, then
ϕ(C[P; P Q]) = C[ϕ(P); ϕ(P)ϕ(Q)].

Here is a geometric lemma.

Lemma 6.35. Let A, P, Q be distinct points in the plane, let C = C[P; P A]
be the circle with center P and radius P A, and let C ′ = C[Q; Q A] be the circle
with center Q and radius Q A. Then C ∩ C ′ = {A} if and only if A, P, Q are
collinear.

Proof. We use analytic geometry. Draw P and Q as the points 0 and 1 on the x-
axis, and let A = (a, b). The equation of C is x 2+y2 = |P A|2 = a2+b2, and the
equation of C ′ is (x −1)2+ y2 = |Q A|2 = (a−1)2+b2. If B = (p, q) ∈ C ∩C ′,
then there are equations

p2 + q2 = a2 + b2 and (p − 1)2 + q2 = (a − 1)2 + b2.

Hence,
(p − 1)2 + (a2 + b2 − p2) = (a − 1)2 + b2.

Simplifying, we get p = a and q = ±b. If b 6= 0, then there are two points in
C ∩ C ′. Hence, if there is only one point in C ∩ C ′, then b = 0. But this one
point must be A, so that A = (a, 0). Thus, A lies on the x-axis, and A, 0, and
1 are collinear. Conversely, if C ∩ C ′ has more than one point, then C ∩ C ′ =
{A, B} 6= {A}. Thus, B = (a,−b) 6= (a, b) = A, so that b 6= 0 and, hence,
A, 0, and 1 are not collinear. •

Proposition 6.36. Let ϕ :
�

→
�

be an isometry fixing 0.

(i) There is some θ with ϕ(1) = eiθ . If ϕ(1) = 1, then ϕ fixes the x-axis
pointwise, and ϕ is either the identity or complex conjugation.

(ii) If ϕ(1) 6= 1, then ϕ is either a rotation or a reflection. In more detail,
ϕ : z 7→ eiθ z when ϕ is a rotation, and ϕ : z 7→ eiθ z when ϕ is a reflection.
In the latter case, the axis of ϕ is ` = {reiθ/2 : r ∈ � }.
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In both cases, ϕ ∈ O2(
�
) and ϕ is a linear transformation.

Proof.
(i) Let z ∈ �

be distinct from 0, and let C|z| be the circle with center 0 and radius
|z| = |0z|. Since ϕ is an isometry fixing 0, we have ϕ(C|z|) = C|z|, for isometries
take circles to circles of the same radius: ϕ(C[0; 0z]) = C[ϕ(0); ϕ(0)ϕ(z)] =
C[0; 0ϕ(z)]. In particular, 1 ∈ C1 implies that ϕ(1) ∈ C1, and so ϕ(1) = eiθ for
some θ .

Assume that ϕ also fixes 1, and let z ∈ �
be distinct from 0, 1. If C =

C[0, z] and C ′ = C[1, z], then ϕ(C) = ϕ(C[0, z]) = C[0, ϕ(z)] = C , because
|0z| = |ϕ(0)ϕ(z)| = |0ϕ(z)|; similarly, ϕ(C ′) = C ′. Since 0, 1, z are collinear,
Lemma 6.35 gives {z} = C ∩ C ′. Hence,

{ϕ(z)} = ϕ(C ∩ C ′) = ϕ(C) ∩ ϕ(C ′) = C ∩ C ′ = {z}.

Therefore, ϕ fixes
�

pointwise.
If z /∈ �

, let C be the circle with center 0 and radius 0z and let C ′ be the circle
with center 1 and radius 1z. Now ϕ(C ∩ C ′) = ϕ(C) ∩ ϕ(C ′) = C ∩ C ′. But
Lemma 6.35 says that C ∩ C ′ = {z, z}, so that either ϕ(z) = z or ϕ(z) = z.
If ϕ(z) = z for some z /∈ �

, then ϕ fixes the basis 1, z of the vector space
� 2

and, hence, ϕ is the identity (because ϕ is a linear transformation, by Proposi-
tion 2.57). Therefore, if ϕ is not the identity, then ϕ(z) = z for all z.
(ii) Ifψ is rotation about 0 by θ , thenψ−1ϕ is an isometry fixing both 0 and 1. By
part (i), ψ−1ϕ is either the identity or complex conjugation; that is, ϕ(z) = eiθ z
or ϕ(z) = eiθ z.

1
2

z

A
(z)

UO

r

Figure 6.1 z 7→ eiθ z is a reflection

If ϕ(z) = eiθ z, then Example 6.34(i) shows that ϕ is a rotation.
If ϕ : z 7→ eiθ z, then

ϕ(reiθ/2) = eiθϕ(reiθ/2) = reiθe−iθ/2 = reiθ/2,
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so that every point on ` is fixed by ϕ. If z = reiα /∈ `, then ϕ(z) = rei(θ−α). In
Figure 6.1, the intersection of the line L = L[z, ϕ(z)] with ` is denoted by A,
and the intersection of L with the x-axis is denoted by U . Let us see that ` bisects
6 z0ϕ(z). Now 6 U0ϕ(z) = θ − α, so that 6 z0ϕ(z) = θ − 2α = 2(θ − 1

2α);
hence, 6 ϕ(z)0A = 1

2θ − α = 6 z0A. Thus, 1 z0A is congruent to 1ϕ(z)0A,
because |0ϕ(z)| = r = |0z|, and so |ϕ(z)A| = |Az|. Finally, ` is perpendicular
to L = L[ϕ(z), z], for 6 0Aϕ(z) = 6 0Az and their sum is 180◦. Therefore, ϕ is
a reflection with axis `. •

Having classified all isometries that fix 0, let us now investigate arbitrary
isometries.

Corollary 6.37. If ϕ is an isometry with ϕ(0) = c, then there is some θ so that

ϕ(z) = eiθ z + c or ϕ(z) = eiθ z + c.

Proof. If ϕ is a translation, say, ϕ : z 7→ z + c, then ϕ has the formula ϕ(z) =
eiθ z +c with θ = 0. In general, given ϕ : z 7→ eiθ z +c, define τ to be translation
by c = ϕ(0). Now τ−1ϕ is an isometry fixing 0, and so it is either a rotation or
a reflection, by Proposition 6.36. •

The isometry z 7→ eiθ + c is easily seen to be rotation about c by θ . Your
first guess is that isometries of the form z 7→ eiθ z +c are reflections, but the next
proposition shows that this is not always true.

Recall that θ is the direction of a nonzero complex number z = reiθ . Every
line ` has an equation of the form z = v + reiθ , where r ∈ �

; we say that ` has
direction θ .

Proposition 6.38. The following statements are equivalent for an isometry with
equation ϕ : z 7→ eiθ z + c.

(i) ϕ2 = identity.

(ii) eiθc + c = 0.

(iii) ϕ has a fixed point.

(iv) ϕ has a line ` comprised of fixed points, and ` has direction θ/2.

(v) ϕ is a reflection.

Proof.
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(i) ⇒ (ii)

ϕ2(z) = ϕ(eiθ z + c)

= eiθ (eiθ z + c)+ c

= eiθ (e−iθ z + c)+ c

= z + eiθc + c.

Hence, ϕ2 is the identity if and only if eiθc + c = 0.
(ii) ⇒ (iii) Since ϕ is a reflection, the midpoint 1

2 (z + ϕ(z)) of the segment
with endpoints z and ϕ(z) lies on the axis of ϕ and, hence, it is fixed by ϕ. In
particular, the point 1

2 c is fixed [being the midpoint of 0 and ϕ(0) = c]. Indeed,
ϕ( 1

2 c) = eiθ 1
2 c + c = 1

2

(
eiθc + c

)
+ 1

2 c = 1
2 c, because eiθc + c = 0.

(iii) ⇒ (iv) Suppose that ϕ(u) = u. Let ` be the line ` = {u + reiθ/2 : r ∈ � };
it is clear that ` has direction θ/2. If z ∈ `, then

ϕ(z) = ϕ(u + reiθ/2)

= eiθ (u + reiθ/2
)
+ c

= eiθu + reiθe−iθ/2 + c

= (eiθu + c)+ reiθ/2

= ϕ(u)+ reiθ/2

= u + reiθ/2

= z.

(iv) ⇒ (v) It suffices to show that ϕ is a reflection with axis `; since ϕ fixes
every point on `, it suffices to show, for each z /∈ `, that ` is the perpendicular-
bisector of the segment with endpoints z, ϕ(z). If ψ : z 7→ eiθ z, then we saw, in
Proposition 6.36, that ψ is the reflection with axis `′ = {reiθ/2 : r ∈ � }. Hence,
`′ is the perpendicular-bisector of each segment with endpoints z− 1

2 c,ψ(z− 1
2 c).

If we define τ to be translation by 1
2 c, then ` = τ(`′) is the perpendicular-bisector

of the segment with endpoints τ(z − 1
2 c), τ(ψ(z − 1

2 c)). But τ(z − 1
2 c) = z and

τ(ψ(z − 1
2 c)) = eiθ (z − 1

2 c)+ 1
2 c

= eiθ z − 1
2 eiθc + 1

2 c

= [eiθ z + c] − c − 1
2 eiθc + 1

2 c

= ϕ(z)− 1
2

(
eiθc + c

)

= ϕ(z).

(v) ⇒ (i) The square of a reflection is the identity. •
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Example 6.39.
We observe that reflections and translations need not commute. Let σ : z 7→ z
be complex conjugation, and let τ : z 7→ z + i be translation by i . Now στ(z) =
z + i = z − i , while τσ(z) = z + i . �

Let us now analyze isometries ϕ : z 7→ eiθ z + c that are not reflections.

Proposition 6.40. If ϕ : z 7→ eiθ z + c is not a reflection, then ϕ = τρ, where ρ
is a reflection, say, with axis `, and τ is a translation z 7→ z + 1

2w, where w has
direction that of `.

Proof. As in the proof of (i) ⇒ (ii) in Proposition 6.38, we have ϕ2(z) =
z + eiθc + c. We define w = eiθc + c, so that

ϕ2 : z 7→ z + w. (1)

Now define
τ : z 7→ z + 1

2w,

so that τ 2 = ϕ2.
Note first that

eiθw = eiθ (e−iθc + c) = w. (2)

It follows that w has direction 1
2θ : if w = reiα , then substituting w = eiθw in

Eq. (2) gives reiα = reiθe−iα. Hence, e2iα = eiθ , so that α = 1
2θ .

We claim that τ commutes with ϕ.

ϕ(τ(z)) = ϕ(z + 1
2w)

= eiθ (z + 1
2w)+ c

= eiθ z + c + 1
2 eiθw

= ϕ(z)+ 1
2w

= τ(ϕ(z)).

It follows that ϕ commutes with τ−1:

ϕτ−1 = τ−1(τϕ)τ−1 = τ−1(ϕτ)τ−1 = τ−1ϕ.

But τ 2 = ϕ2, so that

(τ−1ϕ)2 = (τ−1)2ϕ2 = identity.

Hence, if we define ρ = τ−1ϕ, then ρ2 = identity and

ρ(z) = τϕ(z) = eiθ z + (c + 1
2w).

Proposition 6.38 now says that ρ is a reflection whose axis has direction 1
2θ ,

which we have already observed is the direction of w. •
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−1 0 1 2 3

Figure 6.2 Glide Reflection

Definition. An isometry ϕ is a glide-reflection if ϕ = τvρ, where ρ is a re-
flection with axis ` and τv is a translation with v having the same direction as `.
Thus,

ϕ(z) = eiθ z + v = eiθ z + reiθ/2

for some nonzero r ∈ �
.

Glide-reflections are precisely the isometries described in Proposition 6.40.
We note that glide-reflections ϕ are not reflections, for ϕ2 is not the identity.

Example 6.41.
The isometry ϕ : z 7→ z + 1 is a glide-reflection taking the x-axis to itself:
ϕ(

�
) = �

. If 1 is the triangle with vertices (0, 0), ( 1
2, 0), (1, 1), then ϕ(1) is

the triangle with vertices (1, 0), ( 3
2, 0), (2,−1),ϕ2(1) has vertices (2, 0), ( 5

2, 0),
(3, 1), and ϕn(1) has vertices (n, 0), ( 2n+1

2 , 0), (n + 1, (−1)n). The design
in Figure 6.2, which goes on infinitely to the left and to the right, is invariant
under ϕ. �

The following statement summarizes our work so far.

Theorem 6.42. Every isometry is either a translation, a rotation, a reflection,
or a glide-reflection.

Proof. The theorem follows from Proposition 6.36(ii), Corollary 6.37, Propo-
sition 6.38, and Proposition 6.40. •

Proposition 6.43. Let ϕ ∈ Isom(
� 2 ).

(i) If ϕ has no fixed points, then ϕ is either a translation or a glide-reflection.
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(ii) If ϕ has only one fixed point, then ϕ is a rotation.

(iii) If ϕ has more than one fixed point, then ϕ is either a reflection or the
identity.

Proof. There are only four types of isometry, by Theorem 6.42: translations,
which have no fixed points; rotations, which have exactly one fixed point; reflec-
tions, which have infinitely many fixed points, namely, every point on their axes;
glide-reflections. It suffices to show that a glide-reflection ϕ has no fixed points.
If ϕ(z) = z, then ϕ2(z) = z; but ϕ2 = τ , where τ 6= identity is a translation, by
Eq. (1), contradicting the fact that translations have no fixed points. •

Example 6.44.
We use Theorem 6.42 to determine the elements of finite order in Isom(

� 2 ).
Translations (other than the identity) have infinite order, as do glide-reflections
(for the square of a glide-reflection is a translation). All reflections have order 2.
Finally, suppose that ϕ : z 7→ eiθ z + c is a rotation (about c). By induction, we
see that

ϕn(z) = eniθ z + c(1 + eiθ + e2iθ + · · · + e(n−1)iθ ).

Hence, if ϕn = identity, then we must have θ = 2π/n; in this case, ϕn(z) =
z + c(1 + eiθ + e2iθ + · · ·+ e(n−1)iθ ). But now eiθ is an nth root of unity, and so
1 + eiθ + e2iθ +· · ·+ e(n−1)iθ = 0. Therefore, if ϕn is the identity, then we must
have c = 0; that is, ϕ(z) = e2π i/nz. Conversely, if θ = 2π/n, then z 7→ eiθ z
has finite order.

Are there any elements of order 2 besides reflections? Such an isometry ϕ
must have the form z 7→ eπ i z +c; that is, ϕ(z) = −z +c; it is called a half-turn.
Note that half-turns are not reflections, for a reflection has infinitely many fixed
points while a half-turn, being a rotation, has only one fixed point. A half-turn
reverses the direction of a line. For example, ϕ : z 7→ −z + 2 takes

· · · ] − − > −−] − − > −−] − − > −−] − − > −−] · · ·

to

· · · < − − [−− < − − [−− < − − [−− < − − [−− < · · ·

The reader should check that a half-turn ϕ turns a figure upside down. For ex-
ample, ϕ(∨) = ∧ and ϕ(∧) = ∨. �

Recall that if z1, . . . , zn are distinct points in
�

, then their center of gravity
is u, where

u = 1
n (z1 + · · · + zn).
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Lemma 6.45. Let ϕ ∈ Isom(
� 2 ), and let z1, . . . , zn be distinct points in

�
.

Then ϕ(u) = u′, where u is the center of gravity of z1, . . . , zn and u′ is the
center of gravity of ϕ(z1), . . . , ϕ(zn).

Proof. By Theorem 6.42, ϕ is either a translation, a rotation, a reflection, or
a glide-reflection. A rotation about c is a composite τρ, where τ is the trans-
lation z 7→ z + c and ρ is a rotation around 0. Proposition 6.40 shows that a
glide-reflection is also a composite of a translation and a reflection, while ev-
ery reflection is a composite of a translation and a reflection whose axis passes
through 0. We conclude that it suffices to show that ϕ(u) = u ′ for ϕ a translation,
a rotation about the origin, or a reflection with axis passing through the origin
(so that 0 is fixed in either case).

Suppose that ϕ is a translation: ϕ(z) = z + a. Then

ϕ(u) = u + a

= 1
n (z1 + · · · + zz)+ a

= 1
n z1 + · · · + 1

n zn + 1
n a + · · · + 1

n a

= 1
n (z1 + a)+ · · · + 1

n (zn + a)

= 1
nϕ(z1)+ · · · + 1

nϕ(zn)

= u′.

If ϕ is either a rotation about the origin or a reflection with axis through 0,
then Proposition 6.36 shows that ϕ is a linear transformation. Therefore,

ϕ(u) = ϕ( 1
n [z1 + · · · + zn]) = 1

n [ϕ(z1)+ · · · + ϕ(zn)] = u′. •

Lemma 6.46. If G ≤ Isom(
� 2 ) is a finite subgroup, then there is u ∈

�
with

ϕ(u) = u for all ϕ ∈ G.

Proof. Choose z ∈
�

, and let
�

be its orbit:

�
= {ϕ(z) : ϕ ∈ G}.

Since G is finite,
�

is finite:
�

= {z1, . . . , zn}, where z1 = z. Now G acts on
�

,
for if ψ ∈ G, then ψ(z j ) = ψϕ(z1) ∈

�
, because ψϕ ∈ G. Thus, each ϕ ∈ G

permutes
�

, for ϕ is injective and ϕ :
�

→
�

. Since ϕ permutes
�

, the center
of gravity u of

�
is equal to the center of gravity of ϕ(

�
) =

�
. Therefore,

Lemma 6.45 says that ϕ(u) = u for all ϕ ∈ G. •

In his book Symmetry, H. Weyl attributes the following theorem to Leonardo
da Vinci (1452-1519).
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Theorem 6.47 (Leonardo). If G ≤ Isom(
� 2 ) is a finite subgroup, then either

G ∼=
�

m for some m or G ∼= D2n for some n.

Proof. By Lemma 6.46, there is c ∈
�

with ϕ(c) = c for all ϕ ∈ G. If
τ : z 7→ z − c, then τϕτ−1(0) = τϕ(c) = τ(c) = 0. Since τGτ−1 ∼= G, we
may assume that every ϕ ∈ G fixes 0. Thus, Proposition 6.36 applies: we may
assume that G ≤ O2(

�
), and so every ϕ ∈ G is a linear transformation. Better,

we may assume that every ϕ ∈ G is either a rotation or a reflection.
Suppose that G contains no reflections. Thus, the elements of G are rotations

Rθ1 , . . . , Rθm , where θ j = 2πk j/n j , by Example 6.44. If n = max j {n j }, then
G ≤ 〈R2π/n〉. Therefore, G, being a subgroup of a cyclic group, is itself cyclic.

Suppose that G contains a reflection ρ. By Exercise 6.39 on page 515, we
may replace G by an isomorphic copy which contains σ , complex conjugation.
The subset H , consisting of all the rotations in G, is a subgroup; it is a finite
subgroup of Isom(

� 2 ) containing no reflections, and so it is cyclic, say, H = 〈h〉,
where h(z) = eiθ z has order n, say. Now σhσ−1 = h−1, for

σhσ−1 : z 7→ z 7→ eiθ z 7→ eiθ z = e−iθ z = h−1(z).

Therefore, 〈h, σ 〉 = H ∪ Hσ is a subgroup isomorphic to D2n . Finally, we
claim that 〈h, σ 〉 = G. If r ∈ G is a reflection, then r(z) = eiαz = Rασ(z). But
Rα = rσ−1 ∈ H , for it is a rotation in G, and so r = Rασ ∈ 〈h, σ 〉. •

Leonardo’s theorem has found all the finite subgroups of O2(
�
) that stabilize

a point. We are now going to find all those subgroups of Isom(
� 2 ), called frieze

groups, that stabilize a line but not a point. To isomorphism, there are only four
such subgroups, but when we take geometry into account, we shall see seven
types of them.

According to the Oxford English Dictionary, a frieze is “that member in the
entablature of an order which comes between the architrave and the cornice.”
Fortunately, it goes on to say that a frieze is “any horizontal broad band which
is occupied by a sculpture.” Now sculptures are three-dimensional, but we use
the word to mean any (two-dimensional) broad band which repeats some pattern
infinitely to the left and to the right. In more precise language, we say that a
subset F of the plane is a band if F there is some isometry ϕ (not the identity) in
the symmetry group 6(F) which stabilizes a line `; that is, ϕ(`) = ` (we do not
insist that ϕ fix ` pointwise). To say that a band F is a frieze means that there is
some “design” D ⊆ F so that F =

⋃
n∈ � τ

n(D) for some translation τ ∈ 6(F).
We aim to classify all those subgroups of Isom(

� 2 ) of the form 6(F) for some
frieze F .

The band F in Figure 6.3 is a frieze: it is stabilized by the translation τ : z 7→
z + 1, and its repeating pattern is the triangle D having base the closed interval
[0, 1

2 ].
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Figure 6.3 The Frieze F

Consider the band F ′ in Figure 6.2. It is easy to see that its symmetry group,
6(F ′), contains the glide-reflection ϕ : z 7→ z + 1. Note that ϕ(

�
) = �

and that
F ′ =

⋃
n∈ � ϕ

n(D), where D is the triangle with base [0, 1
2 ]. This does not show

that F ′ is a frieze because ϕ is not a translation. However, F ′ is, indeed, a frieze,
for the translation τ : z 7→ z + 2 lies in 6(F ′) and F ′ =

⋃
n∈ � τ

n(D′), where
D′ is the union of the triangle with base [0, 1

2 ] and the triangle with base [1, 3
2 ].

Figure 6.4 Persian bowmen

Now consider a frieze F ′′ obtained from F in Figure 6.3 by replacing the
triangle D with base [0, 1

2 ] by another figure. For example, let F ′′ be the frieze
in Figure 6.4 (from the palace of Darius in ancient Susa) in which each triangle D
in Figure 6.3 has been replaced by a Persian bowman. It is clear that 6(F ′′) =
6(F). Plainly, there are too many friezes to classify them geometrically; for
example, what restrictions, if any, must be imposed on D? In spite of this, we
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are still able to classify friezes if we do not distinguish triangles and bowmen.

Notation. The subgroup of all the translations in Isom(
� 2 ) is denoted by

Trans(
� 2 ).

Informally, a frieze group is the symmetry group of a frieze. We will soon
replace the following definition by a normalized version.

Definition. 1. A frieze group is a subgroup G of Isom(
� 2 ) which stabilizes a

line `, that is, ϕ(`) = ` for all ϕ ∈ G, and such that G ∩ Trans(
� 2 ) is infinite

cyclic.

Saying that each ϕ ∈ G stabilizes a line ` reflects the fact that a frieze is a
band; saying that G ∩ Trans(

� 2 ) = 〈τ 〉 is infinite cyclic reflects the fact that a
frieze F has some repeating design D ⊆ F whose 〈τ 〉-orbit is all of F .

Lemma 6.48. If ϕ ∈ G, where G is a frieze group, then there is some real
number c such that one of the following holds:

(i) If ϕ is a translation, then ϕ(z) = z + c.

(ii) If ϕ is a rotation, then ϕ is a half-turn: ϕ(z) = −z + c.

(iii) If ϕ is a reflection, then ϕ(z) = z or ϕ(z) = −z + c.

(iv) If ϕ is a glide-reflection, then ϕ : z 7→ z + c, where c 6= 0.

Proof. We know that ϕ : z 7→ eiθ z + c or ϕ : z 7→ eiθ z + c. Since ϕ(
�
) = �

,
we have c = ϕ(0) ∈ �

and ϕ(1) = eiθ + c ∈ �
. Therefore, eiθ ∈ �

; that is,
eiθ = ±1. Thus, either ϕ(z) = ±z + c or ϕ(z) = ±z + c.

The remainder of the proof determines the type of isometry corresponding
to each of these formulas. Rotations by θ have the form eiθ z + c; since eiθ =
±1, we must have θ = π , and so rotations here are half-turns. The isometry
ϕ : z 7→ eiθ z + c is a reflection if and only if eiθc + c = 0. Here, c is real, so
that c = c, and so ϕ is a reflection if either c = 0 or if eiθ = −1. Thus, either
ϕ(z) = z or ϕ(z) = −z + c for any c ∈ �

. Finally, if c 6= 0 and ϕ(z) = z + c,
then eiθc + c = 2c 6= 0 and ϕ is a glide-reflection. •

We are going to normalize the classification problem for frieze groups, in two
ways. First, there is no loss in generality in assuming that the stabilized line ` is
the real axis

�
, for we may change the location of the coordinate axes without

disturbing symmetries. Second, we will ignore changes in scale. For example,
the frieze F in Figure 6.3 has an infinite cyclic symmetry group, namely,6(F) =
〈τ 〉, where τ is the translation τ : z 7→ z + 1. On the other hand, if each vector
in

� 2 is doubled in size, then F becomes a new frieze 8 with 6(8) = 〈τ ′〉,
where τ ′ : z 7→ z + 2. Thus, F and 8 are essentially the same frieze, differing
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only in scale, but their symmetry groups are different because τ /∈ 6(8). Define
ω : � 2 → � 2 by ω(z) = 2z. Now ω defines the isomorphism 6(F) → 6(8)

given by ϕ 7→ ωϕω−1. Note that

ωτω−1 : z 7→ 1
2 z 7→ 1

2 z + 1 7→ 2( 1
2 z + 1) = z + 2.

Our second normalization assumes that the generator τ of G ∩ Trans(
� 2 ) is the

translation τ : z 7→ z + 1. In light of the discussion so far, it suffices to classify
normalized frieze groups.

Definition. 2. A normalized frieze group is a subgroup G ≤ Isom(
� 2 ) which

stabilizes
�

and such that G ∩ Trans(
� 2 ) = 〈τ 〉, where τ : z 7→ z + 1.

Lemma 6.48 simplifies when we assume frieze groups G are normalized.
If γ : z 7→ z + c is a glide-reflection in G, then γ 2 is a translation; in fact,
γ 2 : z 7→ z + 2c. But all translations in G lie in 〈τ 〉, so that γ 2 = τ n : z 7→ z + n
for some n ∈ �

. Hence, 2c = n, so that c = m or c = m + 1
2 for some m ∈ �

.
Thus, G contains τ−mγ = σ if c = m, that is, σ(z) = z, or τ−mγ : z 7→ z + 1

2 if
c = m + 1

2 . In order to distinguish γ ∈ G from σ ∈ G, we choose γ : z 7→ z+ 1
2 ,

so that γ 2 = τ . We may also normalize the half-turn R and the reflection ρ so
that R : z 7→ −z + 1 and ρ : z 7→ −z + 1.

If ϕ ∈ Isom(
� 2 ), let us write ϕ(z) = eiθ zε + c, where ε = ±1, z1 = z, and

z−1 = z. If ψ = eiαzη + d , then it is easy to see that

ϕψ(z) = ei(θ+α)zεη + eiθd + c.

It follows that the function π : Isom(
� 2 ) → O2(

�
), defined by

π : ϕ 7→ τ−1
ϕ(0)ϕ,

is a homomorphism [of course, τ−1
ϕ(0)ϕ : z 7→ eiθ zε], and kerπ = Trans(

� 2 ), so

that Trans(
� 2 ) � Isom(

� 2 ).

Definition. Let π : Isom(
� 2 ) → O2(

�
) be the map just defined (which erases

the constant of translation). If G is a frieze group, then its point group is π(G).

It follows from the second isomorphism theorem that if T = G∩Trans(
� 2 ),

then T � G and G/T ∼= π(G).

Corollary 6.49. The point group π(G) of a frieze group G is a subgroup of
imπ = {1, f, g, h} ≤ O2(

�
) (which is isomorphic to the four-group V), where

f (z) = −z, g(z) = −z, and h(z) = z.
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Proof. By Lemma 6.48, we have imπ = {1, f, g, h}. •

We are now going to classify the (normalized) frieze groups. Since imπ =
〈 f, g, h〉 is isomorphic to the four-group, there are exactly 5 subgroups of it:
{1}, 〈 f 〉, 〈g〉, 〈h〉, 〈 f, g, h〉 = imπ . Thus, there are 5 point groups. We will
use Exercise 2.90 on page 188: Let π : G → H be a surjective homomorphism
with kerπ = T . If H = 〈X〉, and, for each x ∈ X , a lifting gx ∈ G is
chosen with π(gx ) = x , then G is generated by T ∪ {gx : x ∈ X}. Here,
T = G ∩ Isom(

� 2 ) = 〈τ 〉, where τ : z 7→ z + 1.

isometry formula type lifts order

τ z + 1 translation 1 ∞
R −z + 1 half-turn f 2

ρ −z + 1 reflection g 2

σ z reflection h 2

γ z + 1
2 glide-reflection h ∞

Figure 6.5 Normalized Liftings

The following group will appear in the classification of the frieze groups.
Recall that the dihedral group D2n is defined as a group of order 2n generated by
two elements a and b such that b2 = 1, an = 1, and bab = a−1.

Definition. The infinite dihedral group D∞ is an infinite group generated by
two elements a and b such that b2 = 1 and bab = a−1.

Exercise 6.42 on page 515 shows that any two infinite dihedral groups are
isomorphic.

Theorem 6.50. There are at most 7 types of frieze groups G.

Proof. We use the notation in Figure 6.6.

Case 1. π(G) = {1}. In this case, G = G1 = 〈τ 〉. Of course, G1 ∼=
�

.

Case 2. π(G) = 〈 f 〉. In this case, G = G2 = 〈τ, R〉. Now R2 = 1 and
Rτ R : z 7→ z − 1; that is, Rτ R = τ−1. Since G2 is infinite (because τ has
infinite order), G2 is infinite dihedral; that is, G2 ∼= D∞.

Case 3. π(G) = 〈g〉. In this case, G3 = 〈τ, ρ〉. Now ρ2 = 1 and ρτρ : z 7→
z − 1; that is, ρτρ = τ−1. Therefore, G3 ∼= D∞.

The group G2 is also infinite dihedral, so that G3 ∼= G2, by Exercise 6.42 on
page 515; thus, G2 and G3 are, algebraically, the same. However, these groups
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are geometrically distinct, for while G2 contains only translations and half-turns,
the group G3 contains a reflection.

Cases 4 and 5. π(G) = 〈h〉. There are two possible cases because there are two
possible liftings of h, namely, σ and γ .

Cases 4. G4 = 〈τ, σ 〉. Now τ and σ commute, for each of στ and τσ sends
z 7→ z + 1, so that G4 is abelian. Moreover, σ 2 = 1. It follows easily from
Proposition 2.125 that

G4 = 〈σ 〉 × 〈τ 〉 ∼=
�

2 × �
.

Case 5. G5 = 〈τ, γ 〉. Note that γ and τ commute, for each of γ τ and τγ sends
z 7→ z + 3

2 , so that G5 is abelian. Since γ 2 = τ , we have G5 = 〈τ, γ 〉 = 〈γ 〉
cyclic with generator γ ; that is, G5 ∼=

�
.

Algebraically, G5 and G1 are the same, for both are infinite cyclic. But these
groups are different geometrically, for G5 contains a glide-reflection while G1
has only translations.

Cases 6 and 7. π(G) = 〈 f, g, h〉. Again, there are two possible cases because
of the two possible liftings of h. Note, in the four-group, that the product of any
two nonidentity elements is the third such, and so both 〈τ, R, σ 〉 and 〈τ, R, γ 〉
have point group 〈 f, g, h〉.
Case 6. G6 = 〈τ, R, σ 〉. Now στ = τσ , as in Case 4, while σ R = Rσ : z 7→
−z + 1. It follows that both 〈σ 〉 � G6 and 〈τ, R〉 � G6. Since 〈σ 〉∩ 〈τ, R〉 = {1}
and G6 is generated by these two subgroups, Proposition 2.125 shows that G6 =
〈σ 〉 × 〈τ, R〉. By Case 2, 〈τ, R〉 ∼= D∞, and so G6

∼=
�

2 × D∞.

Case 7. G7 = 〈τ, R, γ 〉. Since γ 2 = τ , we have G7 = 〈R, γ 〉. Now R2 = 1
and Rγ R : z 7→ z − 1

2 , so that Rγ R = γ−1. Therefore, G7
∼= D∞.

Algebraically, G7,G2 and G4 are the same, for each is isomorphic to D∞.
But these groups are different geometrically, for neither G2 nor G3 contains a
glide-reflection (lest their point group be too big). •

Theorem 6.51. Each of the 7 possible frieze groups occurs.

Proof. Each of the friezes illustrated in Figure 6.6 has the indicated group of
symmetries. One should view each frieze as being bisected by the x-axis, so that
half of each letter is above the axis and half below. For example, F4 is stabilized
by σ but not by γ . To prove this theorem, we consider each of the (normalized)
isometries τ , R, ρ, σ , and γ , and show that a given frieze is stabilized by some
of these and not stabilized by the others.

We remind the reader of the geometric view of the basic isometries. The
translation τ is a shift one unit to the right, while σ is the reflection in the x-axis
and ρ is the reflection in the y-axis. The glide-reflection γ reflects in the x-axis
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F1 : F F F F F F G1 = 〈τ 〉
F2 : Z Z Z Z Z Z G2 = 〈τ, R〉
F3 : A A A A A A G3 = 〈τ, ρ〉
F4 : D D D D D D G4 = 〈τ, σ 〉
F5 : D

M

DM D

M

DM D

M

DM G5 = 〈τ, γ 〉
F6 : I I I I I I G6 = 〈τ, R, σ 〉
F7 : M

M

M

M

M

M

M

M

M

M

M

M

G7 = 〈R, γ 〉

Figure 6.6 The Seven Friezes

and then shifts half a unit to the right, while the half-turn R turns a frieze upside
down.
(i) We have 6(F1) = 〈τ 〉, because τ(F1) = F1, but none of the other isometries
stabilize it. Therefore, G1 is a frieze group.
(ii) We have 6(F2) = 〈τ, R〉, because τ, R stabilize F2, but ρ, σ , and γ do not
stabilize it. Therefore, G2 is a frieze group.
(iii) We have 6(F3) = 〈τ, ρ〉, because τ, ρ stabilize F2, but R, σ , and γ do not
stabilize it. Therefore, G3 is a frieze group.
(iv) We have 6(F4) = 〈τ, σ 〉, because τ, σ stabilize F2, but R, ρ, and γ do not
stabilize it. Therefore, G4 is a frieze group.
(v) We have 6(F5) = 〈τ, γ 〉, because τ, γ stabilize F2, but R, ρ, and σ do not
stabilize it. Therefore, G5 is a frieze group.
(vi) We have 6(F6) = 〈τ, R, σ 〉, because all the isometries stabilize it. There-
fore, G6 is a frieze group.
(vii) We have 6(F7) = 〈τ, R, γ 〉 = 〈R, γ 〉, because all the isometries except σ
stabilize F7. Therefore, G7 is a frieze group. •

Corollary 6.52. To isomorphism, there are 4 frieze groups, namely,
�

, D∞,�
2 × �

, and
�

2 × D∞.

Proof. As stated in the proof of Theorem 6.50, 6(F1) and 6(F5) are isomor-
phic to

�
,6(F2), 6(F3) and6(F7) are isomorphic to D∞,6(F4) is isomorphic

to
�

2 × �
, and 6(F6) ∼=

�
2 × D∞. •

The next question is the classification of the wallpaper groups. Let Br(u) =
{v ∈ � 2 : |v − u| < r} be the open ball with center u and radius r . Of course, a
subgroup G ≤ Isom(

� 2 ) acts on
� 2 , and so the orbit

�
(u) of any point u ∈ � 2

makes sense:
�
(u) = {ϕ(u) : ϕ ∈ G}. A subgroup G ≤ Isom(

� 2 ) is discrete
if, for each u ∈ � 2 , there is r > 0 so that Br (u) ∩

�
(u) = {u}. One can prove
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that frieze groups are those discrete subgroups of Isom(
� 2 ) which stabilize a

line but not a point (the point groups stabilize a point). Wallpaper groups are
those discrete subgroups G of Isom(

� 2 ) which do not stabilize a line or a point.
If G is a wallpaper group, then the homomorphism π : G → O2(

�
) has kernel

Trans(
� 2 ) ∩ G, which is now a free abelian group

� × �
. The image of π , still

called a point group, must be one of
�

n, D2n , where n ∈ {1, 2, 3, 4, 6} (this is
the so-called crystallographic restriction). We refer the interested reader to the
final chapter of Burn, Groups: A Path to Geometry, where it is shown that there
are exactly 17 wallpaper groups.

Similar problems exist in 3-dimensional space. One can classify the five
Platonic solids and give their isometry groups: the tetrahedron has symmetry
group A4, the cube and the octahedron each has symmetry group S4, and the
dodecahedron and icosahedron each has symmetry group A5. Crystallographic
groups are defined to be the discrete subgroups G ≤ Isom(

� 3 ) which do not
stabilize a point, a line, or a plane. There is a homomorphism G → O3(

�
), all

orthogonal linear transformations on
� 3 , which generalizes the homomorphism

π ; its kernel, Trans(
� 3 ) ∩ G, is a free abelian group

� ⊕ � ⊕ �
, and its image,

a point group, is a finite subgroup of O3(
�
). There are 230 crystallographic

groups.

EXERCISES

6.31 (i) If ϕ ∈ Isom(� 2 ), then ϕ(z) = eiθ z + c or ϕ(z) = eiθ z + c. Prove that θ
and c are uniquely determined by ϕ.

(ii) Prove that the function f : Isom(� 2 ) → O2(� ), defined by ϕ 7→ ϕτ−1
ϕ(0),

is a homomorphism, where τϕ(0) is the translation z 7→ z + ϕ(0). Prove
that the homomorphism f is surjective and that its kernel is the subgroup
T of all the translations. Conclude that T � Isom(� 2 ).

6.32 Prove that ϕ : (x, y) 7→ (x + 2,−y) is an isometry. What type of isometry is it?
6.33 Verify the following formulas.

(i) If τ : z 7→ z + c, then τ−1 : z 7→ z − c.
(ii) If R : z 7→ eiθ z + c, then R−1 : z 7→ e−iθ (z − c).
(iii) If ϕ : z 7→ eiθ z + c, then ϕ−1 : z 7→ eiθ (z − c).
(iv) Give an example of isometries α and β such that α and βαβ−1 are not

isometries of the same type.
6.34 (i) Prove that conjugate elements in Isom( � 2 ) have the same number of

fixed points.
(ii) Prove that if ϕ is a rotation and ψ is a reflection, then ϕ and ψ are not

conjugate in Isom(� 2 ).
6.35 If ϕ and ψ are rotations in Isom(� 2 ) having different fixed points, prove that the

subgroup 〈ϕ,ψ〉 they generate is infinite.
6.36 If ϕ ∈ Isom( � 2 ) fixes three noncollinear points, prove that ϕ is the identity.
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6.37 (i) Prove that the composite of two reflections in Isom( � 2 ) is either a rota-
tion or a translation.

(ii) Prove that every rotation is a composite of two reflections. Prove that
every translation is a composite of two reflections.

(iii) Prove that every isometry � 2 → � 2 is a composite of at most three
reflections.

6.38 If H denotes the subgroup of Isom( � 2 ) consisting of all isometries which stabi-
lize � , prove that complex conjugation lies in the center, Z(H).

*6.39 (i) If ρ is a reflection in O 2(� ), prove that there is a rotation R ∈ O2( � )
with RρR−1 = σ , where σ(z) = z.

(ii) If G is a subgroup of O2( � ) containing a reflection ρ, prove that there is
a rotation R ∈ Isom(� 2 ) with RG R−1 containing complex conjugation.

*6.40 Prove that the composite of two reflections is either the identity or a rotation.
*6.41 Prove that if a frieze group G contains two of the following types of isometry: half-

turn; glide-reflection; reflection with vertical axis, then G contains an isometry of
the third type.

*6.42 Prove that any two infinite dihedral groups are isomorphic. In more detail, let
G = 〈a, b〉 and H = 〈c, d〉 be infinite groups in which a2 = 1, aba = b−1,
c2 = 1, and cdc = d−1. Prove that G ∼= H .

6.43 Find the isometry group of the following friezes.
(i) SANTACLAUSSANTACLAUSSANTA
(ii) HOHOHOHOHOHOHOHOHOHOHO
(iii) ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖
(iv) ↗ ↗ ↗ ↗ ↗ ↗ ↗

↘ ↘ ↘ ↘ ↘ ↘ ↘
(v) ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖

↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘ ↙
(vi) ↗ ↖ ↗ ↖ ↗ ↖ ↗ ↖

↘ ↙ ↘ ↙ ↘ ↙
(vii) ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗

↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘



7
Commutative Rings II

7.1 PRIME IDEALS AND MAXIMAL IDEALS

Our main interest in this chapter is the study of polynomials in several vari-
ables. One sees in analytic geometry that polynomials correspond to geometric
figures; for example, f (x, y) = x2/a2 + y2/b2 − 1 is intimately related to an
ellipse in the plane

� 2 . But there is a very strong connection between the rings
k[x1, . . . , xn], where k is a field, and the geometry of subsets of kn going far
beyond this. Given a set of polynomials f1, . . . , ft of n variables, call the subset
V ⊆ kn consisting of their common zeros an algebraic set. Of course, one can
study algebraic sets because solutions of systems of polynomial equations (an
obvious generalization of systems of linear equations) are intrinsically interest-
ing, but they do arise quite naturally. Investigating a problem often leads to a
parametrization of its solutions by an algebraic set, and so understanding the al-
gebraic set and its properties, e.g., irreducibility, dimension, genus, singularities,
and so forth, leads to an understanding of the original problem. The interplay be-
tween k[x1, . . . , xn] and algebraic sets has evolved into what is nowadays called
Algebraic Geometry, and this chapter may be regarded as an introduction to this
subject.

As usual, it is simpler to begin by looking at the more general setting – in
this case, commutative rings – before getting involved with polynomial rings. A
great deal of the number theory we have presented involves divisibility: given
two integers a and b, when does a | b ; that is, when is b a multiple of a?
This question translates into a question about principal ideals, for a | b if and
only if (b) ⊆ (a) [if b = ac, then b ∈ (a) and rb ∈ (a) for all r ∈ R]. We
now introduce two especially interesting types of ideal: prime ideals, which are
related to Euclid’s lemma, and maximal ideals.

516
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Let us begin with the analog of Theorem 2.121, the correspondence theorem
for groups. Recall that if f : X → Y is a function and B ⊆ Y is a subset, then

f −1(B) = {x ∈ X : f (x) ∈ B}.

Proposition 7.1 (Correspondence Theorem for Rings). If I is a proper
ideal in a commutative ring R, then the natural map π : R → R/I induces an
inclusion-preserving bijection π ′ from the set of all intermediate ideals J (that
is, I ⊆ J ⊆ R), to the set of all the ideals in R/I , given by

π ′ : J 7→ J/I = {a + I : a ∈ J }.

Thus, every ideal in the quotient ring R/I has the form J/I for some unique
intermediate ideal J .

Proof. If one forgets its multiplication, the commutative ring R is an additive
abelian group and its ideals I are (normal) subgroups. The correspondence theo-
rem for groups, Theorem 2.121, now applies, and it gives an inclusion-preserving
bijection

π∗ : {all subgroups of R containing I } → {all subgroups of R/I },

where π∗(J ) = J/I .
If J is an ideal, then π∗(J ) is also an ideal, for if r ∈ R and a ∈ J , then

ra ∈ J , and so

(r + I )(a + I ) = ra + I ∈ J/I.

Let π ′ be the restriction of π∗ to the set of intermediate ideals J . Now π ′ is
an injection because π∗ is a bijection. To see that π ′ is surjective, let J ∗ be an
ideal in R/I . Then π−1(J∗) is an intermediate ideal in R, by Exercise 3.45
on page 248 [it contains I = π−1({0})], and π ′(π−1(J∗)) = π−1(J∗)/I =
π(π−1(J∗)) = J∗, by Lemma 2.14. Thus, if J = π−1(J∗), then J∗ = J/I . •

Example 7.2.
Let I = (m) be a nonzero ideal in

�
. Every ideal J in

�
is principal, say,

J = (a), and (m) ⊆ (a) if and only if a | m. By the correspondence theorem,
every ideal in

�
m has the form ([a]) for some divisor a of m. �

Definition. An ideal I in a commutative ring R is called a prime ideal if it is a
proper ideal, that is, I 6= R, and ab ∈ I implies a ∈ I or b ∈ I .
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Example 7.3.

(i) Recall that a nonzero commutative ring R is a domain if and only if ab = 0
in R implies a = 0 or b = 0. Thus, the ideal {0} in R is a prime ideal if
and only if R is a domain.

(ii) We claim that the prime ideals in
�

are precisely the ideals (p), where
either p = 0 or p is a prime. Since m and −m generate the same principal
ideal, we may restrict our attention to nonnegative generators. If p = 0,
then the result follows from part (i), for

�
is a domain. If p is a prime, we

show first that (p) is a proper ideal; otherwise, 1 ∈ (p), and there would be
an integer a with ap = 1, a contradiction. Next, if ab ∈ (p), then p | ab.
By Euclid’s lemma, either p | a or p | b; that is, either a ∈ (p) or b ∈ (p).
Therefore, (p) is a prime ideal.

Conversely, if m > 1 is not a prime, then it has a factorization m = ab
with 0 < a < m and 0 < b < m. Thus, neither a nor b is a multiple of m,
hence neither lies in (m), and so (m) is not a prime ideal. �

The proof in the example works in more generality.

Proposition 7.4. If k is a field, then a nonzero polynomial p(x) ∈ k[x] is
irreducible if and only if (p(x)) is a prime ideal.

Proof. Suppose that p(x) is irreducible. First, (p) is a proper ideal; otherwise,
R = (p) and hence 1 ∈ (p), so there is a polynomial f (x) with 1 = p(x) f (x).
But p(x) has degree at least 1, whereas

0 = deg(1) = deg(p f ) = deg(p)+ deg( f ) ≥ deg(p) ≥ 1.

This contradiction shows that (p) is a proper ideal.
Second, if ab ∈ (p), then p | ab, and so Euclid’s lemma in k[x] gives p | a

or p | b. Thus, a ∈ (p) or b ∈ (p). It follows that (p) is a prime ideal.
Conversely, suppose that p(x) is not irreducible; there is thus a factorization

p(x) = a(x)b(x)

with deg(a) < deg(p) and deg(b) < deg(p). As every nonzero polynomial
g(x) ∈ (p) has the form g(x) = d(x)p(x) for some d(x) ∈ k[x], we have
deg(g) ≥ deg(p); it follows that neither a(x) nor b(x) lies in (p), and so (p) is
not a prime ideal. •

Proposition 7.5. A proper ideal I in a commutative ring R is a prime ideal if
and only if R/I is a domain.
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Proof. Let I be a prime ideal. Since I is a proper ideal, we have 1 /∈ I and so
1 + I 6= 0 + I in R/I . If 0 = (a + I )(b + I ) = ab + I , then ab ∈ I . Since I
is a prime ideal, either a ∈ I or b ∈ I ; that is, either a + I = 0 or b + I = 0.
Hence, R/I is a domain. The converse is just as easy. •

Here is a second interesting type of ideal.

Definition. An ideal I in a commutative ring R is a maximal ideal if I is a
proper ideal and there is no ideal J with I � J � R.

Thus, if I is a maximal ideal in a commutative ring R and if J is a proper
ideal with I ⊆ J , then I = J .

The prime ideals in the polynomial ring k[x1, . . . , xn] can be quite com-
plicated, but when k is algebraically closed, Hilbert’s Nullstellensatz (Theo-
rem 7.45) says that every maximal ideal has the form (x1 − a1, . . . , xn − an)

for some point (a1, . . . , an) ∈ kn .
We may restate Proposition 3.43 in the present language.

Lemma 7.6. The ideal {0} is a maximal ideal in a commutative ring R if and
only if R is a field.

Proof. It is shown in Proposition 3.43 that every nonzero ideal I in R is equal
to R itself if and only if every nonzero element in R is a unit. That is, {0} is a
maximal ideal if and only if R is a field. •

Proposition 7.7. A proper ideal I in a commutative ring R is a maximal ideal
if and only if R/I is a field.

Proof. The correspondence theorem for rings shows that I is a maximal ideal
if and only if R/I has no ideals other than {0} and R/I itself; Lemma 7.6 shows
that this property holds if and only if R/I is a field. •

Corollary 7.8. Every maximal ideal I in a commutative ring R is a prime ideal.

Proof. If I is a maximal ideal, then R/I is a field. Since every field is a domain,
R/I is a domain, and so I is a prime ideal. •

Example 7.9.
The converse of the last corollary is false. For example, consider the principal
ideal (x) in

� [x]. By Exercise 3.87 on page 303, we have

� [x]/(x)∼=
� ;
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since
�

is a domain, (x) is a prime ideal; since
�

is not a field, (x) is not a
maximal ideal.

It is not difficult to exhibit a proper ideal J strictly containing (x); let

J = { f (x) ∈ � [x] : f (x) has even constant term}.

Since
� [x]/J ∼=

�
2 , which is a field, it follows that J is a maximal ideal con-

taining (x). �

Corollary 7.10. If k is a field, then (x1 − a1, . . . , xn − an) is a maximal ideal
in k[x1, . . . , xn], where ai ∈ k for i = 1, . . . , n.

Proof. By Proposition 3.33, there is a unique homomorphism

ϕ : k[x1, . . . , xn] → k[x1, . . . , xn]

with ϕ(c) = c for all c ∈ k and with ϕ(xi ) = xi −ai for all i . It is easy to see that
ϕ is an isomorphism, for its inverse carries xi 7→ xi + ai for all i . It follows that
I is a maximal ideal in k[x1, . . . , xn] if and only if ϕ(I ) is a maximal ideal. But
(x1, . . . , xn) is a maximal ideal, for k[x1, . . . , xn]/(x1, . . . , xn) ∼= k is a field.
Therefore, (x1 − an, . . . , xn − an) is a maximal ideal. •

The converse of Corollary 7.8 is true when R is a PID.

Theorem 7.11. If R is a PID, then every nonzero prime ideal I is a maximal
ideal.

Proof. Assume there is a proper ideal J with I ⊆ J . Since R is a PID, I = (a)
and J = (b) for some a, b ∈ R. Now a ∈ J implies that a = rb for some r ∈ R,
and so rb ∈ I ; but I is a prime ideal, so that r ∈ I or b ∈ I . If r ∈ I , then
r = sa for some s ∈ R, and so a = rb = sab. Since R is a domain, 1 = sb, and
Exercise 3.22 on page 232 gives J = (b) = R, contradicting J being a proper
ideal. If b ∈ I , then J ⊆ I , and so J = I . Therefore, I is a maximal ideal. •

We can now give a second proof of Proposition 3.113.

Corollary 7.12. If k is a field and p(x) ∈ k[x] is irreducible, then the quotient
ring k[x]/(p(x)) is a field.

Proof. Since p(x) is irreducible, Proposition 7.4 says that the principal ideal
I = (p(x)) is a nonzero prime ideal; since k[x] is a PID, I is a maximal ideal,
and so k[x]/I is a field. •

Does every commutative ring R contain a maximal ideal? The (positive) an-
swer to this question involves Zorn’s lemma, a theorem equivalent to the Axiom
of Choice, which is usually discussed in a sequel course (but see Corollary 7.27).
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EXERCISES

7.1 (i) Find all the maximal ideals in � .
(ii) Find all the maximal ideals in k[x], where k is a field.
(iii) Find all the maximal ideals in k[[x]], where k is a field.

7.2 Recall that a Boolean ring is a commutative ring R for which a2 = a for all a ∈ R.
Prove that every prime ideal in a Boolean ring is a maximal ideal.

*7.3 (i) Give an example of a commutative ring containing two prime ideals P
and Q for which P ∩ Q is not a prime ideal.

(ii) If P1 ⊇ P2 ⊇ · · · Pn ⊇ Pn+1 ⊇ · · · is a decreasing sequence of prime
ideals in a commutative ring R, prove that

⋂
n≥1 Pn is a prime ideal.

7.4 Let f : R → S be a ring homomorphism.
(i) If Q is a prime ideal in S, prove that f −1(Q) is a prime ideal in R.

Conclude, in the correspondence theorem, that if J/I is a prime ideal in
R/I , where I ⊆ J ⊆ R, then J is a prime ideal in R.

(ii) Give an example to show that if P is a prime ideal in R, then f (P) need
not be a prime ideal in S.

7.5 Let k be a field, and let a = (a1, . . . , an) ∈ kn . Define the evaluation map
ea : k[x1, . . . , xn] → k by

ea : f (x1, . . . , xn) 7→ f (a) = f (a1, . . . , an).

(i) Prove that ea is surjective, and conclude that ker ea is a maximal ideal in
k[x1, . . . , xn ].

(ii) Prove that (x1 − a1, . . . , xn − an) is a maximal ideal in k[x1, . . . , xn ] by
showing that ker ea = (x1 − a1, . . . , xn − an). (This is a second proof of
Corollary 7.10.)

7.6 (i) Find all the maximal ideals in k[x], where k is an algebraically closed
field.

(ii) Find all the maximal ideals in � [x].
(iii) If k is an algebraically closed field, prove that the function

k →
{
maximal ideals in k[x]

}
,

given by a 7→ (x − a), the principal ideal in k[x] generated by x − a, is
a bijection.

7.7 (i) Prove that if xi − b ∈ (x1 − a1, . . . , xn − an) for some i , where k is a
field and b ∈ k, then b = ai .

(ii) Prove that µ : kn →
{
maximal ideals in k[x1, . . . , xn]

}
, given by

µ : (a1, . . . , an) 7→ (x1 − a1, . . . , xn − an),

is an injection, and give an example of a field k for which µ is not a
surjection.

7.8 Prove that if P is a prime ideal in a commutative ring R and if r n ∈ P for some
r ∈ R and n ≥ 1, then r ∈ P .

7.9 Prove that the ideal (x2 − 2, y2 + 1, z) in � [x, y, z] is a proper ideal.
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7.10 Call a nonempty subset S of a commutative ring R multiplicatively closed if 0 /∈ S
and, if s, s ′ ∈ S, then ss ′ ∈ S. Prove that an ideal I which is maximal with the
property that I ∩ S = � is a prime ideal. (The existence of such an ideal I can be
proved using Zorn’s lemma.)

*7.11 (i) If I and J are ideals in a commutative ring R, define

I J =
{∑

`

a`b` : a` ∈ I and b` ∈ J
}
.

Prove that I J is an ideal in R and that I J ⊆ I ∩ J .
(ii) Let R = k[x, y], where k is a field and let I = (x, y) = J . Prove that

I 2 = I J � I ∩ J = I .
7.12 Let P be a prime ideal in a commutative ring R. If there are ideals I and J in R

with I J ⊆ P , prove that I ⊆ P or J ⊆ P .
7.13 If I and J are ideals in a commutative ring R, define the colon ideal

(I : J ) = {r ∈ R : r J ⊆ I }.

(i) Prove that (I : J ) is an ideal containing I .
(ii) Let R be a domain and let a, b ∈ R, where b 6= 0. If I = (ab) and

J = (b), prove that (I : J ) = (a).
7.14 Let I and J be ideals in a commutative ring R.

(i) Prove that there is an injection R/(I ∩ J ) → R/I × R/J given by
ϕ : r 7→ (r + I, r + J )

(ii) Call I and J coprime if I + J = R. Prove that the ring homomorphism
ϕ : R/(I ∩ J ) → R/I × R/J is a surjection if I and J are coprime.

(iii) Generalize the Chinese remainder theorem as follows. Let R be a com-
mutative ring and let I1, . . . , In be pairwise coprime ideals; that is, Ii and
I j are coprime for all i 6= j . Prove that if a1, . . . , an ∈ R, then there
exists r ∈ R with r + Ii = ai + Ii for all i .

7.15 A commutative ring R is called a local ring if it has a unique maximal ideal.
(i) If p is a prime, prove that

{a/b ∈ � : p � b}

is a local ring.
(ii) If R is a local ring with unique maximal ideal M , prove that a ∈ R is a

unit if and only if a /∈ M .
(iii) If k is a field, prove that k[[x]] is a local ring.

7.2 UNIQUE FACTORIZATION

We have proved unique factorization theorems in
�

and in k[x], where k is a
field. In fact, we have proved a common generalization of these two results:
every euclidean ring has unique factorization. Our aim now is to generalize
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this result, first to general PID’s, and then to R[x], where R is a ring having
unique factorization. It will then follow that there is unique factorization in the
ring k[x1, . . . , xn] of all polynomials in several variables over a field k. One
immediate consequence is that any two polynomials in several variables have a
gcd.

We begin by generalizing some earlier definitions. Recall that elements a
and b in a commutative ring R are associates if there exists a unit u ∈ R with
b = ua. For example, in

�
, the units are ±1, and so the only associates of an

integer m are ±m; in k[x], where k is a field, the units are the nonzero constants,
and so the only associates of a polynomial f (x) ∈ k[x] are the polynomials
u f (x), where u ∈ k and u 6= 0. The only units in

� [x] are ±1, and so the only
associates of a polynomial f (x) ∈ � [x] are ± f (x).

Consider two principal ideals (a) and (b) in a commutative ring R. It is
easy to see that the following are equivalent: a ∈ (b); a = rb for some r ∈ R;
(a) ⊆ (b). We can say more when R is a domain.

Proposition 7.13. Let R be a domain and let a, b ∈ R.

(i) a | b and b | a if and only if a and b are associates.

(ii) The principal ideals (a) and (b) are equal if and only if a and b are asso-
ciates.

Proof.
(i) This is Proposition 3.15.
(ii) If (a) = (b), then (a) ⊆ (b) and (b) ⊆ (a); hence, a ∈ (b) and b ∈ (a).
Thus, a | b and b | a; by part (i), a and b are associates. The converse is easy,
and one does not need to assume that R is a domain to prove it. •

The notions of prime number in
�

or irreducible polynomial in k[x], where
k is a field, have a common generalization.

Definition. A element p in a commutative ring R is irreducible if it is neither
0 nor a unit and if its only factors are associates of p or units.

For example, the irreducibles in
�

are the numbers ±p, where p is a prime,
and the irreducibles in k[x], where k is a field, are the irreducible polynomials
p(x); that is, deg(p) ≥ 1 and p(x) has no factorization p(x) = f (x)g(x)where
deg( f ) < deg(p) and deg(g) < deg(g). This characterization of irreducible
polynomial does not persist in rings R[x] when R is not a field. For example, in� [x], the polynomial f (x) = 2x + 2 cannot be factored into two polynomials,
each having degree smaller than deg( f ) = 1, yet f (x) is not irreducible, for in
the factorization 2x + 2 = 2(x + 1), neither 2 nor x + 1 is a unit.
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Definition. If R is a commutative ring, then an element r ∈ R is a product
of irreducibles if r is neither 0 nor a unit and there exist irreducible p1, . . . , pn,
where n ≥ 1, with r = p1 · · · pn .

Note the instance of the definition when n = 1; every irreducible element in
R is a product of irreducibles (it is a product with one factor!).

Here is the definition we have been seeking.

Definition. A domain R is a unique factorization domain (UFD) if

(i) every r ∈ R, neither 0 nor a unit, is a product of irreducibles;

(ii) if p1 · · · pm = q1 · · · qn , where pi and q j are irreducible, then m = n and
there is a permutation σ ∈ Sn with pi and qσ (i) associates for all i .

When we proved that
�

and k[x], for k a field, have unique factorization into
irreducibles, we did not mention associates because, in each case, irreducible
elements were always replaced by favorite choices of associates: in

�
, positive

irreducibles, i.e., primes, are chosen; in k[x], monic irreducible polynomials are
chosen. The reader should see, for example, that the statement: “

�
is a UFD” is

just a restatement of the fundamental theorem of arithmetic.
The proof that every PID is a UFD uses a new idea: chains of ideals.

Lemma 7.14. Let R be a PID.

(i) There is no infinite strictly ascending chain of ideals

I1 � I2 � · · · � In � In+1 � · · · .

(ii) If r ∈ R is neither 0 nor a unit, then r is a product of irreducibles.

Proof.
(i) If, on the contrary, an infinite strictly ascending chain exists, then define J =⋃∞

n=1 In . We claim that J is an ideal. If a ∈ J , then a ∈ In for some n; if r ∈ R,
then ra ∈ In , because In is an ideal; hence, ra ∈ J . If a, b ∈ J , then there are
ideals In and Im with a ∈ In and b ∈ Im ; since the chain is ascending, we may
assume that In ⊆ Im , and so a, b ∈ Im . As Im is an ideal, a −b ∈ Im and, hence,
a − b ∈ J . Therefore, J is an ideal.

Since R is a PID, we have J = (d) for some d ∈ J . Now d got into J by
being in In for some n. Hence

J = (d) ⊆ In � In+1 ⊆ J,

and this is a contradiction.
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(ii) If r is a divisor of an element a ∈ R, then a = rs; r is called a proper divisor
of a if neither r nor s is a unit. We first show that if r is a proper divisor of a,
then (a) � (r). By Proposition 7.13, (a) ⊆ (r) and, if the inequality is not strict,
then a and r are associates. In the latter case, there is a unit u ∈ R with a = ur ,
and this contradicts r being a proper divisor of a.

Call a nonzero nonunit a ∈ R good if it is a product of irreducibles; otherwise,
call a bad. We must show that there are no bad elements. If a is bad, it is not
irreducible, and so a = rs, where both r and s are proper divisors. But the
product of good elements is good, and so at least one of the factors, say r , is bad.
The previous paragraph shows that (a) � (r). It follows, by induction, that there
exists a sequence a = a1, r = a2, . . . , an, . . . of bad elements with each an+1 a
proper divisor of an , and this sequence yields a strictly ascending chain

(a1) � (a2) � · · · � (an) � (an+1) � · · · ,

contradicting part (i) of this lemma. •

Proposition 7.15. Let R be a domain in which every r ∈ R, neither 0 nor
a unit, is a product of irreducibles. Then R is a UFD if and only if, for every
irrreducible element p ∈ R, the principal ideal (p) is a prime ideal in R.

Proof. Assume that R is a UFD. If a, b ∈ R and ab ∈ (p), then there is r ∈ R
with

ab = r p.

Factor each of a, b, and r into irreducibles; by unique factorization, the left side
of the equation must involve an associate of p. This associate arose as a factor
of a or b, and hence a ∈ (p) or b ∈ (p).

The proof of the converse is merely an adaptation of the proof of the funda-
mental theorem of arithmetic. Assume that

p1 · · · pm = q1 · · · qn,

where the pi ’s and the q j ’s are irreducible elements. We prove, by induction
on max{m, n} ≥ 1, that n = m and the q’s can be reindexed so that qi and pi
are associates for all i . The base step max{m, n} = 1 has p1 = q1, and the
result is obviously true. For the inductive step, the given equation shows that
p1 | q1 · · · qn . By hypothesis, (p1) is a prime ideal (which is the analog of
Euclid’s lemma), and so there is some q j with p1 | q j . But q j , being irreducible,
has no divisors other than units and associates, so that q j and p1 are associates:
q j = up1 for some unit u. Canceling p1 from both sides, we have p2 · · · pm =
uq1 · · · q̂ j · · · qn . By the inductive hypothesis, m − 1 = n − 1 (so that m = n),
and, after possible reindexing, qi and pi are associates for all i . •
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Theorem 7.16. If R is a PID, then R is a UFD. In particular, every
euclidean ring is a UFD.

Proof. In view of the last two results, it suffices to prove that (p) is a prime
ideal whenever p is irreducible. Suppose that p | ab; we must show that p | b
or p | a. The subset

I = {sb + tp : s, t ∈ R}
is an ideal in R and, hence, I = (d) because R is a PID. Now b, p ∈ I , so that
d | p and d | b. Since p is irreducible, either d is an associate of p or d is a
unit. In the first case, d = up for some unit u, and so d | b implies p | b. In
the second case, d is a unit. Now d = sb + tp, and so da = sab + tap. Since
p | ab, we have p | da. But da is an associate of a, and so p | a. It follows that
(p) is a prime ideal. •

Recall that the notion of gcd can be defined in any commutative ring.

Definition. Let R be a commutative ring and let a1, . . . , an ∈ R. A common
divisor of a1, . . . , an is an element c ∈ R with c | ai for all i . A greatest
common divisor or gcd of a1, . . . , an is a common divisor d with c | d for every
common divisor c.

Even in the familiar examples of
�

and k[x], gcd’s are not unique unless
an extra condition is imposed. For example, if d is a gcd of a pair of integers
in

�
, as defined above, then −d is also a gcd. To force gcd’s to be unique, one

defines nonzero gcd’s in
�

to be positive; similarly, in k[x], where k is a field, one
imposes the condition that nonzero gcd’s are monic polynomials. In a general
PID, however, elements may not have favorite associates.

If R is a domain, then it is easy to see that if d and d ′ are gcd’s of elements
a1, . . . , an, then d | d ′ and d ′ | d . It follows from Proposition 7.13 that d and d ′

are associates and, hence, that (d) = (d ′). Thus, gcd’s are not unique, but they
all generate the same principal ideal.

In Exercise 3.75 on page 272, we saw that there exist domains R containing
a pair of elements having no gcd. However, the idea in Proposition 1.52 carries
over to show that gcd’s do exist in UFD’s.

Proposition 7.17. If R is a UFD, then the gcd of any finite set of elements
a1, . . . , an exists.

Proof. It suffices to prove that the gcd of two elements a and b exists, for an
easy inductive proof then shows that a gcd of any finite number of elements
exists.

There are units u and v and distinct irreducibles p1, . . . , pt with

a = upe1
1 pe2

2 · · · pet
t
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and
b = vp f1

1 p f2
2 · · · p ft

t ,

where ei ≥ 0 and fi ≥ 0 for all i . It is easy to see that if c | a, then the
factorization of c into irreducibles is c = wpg1

1 pg2
2 · · · pgt

t , where w is a unit and
gi ≤ ei for all i . Thus, c is a common divisor of a and b if and only if gi ≤ mi
for all i , where

mi = min{ei , fi }.

It is now clear that pm1
1 pm2

2 · · · pmt
t is a gcd of a and b. •

We have not proved that a gcd of elements a1, . . . , an is a linear combination
of them; indeed, this may not be true (see Exercise 7.21 on page 532).

Definition. Elements a1, . . . , an in a UFD R are called relatively prime if all
their gcd’s are units – that is, if every common divisor of a1, . . . , an is a unit.

We are now going to prove that if R is a UFD, then so is R[x]. This theorem
was essentially found by Gauss, and the proof uses ideas in the proof of Gauss’s
theorem, Theorem 3.97. It will follow that k[x1, . . . , xn] is a UFD whenever k is
a field.

Definition. A polynomial f (x) = anxn + · · · + a1x + a0 ∈ R[x], where R is
a UFD, is called primitive if its coefficients are relatively prime; that is, the only
common divisors of an, . . . , a1, a0 are units.

Observe that if f (x) is not primitive, then there exists an irreducible q ∈ R
that divides each of its coefficients: if the gcd is a nonunit d , then take for q any
irreducible factor of d .

Example 7.18.
We now show, in a UFD R, that every irreducible p(x) ∈ R[x] of positive degree
is primitive. If not, then there is an irreducible q ∈ R with p(x) = qg(x). Since
p(x) is irreducible, its only factors are units in R[x] and associates in R[x]. Now
q is irreducible in R; can it be a unit in R[x]? Every unit u ∈ R[x] has degree 0,
i.e., it is a constant, for uv = 1 implies deg(u) + deg(v) = deg(1) = 0. It
follows that q is not a unit in R[x], for if qv = 1 in R[x], then deg(v) = 0 and v
is a unit in R, contradicting the irreducibility of q in R. Therefore, q must be an
associate of p(x). But associates in R[x] have the same degree (because units
have degree 0). Therefore, q is not an associate of p(x), because the latter has
positive degree. We conclude that p(x) is primitive. �

We begin with a generalization of Gauss’s lemma (Lemma 3.93).
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Lemma 7.19. If R is a UFD and f (x), g(x) ∈ R[x] are both primitive, then
their product f (x)g(x) is also primitive.

Proof. If π : R → R/(p) is the natural map π : a 7→ a + (p), then Propo-
sition 3.33 shows that the function π̃ : R[x] → (R/(p)) [x], which replaces
each coefficient c of a polynomial by π(c), is a ring homomorphism. Now the
hypothesis that a polynomial h(x) ∈ R[x] is not primitive says there is some irre-
ducible p such that all the coefficients of π̃ (h) are 0 in R/(p); that is, π̃ (h) = 0
in (R/(p)) [x]. Thus, if the product f (x)g(x) is not primitive, there is some
irreducible p with 0 = π̃ ( f g) = π̃ ( f )π̃(g) in (R/(p)) [x]. Since (p) is a prime
ideal, R/(p) is a domain, and hence (R/(p)) [x] is also a domain. But, nei-
ther π̃ ( f ) nor π̃ (g) is 0 in (R/(p)) [x], because f and g are primitive, and this
contradicts (R/(p)) [x] being a domain. •

Definition. If R is a UFD and f (x) = anxn + · · · + a1x + a0 ∈ R[x], define
c( f ) ∈ R to be a gcd of an, . . . , a1, a0; one calls c( f ) the content of f (x).

Note that the content of a polynomial f (x) is not unique, but that any two
contents of f (x) are associates.

It is obvious that if b ∈ R and b | f (x) ∈ R[x], where R is a UFD, then b is
a common divisor of the coefficients of f (x), and so b | c( f ).

Lemma 7.20. Let R be a UFD.

(i) Every nonzero f (x) ∈ R[x] has a factorization

f (x) = c( f ) f ∗(x),

where c( f ) ∈ R and f ∗(x) ∈ R[x] is primitive.

(ii) This factorization is unique in the sense that if f (x) = dg∗(x), where
d ∈ R and g∗(x) ∈ R[x] is primitive, then d and c( f ) are associates and
f ∗(x) and g∗(x) are associates.

(iii) Let g∗(x), f (x) ∈ R[x]. If g∗(x) is primitive and g∗(x) | bf (x), where
b ∈ R, then g∗(x) | f (x).

Proof.
(i) If f (x) = anxn + · · · + a1x + a0 and c( f ) is the content of f , then there
are factorizations ai = c( f )bi in R for i = 0, 1, . . . , n; if we define f ∗(x) =
bnxn + · · · + b1x + b0, then it is easy to see that f ∗(x) is primitive and f (x) =
c( f ) f ∗(x).
(ii) To prove uniqueness, suppose that f (x) = dg∗(x) is a second such factor-
ization, as in the statement. Now c( f ) f ∗(x) = f (x) = dg∗(x), so that, in
Q[x], where Q = Frac(R), we have f ∗(x) = [d/c( f )]g∗(x). Exercise 7.17 on
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page 532 allows us to write d/c( f ) in lowest terms: d/c( f ) = u/v, where u
and v are relatively prime elements of R. The equation v f ∗(x) = ug∗(x) holds
in R[x]; equating like coefficients, v is a common divisor of each coefficient of
ug∗(x). Since u and v are relatively prime, Exercise 7.18 on page 532 gives v
a common divisor of the coefficients of g∗(x). But g∗(x) is primitive, and so v
is a unit. A similar argument shows that u is a unit. Therefore, d/c( f ) = u/v
is a unit in R, call it w, and d = wc( f ); that is, d and c( f ) are asssociates and,
hence, g∗(x) = f ∗(x) are associates.
(iii) Since g∗(x) | bf (x), there is h(x) ∈ R[x] with bf (x) = g∗(x)h(x). By
part (i), we have

h(x) = c(h)h∗(x) and f (x) = c( f ) f ∗(x),

where h∗ and f ∗ are primitive. Therefore,

bc( f ) f ∗(x) = c(h)g∗(x)h∗(x).

Now g∗(x)h∗(x) is primitive, by Lemma 7.19, and so the uniqueness in part (ii)
gives a unit u ∈ R with c(h) = ubc( f ). Therefore,

bf (x) = g∗(x)c(h)h∗(x) = g∗(x)[ubc( f )h∗(x)].

Canceling b gives f (x) = g∗(x)h′(x), where h ′(x) = uc( f )h∗(x) ∈ R[x]; that
is, g∗(x) | f (x). •

Theorem 7.21 (Gauss). If R is a UFD, then R[x] is also a UFD.

Proof. We show first, by induction on deg( f ), that every f (x) ∈ R[x], neither
zero nor a unit, is a product of irreducibles. If deg( f ) = 0, then f (x) is a
constant, hence lies in R. Since R is a UFD, f is a product of irreducibles. If
deg( f ) > 0, then f (x) = c( f ) f ∗(x), where c( f ) ∈ R and f ∗(x) is primitive.
Now c( f ) is either a unit or a product of irreducibles, by the base step. If f ∗(x)
is irreducible, we are done. Otherwise, f ∗(x) = g(x)h(x), where neither g nor
h is a unit. Since f ∗(x) is primitive, however, neither g nor h is a constant;
therefore, each of these has degree less than deg( f ∗) = deg( f ), and so each is a
product of irreducibles, by the inductive hypothesis.

Proposition 7.15 now applies: R[x] is a UFD if (p(x)) is a prime ideal for
every irreducible p(x) ∈ R[x]; that is, if p(x) | f (x)g(x), then p(x) | f (x) or
p(x) | g(x). Let us assume that p(x) � f (x). We may abbreviate f (x) to f in
this proof.

Case (i). Suppose that deg(p) = 0. Write

f (x) = c( f ) f ∗(x) and g(x) = c(g)g∗(x),
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where c( f ), c(g) ∈ R, and f ∗(x), g∗(x) are primitive. Now p | f g, so that p |
c( f )c(g) f ∗(x)g∗(x). Since f ∗(x)g∗(x) is primitive, we must have c( f )c(g) an
associate of c( f g), by Lemma 7.20(ii). However, if p | f (x)g(x), then p divides
each coefficient of f g; that is, p is a common divisor of all the coefficients of f g,
and hence p | c( f g) = c( f )c(g) in R, which is a UFD. But Proposition 7.15
says that (p) is a prime ideal in R, and so p | c( f ) or p | c(g). If p | c( f ),
then p(x) | c( f ) f ∗(x) = f (x), a contradiction. Therefore, p | c(g) and, hence,
p(x) | g(x), as desired.

Case (ii). Suppose that deg(p) > 0. Let

(p, f ) = {sp + t f : s, t ∈ R[x]};

of course, (p, f ) is an ideal containing p(x) and f (x). Choose m(x) ∈ (p, f )
of minimal degree. If Q = Frac(R) is the fraction field of R, then the divi-
sion algorithm in Q[x] gives polynomials q ′(x), r ′(x) ∈ Q[x] with f (x) =
m(x)q ′(x) + r ′(x), where either r ′(x) = 0 or deg(r ′) < deg(m). Clearing de-
nominators, there are polynomials q(x), r(x) ∈ R[x] and a constant b ∈ R with

bf (x) = q(x)m(x)+ r(x),

where r(x) = 0 or deg(r) < deg(m). Since m ∈ (p, f ), there are polynomials
s(x), t (x) ∈ R[x] with m(x) = s(x)p(x)+ t (x) f (x); hence

r = bf − qm = bf − q(sp + t f )

= (b − tq) f − spq ∈ (p, f ).

Since m has minimal degree in (p, f ), we must have r = 0; that is, bf (x) =
m(x)q(x), and so bf (x) = c(m)m∗(x)q(x). But m∗(x) is primitive, and m∗(x) |
bf (x), so that m∗(x) | f (x), by Lemma 7.20(iii). A similar argument, replacing
f (x) by p(x), gives m∗(x) | p(x). Since p(x) is irreducible, its only factors are
units and associates. If m∗(x) were an associate of p(x), then the equation

m(x) = c(m)m∗(x) = s(x)p(x)+ t (x) f (x)

would give p(x) | f (x), contrary to the hypothesis. Hence, m∗(x) must be a
unit; that is, m(x) = c(m) ∈ R, and so (p, f ) contains the nonzero constant
c(m). Now c(m) = sp + t f , and so

c(m)g = spg + t f g.

Since p(x) | f (x)g(x), we have p | c(m)g. But p(x) is primitive, because it is
irreducible, and so p(x) | g(x), by Lemma 7.20(iii). This completes the proof.

•
It follows from Proposition 7.17 that if R is a UFD, then gcd’s exist in R[x].
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Corollary 7.22. If k is a field, then k[x1, . . . , xn] is a UFD.

Proof. The proof is by induction on n ≥ 1. We proved, in Chapter 3, that the
polynomial ring k[x1] in one variable is a UFD. For the inductive step, recall that
k[x1, . . . , xn, xn+1] = R[xn+1], where R = k[x1, . . . , xn]. By induction, R is a
UFD, and by Theorem 7.21, so is R[xn+1]. •

The theorem of Gauss, Theorem 3.97, can be generalized.

Corollary 7.23. Let R be a UFD, let Q = Frac(R), and let f (x) ∈ R[x]. If

f (x) = G(x)H(x) in Q[x],

then there is a factorization

f (x) = g(x)h(x) in R[x],

where deg(g) = deg(G) and deg(h) = deg(H); in fact, g(x) and G(x) are
associates in Q[x], as are h(x) and H(x).

Therefore, if f (x) does not factor into polynomials of smaller degree in R[x],
then f (x) is irreducible in Q[x].

Proof. By Lemma 7.20, there is a factorization

f (x) = c(G)c(H)G∗(x)H∗(x) in Q[x],

where G∗(x), H∗(x) ∈ R[x] are primitive polynomials. But c(G)c(H) = c( f ),
by Lemma 7.20(ii). Since c( f ) ∈ R, there is a factorization f (x) = g(x)h(x) in
R[x], where g(x) = c( f )G∗(x) and h(x) = H∗(x). •

Irreducibility of a polynomial in several variables is more difficult to deter-
mine than irreducibility of a polynomial of one variable, but here is one criterion.

Corollary 7.24. Let k be a field and let f (x1, . . . , xn) be a primitive polyno-
mial in R[xn ], where R = k[x1, . . . , xn−1]. If f cannot be factored into two
polynomials of lower degree in R[xn], then f is irreducible in k[x1, . . . , xn].

Proof. Let us write f (x1, . . . , xn) = F(xn), for we wish to view f as a poly-
nomial in R[xn ]; that is, we view f as a polynomial in xn having coefficients
in k[x1, . . . , xn−1]. Suppose that F(xn) = G(xn)H(xn); by hypothesis, the
degrees of G and H (in xn) cannot both be less than deg(F), and so one of
them, say, G, has degree 0. It follows, because F is primitive, that G is a
unit in k[x1, . . . , xn−1]. Therefore, f (x1, . . . , xn) is irreducible in R[xn] =
k[x1, . . . , xn]. •

Of course, the corollary applies to any variable xi , not just to xn .
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Example 7.25.
We claim that f (x, y) = x2+ y2−1 ∈ k[x, y] is irreducible, where k is a field of
characteristic not 2. Write Q = k(y) = Frac(k[y]), and view f (x, y) ∈ Q[x].
Now the quadratic g(x) = x2 + (y2 − 1) is irreducible in Q[x] if and only if it
has no roots in Q = k(y), and this is so, by Exercise 3.62 on page 271.

Since k[x, y] is a UFD, it follows from Proposition 7.15 that (x 2 + y2 − 1)
is a prime ideal because it is generated by an irreducible polynomial. �

EXERCISES

7.16 In any commutative ring R, prove that if a gcd of any two elements always exists,
then a gcd of any finite number of elements also exists.

*7.17 Let R be a UFD and let Q = Frac(R) be its fraction field. Prove that each nonzero
a/b ∈ Q has an expression in lowest terms; that is, a and b are relatively prime.

*7.18 Let R be a UFD, and let a, b, c ∈ R. If a and b are relatively prime, and if a | bc,
prove that a | c.

7.19 If R is a domain, prove that the only units in R[x1, . . . , xn ] are units in R.
7.20 If R is a UFD and f (x), g(x) ∈ R[x], prove that c( f g) and c( f )c(g) are asso-

ciates.
*7.21 (i) Prove that x and y are relatively prime in k[x, y], where k is a field.

(ii) Prove that 1 is not a linear combination of x and y in k[x, y].
7.22 Prove that � [x1, . . . , xn ] is a UFD for all n ≥ 1.
7.23 Let k be a field and let f (x1, . . . , xn) ∈ k[x1, . . . , xn ] be a primitive polyno-

mial in R[xn ], where R = k[x1, . . . , xn−1]. If f is either quadratic or cubic in
xn , prove that f is irreducible in k[x1, . . . , xn] if and only if f has no roots in
k(x1, . . . , xn−1).

7.24 Let f (x1, . . . , xn) = xn g(x1, . . . , xn−1)+ h(x1, . . . , xn−1), where (g, h) = 1.
(i) Prove that f is irreducible in k[x1, . . . , xn ].
(ii) Prove that xy2 + z is an irreducible polynomial in k[x, y, z].

7.25 (Eisenstein’s criterion) Let R be a UFD with Q = Frac(R), and let f (x) =
a0 + a1x + · · · + an xn ∈ R[x]. Prove that if there is an irreducible element p ∈ R
with p | ai for all i < n but with p � an and p2 � a0, then f (x) is irreducible in
Q[x].

7.26 Prove that
f (x, y) = xy3 + x2 y2 − x5 y + x2 + 1

is an irreducible polynomial in � [x, y].

7.3 NOETHERIAN RINGS

One of the most important properties of k[x1, . . . , xn], when k is a field, is that
every ideal in it can be generated by a finite number of elements. This property
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is intimately related to chains of ideals, which we have already met in the course
of proving that PID’s are UFD’s (I apologize for so many acronyms).

Definition. A commutative ring R satisfies the ACC, the ascending chain
condition, if every ascending chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

stops; that is, the sequence is constant from some point on: there is an integer N
with IN = IN+1 = IN+2 = · · · .

The proof of Lemma 7.14 shows that every PID satisfies the ACC.
Here is an important type of ideal.

Definition. An ideal I in a commutative ring R is called finitely generated if
there are finitely many elements a1, . . . , an ∈ I with

I =
{∑

i

ri ai : ri ∈ R for all i
}
;

that is, every element in I is a linear combination of the ai ’s. One writes

I = (a1, . . . , an)

and calls I the ideal generated by a1, . . . , an. A set of generators a1, . . . , an
of an ideal I is sometimes called a basis of I (although this is a weaker notion
than that of a basis of a vector space because uniqueness of expression is not
assumed).

Every ideal I in a PID can be generated by one element, and so I is finitely
generated.

Proposition 7.26. The following conditions are equivalent for a commutative
ring R.

(i) R has the ACC.

(ii) R satisfies the maximum condition: every nonempty family
�

of ideals in
R has a maximal element; that is, there is some I0 ∈ �

for which there is
no J ∈ �

with I0 � J .

(iii) Every ideal in R is finitely generated.

Proof. (i) ⇒ (ii): Let
�

be a family of ideals in R, and assume that
�

has no
maximal element. Choose I1 ∈ �

. Since I1 is not a maximal element, there is
I2 ∈ �

with I1 � I2. Now I2 is not a maximal element in
�

, and so there is
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I3 ∈ �
with I2 � I3. Continuing in this way, we can construct an ascending

chain of ideals in R that does not stop, contradicting the ACC.
(ii) ⇒ (iii): Let I be an ideal in R, and define

�
to be the family of all the

finitely generated ideals contained in I ; of course,
� 6= �

. By hypothesis, there
exists a maximal element M ∈ �

. Now M ⊆ I because M ∈ �
. If M � I , then

there is a ∈ I with a /∈ M . The ideal

J = {m + ra : m ∈ M and r ∈ R} ⊆ I

is finitely generated, and so J ∈ �
; but M � J , and this contradicts the maxi-

mality of M . Therefore, M = I , and so I is finitely generated.
(iii) ⇒ (i): Assume that every ideal in R is finitely generated, and let

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be an ascending chain of ideals in R. As in the proof of Lemma 7.14, we show
that J =

⋃
n In is an ideal. If a ∈ J , then a ∈ In for some n; if r ∈ R, then

ra ∈ In , because In is an ideal; hence, ra ∈ J . If a, b ∈ J , then there are ideals
In and Im with a ∈ In and b ∈ Im ; since the chain is ascending, we may assume
that In ⊆ Im , and so a, b ∈ Im . As Im is an ideal, a − b ∈ Im and, hence,
a − b ∈ J . Therefore, J is an ideal.

By hypothesis, there are elements ai ∈ J with J = (a1, . . . , aq). Now ai
got into J by being in Ini for some ni . If N is the largest ni , then Ini ⊆ IN for
all i ; hence, ai ∈ IN for all i , and so

J = (a1, . . . , aq) ⊆ IN ⊆ J.

It follows that if n ≥ N , then J = IN ⊆ In ⊆ J , so that In = J ; therefore, the
chain stops, and R has the ACC. •

We now give a name to a commutative ring which satisfies any of the three
equivalent conditions in the proposition.

Definition. A commutative ring R is called noetherian1 if every ideal in R is
finitely generated.

Corollary 7.27. If I is an ideal in a nonzero noetherian ring R, then there
exists a maximal ideal M in R containing I . In particular, every noetherian ring
has maximal ideals.2

1This name honors Emmy Noether (1882–1935), who introduced chain conditions in 1921.
2This corollary is true without assuming R is noetherian, but the proof of the general result

needs Zorn’s lemma.
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Proof. Let
�

be the family of all those proper ideals in R which contain I ; note
that

� 6= �
because I ∈ �

. Since R is noetherian, the maximum condition gives
a maximal element M in

�
. We must still show that M is a maximal ideal in R

(that is, that M is actually a maximal element in the larger family
� ′ consisting

of all the proper ideals in R). Suppose there is a proper ideal J with M ⊆ J .
Then I ⊆ J , and so J ∈ �

; therefore, maximality of M gives M = J , and so M
is a maximal ideal in R. •

Remark. Zorn’s lemma is related to the maximum condition, statement (ii) in
Proposition 7.26.

Definition. A partially ordered set is a nonempty set X equipped with a relation
x � y such that, for all x, y, z ∈ X , we have

(i) reflexivity: x � x ;

(ii) antisymmetry: if x � y and y � x , then x = y;

(iii) transitivity: if x � y and y � z, then x � z.

An element u in a partially ordered set X is called a maximal element if
there is no x ∈ X with u � x and u 6= x .

If A is a set, then the family � (A) of all the subsets of A is a partially
ordered set if one defines U � V to mean U ⊆ V , where U and V are subsets of
A; the family � (A)∗, consisting of all the proper subsets of A, is also a partially
ordered set (more generally, every nonempty subset of a partially ordered set
is itself a partially ordered set). Another example is the real numbers

�
, with

x � y meaning x ≤ y. There are some partially ordered sets, e.g., � (A)∗,
having many maximal elements (the complement of a point in A is a maximal
element in � (A)∗), and there are some partially ordered sets, e.g.,

�
, having no

maximal elements. Zorn’s lemma is a condition on a partially ordered set which
guarantees that it has at least one maximal element.

A partially ordered set X is called a chain if, for every a, b ∈ X , either
a � b or b � a. (Since every two elements in a chain are comparable, chains
are sometimes called totally ordered sets to contrast them with more general
partially ordered sets.) We can now state Zorn’s lemma.

Zorn′s Lemma. Let X be a partially ordered set in which every chain C has an
upper bound; that is, there exists x0 ∈ X with c � x0 for every c ∈ C. Then X
has a maximal element.

It turns out that Zorn’s lemma is equivalent to the Axiom of Choice, which
says that the cartesian product of nonempty sets is itself nonempty.
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There is usually no need for Zorn’s lemma when dealing with noetherian
rings, for the maximum condition guarantees the existence of a maximal element
in any nonempty family

�
of ideals. �

Here is one way to construct a new noetherian ring from an old one.

Corollary 7.28. If R is a noetherian ring and J is an ideal in R, then R/J is
also noetherian.

Proof. If A is an ideal in R/I , then the correspondence theorem provides an
ideal J in R with J/I = A. Since R is noetherian, the ideal J is finitely gener-
ated, say, J = (b1, . . . , bn), and so A = J/I is also finitely generated (by the
cosets b1 + I, . . . , bn + I ). Therefore, R/I is noetherian. •

In 1890, Hilbert proved the famous Hilbert basis theorem, showing that ev-
ery ideal in

�
[x1 , . . . , xn] is finitely generated. As we shall see, the proof is

nonconstructive in the sense that it does not give an explicit set of generators of
an ideal. It is reported that when P. Gordan, one of the leading algebraists of
the time, first saw Hilbert’s proof, he said, “Das ist nicht Mathematik. Das ist
Theologie!” (“This is not mathematics. This is theology!”). On the other hand,
Gordan said, in 1899 when he published a simplified proof of Hilbert’s theorem,
“I have convinced myself that theology also has its merits.”

The following elegant proof of Hilbert’s theorem is due to H. Sarges.

Lemma 7.29. A commutative ring R is noetherian if and only if, for every
sequence a1, . . . , an, . . . of elements in R, there exists m ≥ 1 and r1, . . . , rm ∈ R
with am+1 = r1a1 + · · · + rmam .

Proof. Assume that R is noetherian and that a1, . . . , an, . . . is a sequence of
elements in R. If In = (a1, . . . , an), then there is an ascending chain of ideals,
I1 ⊆ I2 ⊆ · · · . By the ACC, there exists m ≥ 2 with Im = Im+1. Therefore,
am+1 ∈ Im+1 = Im , and so there are ri ∈ R with am+1 = r1a1 + · · · + rmam .

Conversely, suppose that R satisfies the condition on sequences of elements.
If R is not noetherian, then there is an ascending chain of ideals I1 ⊆ I2 ⊆ · · ·
which does not stop. Deleting any repetitions if necessary, we may assume that
In � In+1 for all n. For each n, choose an+1 ∈ In+1 with an+1 /∈ In . By
hypothesis, there exists m and ri ∈ R for i ≤ m with am+1 =

∑
i≤m ri ai ∈ Im .

This contradiction implies that R is noetherian. •

Theorem 7.30 (Hilbert Basis Theorem). If R is a commutative noetherian
ring, then R[x] is also noetherian.
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Proof. Assume that I is an ideal in R[x] that is not finitely generated; of course,
I 6= {0}. Define f0(x) to be a polynomial in I of minimal degree and define,
inductively, fn+1(x) to be a polynomial of minimal degree in I − ( f0, . . . , fn).
Note that fn(x) exists for all n ≥ 0; if I −( f0, . . . , fn)were empty, then I would
be finitely generated. It is clear that

deg( f0) ≤ deg( f1) ≤ deg( f2) ≤ · · · .

Let an denote the leading coefficient of fn(x). Since R is noetherian, Lemma 7.29
applies to give an integer m with am+1 ∈ (a0, . . . , am); that is, there are ri ∈ R
with am+1 = r0a0 + · · · + rmam . Define

f ∗(x) = fm+1(x)−
m∑

i=0

xdm+1−di ri fi (x),

where di = deg( fi). Now f ∗(x) ∈ I−( f0(x), . . . , fm(x)), otherwise fm+1(x) ∈
( f0(x), . . . , fm(x)). It suffices to show that deg( f ∗) < deg( fm+1), for this con-
tradicts fm+1(x) having minimal degree among polynomials in I that are not in
( f0, . . . , fm). If fi (x) = ai xdi + lower terms, then

f ∗(x) = fm+1(x)−
m∑

i=0

xdm+1−di ri fi (x)

= (am+1xdm+1 + lower terms)−
m∑

i=0

xdm+1−di ri (ai x
di + lower terms).

The leading term being subtracted is thus
∑m

i=0 ri ai xdm+1 = am+1xdm+1 . •

Corollary 7.31.

(i) If k is a field, then k[x1, . . . , xn] is noetherian.

(ii) The ring
� [x1, . . . , xn] is noetherian.

(iii) For any ideal I in k[x1, . . . , xn], where k = �
or k is a field, the quotient

ring k[x1, . . . , xn]/I is noetherian.

Proof. The proofs of the first two items are by induction on n ≥ 1, using the
theorem, while the proof of item (iii) follows from Corollary 7.28. •

EXERCISES

7.27 Let m be a positive integer, and let X be the set of all its (positive) divisors. Prove
that X is a partially ordered set if one defines a � b to mean a | b.
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7.28 Prove that the ring � ( � ) of Example 3.11 on page 222 is not a noetherian ring.
7.29 Prove that if R is a noetherian ring, then the ring of formal power series R[[x]] is

also a noetherian ring.
7.30 Let

S2 = {(a, b, c) ∈ � 3 : a2 + b2 + c2 = 1}
be the unit sphere in � 3 , and let

I = { f (x, y, z) ∈ � [x, y, z] : f (a, b, c) = 0 for all (a, b, c) ∈ S2}.

Prove that I is a finitely generated ideal in � [x, y, z].
7.31 If R and S are noetherian rings, prove that their direct product R × S is also a

noetherian ring.
7.32 If R is a ring that is also a vector space over a field k, then R is called a

k-algebra if
(αu)v = α(uv) = u(αv)

for all α ∈ k and u, v ∈ R. Prove that every finite-dimensional k-algebra is a
noetherian ring.

7.4 VARIETIES

Analytic geometry gives pictures of equations. For example, we picture a func-
tion f : � → �

as its graph, which consists of all the ordered pairs (a, f (a)) in
the plane; that is, f is the set of all the solutions (a, b) ∈ � 2 of

g(x, y) = y − f (x) = 0.

We can also picture equations that are not graphs of functions. For example, the
set of all the zeros of the polynomial

h(x, y) = x2 + y2 − 1

is the unit circle. One can also picture simultaneous solutions in
� 2 of several

polynomials of two variables, and, indeed, one can picture simultaneous solu-
tions in

� n of several polynomials of n variables.

Notation. Let k be a field and let kn denote the set of all n-tuples

kn = {a = (a1, . . . , an) : ai ∈ k for all i}.

The polynomial ring k[x1, . . . , xn] in several variables may be denoted by k[X ],
where X is the abbreviation:

X = (x1, . . . , xn).

In particular, f (X) ∈ k[X ] may abbreviate f (x1, . . . , xn) ∈ k[x1, . . . , xn].
In what follows, we regard polynomials f (x1, . . . , xn) ∈ k[x1, . . . , xn] as

functions of n variables kn → k. Here is the precise definition.
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Definition. A polynomial f (X) ∈ k[X ] determines a polynomial function
f [ : kn → k in the obvious way: if f (x1, . . . , xn) =

∑
e1,...,en

be1,...,en xe1
1 · · · xen

n
and (a1, . . . , an) ∈ kn , then

f [ : (a1, . . . , an) 7→ f (a1, . . . , an) =
∑

e1,...,en

be1,...,en ae1
1 · · · aen

n .

The next proposition generalizes Corollary 3.52 from one variable to several
variables.

Proposition 7.32. Let k be an infinite field and let k[X ] = k[x1, . . . , xn]. If
f (X), g(X) ∈ k[X ] satisfy f [ = g[, then f (x1, . . . , xn) = g(x1, . . . , xn).

Proof. The proof is by induction on n ≥ 1; the base step is Corollary 3.52. For
the inductive step, write

f (X, y) =
∑

i

pi (X)y
i and g(X, y) =

∑

i

qi (X)y
i,

where X denotes (x1, . . . , xn). If f [ = g[, then we have f (a, α) = g(a, α) for
every a ∈ kn and every α ∈ k. For fixed a ∈ kn , define Fa(y) =

∑
i pi (a)yi

and Ga(y) =
∑

i qi (a)yi . Since both Fa(y) and Ga(y) are in k[y], the base step
gives pi (a) = qi (a) for all a ∈ kn . By the inductive hypothesis, pi (X) = qi (X)
for all i , and hence

f (X, y) =
∑

i

pi (X)y
i =

∑

i

qi (X)y
i = g(X, t),

as desired. •

As a consequence of this last proposition, we drop the f [ notation and iden-
tify polynomials with their polynomial functions when k is infinite. We note that
algebraically closed fields are always infinite (for any prime power q and any
multiple rq, there is a field extension

�
rq /

�
q , and if α ∈ �

qr does not lie in
�

q ,
then irr(α,

�
q ) is an irreducible polynomial in

�
q [x] of positive degree); thus,

Proposition 7.32 applies whenever k is algebraically closed.

Definition. If f (X) ∈ k[X ] = k[x1, . . . , xn] and f (a) = 0, where a ∈ kn ,
then a is called a zero of f (X). [If f (x) is a polynomial in one variable, then a
zero of f (x) is also called a root of f (x).]

Proposition 7.33. If k is an algebraically closed field and f (X) ∈ k[X ] is not
a constant, then f (X) has a zero.
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Proof. We prove the result by induction on n ≥ 1, where X = (x1, . . . , xn).
The base step follows at once from our assuming that k1 = k is algebraically
closed. As in the proof of Proposition 7.32, write

f (X, y) =
∑

i

gi (X)y
i .

For each a ∈ kn , define fa(y) =
∑

i gi (a)yi . If f (X, y) has no zeros, then each
fa(y) ∈ k[y] has no zeros, and the base step says that fa(y) is a nonzero constant
for all a ∈ kn . Thus, gi (a) = 0 for all i > 0 and all a ∈ kn . By Proposition 7.32,
which applies because algebraically closed fields are infinite, gi (X) = 0 for all
i > 0, and so f (X, y) = g0(X)y0 = g0(X). By the inductive hypothesis, g0(X)
is a nonzero constant, and the proof is complete. •

We now give some general definitions describing solution sets of polynomi-
als.

Definition. If F ⊆ k[X ] = k[x1, . . . , xn], then the algebraic set defined by F
is

Var(F) = {a ∈ kn : f (a) = 0 for every f (X) ∈ F};

thus, Var(F)3 consists of all those a ∈ kn which are zeros of every f (X) ∈ F .

Example 7.34.

(i) Here is an algebraic set defined by two equations.

Var(x, y) = {(a, b) ∈ k2 : x = 0 and y = 0}.

Thus,
Var(x, y) = x-axis ∪ y-axis.

More generally, any finite union of algebraic sets is an algebraic set.

(ii) The n-sphere Sn is defined as

Sn =
{
(x1, . . . , xn+1) ∈ kn+1 :

n+1∑

i=1

x2
i = 1

}
.

More generally, define a hypersurface in kn to be the algebraic set defined
as all the zeros of a single polynomial in k[X ].

3The notation Var(F) arises from variety, which is a special kind of algebraic set to be
defined later.
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(iii) Let A be an m × n matrix with entries in k. A system of m equations in n
unknowns,

AX = B,

where B is an n×1 column matrix, defines an algebraic set, Var(AX = B),
which is a subset of kn . Of course, AX = B is really shorthand for a set of
m linear equations in n variables, and Var(AX = B) is usually called the
solution set of the system AX = B; when this system is homogeneous,
that is, when B = 0, then Var(AX = 0) is a subspace of kn , called the
solution space of the system. �

The next result shows that, as far as algebraic sets are concerned, one may
just as well assume the subsets F of k[X ] are ideals of k[X ].

Proposition 7.35.

(i) If F ⊆ G ⊆ k[X ], then Var(G) ⊆ Var(F).

(ii) If F ⊆ k[X ] and I = (F) is the ideal generated by F, then

Var(F) = Var(I ).

Hence, every algebraic set can be defined by a finite number of equations.

Proof.
(i) If a ∈ Var(G), then g(a) = 0 for all g(X) ∈ G; since F ⊆ G, it follows, in
particular, that f (a) = 0 for all f (X) ∈ F .
(ii) Since F ⊆ (F) = I , we have Var(I ) ⊆ Var(F), by part (i). For the reverse
inclusion, let a ∈ Var(F), so that f (a) = 0 for every f (X) ∈ F . If g(X) ∈
I , then g(X) =

∑
i ri fi (X), where ri ∈ k and fi (X) ∈ F ; hence, g(a) =∑

i ri fi (a) = 0 and a ∈ Var(I ).
If I is an ideal in k[X ], then the Hilbert basis theorem says that I is finitely

generated; that is, there is a finite subset F ⊆ I with Var(I ) = Var(F). •

It follows that not every subset of kn is an algebraic set. For example, if
n = 1, then k[x] is a PID. Hence, if F is a subset of k[x], then (F) = (g(x)) for
some g(x) ∈ k[x], and so

Var(F) = Var((F)) = Var
(
(g)
)
= Var(g).

But g(x) has only a finite number of roots, and so Var(F) is finite. If k is alge-
braically closed, then it is an infinite field, and so most subsets of k1 = k are not
algebraic sets.

In spite of our wanting to draw pictures in the plane, there is a major defect
with k = �

: some polynomials have no zeros. For example, f (x) = x 2 + 1
has no real roots, and so Var(x2 + 1) = �

. More generally, g(x1, . . . , xn) =
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x2
1 + · · · + x2

n + 1 has no zeros in
� n , and so Var(g(X)) = �

. Since we are
dealing with (not necessarily linear) polynomials, it is a natural assumption to
want all their zeros available. For polynomials in one variable, this amounts to
saying that k is algebraically closed and, in light of Proposition 7.33, we know
that Var( f (X)) 6= �

for every nonconstant f (X) ∈ k[X ] in this case. Of course,
algebraic sets are of interest for all fields k, but it makes more sense to consider
the simplest case before trying to understand more complicated problems. On
the other hand, many of the first results below are valid for any field k. We will
state hypotheses needed for each proposition, but the reader should realize that
the most important case is when k is algebraically closed.

Here are some elementary properties of Var.

Proposition 7.36. Let k be a field.

(i) Var(x1, x1 − 1) = �
and Var(0) = kn , where 0 is the zero polynomial.

(ii) If I and J are ideals in k[X ], then

Var(I J ) = Var(I ∩ J ) = Var(I ) ∪ Var(J ),

where I J =
{∑

i fi (X)gi(X) : fi (X) ∈ I and gi(X) ∈ J
}
.

(iii) If {I` : ` ∈ L} is a family of ideals in k[X ], then

Var
(∑

`

I`
)

=
⋂

`

Var(I`),

where
∑
` I` is the set of all finite sums of the form r`1 + · · · + r`q with

r`i ∈ I`i .

Proof.
(i) If a = (a1, . . . , an) ∈ Var(x1, x1 − 1), then a1 = 0 and a1 = 1; plainly, there
are no such points a, and so Var(x1, x1 − 1) = �

. That Var(0) = kn is clear, for
every point a ∈ kn is a zero of the zero polynomial.
(ii) Since I J ⊆ I ∩ J , it follows that Var(I J ) ⊇ Var(I ∩ J ); since I J ⊆ I , it
follows that Var(I J ) ⊇ Var(I ). Hence,

Var(I J ) ⊇ Var(I ∩ J ) ⊇ Var(I ) ∪ Var(J ).

To complete the proof, it suffices to show that Var(I J ) ⊆ Var(I )∪ Var(J ). If
a /∈ Var(I ) ∪ Var(J ), then there exist f (X) ∈ I and g(X) ∈ J with f (a) 6= 0
and g(a) 6= 0. But f (X)g(X) ∈ I J and ( f g)(a) = f (a)g(a) 6= 0, because
k[X ] is a domain. Therefore, a /∈ Var(I J ), as desired.
(iii) For each `, the inclusion I` ⊆

∑
` I` gives Var

(∑
` I`

)
⊆ Var(I`), and so

Var
(∑

`

I`
)

⊆
⋂

`

Var(I`).
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For the reverse inclusion, if g(X) ∈
∑
` I`, then there are finitely many ` with

g(X) =
∑
` h` f`, where h` ∈ k[X ] and f`(X) ∈ I`. Therefore, if a ∈⋂

` Var(I`), then f`(a) = 0 for all `, and so g(a) = 0; that is, a ∈ Var
(∑

` I`
)
.
•

Definition. A topology on a set X is a family
�

of subsets of X , called closed
sets4, which satisfy the following axioms:

(i)
� ∈ �

and X ∈ �
;

(ii) if F1, F2 ∈ �
, then F1 ∪ F2 ∈ �

; that is, the union of two closed sets is
closed;

(iii) if {F` : ` ∈ L} ⊆ �
, then

⋂
` F` ∈ �

; that is, any intersection of possibly
infinitely many closed sets is also closed.

A topological space is an ordered pair (X,
�
), where X is a set and

�
is a

topology on X .

Proposition 7.36 shows that the family of all algebraic sets is a topology on
kn ; it is called the Zariski topology, and it is very useful in the deeper study of
k[X ]. The usual topology on

�
has many closed sets; for example, every closed

interval is a closed set. In contrast, in the Zariski topology on
�

, every closed set
(aside from

�
) is finite.

Given an ideal I in k[X ], we have just defined its algebraic set Var(I ) ⊆ kn .
We now reverse direction: given a subset A ⊆ kn , we assign an ideal in k[X ] to
it; in particular, we assign an ideal to every algebraic set.

Definition. If A ⊆ kn , where k is a field, define its coordinate ring k[A] to be
the commutative ring of all restrictions f |A of polynomial functions f : kn → k,
under pointwise operations.

The polynomial f (x1, . . . , xn) = xi ∈ k[X ], when regarded as a polynomial
function, is defined by

xi : (a1, . . . , an) 7→ ai ;

that is, xi picks out the i th coordinate of a point in kn . The reason for the name
coordinate ring is that if a ∈ V , then (x1(a), . . . , xn(a)) describes a.

The function res : k[X ] → k[A], given by f (X) 7→ f |A, is a ring homo-
morphism, and the kernel of this restriction map is an ideal in k[X ].

4One can also define a topology by specifying its open subsets, which are defined to be
complements of closed sets.
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Definition. If A ⊆ kn , where k is a field, define

Id(A) = { f (X) ∈ k[X ] = k[x1, . . . , xn] : f (a) = 0 for every a ∈ A}.

The Hilbert basis theorem tells us that Id(A) is always a finitely generated
ideal.

Proposition 7.37. If A ⊆ kn , where k is a field, then there is an isomorphism

k[X ]/ Id(A) ∼= k[A].

Proof. The restriction map res : k[X ] → k[A] is a surjection with kernel Id(A),
and so the result follows from the first isomorphism theorem. Note that two
polynomials agreeing on A lie in the same coset of Id(A). •

Although the definition of Var(F) makes sense for any subset F of k[X ],
it is most interesting when F is an ideal. Similarly, although the definition of
Id(A) makes sense for any subset A of kn , it is most interesting when A is an
algebraic set. After all, algebraic sets are comprised of solutions of (polynomial)
equations, which is what we care about.

Proposition 7.38. Let k be a field.

(i) Id(
�
) = k[X ] and, if k is algebraically closed, Id(kn) = {0}.

(ii) If A ⊆ B are subsets of kn , then Id(B) ⊆ Id(A).

(iii) If {A` : ` ∈ L} is a family of subsets of kn , then

Id
(⋃

`

A`
)

=
⋂

`

Id(A`).

Proof.
(i) If f (X) ∈ Id(A) for some subset A ⊆ kn , then f (a) = 0 for all a ∈ A;
hence, if f (X) /∈ Id(A), then there exists a ∈ A with f (a) 6= 0. In particular, if
A = �

, every f (X) ∈ k[X ] must lie in Id(
�
), for there are no elements a ∈ �

.
Therefore, Id(

�
) = k[X ].

If f (X) ∈ Id(kn), then f (a) = 0 for all a ∈ kn ; it follows from Proposi-
tion 7.32 that f (X) is the zero polynomial.
(ii) If f (X) ∈ Id(B), then f (b) = 0 for all b ∈ B; in particular, f (a) = 0 for all
a ∈ A, because A ⊆ B, and so f (X) ∈ Id(A).
(iii) Since A` ⊆

⋃
` A`, we have Id(A`) ⊇ Id

(⋃
` A`

)
for all `; therefore,⋂

` Id(A`) ⊇ Id
(⋃

` A`
)
. For the reverse inclusion, let f (X) ∈

⋂
` Id(A`);

that is, f (a`) = 0 for all ` and all a` ∈ A`. If b ∈
⋃
` A`, then b ∈ A` for some

`, and hence f (b) = 0; therefore, f (X) ∈ Id
(⋃

` A`
)
. •
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One would like to have a formula for Id(A ∩ B). Certainly, Id(A ∩ B) =
Id(A) ∪ Id(B) is not correct, for the union of two ideals is almost never an ideal
(see Exercise 7.36 on page 555).

The next idea arises in characterizing those ideals of the form Id(V ) when V
is an algebraic set.

Definition. If I is an ideal in a commutative ring R, then its radical, denoted
by

√
I , is √

I = {r ∈ R : rm ∈ I for some integer m ≥ 1}.

An ideal I is called a radical ideal 5 if
√

I = I.

Exercise 7.34 on page 555 asks you to prove that
√

I is an ideal. It is easy to
see that I ⊆

√
I , and so an ideal I is a radical ideal if and only if

√
I ⊆ I . For

example, every prime ideal P is a radical ideal, for if f n ∈ P , then f ∈ P . Here
is an example of an ideal that is not radical. Let b ∈ k and let I = ((x − b)2).
Now I is not a radical ideal, for (x − b)2 ∈ I while x − b /∈ I .

Definition. An element a in a commutative ring R is called nilpotent if there
is some n ≥ 1 with an = 0.

Note that I is a radical ideal in a commutative ring R if and only if R/I has
no nilpotent elements (of course, we mean that R/I has no nonzero nilpotent
elements).

Here is why radical ideals are introduced.

Proposition 7.39. If an ideal I = Id(A) for some A ⊆ kn , where k is a
field, then it is a radical ideal. Hence, the coordinate ring k[A] has no nilpotent
elements.

Proof. Since I ⊆
√

I is always true, it suffices to check the reverse inclusion.
By hypothesis, I = Id(A) for some A ⊆ kn ; hence, if f ∈

√
I , then f m ∈ Id(A);

that is, f (a)m = 0 for all a ∈ A. But the values of f (a)m lie in the field k, and
so f (a)m = 0 implies f (a) = 0; that is, f ∈ Id(A) = I . •

Proposition 7.40.

(i) If I and J are ideals, then
√

I ∩ J =
√

I ∩
√

J .

(ii) If I and J are radical ideals, then I ∩ J is a radical ideal.

5This term is appropriate, for if r m ∈ I , then its mth root r also lies in I .
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Proof.
(i) If f ∈

√
I ∩ J , then f m ∈ I ∩ J for some m ≥ 1. Hence, f m ∈ I and

f m ∈ J , and so f ∈
√

I and f ∈
√

J ; that is, f ∈
√

I ∩
√

J .
For the reverse inclusion, assume that f ∈

√
I ∩

√
J , so that f m ∈ I and

f q ∈ J . We may assume that m ≥ q, and so f m ∈ I ∩ J ; that is, f ∈
√

I ∩ J .
(ii) If I and J are radical ideals, then I =

√
I and J =

√
J and

I ∩ J ⊆
√

I ∩ J =
√

I ∩
√

J = I ∩ J. •

We are now going to prove Hilbert’s Nullstellensatz, which says that
√

I =
Id(Var(I )) for every ideal I ⊆

�
[X ]; that is, a polynomial f (X) vanishes on

Var(I ) if and only if f m ∈ I for some m ≥ 1. This theorem is true for ideals in
k[X ], where k is any algebraically closed field, and the astute reader can adapt
the proof we give for k =

�
to any uncountable algebraically closed field k.

However, a new idea is needed to prove the theorem in general, so that it will
apply to the algebraic closures of the prime fields, for example, which are count-
able.

Lemma 7.41. Let k be a field and let ϕ : k[X ] → k be a surjective ring homo-
morphism which fixes k pointwise. If J = kerϕ, then Var(J ) 6= �

.

Proof. For each i , we have xi ∈ k[X ]; let ϕ(xi ) = ai ∈ k and let a =
(a1, . . . , an) ∈ kn . If f (X) =

∑
e1,...,en

ce1,...,en xe1
1 · · · xen

n ∈ k[X ], then

ϕ( f (X)) =
∑

e1,...,en

ce1,...,enπ(x1)
e1 · · · ϕ(xn)

en

=
∑

e1,...,en

ce1,...,en ae1
1 · · · aen

n

= f (a1, . . . , an).

Hence, ϕ( f (X)) = f (a) = ϕ( f (a)), because f (a) ∈ k and ϕ fixes k pointwise.
It follows that f (X) − f (a) ∈ J for every f (X). Now if f (X) ∈ J , then
f (a) ∈ J . But f (a) ∈ k, and, since J is a proper ideal, it contains no nonzero
constants. Therefore, f (a) = 0 and a ∈ Var(J ). •

Theorem 7.42 (Weak Nullstellensatz). If f1(X), . . . , ft (X) ∈
�

[X ], then
the ideal I = ( f1, . . . , ft ) is a proper ideal in

�
[X ] if and only if

Var( f1, . . . , ft ) 6= �
.

Proof. One direction is clear: if Var(I ) 6= �
, then I is a proper ideal, because

Var(
�

[X ]) = �
.
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For the converse, suppose that I is a proper ideal in
�

[X ]. By Corollary
7.27, there is a maximal ideal M containing I , and so K =

�
[X ]/M is a field. It

is plain that the natural map
�

[X ] →
�

[X ]/M = K carries
�

to itself, so that
K/

�
is an extension field; hence, K is a vector space over

�
. Now

�
[X ] has

countable dimension, for a basis consists of all the monic monomials; it follows
that dim � (K ) is countable (possibly finite).

Suppose that K is a proper extension of
�

; that is, there is some t ∈ K with
t /∈

�
. Since

�
is algebraically closed, t cannot be algebraic over

�
, and so it is

transcendental. Consider the subset B of K ,

B = {1/(t − c) : c ∈
�
}

(note that t − c 6= 0 because t /∈
�

). The set B is uncountable, for it is indexed
by the uncountable set

�
. We claim that B is linearly independent over

�
; if

so, then we will have contradicted the fact that dim � (K ) is countable. If B is
linearly dependent, there are nonzero a1, . . . , ar ∈

�
with

∑r
i=1 ai/(t −ci ) = 0.

Clearing denominators, we have
∑

i ai (t − c1) · · ·
�

(t − ci ) · · · (t − cr ) = 0. Use
this formula to define a polynomial h(x) ∈

�
[x]:

h(x) =
∑

i

ai (x − c1) · · ·
�

(x − ci ) · · · (x − cr ).

Now h(t) = 0, so that t transcendental implies h(x) is the zero polynomial. On
the other hand, h(c1) = a1(c1 − c2) · · · (c1 − cr ) 6= 0, a contradiction. We
conclude that K/

�
is not a proper extension; that is, K =

�
. The natural map�

[X ] → K =
�

[X ]/M =
�

now satisfies the hypothesis of Lemma 7.41, and
so Var(M) 6= �

. But Var(M) ⊆ Var(I ), and this completes the proof. •

Consider the special case of this theorem for I = ( f (x)) ⊆
�

[x], where
f (x) is not a constant. To say that Var( f ) ⊆

�
is nonempty is to say that f (x)

has a complex root. Thus, the weak Nullstellensatz is a generalization to several
variables of the fundamental theorem of algebra.

A translation of the German term Nullstellensatz is “Locus-of-zeros theo-
rem;” this name comes from the following corollary.

Corollary 7.43. If I is a proper ideal in
�

[X ], then there is an element a =
(a1, . . . , an) ∈

� n with f (a) = 0 for all f ∈ I .

Proof. Choose a to be any element in Var(I ). •

The following proof of Hilbert’s Nullstellensatz uses the “Rabinowitch trick”
of imbedding a polynomial ring in n variables into a polynomial ring in n + 1
variables.
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Theorem 7.44 (Nullstellensatz). If I is an ideal in
�

[X ], then

Id(Var(I )) =
√

I .

Thus, f vanishes on Var(I ) if and only if f m ∈ I for some m ≥ 1.

Proof. The inclusion Id(Var(I )) ≥
√

I is obviously true, for if f m(a) = 0 for
some m ≥ 1 and all a ∈ Var(I ), then f (a) = 0 for all a, because f (a) ∈

�
.

For the converse, assume that h ∈ Id(Var(I )), where I = ( f1, . . . , ft ); that
is, if fi (a) = 0 for all i , where a ∈

� n , then h(a) = 0. We must show that some
power of h lies in I . Of course, we may assume that h is not the zero polynomial.
Let us regard �

[x1 , . . . , xn] ⊆
�

[x1 , . . . , xn, y];
thus, every fi (x1, . . . , xn) is regarded as a polynomial in n + 1 variables that
does not depend on the last variable y. We claim that the polynomials

f1, . . . , ft , 1 − yh

in
�

[x1 , . . . , xn, y] have no common zeros. If (a1, . . . , an, b) ∈
� n+1 is a com-

mon zero, then a = (a1, . . . , an) ∈
� n is a common zero of f1, . . . , ft , and so

h(a) = 0. But now 1−bh(a) = 1 6= 0. The weak Nullstellensatz now applies to
show that the ideal ( f1, . . . , ft , 1− yh) in

�
[x1 , . . . , xn, y] is not a proper ideal.

Therefore, there are g1, . . . , gt+1 ∈
�

[x1 , . . . , xn, y] with

1 = f1g1 + · · · + ft gt + (1 − yh)gt+1.

Now make the substitution y = 1/h, so that the last term involving gt+1 van-
ishes. Writing the polynomials gi (X, y)more explicitly:

gi (X, y) =
di∑

j=0

u j (X)y
j

[so that gi (X, h−1) =
∑di

j=0 u j (X)h− j ], we see that

hdi gi (X, h−1) ∈
�

[X ].

Therefore, if m = max{d1, . . . , dt }, then

hm = (hmg1) f1 + · · · + (hmgt ) ft ∈ I. •

Theorem 7.45. Every maximal ideal M in
�

[x1 , . . . , xn] has the form

M = (x1 − a1, . . . , xn − an),

where a = (a1, . . . , an) ∈
� n , and so there is a bijection between

� n and the
maximal ideals in

�
[x1 , . . . , xn].



VARIETIES 549

Proof. Since M is a proper ideal, we have Var(M) 6= �
, by Theorem 7.42;

that is, there is a = (a1, . . . , an) ∈ kn with f (a) = 0 for all f ∈ M . Since
Var(M) = {b ∈ kn : f (b) = 0 for all f ∈ M}, we have {a} ⊆ Var(M).
Therefore, Proposition 7.35 gives

Id(Var(M)) ⊆ Id({a}).

Now Theorem 7.44 gives Id(Var(M)) =
√

M . But
√

P = P for every prime
ideal P; as maximal ideals are prime, we have Id(Var(M)) = M . Note that
Id({a}) is a proper ideal, for it does not contain any nonzero constant; and so
maximality of M gives M = Id({a}). Let us compute Id({a}) = { f (X) ∈�

[X ] : f (a) = 0}. If, for each i , fi (x1, . . . , xn) = xi − ai , then fi (a) = 0,
and so xi − ai ∈ Id({a}). Hence, (x1 − a1, . . . , xn − an) ⊆ Id({a}). But
(x1 − a1, . . . , xn − an) is a maximal ideal, by Corollary 7.10, so that

(x1 − a1, . . . , xn − an) = Id({a}) = M. •

Hilbert proved the Nullstellensatz in 1893. The original proofs of the Null-
stellensatz for arbitrary algebraically closed fields, in the 1920’s, used “elimina-
tion theory” (see van der Waerden, Modern Algebra, Section 79) or the Noether
normalization theorem (see Zariski and Samuel, Commutative Algebra II, pp.
164 - 167). Less computational proofs, involving Jacobson rings, were found
around 1960, independently, by W. Krull and O. Goldman.

We continue the study of the operators Var and Id.

Proposition 7.46. Let k be a field.

(i) For every subset A ⊆ kn ,

Var(Id(A)) ⊇ A.

(ii) For every ideal I ⊆ k[X ].

Id(Var(I )) ⊇ I.

(iii) If V is an algebraic set of kn , then

Var(Id(V )) = V .

Proof.
(i) This result is almost a tautology. If a ∈ A, then f (a) = 0 for all f (X) ∈
Id(A). But every f (X) ∈ Id(A) annihilates A, by definition of Id(A), and so
a ∈ Var(Id(A)). Therefore, Var(Id(A)) ⊇ A.
(ii) Again, one merely looks at the definitions. If f (X) ∈ I , then f (a) = 0
for all a ∈ Var(I ); hence, f (X) is surely one of the polynomials annihilating
Var(I ).
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(iii) If V is an algebraic set, then V = Var(J ) for some ideal J in k[X ]. Now

Var(Id(Var(J ))) ⊇ Var(J ),

by part (i). Also, part (ii) gives Id(Var(J )) ⊇ J , and applying Proposition 7.35(i)
gives the reverse inclusion

Var(Id(Var(J ))) ⊆ Var(J ).

Therefore, Var(Id(Var(J ))) = Var(J ); that is, Var(Id(V )) = V . •

Corollary 7.47.

(i) If V1 and V2 are algebraic sets and Id(V1) = Id(V2), then V1 = V2.

(ii) If I1 and I2 are radical ideals and Var(I1) = Var(I2), then I1 = I2.

Proof.
(i) If Id(V1) = Id(V2), then Var(Id(V1)) = Var(Id(V2)); by Proposition 7.46(iii),
we have V1 = V2.
(ii) If Var(I1) = Var(I2), then Id(Var(I1)) = Id(Var(I2)). By the Nullstellensatz,√

I1 =
√

I2. Since I1 and I2 are radical ideals, by hypothesis, we have I1 = I2.
•

The next theorem summarizes this discussion.

Theorem 7.48. The functions V 7→ Id(V ) and I 7→ Var(I ) are inverse order-
reversing bijections

{
algebraic sets ⊆

� n } � {
radical ideals ⊆

�
[x1 , . . . , xn]

}
.

Proof. By Proposition 7.46, we have Var(Id(V )) = V for every algebraic set
V , while Theorem 7.44 gives Id(Var(I )) =

√
I for every ideal I . •

Can an algebraic set be decomposed into smaller algebraic subsets?

Definition. An algebraic set V is irreducible if it is not a union of two proper
algebraic subsets; that is, V 6= W ′ ∪ W ′′, where both W ′ and W ′′ are algebraic
sets that are proper subsets of V . A variety6 is an irreducible algebraic set.

6The term variety arose as a translation by E. Beltami (inspired by Gauss) of the German
term Mannigfaltigkeit used by Riemann; nowadays, this term is usually translated as manifold.
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Proposition 7.49. Every algebraic set V in kn is a union of finitely many vari-
eties:

V = V1 ∪ V2 ∪ · · · ∪ Vm .

Proof. Call an algebraic set W ∈ kn good if it is irreducible or a union of
finitely many varieties; otherwise, call W bad. We must show that there are no
bad algebraic sets. If W is bad, it is not irreducible, and so W = W ′∪W ′′, where
both W ′ and W ′′ are proper algebraic subsets. But a union of good algebraic sets
is good, and so at least one of W ′ and W ′′ is bad; say, W ′ is bad, and rename it
W ′ = W1. Repeat this construction for W1 to get a bad algebraic subset W2. It
follows by induction that there exists a strictly descending sequence

W
�

W1
� · · · � Wn

� · · ·

of bad algebraic subsets. Since the operator Id reverses inclusions, there is a
strictly increasing chain of ideals

Id(W ) � Id(W1) � · · · � Id(Wn) � · · ·

[the inclusions are strict because of Corollary 7.47(i)], and this contradicts the
Hilbert basis theorem. We conclude that every variety is good. •

Varieties have a nice characterization.

Proposition 7.50. An algebraic set V in kn is a variety if and only if Id(V ) is a
prime ideal in k[X ]. Hence, the coordinate ring k[V ] of a variety V is a domain.

Proof. Assume that V is a variety. It suffices to show that if f1(X), f2(X) /∈
Id(V ), then f1(X) f2(X) /∈ Id(V ). Define, for i = 1, 2,

Wi = V ∩ Var( fi (X)).

Note that each Wi is an algebraic subset of V , for it is the intersection of two
algebraic subsets; moreover, since fi (X) /∈ Id(V ), there is some ai ∈ V with
fi (ai ) 6= 0, and so Wi is a proper algebraic subset of V . Since V is irreducible,
we cannot have V = W1 ∪ W2. Thus, there is some b ∈ V which is not in
W1 ∪ W2; that is, f1(b) 6= 0 6= f2(b). Therefore, f1(b) f2(b) 6= 0, hence
f1(X) f2(X) /∈ Id(V ), and so Id(V ) is a prime ideal.

Conversely, assume that Id(V ) is a prime ideal. Suppose that V = V1 ∪ V2,
where V1 and V2 are algebraic subsets. If V2 � V , then we must show that
V = V1. Now

Id(V ) = Id(V1) ∩ Id(V2) ⊇ Id(V1) Id(V2);

the equality is given by Proposition 7.38, and the inequality is given by Exer-
cise 7.11 on page 522. Since Id(V ) is a prime ideal, Exercise 7.11(ii) says that
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Id(V1) ⊆ Id(V ) or Id(V2) ⊆ Id(V ). Now V2 � V implies Id(V2)
�

Id(V ), and
we conclude that Id(V1) ⊆ Id(V ). But the reverse inequality Id(V1) ⊇ Id(V )
holds as well, because V1 ⊆ V , and so Id(V1) = Id(V ). Therefore, V1 = V , by
Corollary 7.47, and so V is irreducible; that is, V is a variety. •

We now consider whether the varieties in the decomposition of an algebraic
set into a union of varieties are uniquely determined. There is one obvious way
to arrange nonuniqueness. Suppose that there are two prime ideals P < Q
in k[X ] (for example, (x) � (x, y) are such prime ideals in k[x, y]). Now
Var(Q) � Var(P), so that if Var(P) is a subvariety of a variety V , say, V =
Var(P) ∪ V2 ∪ · · · ∪ Vm , then Var(Q) can be one of the Vi or it can be left out.

Definition. A decomposition V = V1 ∪ · · · ∪ Vm is an irredundant union if no
Vi can be omitted; that is, for all i ,

V 6= V1 ∪ · · · ∪ V̂i ∪ · · · ∪ Vm .

Proposition 7.51. Every algebraic set V is an irredundant union of varieties

V = V1 ∪ · · · ∪ Vm;

moreover, the varieties Vi are uniquely determined by V .

Proof. By Proposition 7.49, V is a union of finitely many varieties; say, V =
V1 ∪ · · · ∪ Vm . If m is chosen minimal, then this union must be irredundant.

We now prove uniqueness. Suppose that V = W1∪· · ·∪Ws is an irredundant
union of varieties. Let X = {V1, . . . , Vm} and let Y = {W1, . . . ,Ws}; we shall
show that X = Y . If Vi ∈ X , we have

Vi = Vi ∩ V =
⋃

j

(Vi ∩ W j ).

Now Vi = Vi ∩ W j 6= �
for some j ; since Vi is irreducible, there is only one

such W j . Therefore, Vi = Vi ∩W j , and so Vi ⊆ W j . The same argument applied
to W j shows that there is exactly one V` with W j ⊆ V`. Hence,

Vi ⊆ W j ⊆ V`.

Since the union V1 ∪ · · · ∪ Vm is irredundant, we must have Vi = V`, and so
Vi = W j = V`; that is, Vi ∈ Y and X ⊆ Y . The reverse inclusion is proved in
the same way. •

Definition. An intersection I = J1 ∩ · · · ∩ Im is an irredundant intersection
if no Ji can be omitted; that is, for all i ,

I 6= J1 ∩ · · · ∩ Ĵi ∩ · · · ∩ Jm .
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Corollary 7.52. Every radical ideal J in k[X ] is an irredundant intersection
of prime ideals,

J = P1 ∩ · · · ∩ Pm;

moreover, the prime ideals Pi are uniquely determined by J .

Proof. Since J is a radical ideal, there is a variety V with J = Id(V ). Now V
is an irredundant union of irreducible algebraic subsubsets,

V = V1 ∪ · · · ∪ Vm,

so that
J = Id(V ) = Id(V1) ∩ · · · ∩ Id(Vm).

By Proposition 7.50, Vi irreducible implies Id(Vi ) is prime, and so J is an inter-
section of prime ideals. This is an irredundant intersection, for if there is ` with
J = Id(V ) =

⋂
j 6=` Id(V j ), then

V = Var(Id(V )) =
⋃

j 6=`
Var(Id(V j )) =

⋃

j 6=`
V j ,

contradicting the given irredundancy of the union.
Uniqueness is proved similarly. If J = Id(W1) ∩ · · · ∩ Id(Ws), where each

Id(Wi ) is a prime ideal (hence is a radical ideal), then each Wi is a variety.
Applying Var expresses V = Var(Id(V )) = Var(J ) as an irredundant union of
varieties, and the uniqueness of this decomposition gives the uniqueness of the
prime ideals in the intersection. •

Here are some natural problems arising as one investigates these ideas fur-
ther. First, what is the dimension of a variety? There are several candidates,
and it turns out that prime ideals are the key. If V is a variety, then its dimen-
sion is the length of a longest chain of prime ideals in its coordinate ring k[V ]
(which, by the correspondence theorem, is the length of a longest chain of prime
ideals above Id(V ) in k[X ]). Another problem involves intersections. If Var( f )
is a curve arising from a polynomial of degree d , how many points lie in the
intersection of V with a straight line? Bézout’s theorem says there should be d
points, but one must be careful. First, one must demand that the coefficient field
be algebraically closed, lest Var( f ) = �

cause a problem. But there may also be
multiple roots, and so some intersections may have to be counted with a certain
multiplicity in order to have B ézout’s theorem hold. Defining multiplicities for
intersections of higher dimensional varieties is very subtle.

It turns out to be more convenient to work in a larger projective space. Re-
call that we gave two constructions of a projective plane over a field k. In the
subsection of Chapter 3 called Horizons, we constructed a projective plane by ad-
joining a line at infinity to the plane k2 , and this construction can be generalized
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to higher dimensions by adjoining a “hyperplane at infinity” to kn . To distinguish
the subset kn from projective space, one calls it affine space, for kn consists of
the “finite points” – that is, those points not at infinity. We gave an alternate con-
struction of a projective plane, in Example 4.26, in which points are essentially
lines through the origin in k3. Each point in this construction has homogeneous
coordinates [a0, a1, a2], where ai ∈ k and [a′

0, a′
1, a′

2] = [a0, a1, a2] if there is
a nonzero t ∈ k with a′

i = tai for all i . This construction is more amenable to
algebraic sets. For fixed n ≥ 1, define an equivalence relation on kn+1 − {0} by

(a′
0, . . . , a′

n) ≡ (a0, . . . , an)

if there is a nonzero t ∈ k with a′
i = tai for all i . Denote the equivalence class

of (a0, . . . , an) by [a0, . . . , an], call it a projective point, and define projective
n-space over k, denoted by

�
n(k), to be the set of all projective points. It is now

natural to define projective algebraic sets as zeros of a family of polynomials.
For example, if f (X) ∈ k[X ] = k[x0, x1, . . . , xn], define

Var( f ) =
{
[a0, . . . , an] ∈ �

n(k) : f ([a0, . . . , an]) = 0
}
.

There is a problem with this definition: f (X) is defined on points in kn+1,
not on projective points; that is, we need f (a0, . . . , an) = 0 if and only if
f (ta0, . . . , tan) = 0, where t ∈ k is nonzero. A polynomial f (x0, . . . , xn)

is called homogeneous of degree m > 0 if

f (t x0, . . . , t xn) = tm f (x0, . . . , xn)

for all t ∈ k. For example, a monomial cx e0
0 · · · xen

n is homogeneous of degree
m, where m = e0 +· · ·+ en is its total degree; a polynomial f (X) ∈ k[X ] is ho-
mogeneous of degree m if f (X) =

∑
ce0,...,en xe0

0 · · · xen
n , where the monomials

all have total degree m. If f (X) is homogeneous and f (a0, . . . , an) = 0, then
f (ta0, . . . , tan) = tm f (a0, . . . , an) = 0. Thus, when f (X) is homogeneous,
it makes sense to say that a projective point is a zero of f . Define a projective
algebraic set as follows.

Definition. If F ⊆ k[X ] = k[x0, . . . , xn] is a set of homogeneous polynomials,
then the projective algebraic set defined by F is

Var(F) = {[a] ∈ �
n(k) : f ([a]) = 0 for every f (X) ∈ F},

where [a] abbreviates [a0, . . . , an].

The reason for introducing projective space is that it is often the case that
many separate affine cases become part of one simpler projective formula. In-
deed, B ézout’s theorem is an example of this phenomenon.
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EXERCISES

7.33 Prove that an element a in a commutative ring R is nilpotent if and only 1 + a is a
unit.

*7.34 If I is an ideal in a commutative ring R, prove that its radical,
√

I , is an ideal.
7.35 If R is a commutative ring, then its nilradical nil(R) is defined to be the intersec-

tion of all the prime ideals in R. Prove that nil(R) is the set of all the nilpotent
elements in R:

nil(R) = {r ∈ R : rm = 0 for some m ≥ 1}.

*7.36 If I and j are ideals in � [X ], prove that Id(Var(I ) ∩ Var(J )) =
√

I + J .
7.37 If k is a field, a hypersurface is a subset of kn of the form Var( f ), where f ∈

k[x1, . . . , xn ]. Prove that every algebraic set Var(I ) is an intersection of finitely
many hypersurfaces.

7.38 (i) Show that x2 + y2 is irreducible in � [x, y], and conclude that (x 2 + y2)

is a prime, hence radical, ideal in � [x, y].
(ii) Prove that Var(x2 + y2) = {(0, 0)}.
(iii) Prove that Id(Var(x2 + y2)) > (x2 + y2), and conclude that the radical

ideal (x2 + y2) in � [x, y] is not of the form Id(V ) for some algebraic
set V . Conclude that the Nullstellensatz may fail in k[X ] if k is not
algebraically closed.

(iv) Prove that (x2 + y2) = (x + iy) ∩ (x − iy) in � [x, y].
(v) Prove that Id(Var(x2 + y2)) = (x2 + y2) in � [x, y].

7.39 Prove that every radical ideal in � [X ] is an irredundant intersection of prime ideals.
7.40 Prove that if f1, . . . , ft ∈ � [X ], then Var( f1, . . . , ft ) = � if and only if there are

h1, . . . , h t ∈ k[X ] such that

1 =
t∑

i=1

hi (X) fi (X).

7.41 Consider the statements:

I. If I is a proper ideal in � [X ], then Var(I ) 6= � .

II. Id(Var(I )) =
√

I .

III. Every maximal ideal in � [X ] has the form (x1 − a1, . . . , xn − an).

Prove III ⇒ I. (We have proved I ⇒ II and II ⇒ III in the text.)
7.42 Let R be a commutative ring, and let

Spec(R)

denote the set of all the prime ideals in R. If E ⊆ Spec(R), define the closure of a
subset E = {Pα : α ∈ A} of Spec(R) to be

E =
{
all the prime ideals P ∈ R with Pα ⊆ P for all Pα ∈ E

}
.

Prove the following:

(i) {0} = Spec(R).
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(ii) R = � .

(iii)
∑
` E` =

⋂
` E`.

(iv) E ∩ F = E ∪ F .

Conclude that the family of all subsets of Spec(R) of the form E is a topology on
Spec(R); it is called the Zariski topology.

7.43 Prove that an ideal P in Spec(R) is closed in the Zariski topology if and only if P
is a maximal ideal.

7.44 If X and Y are topological spaces, then a function g : X → Y is continuous if, for
each closed subset Q of Y , the inverse image g−1(Q) is a closed subset of X .

Let f : R → A be a ring homomorphism, and define f∗ : Spec(A) → Spec(R)
by f ∗(Q) = f −1(Q), where Q is any prime ideal in A. Prove that f ∗ is a contin-
uous function. [Recall Exercise 7.3 on page 521: f −1(Q) is a prime ideal.]

7.45 Prove that the function ϕ : � n → Spec( � [x1 , . . . , xn])], defined by

ϕ : (a1, . . . , an) 7→ (x1 − a1, . . . , xn − an),

is a continous injection (where both � n and Spec( � [x1 , . . . , xn]) are equipped
with the Zariski topology; the Zariski topology on � n was defined on page 543.

7.46 Prove that any descending chain

F1 ⊇ F2 ⊇ · · · ⊇ Fm ⊇ Fm+1 ⊇ · · ·

of closed sets in � n stops; there is some t with Ft = Ft+1 = · · · .

7.5 GRÖBNER BASES

Given two polynomials f (x), g(x) ∈ k[x] with g(x) 6= 0, where k is a field,
when is g(x) a divisor of f (x)? The division algorithm gives unique polynomials
q(x), r(x) ∈ k[x] with

f (x) = q(x)g(x)+ r(x),

where r = 0 or deg(r) < deg(g), and g | f if and only if the remainder r = 0.
Let us look at this formula from a different point of view. To say that g | f is to
say that f ∈ (g), the principal ideal generated by g(x). Thus, the remainder r is
the obstruction to f lying in this ideal; that is, f ∈ (g) if and only if r = 0.

Consider a more general problem. Given polynomials

f (x), g1(x), . . . , gm(x) ∈ k[x],

where k is a field, when is d(x) = gcd{g1(x), . . . , gm(x)} a divisor of f ? The
euclidean algorithm finds d , and the division algorithm determines whether d | f .
From another viewpoint, the two classical algorithms combine to give an algo-
rithm determining whether f ∈ (g1, . . . , gm) = (d).
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We now ask whether there is an algorithm in k[x1, . . . , xn] = k[X ] to de-
termine, given f (X), g1(X), . . . , gm(X) ∈ k[X ], whether f ∈ (g1, . . . , gm). A
division algorithm in k[X ] should be an algorithm yielding

r(X), a1(X), . . . , am(X) ∈ k[X ],

with r(X) unique, such that

f = a1g1 + · · · + amgm + r.

Since (g1, . . . , gm) consists of all the linear combinations of the g’s, such a gen-
eralized division algorithm would say again that the remainder r is the obstruc-
tion: f ∈ (g1, . . . , gm) if and only if r = 0.

We are going to show that both the division algorithm and the euclidean al-
gorithm can be extended to polynomials in several variables. Even though these
results are elementary, they were discovered only recently, in 1965, by B. Buch-
berger. Algebra has always dealt with algorithms, but the power and beauty of
the axiomatic method has dominated the subject ever since Cayley and Dedekind
in the second half of the nineteenth century. After the invention of the transis-
tor in 1948, high-speed calculation became a reality, and old complicated algo-
rithms, as well as new ones, could be implemented; a higher order of computing
had entered algebra. Most likely, the development of computer science is a ma-
jor reason why generalizations of the classical algorithms, from polynomials in
one variable to polynomials in several variables, are only now being discovered.
This is a dramatic illustration of the impact of external ideas on mathematics.

Monomial Orders

The most important feature of the division algorithm in k[x] is that the remainder
r(x) has small degree. Without the inequality deg(r) < deg(g), the result would
be virtually useless; after all, given any Q(x) ∈ k[x], there is an equation

f (x) = Q(x)g(x)+ [ f (x)− Q(x)g(x)].

Now polynomials in several variables are sums of monomials cxα1
1 · · · xαn

n , where
c ∈ k and αi ≥ 0 for all i . Here are two degrees that one can assign to a
monomial.

Definition. The multidegree of a monomial cxα1
1 · · · xαn

n ∈ k[x1, . . . , xn], where
c ∈ k is nonzero and αi ≥ 0 for all i , is the n-tuple α = (α1, . . . , αn); its total
degree is the sum |α| = α1 + · · · + αn .
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When dividing f (x) by g(x) in k[x], one usually arranges the monomials in
f (x) in descending order, according to degree:

f (x) = cnxn + cn−1xn−1 + · · · + c2x2 + c1x + c0.

Consider a polynomial in several variables:

f (X) = f (x1, . . . , xn) =
∑

c(α1,...,αn)x
α1
1 · · · xαn

n .

We will abbreviate (α1, . . . , αn) to α and xα1
1 · · · xαn

n to Xα, so that f (X) can be
written more compactly as

f (X) =
∑

α

cαXα.

Our aim is to arrange the monomials involved in f (X) in a reasonable way, and
we do this by ordering their multidegrees.

The set
� n , consisting of all the n-tuples α = (α1, . . . , αn) of natural num-

bers, is a commutative monoid 7 under addition:

(α1, . . . , αn)+ (β1, . . . , βn) = (α1 + β1, . . . , αn + βn).

This monoid operation is related to the multiplication of monomials:

XαXβ = Xα+β .

Recall that a partially ordered set is a nonempty set X equipped with a rela-
tion � which is reflexive, antisymmetric, and transitive. Of course, we may write
x ≺ y if x ≺ y and x 6= y, and we may write y � x (or y � x) instead of x � y
(or x ≺ y).

Definition. A partially ordered set X is well-ordered if every nonempty subset
S ⊆ X contains a smallest element; that is, there exists s0 ∈ S with s0 � s for
all s ∈ S.

For example, the Least Integer Axiom says that the natural numbers
�

with
the usual inequality ≤ is well-ordered.

Proposition 7.53. Let X be a well-ordered set.

(i) If x, y ∈ X, then either x � y or y � x.

(ii) Every strictly decreasing sequence is finite.

7Recall that a monoid is a set with an associative binary operation and an element one.
Here, the operation is +, the one is (0, . . . , 0), and the operation is commutative: α+β = β+α.
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Proof.
(i) The subset S = {x, y} has a smallest element, which must be either x or y. In
the first case, x � y; in the second case, y � x .
(ii) Assume that there is an infinite strictly decreasing sequence, say,

x1 � x2 � x3 � · · · .

Since X is well-ordered, the subset S consisting of all the xi has a smallest ele-
ment, say, xn . But xn+1 ≺ xn , a contradiction. •

The second property of well-ordered sets will be used in showing that an
algorithm eventually stops. In the proof of the division algorithm for polynomials
in one variable, for example, we associated a natural number to each step: the
degree of the remainder. Moreover, if the algorithm does not stop at a given step,
then the natural number associated to the next step – the degree of its remainder
– is strictly smaller. Since the natural numbers are well-ordered by the usual
inequality ≤, this strictly decreasing sequence of natural numbers must be finite;
that is, the algorithm must stop after a finite number of steps.

We are interested in orderings of multidegrees that are compatible with mul-
tiplication of monomials – that is, with addition in the monoid

� n .

Definition. A monomial order is a well-order on
� n such that

α � β implies α + γ � β + γ

for all α, β, γ ∈ � n .

A monomial order will be used as follows. If X = (x1, . . . , xn), then we
define Xα � Xβ in case α � β; that is, monomials are ordered according to
their multidegrees.

Definition. If
� n is equipped with a monomial order, then every f (X) ∈

k[X ] = k[x1, . . . , xn] can be written with its largest term first, followed by its
other, smaller, terms in descending order:

f (X) = cαXα + lower terms.

Define its leading term to be LT( f ) = cαXα and its degree to be DEG( f ) = α.
Call f (X)monic if LT( f ) = Xα; that is, if cα = 1.

There are many examples of monomial orders, but we shall give only the two
most popular ones.
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Definition. The lexicographic order on
� n is defined by α �lex β in case

α = β or the first nonzero coordinate in β − α is positive.8

The term lexicographic refers to the standard ordering in a dictionary. If
α ≺lex β, then they agree for the first i − 1 coordinates (where i ≥ 1), that is,
α1 = β1, . . . , αi−1 = βi−1, and there is strict inequality: αi < βi . For example,
the following German words are increasing in lexicographic order (the letters are
ordered a < b < c < · · · < z):

ausgehen

ausladen

auslagen

auslegen

bedeuten

Proposition 7.54. The lexicographic order �lex on
� n is a monomial order.

Proof. First, we show that the lexicographic order is a partial order. The rela-
tion �lex is reflexive, for its definition shows that α �lex α. To prove antisymme-
try, assume that α �lex β and β �lex α. If α 6= β, there is a first coordinate, say
the i th, where they disagree. For notation, we may assume that αi < βi . But this
contradicts β �lex α. To prove transitivity, suppose that α ≺lex β and β ≺lex γ

(it suffices to consider strict inequality). Now α1 = β1, . . . , αi−1 = βi−1 and
αi < βi . Let γp be the first coordinate with βp < γp. If p < i , then

γ1 = β1 = α1, . . . , γp−1 = βp−1 = αp−1, αp = βp < γp;

if p ≥ i , then

γ1 = β1 = α1, . . . , γi−1 = βi−1 = αi−1, αi < βi = γi .

In either case, the first nonzero coordinate of γ − α is positive; that is,
α ≺lex γ .

Next, we show that the lexicographic order is a well-order. If S is a nonempty
subset of

� n , define

C1 = {all first coordinates of n-tuples in S},

and define δ1 to be the smallest number in C1 (note that C1 is a nonempty subset
of the well-ordered set

�
). Define

C2 = {all second coordinates of n-tuples (δ1, α2, . . . , αn) ∈ S}.
8The difference β − α may not lie in � n , but it does lie in � n.
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Since C2 6= �
, it contains a smallest number, δ2. Similarly, for all i < n,

define Ci+1 as all the (i + 1)th coordinates of those n-tuples in S whose first
i coordinates are (δ1, δ2, . . . , δi ), and define δi+1 to be the smallest number in
Ci+1. By construction, the n-tuple δ = (δ1, δ2, . . . , δn) lies in S; moreover, if
α = (α1, α2, . . . , αn) ∈ S, then

α − δ = (α1 − δ1, α2 − δ2, . . . , αn − δn)

has all its coordinates nonnegative. Hence, if α 6= δ, then its first nonzero co-
ordinate is positive, and so δ ≺lex α. Therefore, the lexicographic order is a
well-order.

Assume that α �lex β; we claim that

α + γ �lex β + γ

for all γ ∈ �
. If α = β, then α + γ = β + γ . If α ≺lex β, then the first nonzero

coordinate of β − α is positive. But

(β + γ )− (α + γ ) = β − α,

and so α + γ ≺lex β + γ . Therefore, �lex is a monomial order. •
In the lexicographic order, x1 � x2 � x3 � · · · , for

(1, 0, . . . , 0) ≺ (0, 1, 0, . . . , 0) ≺ (0, 0, 1, 0, . . . , 0) ≺ · · · .

Any permutation of the variables xσ (1), . . . , xσ (n) yields a different lexicographic
order on

� n .

Remark. If X is any well-ordered set with order �, then the lexicographic
order on Xn can be defined by a = (a1, . . . , an) �lex b = (b1, . . . , bn) in case
a = b or if they first disagree in the i th coordinate and ai ≺ bi . It is a simple
matter to generalize Proposition 7.54 by replacing

�
with X . �

Definition. If X is a set and n ≥ 1, we define a positive word on X of length n
to be a function w : {1, 2, . . . , n} → X , and we denote w by

w = x1x2 · · · xn,

where xi = w(i). Of course, w need not be injective; that is, there may be
repetitions of x’s. Two positive words can be multiplied: if w′ = x ′

1 . . . x
′
m , then

ww′ = x1x2 · · · xnx ′
1 . . . x

′
m.

We introduce the empty word, denoted by 1, as the word of length 0 such that
1w = w = w1 for all positive words w. With these definitions, the set � (X),
consisting of all the positive words on X , is a monoid.
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Corollary 7.55. If X is a well-ordered set, then � (X) is well-ordered in the
lexicographic order (which we also denote by �lex).

Proof. We will only give a careful definition of the lexicographic order here;
the proof that it is a well-order is left to the reader. First, define 1 �lex w for all
w ∈ � (X). Next, given words u = x1 · · · x p and v = y1 · · · yq in � (X), make
them the same length by adjoining 1’s at the end of the shorter word, and rename
them u′ and v′ in � (X). If m ≥ max{p, q}, we may regard u ′, v′,∈ Xm , and
we define u �lex v if u′ �lex v

′ in Xm . (This is the word order commonly used
in dictionaries, where a blank precedes any letter: for example, muse precedes
museum). •

Example 7.56.
Given a monomial order on

� n , each polynomial f (X) =
∑
α cαXα ∈ k[X ]

= k[x1, . . . , xn] can be written with the multidegrees of its terms in descending
order: α1 � α2 � · · · � αp. Write

multiword( f ) = α1 · · · αp ∈ � (
� n ).

Let cβ Xβ be a nonzero term in f (X), let g(X) ∈ k[X ] have DEG(g) ≺ β, and
write

f (X) = h(X)+ cβ Xβ + `(X),

where h(X) is the sum of all terms in f (X) of multidegree � β and `(X) is the
sum of all terms in f (X) of multidegree ≺ β. We claim that

multiword( f (X)− cβ Xβ + g(X)) ≺lex multiword( f ) in � (X).

The sum of the terms in f (X) − cβ Xβ + g(X) with multidegree � β is h(X),
while the sum of the lower terms is `(X) + g(X). But DEG(` + g) ≺ β, by
Exercise 7.49 on page 564. Therefore, the initial terms of f (X) and f (X) −
cβ Xβ+g(X) agree, while the next term of f (X)−cβXβ+g(X) has multidegree
≺ β, and this proves the claim.

Since � (
� n ) is well-ordered, it follows that any sequence of steps of the

form f (X) → f (X) − cβ Xβ + g(X), where cβ Xβ is a nonzero term of f (X)
and DEG(g) ≺ β, must be finite. �

Here is the second popular monomial order.

Definition. The degree-lexicographic order on
� n is defined by α �dlex β in

case α = β or

|α| =
n∑

i=1

αi <

n∑

i=1

βi = |β|,

or, if |α| = |β|, then the first nonzero coordinate in β − α is positive.
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In other words, given α = (α1, . . . , αn) and β = (β1, . . . , βn), first check
total degrees: if |α| < |β|, then α �dlex β; if there is a tie, that is, if α and
β have the same total degree, then order them lexicographically. For example,
(1, 2, 3, 0) ≺dlex (0, 2, 5, 0) and (1, 2, 3, 4) ≺dlex (1, 2, 5, 2).

Proposition 7.57. The degree-lexicographic order �dlex is a monomial order
on

� n .

Proof. It is routine to show that �dlex is a partial order on
� n . To see that it is

a well-order, let S be a nonempty subset of
� n . The total degrees of elements

in S form a nonempty subset of
�

, and so there is a smallest such, say, t . The
nonempty subset of all α ∈ S having total degree t has a smallest element,
because the degree-lexicographic order �dlex coincides with the lexicographic
order �lex on this subset. Therefore, there is a smallest element in S in the
degree-lexicographic order.

Assume that α �dlex β and γ ∈ � n . Now |α + γ | = |α| + |γ |, so that
|α| = |β| implies |α + γ | = |β + γ | and |α| < |β| implies |α + γ | < |β + γ |;
in the latter case, Proposition 7.54 shows that α + γ �dlex β + γ . •

The next proposition shows, with respect to any monomial order, that poly-
nomials in several variables behave like polynomials in a single variable.

Proposition 7.58. Let � be a monomial order on
� n , and let f (X), g(X),

h(X) ∈ k[X ] = k[x1, . . . , xn].

(i) If DEG( f ) = DEG(g), then LT(g) | LT( f ).

(ii) LT(hg) = LT(h)LT(g).

(iii) If DEG( f ) = DEG(hg), then LT(g) | LT( f ).

Proof.
(i) If DEG( f ) = α = DEG(g), then LT( f ) = cXα and LT(g) = d Xα. Hence,
LT(g) | LT( f ) [and also LT( f ) | LT(g)].
(ii) Let h(X) = bXγ + lower terms and let h(X) = cXβ + lower terms, so
that LT(h) = cXγ and LT(g) = bXβ . Clearly, cbXγ+β is a nonzero term of
h(X)g(X). To see that it is the leading term, let cµXµ be a term of h(X) with
µ ≺ γ , and let bνXν be a term of g(X) with ν ≺ β. Now DEG(cµXµbνXν) =
µ + ν; since � is a monomial order, we have µ + ν ≺ γ + ν ≺ γ + β. Thus,
cbXγ+β is the term in h(X)g(X) with largest multidegree.
(iii) Since DEG( f ) = DEG(hg), part (i) gives LT(hg) | LT( f ) and part (ii) gives
LT(h)LT(g) = LT(hg); hence, LT(g) | LT( f ). •



564 COMMUTATIVE RINGS II CH. 7

EXERCISES

7.47 (i) Write the first 10 monic monomials in k[x, y] in lexicographic order and
in degree-lexicographic order.

(ii) Write all the monic monomials in k[x, y, z] of total degree at most 2 in
lexicographic order and in degree-lexicographic order.

7.48 Give an example of a well-ordered set X that contains an element u for which
{x ∈ X : x � u} is infinite.

*7.49 Let � be a monomial order on � n , and let f (X), g(X) ∈ k[X ] = k[x1, . . . , xn ] be
nonzero polynomials. Prove that if f + g 6= 0, then

DEG( f + g) � max{DEG( f ), DEG(g)},

and that strict inequality can occur only if DEG( f ) = DEG(g).

Generalized Division Algorithm

We are now going to use monomial orders to give a division algorithm for poly-
nomials in several variables.

Definition. Let � be a monomial order on
� n and let f (X), g(X) ∈ k[X ] =

k[x1, . . . , xn]. If there is a nonzero term cβ Xβ in f (X) with LT(g) | cβ Xβ and

h(X) = f (X)−
cβ Xβ

LT(g)
g(X),

then reduction f
g→ h is the replacement of f by h.

Reduction is precisely the usual step involved in long division of polynomials

in one variable; if f
g→ h, then we have used g to eliminate a term from f ,

yielding h. Of course, a special case of reduction is when cβ Xβ = LT( f ).

Proposition 7.59. Let � be a monomial order on
� n , let f (X), g(X) ∈ k[X ] =

k[x1, . . . , xn], and assume that f
g→ h; that is, there is a nonzero term cβ Xβ in

f (X) with LT(g) | cβ Xβ and h(X) = f (X)− cβ Xβ

LT(g)g(X).

If β = DEG( f ), i.e., if cβ Xβ = LT( f ), then either

h(X) = 0 or DEG(h) ≺ DEG( f );

if β ≺ DEG( f ), then DEG(h) = DEG( f ). In either case,

DEG
( cβXβ

LT(g)
g(X)

)
� DEG( f ).
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Proof. Let us write

f (X) = LT( f )+ cκ Xκ + lower terms;

since cβ Xβ is a term of f (X), we have β � DEG( f ). If LT(g) = aγ Xγ , so that
DEG(g) = γ , let us write

g(X) = aγ Xγ + aλXλ + lower terms.

Hence,

h(X) = f (X)−
cβ Xβ

LT(g)
g(X)

= f (X)−
cβ Xβ

LT(g)

[
LT(g)+ aλXλ + · · ·

]

=
[

f (X)− cβ Xβ
]
−

cβXβ

LT(g)

[
aλXλ + · · ·

]
.

Now LT(g) | cβ Xβ says that β − γ ∈ � n . We claim that

DEG
(
−

cβ Xβ

LT(g)

[
aλXλ + · · ·

])
= λ+ β − γ ≺ β.

The inequality holds, for λ ≺ γ implies λ + (β − γ ) ≺ γ + (β − γ ) = β.
To see that λ + β − γ is the Degree, it suffices to show that λ + β − γ =
DEG

(
− cβ Xβ

LT(g)aλXλ
)

is the largest multidegree occurring in − cβ Xβ

LT(g)

[
aλXλ + · · ·

]
.

But if aηXη is a lower term in g(X), i.e., η ≺ λ, then � being a monomial order
gives η + (β − γ ) ≺ λ+ (β − γ ), as desired.

If h(X) 6= 0, then Exercise 7.49 on page 564 gives

DEG(h) � max
{

DEG
(

f (X)− cβ Xβ
)
, DEG

(
−

cβ Xβ

LT(g)

[
aλXλ + · · ·

])}
.

Now if β = DEG( f ), then cβ Xβ = LT( f ),

f (X)− cβ Xβ = f (X)− LT( f ) = cκ Xκ + lower terms,

and, hence, DEG( f (X)− cβ Xβ) = κ ≺ DEG( f ). Therefore, DEG(h) ≺ DEG( f )
in this case. If β ≺ DEG( f ), then DEG( f (X) − cβ Xβ) = DEG( f ), while

DEG
(
− cβ Xβ

LT(g)

[
aλXλ + · · ·

])
≺ β ≺ DEG( f ), and so DEG(h) = DEG( f ) in this

case.
The last inequality is clear, for

cβ Xβ

LT(g)
g(X) = cβXβ +

cβ Xβ

LT(g)

[
aλXλ + · · ·

]
.
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Since DEG
(
− cβ Xβ

LT(g)

[
aλXλ + · · ·

])
≺ β, we see that

DEG
( cβ Xβ

LT(g)
g(X)

)
= β � DEG( f ). •

Definition. Let {g1, . . . , gm}, where gi = gi (X) ∈ k[X ]. A polynomial r(X) is
reduced mod {g1, . . . , gm} if either r(X) = 0 or no LT(gi) divides any nonzero
term of r(X).

Here is the division algorithm for polynomials in several variables. Because
the algorithm requires the “divisor polynomials” {g1, . . . , gm} to be used in a
specific order (after all, an algorithm must give explicit directions), we will be
using an m-tuple of polynomials instead of a subset of polynomials. We use
the notation [g1, . . . , gm] for the m-tuple whose i th entry is gi , because the
usual notation (g1, . . . , gm) would be confused with the notation for the ideal
(g1, . . . , gm) generated by the gi .

Theorem 7.60 (Division Algorithm in k[x1, . . . , xn]). Let � be a mono-
mial order on

� n , and let k[X ] = k[x1, . . . , xn]. If f (X) ∈ k[X ] and G =
[g1(X), . . . , gm(X)] is an m-tuple of polynomials in k[X ], then there is an algo-
rithm giving polynomials r(X), a1(X), . . . , am(X) ∈ k[X ] with

f = a1g1 + · · · + amgm + r,

where r is reduced mod {g1, . . . , gm}, and

DEG(ai gi ) � DEG( f ) for all i.

Proof. Once a monomial order is chosen, so that leading terms are defined,
the algorithm is a straightforward generalization of the division algorithm in one
variable. First, reduce mod g1 as many times as possible, then reduce mod g2,
then reduce mod g1 again, etc. Here is a pseudocode describing the algorithm
more precisely.

Input: f (X) =
∑
β cβXβ , [g1, . . . , gm]

Output: r, a1, . . . , am
r := f ; ai := 0
WHILE f is not reduced mod {g1, . . . , gm} DO

select smallest i with LT(gi ) | cβ Xβ for some β
f − [cβ Xβ/LT(gi )]gi := f
ai + [cβ Xβ/LT(gi)] := ai

END WHILE
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At each step h j
gi→ h j+1 of the algorithm, we have multiword(h j ) �lex

multiword(h j+1) in � (
� n ), by Example 7.56, and so the algorithm does stop,

because �lex is a well-order on � (
� n ). Obviously, the output r(X) is reduced

mod {g1, . . . , gm}, for if it has a term divisible by some LT(gi ), then one further
reduction is possible.

Finally, each term of ai (X) has the form cβXβ/LT(gi) for some intermedi-
ate output h(X) (as one sees in the pseudocode). It now follows from Proposi-
tion 7.59 that either ai gi = 0 or DEG(ai gi ) ≺ DEG( f ). •

Definition. Given a monomial order on
� n , a polynomial f (X) ∈ k[X ], and

an m-tuple G = [g1, . . . , gm], we call the output r(X) of the division algorithm
the remainder of f mod G.

Note that the remainder r of f mod G is reduced mod {g1, . . . , gm} and
f −r ∈ I = (g1, . . . , gm). The algorithm requires that G be an m-tuple, because
of the command

select smallest i with LT(gi) | cβ Xβ for some β

specifying the order of reductions. The next example shows that the remainder
may depend not only on the set of polynomials {g1, . . . , gm} but also on the
ordering of the coordinates in the m-tuple G = [g1, . . . , gm]. That is, if σ ∈
Sm is a permutation and Gσ = [gσ (1), . . . , gσ (m)], then the remainder rσ of f
mod Gσ may not be the same as the remainder r of f mod G. Even worse,
it is possible that r 6= 0 and rσ = 0, so that the remainder mod G is not the
obstruction to f being in the ideal (g1, . . . , gm).

Example 7.61.
Let f (x, y, z)= x2 y2 + x y, and let G = [g1, g2, g3], where

g1 = y2 + z2

g2 = x2 y + yz

g3 = z3 + x y.

We use the degree-lexicographic order on
� 3 . Now y2 = LT(g1) | LT( f ) =

x2 y2, and so f
g1→ h, where h = f − x2 y2

y2 (y
2 + z2) = −x2z2 + x y.

The polynomial −x2z2 + x y is reduced mod G, because neither −x2z2 nor
x y is divisible by any of the leading terms LT(g1) = y2, LT(g2) = x2 y, or
LT(g3) = z3.
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On the other hand, let us apply the division algorithm using the 3-tuple G ′ =
[g2, g1, g3]. The first reduction gives f

g2→ h′, where

h′ = f −
x2 y2

x2 y
(x2y + yz) = −y2z + x y.

Now h′ is not reduced, and reducing mod g1 gives

h′ −
−y2z

y2
(y2 + z2) = z3 + x y.

But z3 + x y = g3, and so z3 + x y
g3→ 0.

Thus, the remainder depends on the ordering of the divisor polynomials gi
in the m-tuple.

For a simpler example of different remainders (but with neither remainder
being 0), see Exercise 7.50. �

The dependence of the remainder on the order of the gi in the m-tuple G =
[g1, . . . , gm] will be treated in the next subsection.

EXERCISES

*7.50 Let G = [x − y, x − z] and G ′ = [x − z, x − y]. Show that the remainder of x
mod G (degree-lexicographic order) is distinct from the remainder of x mod G ′.

7.51 Use the degree-lexicographic order in this exercise.
(i) Find the remainder of x7 y2 + x3 y2 − y + 1 mod [xy2 − x, x − y3].
(ii) Find the remainder of x7 y2 + x3 y2 − y + 1 mod [x − y3, xy2 − x].

7.52 Use the degree-lexicographic order in this exercise.
(i) Find the remainder of x2 y + xy2 + y2 mod [y2 − 1, xy − 1].
(ii) Find the remainder of x2 y + xy2 + y2 mod [xy − 1, y2 − 1].

*7.53 Let cαXα be a nonzero monomial, and let f (X), g(X) ∈ k[X ] be polynomials
none of whose terms is divisible by cαXα . Prove that none of the terms of f (X)−
g(X) is divisible by cαXα .

*7.54 An ideal I in k[X ] is a monomial ideal if it is generated by monomials: I =
(Xα(1), . . . , Xα(q)).

(i) Prove that f (X) ∈ I if and only if each term of f (X) is divisible by some
Xα(i) .

(ii) Prove that if G = [g1, . . . , gm ] and r is reduced mod G , then r does not
lie in the monomial ideal (LT(g1), . . . ,LT(gm)).
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Gröbner Bases

For the remainder of this section we will assume that
� n is equipped with some

monomial order (the reader may use the degree-lexicographic order), so that
LT( f ) is defined and the division algorithm makes sense.

We have seen that the remainder of f mod [g1, . . . , gm] obtained from the
division algorithm can depend on the order in which the gi are listed. A Gröbner
basis {g1, . . . , gm} of the ideal I = (g1, . . . , gm) is a basis such that, for any
of the m-tuples G formed from the gi , the remainder of f mod G is always the
obstruction to whether f lies in I ; this will be a consequence of the definition
(which is given to make make sure Gröbner bases are sets and not m-tuples).

Definition. A set of polynomials {g1, . . . , gm} is a Gröbner basis9 of the ideal
I = (g1, . . . , gm) if, for each nonzero f ∈ I , LT(gi) | LT( f ) for some gi .

Example 7.61 shows that

{y2 + z2, x2 y + yz, z3 + x y}

is not a Gröbner basis of the ideal I = (y2 + z2, x2 y + yz, z3 + x y).

Proposition 7.62. A set {g1, . . . , gm} of polynomials is a Gröbner basis of
I = (g1, . . . , gm) if and only if, for each m-tuple Gσ = [gσ (1), . . . , gσ (m)]
(where σ ∈ Sm), every f ∈ I has remainder 0 mod Gσ .

Proof. Assume there is some permutation σ ∈ Sm and some f ∈ I whose
remainder mod Gσ is not 0. Among all such polynomials, choose f of minimal
Degree. Since {g1, . . . , gm} is a Gröbner basis, LT(gi ) | LT( f ) for some i ; select

the smallest σ(i) for which there is a reduction f
gσ(i)→ h, and note that h ∈ I .

Since DEG(h) ≺ DEG( f ), by Proposition 7.59, the division algorithm gives a
sequence of reductions h = h0 → h1 → h2 → · · · → h p = 0. But the division
algorithm for f adjoins f → h at the front, showing that 0 is the remainder of
f mod Gσ , a contradiction.

Conversely, let {g1, . . . , gm} be a Gröbner basis of I = (g1, . . . , gm). If
there is a nonzero f ∈ I with LT(gi ) � LT( f ) for every i , then in any reduction

f
gi→ h, we have LT(h) = LT( f ). Hence, if G = [g1, . . . , gm], the division

algorithm mod G gives reductions f → h1 → h2 → · · · → h p = r in which
LT(r) = LT( f ). Therefore, r 6= 0; that is, the remainder of f mod G is not
zero, and this is a contradiction. •

9It was B. Buchberger who, in his dissertation, proved the main properties of Gr öbner
bases. He named these bases to honor his thesis advisor, W. Gr öbner.
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Corollary 7.63. Let I = (g1, . . . , gm) be an ideal, let {g1, . . . , gm} be a
Gröbner basis of I , and let G = [g1, . . . , gm] be any m-tuple formed from the
gi . If f (X) ∈ k[X ], then there is a unique r(X) ∈ k[X ], which is reduced
mod {g1, . . . , gm}, such that f − r ∈ I ; in fact, r is the remainder of f mod G.

Proof. The division algorithm gives a polynomial r which is reduced mod
{g1, . . . , gm}, and polynomials a1, . . . , am with f = a1g1 + · · · + am gm + r ;
clearly, f − r = a1g1 + · · · + amgm ∈ I .

To prove uniqueness, suppose that r and r ′ are reduced mod {g1, . . . , gm}
and that f − r and f − r ′ lie in I , so that ( f − r ′) − ( f − r) = r − r ′ ∈ I .
Since r and r ′ are reduced mod {g1, . . . , gm}, none of their terms is divisible by
any LT(gi). If r − r ′ 6= 0, then Exercise 7.53 on page 568 says that no term of
r − r ′ is divisible by any LT(gi); in particular, LT(r − r ′) is not divisible by any
LT(gi ), and this contradicts Proposition 7.62. Therefore, r = r ′. •

The next corollary shows that Gröbner bases resolve the problem of different
remainders in the division algorithm arising from different m-tuples.

Corollary 7.64. Let I = (g1, . . . , gm) be an ideal, let {g1, . . . , gm} be a
Gröbner basis of I , and let G be the m-tuple G = [g1, . . . , gm].

(i) If f (X) ∈ k[X ] and Gσ = [gσ (1), . . . , gσ (m)], where σ ∈ Sm is a per-
mutation, then the remainder of f mod G is equal to the remainder of f
mod Gσ .

(ii) A polynomial f ∈ I if and only if f has remainder 0 mod G.

Proof.
(i) If r is the remainder of f mod G, then Corollary 7.63 says that r is the unique
polynomial, reduced mod {g1, . . . , gm}, with f −r ∈ I ; similarly, the remainder
rσ of f mod Gσ is the unique polynomial, reduced mod {g1, . . . , gm}, with f −
rσ ∈ I . The uniqueness assertion in Corollary 7.63 gives r = rσ .
(ii) Proposition 7.62 shows that if f ∈ I , then its remainder is 0. For the con-
verse, if r is the remainder of f mod G, then f = q + r , where q ∈ I . Hence,
if r = 0, then f ∈ I . •

There are several obvious questions. Do Gröbner bases exist and, if they do,
are they unique? Given an ideal I in k[X ], is there an algorithm to find a Gröbner
basis of I?

The notion of S-polynomial will allow us to recognize a Gröbner basis, but
we first introduce some notation.

Definition. If α = (α1, . . . , αn) and β = (β1, . . . , βn) are in
� n , define

α ∨ β = µ,
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where µ = (µ1, . . . , µn) is given by µi = max{αi , βi }.

It is easy to see that Xα∨β is the least common multiple of the monomials
Xα and Xβ .

Definition. Let f (X), g(X) ∈ k[X ], where LT( f ) = aαXα and LT(g) =
bβ Xβ . Define

L( f, g) = Xα∨β .

The S-polynomial S( f, g) is defined by

S( f, g) =
L( f, g)

LT( f )
f −

L( f, g)

LT(g)
g

= a−1
α X (α∨β)−α f (X)− b−1

β X (α∨β)−βg(X).

Note that S( f, g) = −S(g, f ).

Example 7.65.
We show that if f = Xα and g = Xβ are monomials, then S( f, g) = 0. Since
f and g are monomials, we have LT( f ) = f and LT(g) = g. Hence,

S( f, g) =
L( f, g)

LT( f )
f −

L( f, g)

LT(g)
g =

Xα∨β

f
f −

Xα∨β

g
g = 0. �

The following technical lemma indicates why S-polynomials are relevant.

Lemma 7.66. Given g1(X), . . . , g`(X) ∈ k[X ] and monomials c j Xα( j), let
h(X) =

∑`
j=1 c j Xα( j)g j (X).

Let δ be a multidegree. If DEG(h) ≺ δ and DEG(c j Xα( j)g j (X)) = δ for all
j < `, then there are d j ∈ k with

h(X) =
∑

j

d j X δ−µ( j)S(g j , g j+1),

where µ( j ) = DEG(g j )∨ DEG(g j+1), and for all j < `,

DEG
(
X δ−µ( j)S(g j , g j+1)

)
≺ δ.

Remark. The lemma says that if DEG(
∑

j a j g j ) ≺ δ, where the a j are mono-
mials, while DEG(a j g j ) = δ for all j , then h can be rewritten as a linear com-
bination of S-polynomials, with monomial coefficents, each of whose terms has
multidegree strictly less than δ. �



572 COMMUTATIVE RINGS II CH. 7

Proof. Let LT(g j ) = b j Xβ( j), so that LT(c j Xα( j)g j (X)) = c j b j X δ . The
coefficient of X δ in h(X) is thus

∑
j c j b j . Since DEG(h) ≺ δ, we must have∑

j c j b j = 0. Define monic polynomials

u j (X) = b−1
j Xα( j)g j (X).

There is a telescoping sum

h(X) =
∑̀

j=1

c j Xα( j)g j (X)

=
∑̀

j=1

c j b j u j

= c1b1(u1 − u2)+ (c1b1 + c2b2)(u2 − u3)+ · · ·
+ (c1b1 + · · · + c`−1b`−1)(u`−1 − u`)

+ (c1b1 + · · · + c`b`)u`.

Now the last term (c1b1 + · · · + c`b`)u` = 0 because
∑

j c j b j = 0. Since

DEG(c j Xα( j)g j (X)) = δ, we have α( j )+ β( j ) = δ, so that Xβ( j) | X δ for all
j . Hence, for all j < `, we have lcm{Xβ( j), Xβ( j+1)} = Xβ( j)∨β( j+1) | X δ ; that
is, if we write µ( j ) = β( j )∨ β( j + 1), then δ − µ( j ) ∈ � n . But

X δ−µ( j)S(g j, g j+1) = X δ−µ( j)
( Xµ( j)

LT(g j)
g j (X)−

Xµ( j)

LT(g j+1)
g j+1(X)

)

=
X δ

LT(g j )
g j (X)−

X δ

LT(g j+1)
g j+1(X)

= b−1
j Xα( j)g j − b−1

j+1 Xα( j+1)g j+1

= u j − u j+1.

Substituting this equation into the telescoping sum gives a sum of the desired
form, where d j = c1b1 + · · · + c j b j :

h(X) = c1b1 X δ−µ(1)S(g1, g2)+ (c1b1 + c2b2)X
δ−µ(2)S(g2, g3)+ · · ·

+ (c1b1 + · · · + c`−1b`−1)X
δ−µ(`−1)S(g`−1, g`).

Finally, since both u j and u j+1 are monic with leading term of multide-
gree δ, we have DEG(u j − u j+1) ≺ δ. But we have shown that u j − u j+1 =
X δ−µ( j)S(g j , g j+1), and so DEG(X δ−µ( j)S(g j , g j+1) ≺ δ, as desired. •

Let I = (g1, . . . , gm). By Proposition 7.62, {g1, . . . , gm} is a Gröbner ba-
sis of the ideal I if every f ∈ I has remainder 0 mod G (where G is any m-
tuple formed by ordering the gi ). The importance of the next theorem lies in
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its showing that it is necessary to compute the remainders of only finitely many
polynomials, namely, the S-polynomials, to determine whether {g1, . . . , gm} is
a Gröbner basis.

Theorem 7.67 (Buchberger). A set {g1, . . . , gm} is a Gröbner basis of I =
(g1, . . . , gm) if and only if S(gp, gq) has remainder 0 mod G for all p, q, where
G = [g1, . . . , gm].

Proof. Clearly, S(gp, gq), being a linear combination of gp and gq , lies in I .
Hence, if G = {g1, . . . , gm} is a Gröbner basis, then S(gp, gq) has remainder 0
mod G, by Proposition 7.62.

Conversely, assume that S(gp, gq) has remainder 0 mod G for all p, q; we
must show that every f ∈ I has remainder 0 mod G. By Proposition 7.62, it
suffices to show that if f ∈ I , then LT(gi ) | LT( f ) for some i . Since f ∈ I =
(g1, . . . , gm), we may write f =

∑
i hi gi , and so

DEG( f ) � max
i

{DEG(hi gi )}.

If there is equality, then DEG( f ) = DEG(h i gi ) for some i , and so Proposi-
tion 7.58 gives LT(gi ) | LT( f ), as desired. Therefore, we may assume strict
inequality: DEG( f ) ≺ maxi {DEG(hi gi)}.

The polynomial f may be written as a linear combination of the gi in many
ways. Of all the expressions of the form f =

∑
i hi gi , choose one in which

δ = maxi {DEG(hi gi )} is minimal (which is possible because � is a well-order).
If DEG( f ) = δ, we are done, as we have seen above; therefore, we may assume
that there is strict inequality: DEG( f ) ≺ δ. Write

f =
∑

j
DEG(h j g j )=δ

h j g j +
∑

`
DEG(h`g`)≺δ

h`g`. (1)

Now if DEG(
∑

j h j g j ) = δ, then DEG( f ) = δ, a contradiction. Therefore,

DEG(
∑

j h j g j ) ≺ δ. But the coefficient of X δ in this sum is obtained from its
leading terms, so that

DEG
(∑

j

LT(h j )g j
)

≺ δ.

Now
∑

j LT(h j )g j is a polynomial satisfying the hypotheses of Lemma 7.66,
and so there are constants d j and multidegrees µ( j ) so that

∑

j

LT(h j )g j =
∑

j

d j X δ−µ( j)S(g j , g j+1), (2)
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where DEG
(

X δ−µ( j)S(g j , g j+1)
)

≺ δ.10

Since each S(g j , g j+1) has remainder 0 mod G, the division algorithm gives
a j i (X) ∈ k[X ] with

S(g j , g j+1) =
∑

i

a j i gi ,

where DEG(a j i gi ) � DEG(S(g j, g j+1)) for all j, i . It follows that

X δ−µ( j)S(g j , g j+1) =
∑

i

X δ−µ( j)a j i gi .

Therefore, Lemma 7.66 gives

DEG(X δ−µ( j)a j i ) � DEG(X δ−µ( j)S(g j, g j+1)) ≺ δ. (3)

Substituting into Eq. (2), we have

∑

j

LT(h j )g j =
∑

j

d j X δ−µ( j)S(g j , g j+1)

=
∑

j

d j
(∑

i

X δ−µ( j)a j i gi
)

=
∑

i

(∑

j

d j X δ−µ( j)a j i
)
gi .

If we denote
∑

j d j X δ−µ( j)a j i by h′
i , then

∑

j

LT(h j )g j =
∑

i

h′
i gi , (4)

where, by Eq. (3),

DEG(h′
i gi ) ≺ δ for all i.

10The reader may wonder why we consider all S-polynomials S(gp, gq) instead of only
those of the form S(gi , gi+1). The answer is that the remainder condition is applied only to
those h j g j for which DEG(h j g j ) = δ, and so the indices viewed as i’s need not be consecu-
tive.
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Finally, we substitute the expression in Eq. (4) into Eq. (1):

f =
∑

j
DEG(h j g j )=δ

h j g j +
∑

`
DEG(h`g`)≺δ

h`g`

=
∑

j
DEG(h j g j )=δ

LT(h j )g j +
∑

j
DEG(h j g j )=δ

[h j − LT(h j )]g j +
∑

`
DEG(h`g`)≺δ

h`g`

=
∑

i

h′
i gi +

∑

j
DEG(h j g j )=δ

[h j − LT(h j )]g j +
∑

`
DEG(h`g`)≺δ

h`g`.

We have rewritten f as a linear combination of the gi in which each term has
multidegree strictly smaller than δ, contradicting the minimality of δ. This com-
pletes the proof. •

Corollary 7.68. If I = ( f1, . . . , fs) in k[X ], where each fi is a monomial (that
is, if I is a monomial ideal), then { f1, . . . , fs} is a Gröbner basis of I .

Proof. By Example 7.65, the S-polynomial of any pair of monomials is 0. •
Here is the main result.

Theorem 7.69 (Buchberger’s Algorithm). Every ideal I = ( f1, . . . , fs) in
k[X ] has a Gröbner basis11 which can be computed by an algorithm.

Proof. Here is a pseudocode for an algorithm.

Input: B = { f1, . . . , fs} G = [ f1, . . . , fs]
Output: a Gröbner basis B = {g1, . . . , gm}
containing { f1, . . . , fs}
B := { f1, . . . , fs}; G := [ f1, . . . , fs]
REPEAT

B ′ := B; G′ := G
FOR each pair g, g′ with g 6= g′ ∈ B ′ DO

r := remainder of S(g, g′) mod G′

IF r 6= 0 THEN
B := B ∪ {r}; G′ := [g1, . . . , gm, r ]

END IF
END FOR

UNTIL B = B ′

11A nonconstructive proof of the existence of a Gr öbner basis can be given using the proof
of the Hilbert basis theorem; for example, see Section 2.5 of the book of Cox, Little, and
O’Shea (they give a constructive proof in Section 2.7).
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Now each loop of the algorithm enlarges a subset B ⊆ I = (g1, . . . , gm)

by adjoining the remainder mod G of one of its S-polynomials S(g, g ′). As
g, g′ ∈ I , the remainder r of S(g, g′) lies in I , and so the larger set B ∪ {r} is
contained in I .

The only obstruction to the algorithm stopping at some B ′ is if some S(g, g′)
does not have remainder 0 mod G ′. Thus, if the algorithm stops, then Theo-
rem 7.67 shows that B ′ is a Gröbner basis.

To see that the algorithm does stop, suppose a loop starts with B ′ and ends
with B. Since B ′ ⊆ B, we have an inclusion of monomial ideals

(
LT(g′) : g′ ∈ B ′) ⊆ (LT(g) : g ∈ B) .

We claim that if B ′ � B, then there is also a strict inclusion of ideals. Suppose
that r is a (nonzero) remainder of some S-polynomial mod B ′, and that B =
B ′ ∪ {r}. By definition, the remainder r is reduced mod G ′, and so no term of r
is divisible by LT(g′) for any g′ ∈ B ′; in particular, LT(r ) is not divisible by any
LT(g′). Hence, LT(r) /∈ (LT(g′) : g′ ∈ B ′), by Exercise 7.54 on page 568. On
the other hand, we do have LT(r) ∈ (LT(g) : g ∈ B). Therefore, if the algorithm
does not stop, there is an infinite strictly ascending chain of ideals in k[X ], and
this contradicts the Hilbert basis theorem, for k[X ] has the ACC. •

Example 7.70.
The reader may show that B ′ = {y2 + z2, x2y + yz, z3 + x y} is not a Gröbner
basis because S(y2 + z2, x2 y + yz) = x2z2 − y2z does not have remainder 0
mod G′. However, adjoining x2z2 − y2z does give a Gröbner basis B because
all S-polynomials in B have remainder 0 mod B ′. �

Theoretically, Buchberger’s algorithm computes a Gröbner basis, but the
question arises how practical it is. In very many cases, it does compute in a
reasonable amount of time; on the other hand, there are examples in which it
takes a very long time to produce its output. The efficiency of Buchberger’s
algorithm is discussed in Section 2.9 of the book by Cox, Little, and O’Shea.

Corollary 7.71.

(i) If I = ( f1, . . . , ft ) is an ideal in k[X ], then there is an algorithm to deter-
mine whether a polynomial h(X) ∈ k[X ] lies in I .

(ii) If I = ( f1, . . . , ft) and I ′ = ( f ′
1, . . . , f ′

s ) are ideals in k[X ], then there is
an algorithm to determine whether I = I ′.

Proof.
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(i) Use Buchberger’s algorithm to find a Gröbner basis B of I , and then use the
division algorithm to compute the remainder of h mod G (where G is any m-
tuple arising from ordering the polynomials in B). By Corollary 7.64(ii), h ∈ I
if and only if r = 0.
(ii) Use Buchberger’s algorithm to find Gröbner bases {g1, . . . , gm} and
{g′

1, . . . , g′
p} of I and I ′, respectively. By part (i), there is an algorithm to de-

termine whether each g′
j ∈ I , and I ′ ⊆ I if each g′

j ∈ I . Similarly, there is
an algorithm to determine the reverse inclusion, and so there is an algorithm to
determine whether I = I ′. •

One must be careful here. Corollary 7.71 does not begin by saying “If I is
an ideal in k[X ];” instead, it specifies a basis: I = ( f1, . . . , ft). The reason,
of course, is that Buchberger’s algorithm requires a basis as input. For exam-
ple, if J = (h1, . . . , hs), then the algorithm cannot be used to check whether a
polynomial f (X) lies in the radical

√
J unless one has a basis of

√
J . (There

do exist algorithms giving bases of
√
( f1, . . . , ft); see the book by Becker and

Weispfenning.)
A Gröbner basis B = {g1, . . . , gm} can be too large. For example, it follows

from Proposition 7.62 that if f ∈ I , then B ∪ { f } is also a Gröbner basis of I ;
thus, one may seek Gröbner bases that are, in some sense, minimal.

Definition. A basis {g1, . . . , gm} of an ideal I is reduced if

(i) each gi is monic;

(ii) each gi is reduced mod {g1, . . . , ĝi , . . . , gm}.

Exercise 7.61 on page 580 gives an algorithm for computing a reduced basis
for every ideal ( f1, . . . , ft ). When combined with the algorithm in Exercise 7.63
on page 580, it shrinks a Gröbner basis to a reduced Gröbner basis. It can be
proved that a reduced Gröbner basis of an ideal is unique.

In the special case when each fi (X) is linear, that is,

fi (X) = ai1x1 + · · · + ainxn.

then the common zeros Var( f1, . . . , ft) are the solutions of a homogeneous sys-
tem of t equations in n unknowns. If A = [ai j ] is the t ×n matrix of coefficients,
then it can be shown that the reduced Gröbner basis corresponds to the row re-
duced echelon form for the matrix A (see Section 10.5 in the book of Becker and
Weispfenning).

Another special case occurs when f1, . . . , ft are polynomials in one vari-
able. The reduced Gröbner basis obtained from { f1, . . . , ft } turns out to be their
gcd, and so the euclidean algorithm has been generalized to polynomials in sev-
eral variables.
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We end this chapter by showing how to find a basis of an intersection of
ideals. Given a system of polynomial equations in several variables, one way
to find solutions is to eliminate variables (van der Waerden, Modern Algebra II,
Chapter XI). Given an ideal I ⊆ k[X ], we are led to an ideal in a subset of
the indeterminates, which is essentially the intersection of Var(I ) with a lower-
dimensional plane.

Definition. Let k be a field and let I ⊆ k[X, Y ] be an ideal, where k[X, Y ] is
the polynomial ring in disjoint sets of variables X ∪ Y . The elimination ideal is

IX = I ∩ k[X ].

For example, if I = (x2, x y), then a Gröbner basis is {x2, x y} (they are
monomials, so that Corollary 7.68 applies), and Ix = (x2) ⊆ k[x], while Iy =
{0}.

Proposition 7.72. Let k be a field and let k[X ] = k[x1, . . . , xn] have a mono-
mial order for which x1 � x2 � · · · � xn (for example, the lexicographic order)
and, for fixed p > 1, let Y = x p, . . . , xn. If I ⊆ k[X ] has a Gröbner basis
G = {g1, . . . , gm}, then G ∩ IY is a Gröbner basis for the elimination ideal
IY = I ∩ k[x p, . . . , xn].

Proof. Recall that {g1, . . . , gm} being a Gröbner basis of I = (g1, . . . , gm)

means that for each nonzero f ∈ I , there is gi with LT(gi ) | LT( f ). Let
f (x p, . . . , xn) ∈ IY be nonzero. Since IY ⊆ I , there is some gi (X) with
LT(gi ) | LT( f ); hence, LT(gi ) involves only the “later” variables x p, . . . , xn.
Let DEG(LT(gi)) = β. If gi has a term cαXα involving “early” variables xi with
i < p, then α � β, because x1 � · · · � x p � · · · � xn. This is a contradiction,
for β, the degree of the leading term of gi , is greater than the degree of any other
term of gi . It follows that gi ∈ k[x p, . . . , xn]. Exercise 7.60 on page 580 now
shows that G ∩ k[x p, . . . , xn] is a Gröbner basis for IY = I ∩ k[x p, . . . , xn]. •

We can now give Gröbner bases of intersections of ideals.

Proposition 7.73. Let k be a field, and let I1, . . . , It be ideals in k[X ], where
X = x1, . . . , xn.

(i) Consider the polynomial ring k[X, y1, . . . , yt] in n + t indeterminates. If
J is the ideal in k[X, y1, . . . , yt] generated by 1−(y1+· · ·+ yt) and y j I j ,
for all j , then

⋂ t
j=1 I j = JX .

(ii) Given Gröbner bases of I1, . . . , It , a Gröbner basis of
⋂ t

j=1 I j can be
computed.
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Proof.
(i) If f = f (X) ∈ JX = J ∩ k[X ], then f ∈ J , and so there is an equation

f (X) = g(X, Y )(1 −
∑

y j)+
∑

j

h j (X, y1, . . . , yt)y jq j (X),

where g, h j ∈ k[X, Y ] and q j ∈ I j . Setting y j = 1 and the other y’s equal to
0 gives f = h j (X, 0, . . . , 1, . . . , 0)q j(X). Note that h j (X, 0, . . . , 1, . . . , 0) ∈
k[X ], and so f ∈ I j . As j was arbitrary, we have f ∈

⋂
I j , and so JX ⊆

⋂
I j .

For the reverse inclusion, if f ∈
⋂

I j , then the equation

f = f (1 −
∑

y j )+
∑

j

y j f

shows that f ∈ JX , as desired.
(ii) This follows from part (i) and Proposition 7.72 if we use a monomial order
in which all the variables in X precede the variables in Y . •

Example 7.74.
Consider the ideal I = (x) ∩ (x2, x y, y2) ⊆ k[x, y], where k is a field. Even
though it is not difficult to find a basis of I by hand, we shall use Gröbner bases
to illustrate Proposition 7.73. Let u and v be new variables, and define

J = (1 − u − v, ux, vx2, vx y, vy2) ⊆ k[x, y, u, v].

The first step is to find a Gröbner basis of J ; we use the lexicographic monomial
order with x ≺ y ≺ u ≺ v. Since the S-polynomial of two monomials is 0,
Buchberger’s algorithm quickly gives a Gröbner basis12 G of J :

G = {v + u − 1, x2, yx, ux, uy2 − y2}.

It follows from Proposition 7.72 that a Gröbner basis of I is G ∩ k[x, y]: all
those elements of G that do not involve the variables u and v. Thus,

I = (x) ∩ (x2, x y, y2) = (x2, x y). �

EXERCISES

Use the degree-lexicographic monomial order in the following exercises.
7.55 Let I = (y − x2, z − x3).

(i) Order x ≺ y ≺ z, and let �lex be the corresponding monomial order on
� 3 . Prove that [y − x2, z − x3] is not a Gr öbner basis of I .

12This is actually the reduced Gr öbner basis given by Exercise 7.63 on page 580.
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(ii) Order y ≺ z ≺ x , and let �lex be the corresponding monomial order on
� 3 . Prove that [y − x2, z − x3] is a Gr öbner basis of I .

7.56 Find a Gr öbner basis of I = (x2 − 1, xy2 − x).
7.57 Find a Gr öbner basis of I = (x2 + y, x4 + 2x2 y + y2 + 3).
7.58 Find a Gr öbner basis of I = (xz, xy − z, yz − x). Does x3 + x + 1 lie in I?
7.59 Find a Gr öbner basis of I = (x2 − y, y2 − x, x2 y2 − xy). Does x4 + x + 1 lie in

I?
*7.60 Let I be an ideal in k[X ], where k is a field and k[X ] has a monomial order.

Prove that if a set of polynomials {g1, . . . , gm} ⊆ I has the property that, for each
nonzero f ∈ I , there is some gi with LT(gi ) | LT( f ), then I = (g1, . . . , gm).
Conclude, in the definition of Gr öbner basis, that one need not assume that I is
generated by g1, . . . , gm .

*7.61 Show that the following pseudocode gives a reduced basis Q of an ideal I =
( f1, . . . , ft ).

Input: P = [ f1, . . . , ft ]
Output: Q = [q1, . . . , qs ]
Q := P
WHILE there is q ∈ Q which is

not reduced mod Q − {q} DO
select q ∈ Q which is not reduced mod Q − {q}
Q := Q − {q}
h := the remainder of q mod Q
IF h 6= 0 THEN

Q := Q ∪ {h}
END IF

END WHILE
make all q ∈ Q monic

7.62 If G is a Gr öbner basis of an ideal I , and if Q is the basis of I obtained from the
algorithm in Exercise 7.61, prove that Q is also a Gr öbner basis of I .

*7.63 Show that the following pseudocode replaces a Gr öbner basis G with a reduced
Gr öbner basis H .

Input: G = {g1, . . . , gm}
Output: H
H := � ; F := G
WHILE F 6= � DO

select f ′ from F
F := F − { f ′}
IF LT( f ) � LT( f ′) for all f ∈ F AND

LT(h) � LT( f ′) for all h ∈ H THEN
H := H ∪ { f ′}

END IF
END WHILE
apply the algorithm in Exercise 7.61 to H



A
Inequalities

We now prove some elementary properties about inequalities of real num-
bers, and we begin by recording some properties of the set P of all positive real
numbers.

(i) P is closed under addition and multiplication; that is, if a, b are in P , then
a + b is in P and ab is in P .

(ii) There is a trichotomy: if a is any real number, then exactly one of the
following is true:

a is in P; a = 0; −a is in P.

Definition. For any two real numbers a and A, define a < A (also written
A > a) to mean that A − a is in P . We write a ≤ A to mean either a < A or
a = A.

Proposition A.1. For all a, b, c ∈ �
,

(i) a ≤ a;
(ii) if a ≤ b and b ≤ c, then a ≤ c;

(iii) if a ≤ b and b ≤ a, then a = b;
(iv) either a < b, a = b, or b < a.

Proof.
(i) We have a ≤ a because a − a = 0.
(ii) If a ≤ b, then b − a is in P or b = a; if b ≤ c, then c − b is in P or c = b.
There are four cases. If b−a is in P and c−b is in P , then (b−a)+(c−b)= c−a
is in P and a ≤ c. If b − a is in P and c = b, then c − a is in P and a ≤ c. The
other two cases are similar.
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(iii) Assume that a ≤ b and b ≤ a. As in part (i), there are four easy cases. For
example, if b − a is in P and a − b is in P , then (b − a) + (a − b) = 0 is in
P , a contradiction, so this case cannot occur. If b − a is in P and b = a, then
b − a = b − b = 0 is in P , another contradiction; similarly, a − b is in P and
a = b cannot occur. The only remaining possibility is a = b.
(iv) Either a − b is in P , a − b = 0, or −(a − b) = b − a is in P; that is, either
b ≤ a, a = b, or a ≤ b. •

Notice that if a < b and b < c, then a < c [for c − a = (c − b)+ (b − a) is
a sum of two numbers in P and, hence, lies in P]. One often abbreviates these
two inequalities as a < b < c. The reader may check that if a ≤ b ≤ c, then
a ≤ c, with a < c if either inequality a ≤ b or b ≤ c is strict.

Proposition A.2. Assume that b and B are real numbers with b < B.

(i) If m is positive, then mb < m B; if m is negative, then mb > m B.

(ii) For any number N, positive, negative, or zero, we have

N + b < N + B and N − b > N − B.

(iii) Let a and A be positive numbers. If a < A, then 1/a > 1/A, and, con-
versely, if 1/A < 1/a, then A > a.

Proof. (i) By hypothesis, B − b > 0. If m > 0, then the product of positive
numbers being positive implies that m(B − b) = m B − mb is positive; that is,
mb < m B. If m < 0, then the product m(B − b) = m B − mb is negative; that
is, m B < mb.
(ii) The difference (N + B)−(N +b) is positive, for it equals B−b. For the other
inequality, (N −b)−(N − B) = −b+ B is positive, and, hence, N −b > N − B.
(iii) If a < A, then A−a is positive. Hence, 1/a−1/A = (A−a)/Aa is positive,
being the product of the positive numbers A − a and 1/Aa (by hypothesis, both
A and a are positive). Therefore, 1/a > 1/A. Conversely, if 1/A < 1/a, then
part (i) gives a = Aa(1/A) < Aa(1/a) = A; that is, A > a. •

For example, since 2 < 3, we have −3 < −2 and 1
3 <

1
2 . One should always

look at several particular cases of a formula (even though the validity of these
few cases does not prove the truth of the formula), for it helps one have a better
feeling about what is being asserted.



B
Pseudocodes

An algorithm solving a problem is a set of directions which gives the cor-
rect answer after a finite number of steps, never at any stage leaving the user in
doubt as to what to do next. The division algorithm is an algorithm in this sense:
one starts with a and b and ends with q and r . We are now going to treat algo-
rithms more formally, using pseudocodes, which are general directions that can
easily be translated into a programming language. The basic building blocks of
a pseudocode are assignments, looping structures, and branching structures.

An assignment is an instruction written in the form

〈variable〉 := 〈expression〉.

This instruction evaluates the expression on the right, using any stored values
for the variables appearing in it; this value is then stored on the left. Thus, the
assignment replaces the variable on the left by the new value on the right.

Example B.1.
Consider the following pseudocode for the division algorithm.

1: Input: b ≥ a > 0
2: Output: q, r
3: q := 0; r := b
4: WHILE r ≥ a DO
5: r := r − a
6: q := q + 1
7: END WHILE

The meaning of the first two lines is clear; line 3 has two assignments giving
initial values to the variables q and r . Let us explain the looping structure
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WHILE . . .DO before considering assignments 5 and 6. The general form is

WHILE 〈condition〉 DO

〈action〉.

Here, action means a sequence of instructions. The loop repeats the action as
long as the condition holds, but it stops either when the condition is no longer
valid or when it is told to end. In the example above, one begins with r = b and
q = 0; since b ≥ a, the condition holds, and so assignment 5 replaces r = b by
r = b − a. Similarly, assignment 6 replaces q = 0 by q = 1. If r = b − a ≥ 0,
this loop repeats this action using the new values of r and q just obtained.

This pseudocode is not a substitute for a proof of the existence of a quotient
and a remainder. Had we begun with it, we would still have been obliged to prove
two things: first, that the loop does stop eventually; second, that the outputs q
and r satisfy the desiderata of the division algorithm, namely, b = qa + r and
0 ≤ r < a. �

Example B.2.
Another popular looping structure is REPEAT, written

REPEAT 〈action〉 UNTIL 〈condition〉.

In WHILE, the condition tells when to proceed, whereas in REPEAT, the condi-
tion tells when to stop. Another difference is that WHILE may not do a single
step, for the condition is checked before acting; REPEAT always does at least
one step, for it checks that the condition holds only after it acts.

For example, consider Newton’s method for finding a real root of a poly-
nomial f (x). Recall that one begins with a guess x1 for a root of f (x) and,
inductively, defines

xn+1 = xn −
f (xn)

f ′(xn)
.

If the sequence {xn} converges (and it may not), then its limit is a root of f (x).
The following pseudocode finds a real root of f (x) = x 3 + x2 − 36 with error
at most .0001.

Input: x
Output: x , y, y ′

REPEAT
y := x3 + x2 − 36
y′ := 3x2 + 2x
x := x − y/y′

UNTIL y < .0001 �
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Example B.3.
Here is an example of the repetition structure FOR, written

FOR each k in K DO 〈action〉.

Here, a (finite) set K = {k1, . . . , kn} is given, and the action consists in perform-
ing the action on k1, then on k2, through kn .

For example,

FOR each n with 0 ≤ n ≤ 41 DO
f := n2 − n + 41

END FOR �

Example B.4.
An example of a branching structure is

IF 〈condition〉 THEN 〈action #1〉 ELSE 〈action #2〉.

When this structure is reached and the condition holds, then action #1 is taken
(only once), but if the condition does not hold when this structure is reached,
then action #2 is taken (only once). One can omit ELSE 〈action #2〉, in which
case the directions are

IF 〈condition〉 THEN 〈action #1〉 ELSE do nothing. �

Here is a pseudocode implementing the Euclidean algorithm.

Input: a, b
Output: d
d := b; s := a
WHILE s > 0 DO

rem := remainder after dividing d by s
d := s
s := rem

END WHILE
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Hints for Selected Exercises

Hint 1.1 The sum is n2.

Hint 1.2 The sum 1 +
∑n

j=1 j ! j = (n + 1)!.

Hint 1.3(ii) Either prove this by induction, or use part (i).

Hint 1.4 This may be rephrased to say that there is an integer qn with 10n =
9qn + 1.

Hint 1.9(ii) One must pay attention to hypotheses. Consider a3 + b3 if b is
negative.

Hint 1.10 There are n + 1 squares on the diagonal, and the triangular areas on
either side have area

∑n
i=1 i .

Hint 1.11(i) Compute the area R of the rectangle in two ways.

Hint 1.11(ii) As indicated in Figure 1.3, a rectangle with height n + 1 and base∑n
i=1 i k can be subdivided so that the shaded staircase has area

∑n
i=1 i k+1, while

the area above it is

1k + (1k + 2k)+ (1k + 2k + 3k)+ · · · + (1k + 2k + · · · + nk).

Hint 1.11(iii) Write
∑n

i=1(
∑i

p=1 p) = 1
2

∑n
i=1 i2 + 1

2

∑n
i=1 i in Alhazen’s for-

mula, and then solve for
∑n

i=1 i2 in terms of the rest.

Hint 1.12(i) In the inductive step, use n ≥ 10 implies n ≥ 4.

Hint 1.12(ii) In the inductive step, use n ≥ 17 implies n ≥ 7.

Hint 1.13 You may assume that the sum of a geometric series
∑∞

n=0 arn , where
0 ≤ r < 1, is a/(1 − r).

Hint 1.14 The base step is the product rule for derivatives.
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Hint 1.15 The inequality 1 + x > 0 allows one to use Proposition A.2.

Hint 1.16 Model your solution on the proof of Proposition 1.11. Replace “even”
by “multiple of 3” and “odd” by “not a multiple of 3.”

Hint 1.17 What is the appropriate form of induction to use?

Hint 1.18 Use Theorem 1.12 and geometric series.

Hint 1.19 For the inductive step, try adding and subtracting the same term.

Hint 1.20 If 2 ≤ a ≤ n + 1, then a is a divisor of a + (n + 1)!. Most proofs do
not use induction!

Hint 1.24 Check that the properties of addition and multiplication used in the
proof for real numbers also hold for complex numbers.

Hint 1.26 Consider f (x) = (1 + x)n when x = 1.

Hint 1.27(i) Consider f (x) = (1 + x)n when x = −1.

Hint 1.28 Take the derivative of f (x) = (1 + x)n .

Hint 1.30(i) Use the triangle inequality and induction on n.

Hint 1.30(ii) Use the following properties of the dot product: if u, v ∈
�

, then
|u|2 = u · u and u · v = |u||v| cos θ , where θ is the angle between u and v.

Hint 1.31 Only odd powers of i are imaginary.

Hint 1.33(ii) Compare with part (i).

Hint 1.35 How many selections of 5 numbers are there?

Hint 1.37 Even though there is a strong resemblance, there is no routine deriva-
tion of the Leibniz formula from the binomial theorem (there is a derivation using
a trick of hypergeometric series).

Hint 1.38(i) 1/z = z̄/zz̄.

Hint 1.41(i) The polar coordinates of (8, 15) are (17, 62◦), and sin 31◦ ≈ .515
and cos 31◦ ≈ .857.

Hint 1.41(ii) sin 15.5◦ ≈ .267 and cos 15.5◦ ≈ .967.

Hint 1.42 Use the portion of the full division algorithm that has already been
proved.

Hint 1.44 19 | f7, but 7 is not the smallest k.

Hint 1.46 Use Corollary 1.34.

Hint 1.47 Write m in base 2.
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Hint 1.49(i) Assume
√

n = a/b, where a/b is in lowest terms, and adapt the
proof of Proposition 1.40.

Hint 1.49(ii) Assume that 3
√

2 can be written as a fraction in lowest terms.

Hint 1.53 If ar + bm = 1 and sr ′ + tm = 1, consider (ar + bm)(sr ′ + tm).

Hint 1.54 If 2s + 3t = 1, then 2(s + 3)+ 3(t − 2) = 1.

Hint 1.55 Use Corollary 1.37.

Hint 1.56 If b ≥ a, then any common divisor of a and b is also a common divisor
of a and b − a.

Hint 1.57 Show that if k is a common divisor of ab and ac, then k | a(b, c).

Hint 1.59 Use the idea in antanairesis.

Hint 1.64(ii) Use Corollary 1.50.

Hint 1.65 The sets of prime divisors of a and b are disjoint.

Hint 1.66 Assume otherwise, cross-multiply, and use Euclid’s lemma.

Hint 1.70(i) If neither a nor b is 0, show that ab/(a, b) is a common multiple of
a and b that divides every common multiple c of a and b.

Hint 1.72 Cast out 9’s.

Hint 1.73 10 ≡ −1 mod 11.

Hint 1.74 100 = 2 · 49 + 2.

Hint 1.78 Use the fact, proved in Example 1.58, that if a is a perfect square, then
a2 ≡ 0, 1, or 4 mod 8.

Hint 1.79 If the last digit of a2 is 5, then a2 ≡ 5 mod 10; if the last two digits of
a2 are 35, then a2 ≡ 35 mod 100.

Hint 1.81 Use Euclid’s lemma.

Hint 1.83 By Exercise 1.55 on page 52, we have 21 | (x 2 − 1) if and only if
3 | (x2 − 1) and 7 | (x2 − 1).

Hint 1.86(i) Consider the parity of a and of b.

Hint 1.87 Try −4 coconuts.

Hint 1.88 Easter always falls on Sunday. (There is a Jewish variation of this
problem, for Yom Kippur must fall on either Monday, Wednesday, Thursday, or
Saturday; secular variants can involve Thanksgiving Day, which always falls on
a Thursday, or Election Day, which always falls on a Tuesday.)
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Hint 1.89 The year y = 1900 was not a leap year.

Hint 1.90 On what day did March 1, 1896, fall?

Hint 1.91(iii) Either use congruences or scan the 14 possible calendars: there
are 7 possible common years and 7 possible leap years, for January 1 can fall on
any of the 7 days of the week.

Hint 2.3(iv) Show that each of A + (B + C) and (A + B)+ C is described by
Figure 2.7.

Hint 2.4 One of the axioms constraining the ∈ relation is that the statement

a ∈ x ∈ a

is always false.

Hint 2.5(i) You may use the facts: (1) lines `1 and `2 having slopes m1 and m2,
respectively, are perpendicular if and only if m2m2 = −1; (2) the midpoint of
the line segment having endpoints (a, b) and (c, d) is ( 1

2(a + c), 1
2 (b + d)).

Hint 2.6(i) Use Proposition 2.2.

Hint 2.7 Does g have an inverse?

Hint 2.9 Either find an inverse or show that f is injective and surjective.

Hint 2.10 It isn’t.

Hint 2.11 If f is a bijection, there are m distinct elements f (x1), . . . , f (xm)

in Y , and so m ≤ n; using the bijection f −1 in place of f gives the reverse
inequality n ≤ m.

Hint 2.12(i) If A ⊆ X and |A| = n = |X |, then A = X ; after all, how many
elements are in X but not in A?

Hint 2.14(i) Compute composites.

Hint 2.20 Use the complete factorizations of σ and of σ ′.

Hint 2.21(i) There are r cycle notations for any r -cycle.

Hint 2.22(i) If α = (i0 . . . ir−1), show that αk(i0) = ik for k < r .

Hint 2.22(ii) Use Proposition 2.24.

Hint 2.24 Use induction on j − i .

Hint 2.26(i) If α = (a1 a2 · · · ak)(b1 b2 · · · bk) · · · (c1 c2 · · · ck) is a product of
disjoint k-cycles involving all the numbers between 1 and n, show that α = βk ,
where β = (a1 b1 · · · z1 a2 b2 · · · z2 . . . ak bk · · · zk).
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Hint 2.27(i) First show that βαk = αkβ by induction on k.

Hint 2.29 Let τ = (1 2), and define f : An → On , where An is the set of all
even permutations in Sn and On is the set of all odd permutations, by

f : α 7→ τα.

Show that f is a bijection, and conclude that |An| = |On |.

Hint 2.33(i) There are 25 elements of order 2 in S5 and 75 in S6.

Hint 2.33(ii) You may express your answer as a sum not in closed form.

Hint 2.34 Clearly, (y t)p = 1. Use Lemma 2.53 to show that no smaller power
of yt is equal to 1.

Hint 2.37(i) Use induction on k ≥ 1.

Hint 2.39 Consider the function f : G → G defined by f (x) = x 2.

Hint 2.40 Pair each element with its inverse.

Hint 2.41 No general formula is known for arbitrary n.

Hint 2.47 Let G be the four-group V.

Hint 2.49 If x ∈ H ∩ K , then x |H | = 1 = x |K |.

Hint 2.50 Can an infinite group have only finitely many cyclic subgroups?

Hint 2.53 If G 6= ST , find disjoint subsets of G having |S| and |T | elements,
respectively.

Hint 2.55(ii) Consider a H 7→ Ha−1.

Hint 2.56 If α ∈ SX , define ϕ(α) = f ◦ α ◦ f −1. In particular, show that if
|X | = 3, then ϕ takes a cycle involving symbols 1, 2, 3 into a cycle involving a,
b, c, as in Example 2.86.

Hint 2.67(i) Consider

ϕ : A =
[

cosα − sinα
sinα cosα

]
7→ (cosα, sinα).

Hint 2.68 List the prime numbers p0 = 2, p1 = 3, p2 = 5, . . . , and define

ϕ(e0 + e1x + e2x2 + · · · + enxn) = pe0
0 · · · pen

n .

Hint 2.72 Show that squaring is an injective function G → G, and use Exer-
cise 2.12 on page 102.

Hint 2.73 Take G = S3, H = 〈(1 2)〉, and g = (2 3).
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Hint 2.74 Show that if A is a matrix which is not a scalar matrix, then there is
some nonsingular matrix that does not commute with A. (There is a proof of this
for n × n matrices given in Proposition 4.85.)

Hint 2.75(iii) Consider cases Ai A j , Ai B A j , B Ai A j , and (B Ai)(B A j).

Hint 2.76(i) Note that A2 = −I = B2.

Hint 2.77 Use Exercise 2.59 on page 166.

Hint 2.79 Use Proposition 2.95(ii).

Hint 2.80(ii) See Example 2.48(iv).

Hint 2.80(iii) See Example 2.48(iv).

Hint 2.81 The vertices X = {v0, . . . , vn−1} of πn are permuted by every isome-
try ϕ ∈ 6(πn).

Hint 2.86(iii) Define f : H × K → H by f : (h, k) 7→ h.

Hint 2.87 If G/Z(G) is cyclic, use a generator to construct an element outside
of Z(G) which commutes with each element of G.

Hint 2.88 |G| = |G/H ||H |.

Hint 2.89 Use induction on n ≥ 1, where X = {a1, . . . , an}. The inductive step
should consider the quotient group G/〈an+1〉.

Hint 2.94 If H ≤ G and |H | = |K |, what happens to elements of H in G/K ?

Hint 2.95(i) Use the fact that H ⊆ H K and K ⊆ H K .

Hint 2.99 Use Wilson’s theorem.

Hint 2.100(ii) Use Exercise 2.98.

Hint 2.102 Use a conjugation.

Hint 2.105 Use Cauchy’s theorem.

Hint 2.108 Use Proposition 2.133.

Hint 2.109(i) Recall that A4 has no element of order 6.

Hint 2.109(ii) Each element x ∈ D12 has a unique factorization of the form
x = bi a, where b6 = 1 and a2 = 1.

Hint 2.110(ii) Use the second isomorphism theorem.

Hint 2.111 You may use the fact that the only nonabelian groups of order 8 are
D8 and Q.
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Hint 2.112(i) There are 8 permutations in S4 commuting with (1 2)(3 4), and
only 4 of them are even.

Hint 2.113(i) If α = (1 2 3 4 5), then
∣∣CS5(α)

∣∣ = 5 because 24 = 120/|CS5(α)|;
hence CS5(α) = 〈α〉. What is CA5(α)?

Hint 2.116(i) Show that (1 2 3) and (i j k) are conjugate as in the proof of
Lemma 2.153.

Hint 2.117 Use Proposition 2.33, checking the various cycle structures one at a
time.

Hint 2.119 Use Proposition 2.95(ii).

Hint 2.121(i) Kernels are normal subgroups.

Hint 2.121(ii) Use part (i).

Hint 2.122 Show that G has a subgroup H of order p, and use the representation
of G on the cosets of H .

Hint 2.123 If H is a second such subgroup, then H is normal in Sn and hence
H ∩ An is normal in An .

Hint 2.125 The parity of n is relevant.

Hint 2.128(i) The group G = D10 is acting. Use Example 2.62 to assign to each
symmetry a permutation of the vertices, and then show that

PG(x1, . . . , x5) = 1
10 (x

5
1 + 4x5 + 5x1x2

2)

and
PG(q, . . . , q) = 1

10 (q
5 + 4q + 5q3).

Hint 2.128(ii) The group G = D12 is acting. Use Example 2.62 to assign to
each symmetry a permutation of the vertices, and then show that

PG(x1, . . . , x6) = 1
12 (x

6
1 + 2x6 + 2x2

3 + 3x2
2 + 4x3

2)

and so
PG(q, . . . , q) = 1

12 (q
6 + 2q + 5q2 + 4q3).

Hint 3.6(i) You may use some standard facts of set theory:

U ∩ (V ∪ W ) = (U ∩ V ) ∪ (U ∩ W );

if V ′ denotes the complement of V , then

U − V = U ∩ V ′;
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the de Morgan laws (Exercise 2.2 on page 100):

(U ∩ V )′ = U ′ ∪ V ′ and (U ∪ V )′ = U ′ ∩ V ′.

Hint 3.10(ii) If zw = 0 and z = a + ib 6= 0, then zz̄ = a2 + b2 6= 0, and
(

z̄

z̄z

)
z = 1.

Hint 3.12 Every subring R of
�

contains 1.

Hint 3.13 Use Theorem 1.65.

Hint 3.14(i) Yes.

Hint 3.14(ii) No.

Hint 3.18 If R× denotes the set of nonzero elements of R, prove that multiplica-
tion by r is an injection R× → R×, where r ∈ R×.

Hint 3.19 Use Corollary 1.20.

Hint 3.26(i) See Example 2.48(iv).

Hint 3.27 If x−1 exists, what is its degree?

Hint 3.29(i) Compute degrees.

Hint 3.30 Use Fermat’s theorem.

Hint 3.31(i) Compare the binomial expansions of (1 + x) pm and of (1 + xm)p

in
�

p [x].

Hint 3.33 This is not a hard exercise, but it is a long one.

Hint 3.35(ii) Generalize the example in part (i).

Hint 3.35(ii) The condition is that there should be a polynomial g(x) =
∑

anxn

with f (x) = g(x p); that is, f (x) =
∑

bnxnp, where b p
n = an for all n.

Hint 3.36(i) The proof for polynomials, Proposition 3.25, works here.

Hint 3.37(i) If R is a domain and σ, τ ∈ R[[x]] are nonzero, prove that ord(στ) =
ord(σ )+ ord(τ), and hence στ has an order.

Hint 3.40(ii) First prove that 1+1 = 0, and then show that the nonzero elements
form a cyclic group of order 3 under multiplication.

Hint 3.46 Use the previous exercise to prove that ϕ is a homomorphism.

Hint 3.47(i) Use Exercise 2.12 on page 102.

Hint 3.50(i) Define 8 : Frac(A) → Frac(R) by [a, b] 7→ [ϕ(a), ϕ(b)].
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Hint 3.53(i) Show that (r, s) is a unit in R × S if and only if r is a unit in R and
s is a unit in S.

Hint 3.53(ii) See Theorem 2.126.

Hint 3.54(ii) Define ϕ : F →
�

by ϕ(A) = a + ib.

Hint 3.55 The answer is x − 2.

Hint 3.56 Use Frac(R).

Hint 3.60 Use Frac(R).

Hint 3.61 See Exercise 1.53 on page 52.

Hint 3.62 Mimic the proof of Proposition 1.40 which shows that
√

2 is irrational.

Hint 3.63 Use Exercise 3.34 on page 240.

Hint 3.65(ii) The general proof can be generalized from a proof of the special
case of polynomials.

Hint 3.67 There are q, r ∈ R with bi = qbi+1 + r .

Hint 3.68(i) If I is a nonzero ideal, choose τ ∈ I of smallest order. Use Exer-
cise 3.37 on page 240 to prove that I = (τ).

Hint 3.69(i) Example 3.39.

Hint 3.70 See Exercise 1.70 on page 56.

Hint 3.73(i) Use a degree argument.

Hint 3.74 Show that
√

x + 1 is not a polynomial.

Hint 3.75 Let k be a field and let R be the subring of k[x] consisting of all
polynomials having no linear term; that is, f (x) ∈ R if and only if

f (x) = s0 + s2x2 + s3x3 + · · · .

Show that x5 and x6 have no gcd.

Hint 3.77(i) See Exercise 3.63 on page 271 and Corollary 3.75.

Hint 3.78(i) Use Theorem 3.50.

Hint 3.78(ii) Set x = a/b if b 6= 0.

Hint 3.80(vii) Show that f (x) has no roots in
�

and that a factorization of f (x)
as a product of quadratics would force impossible restrictions on coefficients.

Hint 3.80(viii) Show that f (x) has no rational roots and that a factorization of
f (x) as a product of quadratics would force impossible restrictions on coeffi-
cients.
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Hint 3.82 The irreducible quintics in
�

2 [x] are:

x5 + x3 + x2 + x + 1 x5 + x4 + x2 + x + 1

x5 + x4 + x3 + x + 1 x5 + x4 + x3 + x2 + 1

x5 + x3 + 1 x5 + x2 + 1.

Hint 3.83(i) Use the Eisenstein criterion.

Hint 3.84 f (x) 7→ f ∗(x), which reverses coefficients, is not a well-defined
function k[x] → k[x].

Hint 3.85 This exercise uses group theory. Use induction on the number of
generators.

Hint 3.88 Adapt the proof of Exercise 1.55 on page 52.

Hint 3.89(ii) See Proposition 2.78.

Hint 3.89(iii) mn = | �
mn| = | imϕ| ≤ | �

m × �
n| = mn.

Hint 3.90(i) Adapt the proof of Theorem 1.69.

Hint 3.90(ii) See the proof of Theorem 2.126.

Hint 3.91 See Exercise 3.77 on page 278.

Hint 3.94 Use Exercise 2.53 on page 155.

Hint 3.95 Show that
� ×

p
∼= 〈−1〉 × H , where H is a group of odd order m, say,

and observe that either 2 or −2 lies in H because

�
2 × �

m = ({1} × H) ∪ ({−1} × H) .

Finally, use Exercise 2.72 on page 166.

Hint 3.96(ii) Equate like coefficients after expanding the right-hand side.

Hint 3.96(iii) In the first case, set a = 0 and use b to factor x 4 + 1. If a 6= 0,
then d = b and b2 = 1 (so that b = ±1); now use a to factor x4 + 1.

Hint 3.96(iv) Use Exercise 3.95 on page 304.

Hint 3.98 See Exercise 3.26 on page 232.

Hint 3.102(ii) Exercise 2.105 on page 204.

Hint 4.3 If u, v ∈ V , evaluate −[(−v)+ (−u)] in two ways.

Hint 4.7(i) When are two polynomials equal?
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Hint 4.8 The slope of a vector v = (a, b) is m = b/a.

Hint 4.9(ii) Rewrite the vectors u, v, and n using coordinates in
� 3 .

Hint 4.11(ii) If A is skew-symmetric, then all its diagonal entries are 0.

Hint 4.12 Use Theorem 3.83.

Hint 4.13 Prove that (ei , e j ) = δi j for all i, j , where δi j is the Kronecker delta.

Hint 4.14 Prove that there is some m such that I, A, A2, . . . , Am is a linearly
dependent list.

Hint 4.16 Prove that if v1 + U, . . . , vr + U is a basis of V/U , then the list
v1, . . . , vr is linearly independent.

Hint 4.18(ii) Take a basis of U ∩ U ′ and extend it to bases of U and of U ′.

Hint 4.22(ii) Let A be the matrix whose rows are the given vectors, and see
whether rank(A) = m.

Hint 4.23 If A is the matrix whose rows are v1, v2, v3, is rank(A) = 3?

Hint 4.24 If γ ∈ km , prove that Aγ is a linear combination of the columns of A.

Hint 4.26(ii) Let A be Gaussian equivalent to an echelon matrix U , so that there
is a nonsingular matrix P with P A = U . Prove that β lies in the row space
Row(A) if and only if Pβ ∈ Row(U ).

Hint 4.27(ii) If E p · · · E1 A = I , then A−1 = E−1
1 · · · E−1

p . Conclude that the

elementary row operations which change A into I also change I into A−1. The
answer is

A−1 = 1
4




1 −3 −1
1 1 −1

−1 3 5


 .

Hint 4.34(ii) Here is the statement. If f : V → W is a linear transformation with
ker f = U , then U is a subspace of V and there is an isomorphism ϕ : V/U →
im f , namely, ϕ(v + U ) = f (v).

Hint 4.35 Use Theorem 4.61.

Hint 4.42 See the elementary row operations on page 346.

Hint 4.45(ii) 0 = 1 − ωn = (1 − ω)(1 + ω + ω2 + · · · + ωn−1).

Hint 4.54 If Bi = Pi Ai P−1
i for all i , then (P1 ⊕· · ·⊕ Pt )

−1 = P−1
1 ⊕· · ·⊕ P−1

t .

Hint 4.56 Assume first that c ∈ k.

Hint 4.59 Recall the power series 1/x = 1 − x + x2 − x3 + · · · , where x is a
nonzero real.
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Hint 4.64 C is the disjoint union
⋃

c∈C Bt (c).

Hint 4.69(i) Use the factorization x15 − 1 = 81(x)83(x)85(x)815(x) in
� [x],

where 8d (x) is the dth cyclotomic polynomial.

Hint 4.69(ii) Try g(x) = x4 + x + 1.

Hint 4.69(iii) Show that ζ 2 is a root of g(x).

Hint 4.70 There is an error locator vector of the form (∗, 0, 0, ∗).
Hint 5.2(ii) As a practical matter, given a monic polynomial in

�
[x], one should

first use Theorem 3.90 to see whether it has any rational (necessarily integral)
roots.

Hint 5.7 Apply complex conjugation to the equation f (u) = 0.

Hint 5.8(i) By definition, cosh θ = 1
2 (e

θ + e−θ ). Expand and then simplify
4[ 1

2 (e
θ + e−θ )]3 − 3[ 1

2 (e
θ + e−θ )] and obtain 1

2 (e
3θ + e−3θ ).

Hint 5.8(ii) By definition, sinh θ = 1
2 (e

θ − e−θ ).

Hint 5.9 r = cos 3θ = cos 3(θ + 120◦) = cos 3(θ + 240◦).

Hint 5.10 The roots are −4 and 2 ±
√

−3.

Hint 5.11 The roots are 17 and 1
2 (−1 ±

√
−3).

Hint 5.12(i) The roots appear in unrecognizable form.

Hint 5.12(ii) The roots are 4 and −2 ±
√

3.

Hint 5.13 The roots are 2 and −1 ±
√

3.

Hint 5.14 This is a tedious calculation. The roots are −3,−1, 2 ±
√

6.

Hint 5.19 No.

Hint 5.20(ii) Use Proposition 1.36.

Hint 5.20(iii) Use Exercise 2.12 on page 102 to prove the Frobenius F : k → k
is surjective when k is finite.

Hint 5.21(ii) Use Proposition 3.116.

Hint 5.21(iii) Prove that if σ ∈ G, then σ is completely determined by σ(α),
which is a root of the irreducible polynomial of α.

Hint 5.21(iv) Prove that F has order ≥ n.

Hint 5.24 Observe that x30 − 1 = (x6 − 1)5 in
�

5 [x].

Hint 5.28(i) If α is a real root of f (x), then
�
(α) is not the splitting field of

f (x).
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Hint 5.28(ii) Use part (i).

Hint 5.28(iii) Try g(x) = 3x3 − 3x + 1.

Hint 5.29(ii) Use Exercise 3.63 on page 271.

Hint 5.31(i) Consider f (x) = x p − t ∈ �
p (t)[x].

Hint 6.5(ii) Use part (i).

Hint 6.5(iii) Use part (i).

Hint 6.7 There are 14 groups.

Hint 6.9 If B is a direct sum of k copies of a cyclic group of order pn, then how
many elements of order pn are in B?

Hint 6.10 If A and B are nonzero subgroups of
�

, then A ∩ B 6= {0}.

Hint 6.11(i) Use the proof of the basis theorem (Theorem 6.11).

Hint 6.12 Assume first that G is primary.

Hint 6.13 If F is a direct sum of m infinite cyclic groups, prove that F/2F is an
m-dimensional vector space over

�
2 .

Hint 6.16 Consider S3 × S3.

Hint 6.18 If g ∈ G, then g Pg−1 is a Sylow p-subgroup of K , and so it is
conjugate to P in K .

Hint 6.19 It suffices to find a subgroup of S6 of order 16. Consider the disjoint
union {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4} ∪ {5, 6}, and use Exercise 2.95 on page 188.

Hint 6.20 Use the fact that any other Sylow p-subgroup of G is conjugate to P .

Hint 6.21 Compute the order of the subgroup generated by the Sylow subgroups.

Hint 6.22(i) Show that [G/H : H P/H ] and [H : H ∩ P] are prime to p.

Hint 6.22(ii) Choose a subgroup H of S4 with H ∼= S3, and find a Sylow 3-
subgroup P of S4 with H ∩ P = {1}.

Hint 6.24 Some of these are not tricky.

Hint 6.25 Adapt the proof of the primary decomposition.

Hint 6.27 By Cauchy’s theorem, G must contain an element a of order p, and
〈a〉 � G because it has index 2.

Hint 6.28(i) Every independent subset can be extended to a basis.

Hint 6.28(ii) The group GL(r, k) acts on the set X of all linearly independent
r -lists in (

�
q )

n, and use the proof of Theorem 6.30.
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Hint 6.39(i) If ρ(z) = eiθ z, define R(z) = eiαz, where α = 1
2 (2π − θ).

Hint 6.42 Prove that every g ∈ G has a unique expression g = a i b j , where
i ∈ {0, 1} and j ∈ �

.

Hint 7.2 When is a Boolean ring a domain?

Hint 7.4(ii) Let f : � → �
4 be the natural map, and take Q = {0}.

Hint 7.14(ii) If I and J are coprime, there are a ∈ I and b ∈ J with 1 = a + b.
If r, r ′ ∈ R, prove that(d + I, d + J ) = (r + I, r ′ + J ) ∈ R/I × R/J , where
d = r ′a + rb.

Hint 7.15(ii) You may assume that every nonunit in a commutative ring lies in
some maximal ideal (this result is proved using Zorn’s lemma).

Hint 7.29 Use the proof of the Hilbert basis theorem, but replace the degree of a
polynomial by the order of a power series (where the order of a nonzero power
series is its first nonzero coefficient).

Hint 7.33 Use Exercise 1.3(i) on page 13.

Hint 7.34 If f r ∈ I and gs ∈ I , prove that ( f + g)r+s ∈ I .
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Abel, N. H., 121, 447, 466
abelian group, 122

finite, 484
finitely generated, 187
free, 485
primary, 477

ACC, 533
action

group, 193
transitive, 194

pseudocode, 584
addition theorem, 23
adjoining, 297, 449
adjoint

linear transformation, 371
matrix, 387

Adleman, L., 68
affine group, 129
al-Khwarizmi, 32
algebra over a field, 538
algebraic, 342, 449
algebraic integer, 279

minimum polynomial, 288
algebraic set, 540

irreducible, 550
projective, 554

algebraically closed, 299
Alhazen, 8, 13
alphabet, 401
alternating group, 147
anagram, 20

antanairesis, 45
anthyphairesis, 45
arrangement, 103
Artin, E., 453
ascending chain condition, 533
assignment, 583
associates, 224, 523
associative, 122

generalized, 130
automorphism

field, 451
group, 168

axis
reflection, 136, 499

b-adic digits, 48
Bachet de M éziriac, 50
back diagonal, 310
ball, 428
Barr, M., 13
base b, 48
base step, 5
basis

free abelian group, 486
ideal, 533
orthonormal, 384
standard, 331
vector space

finite-dimensional, 333
basis theorem

finite abelian groups, 482
Hilbert, 536
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BCH code, 417
Beltrami, E., 550
bijection, 91
binary code, 401
binomial coefficients, 16

q−, 497
binomial theorem

commutative rings, 220
in � , 20

block code, 401
Boole, G., 127
Boolean group, 127
Boolean ring, 227
Bose, R. C., 309, 416
bracelet, 213
Bruck, R. H., 319
Bruck–Ryser theorem, 319
Buchberger’s algorithm, 575
Buchberger’s theorem, 573
Buchberger, B., 557, 569
built from, 356
Burnside’s lemma, 206
Burnside, W., 206

calendar formula, 75
Conway, J. H., 78

cancellation law
domain, 220
group, 124
symmetric group, 104

Cantor, G., 94
Cardano formula, 436
Cardano, G., 432
cartesian product, 84
casting out 9’s, 63
casus irreducibilis, 459
Cauchy theorem, 198, 200
Cauchy, A., 103
Cayley theorem, 189
Cayley, A., 146, 189, 191
center

group, 163
matrix ring, 382

centerless, 163
centralizer, 195
characteristic, 294
characteristic polynomial, 391

Chaudhuri
see Ray-Chaudhuri, 416

Chen, J. R., 3
chessboard, 213
Chinese Remainder Theorem

commutative rings, 522
in � , 65
polynomials, 303

circle operation, 231
circle group, 126
class equation, 198
closed sets, 543
closed under operation, 144
code

(n,M, d)-code, 405
[n,m]-code, 401
BCH, 417
binary, 401
block, 401
cyclic, 413
dual, 421
Hamming, 413
Hamming [7, 4], 412
linear, 408
parity check, 401
perfect, 428
permutation-equivalent, 409
Reed-Solomon, 419
triple repetition, 402
two-dimensional parity, 402

codeword, 401
coefficients, 233
cofactor, 388
colon ideal, 522
coloring, 208
column space, 329
combinatorial proof, 21
common divisor

domain, 255, 256
in � , 37

several integers, 52
common multiple

in � , 55
two polynomials, 259

common year, 72
commutative, 122
commutative ring, 216
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domain, 220
euclidean ring, 265
field, 228
local, 522
noetherian, 534
polynomials, 238
principal ideal domain, 258
UFD, 524

commutator subgroup, 189
companion matrix, 399
compass, 355
complement

subset, 82
subspace, 345

complete factorization, 110
complete orthogonal set, 317
complex numbers

conjugate, 126
exponential form, 27
modulus, 21
polar decomposition, 21
root of unity, 27

composite
function, 89
number, 2

congruence mod m, 57
congruence class, 97, 168, 289
conjugacy class, 195
conjugate

complex, 126
group elements, 162
subgroups, 488

conjugation, 162
consistent system, 354
constant

term, 237
function, 84
polynomial, 237

constructible
number, 357
point, 357
subfield of all, 357

content, 282, 528
continuous, 556
contrapositive, 4
converse, 25
Conway, J. H., 78

coordinate list, 334
coordinate ring, 543
coprime ideals, 522
correct errors, 405
correspondence theorem

groups, 181
rings, 517

coset
in group

left, 151
right, 151

in quotient ring, 290
countable, 94
cubic, 237
cubic formula, 436
cycle, 105
cycle index, 210
cycle structure, 112
cyclic code, 413

generating matrix, 415
generating polynomial, 414

cyclic group, 147
cyclotomic polynomial, 29, 287

day, 72
De Moivre theorem, 23
De Moivre, A., 23
de Morgan laws, 100
de Morgan, A., 100
Dean, R. A., 232
decoding

block code, 401
linear code, 408

Dedekind, R., 275
degree

extension field, 341, 449
polynomial

one variable, 233
several variables, 559

degree function, 265
degree-lexicographic order, 562
derivative, 239
Descartes, R., 84, 431, 441
detect errors, 405
determinant

function, 386
linear transformation, 389
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matrix, 385
diabolic square, 312
diagonal

back, 310
matrix, 394

diagonalizable, 394
difference (of sets), 82
differentiable, 223
dihedral group, 141

infinite, 511
dimension, 336
direct image, 95
direct product

commutative rings, 249
groups, 183

direct sum
abelian groups, 475

external, 473
internal, 473

matrices, 399
vector spaces, 345

direct summand
abelian group, 474
vector space, 345

direction, 501
Dirichlet, P. G. L., 61
discriminant, 437
disjoint permutations, 108
disjoint subsets, 83
distance-preserving, 135
distributive law, 214
divides

commutative ring, 224
in � , 37

division algorithm
in � , 35
in k[x], 250
in k[x1, . . . , xn ], 566

divisor
commutative ring, 224
in � , 37

domain
commutative ring, 220
function, 85
PID = principal ideal domain, 258

doomsday, 78
double induction, 15

dual basis, 383
dual code, 421
dual space, 383
D ürer, Albrecht, 310

echelon
form, 346

row reduced, 346
generating matrix, 410

eigenvalue, 390, 391
eigenvector, 390
Eisenstein criterion, 286, 532
Eisenstein, F. G. M., 286
elementary divisors, 484
elementary matrix, 347
elementary row operations, 346
elimination ideal, 578
empty list, 328
empty set, 81
encoding

block code, 401
linear code, 408

entries of matrix, 128
equal

functions, 85
polynomials, 238
sets, 81

equivalence class, 97
equivalence relation, 96
error vector, 421
etymology

abelian, 122, 466
affine, 129
algebra, 32
algorithm, 32
alternating group, 147
arithmetic, 42
automorphism, 451
binomial, 16
coefficient, 233
coordinate ring, 543
corollary, xi
cosine, 31
cubic, 237
cycle, 105
degree, 233
dihedral group, 141
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domain, 228
echelon form, 346
eigenvalue, 390
factor, 13
factorial, 13
field, 228
Gaussian integers, 266
golden ratio, 11
googol, 71
Graeco-Latin squares, 316
homomorphism, 156
ideal, 275
induction, 5
isomorphism, 156
kernel, 160
Latin square, 316
lemma, xi
mathematics, xi
matrix, 127
modulo, 57
Nullstellensatz, 547
orthogonal, 326
polar coordinates, 22
polar decomposition, 22
polyhedron, 141
polynomial, 16
power, 131
pure subgroup, 478
quadratic, 237
quaternions, 164
quotient group, 176
quotient ring, 292
radical, 32
regular representation, 204
ring, 216
root, 31
secant, 31
September, 74
signum, 117
sine, 31
stochastic, 144
tangent, 31
theorem, xi
torsion subgroup, 485
translation, 137
variety, 540
vector, 322

Euclid, 36
Euclid lemma

in � , 39
in k[x], 261

euclidean algorithm
in � , 43
polynomials, 262

euclidean ring, 265
Eudoxus, 42, 355
Euler φ-function, 30, 41
Euler theorem

complex exponentials, 26
congruences, 173
Latin squares, 309

Euler, L., 27, 305
evaluation homomorphism, 243
evaluation map, 521
even permutation, 119
expression, 130
extension field, 341, 448

algebraic, 342, 449
degree, 341, 449
finite, 341, 449
Galois, 470
normal, 457
pure, 458
radical, 458
splitting field, 450

factor groups, 464
factorial, 13
Fermat

theorem, 62, 172, 200
Two-Square Theorem, 270

Fermat primes, 366
Fermat’s last theorem, 275
Fermat, P., 62
Ferrari, Lodovici, 440
Feynman, R. P., 440
Fibonacci, 430
Fibonacci sequence, 11, 399
field, 228
field of rational functions, 238
15-puzzle, 116
finite extension, 341, 449
finite-dimensional, 331
finitely generated
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abelian group, 187
ideal, 533

Fior, Antonio Maria, 432
first isomorphism theorem

commutative rings, 292
groups, 177
vector spaces, 384

fixed variables, 351
fixes, 105, 451
floor, 25
Fontana, Niccolò, 432
FOR, 585
formal power series, 240
four-group, 145
fraction field, 231
free abelian group, 485
free variables, 351
frieze group, 509, 510

point group, 510
Frobenius, G., 206, 487
function, 84
Fundamental Theorem

Algebra, 471
Arithmetic, 53
Finite Abelian Groups, 484
Galois Theory, 470

Galois extension, 470
Galois group, 452
Galois theorem, 302
Galois, E., 121, 447
Gauss theorem

R UFD implies R[x] UFD, 529
cyclotomic polynomial, 287
irreducible polynomials, 283
regular n-gon, 472

Gauss’s lemma, 281, 527
Gauss, C. F., 7, 281
Gauss-Wantzel theorem, 366, 472
Gaussian elimination, 351, 387
Gaussian equivalent, 350
Gaussian integers, 217
gcd

commutative ring, 526
in � , 37

several integers, 52
UFD, 526

general linear group, 128
generalized associativity, 130
generating matrix, 410

echelon, 410
generating polynomial, 414
generator, cyclic group, 147
generators, subgroup, 150
Gherardo of Cremona, 31
Gilbert, E. N., 428
Gilbert-Varshamov bound, 428
glide reflection, 504
Golay, M. J. E., 401
Goldbach’s conjecture, 3
golden ratio, 11
Goldman, O., 549
googol, 71
Gordan, P., 536
Gr öbner basis, 569
greatest common divisor

domain, 255, 256
in � , 37

several integers, 52
Gregorian calendar, 72
group, 122

abelian, 122
affine, 129
alternating, 147
Boolean, 127
circle group, 126
cyclic, 147
dihedral, 141

infinite, 511
four-group, 145
free abelian, 485
frieze group, 509
Galois, 452
general linear, 128
integers mod m, 168
orthogonal, 136
p-group, 199
parity, 127
quaternions, 164
quotient, 176
simple, 201
solvable, 464
special linear, 154
special orthogonal, 128
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stochastic, 144
symmetric, 103
symmetry, 140
unitriangular, 493

group of units, 226

Hadamard product, 306
Hadamard, J., 306
half-turn, 505
Hamilton, W. R., 164
Hamming

[7, 4]-code, 412
bound, 428
codes, 413
distance, 404
weight, 408

Hamming, R. W., 401, 404
Helikon, 355
Hilbert, D., 216, 536

basis theorem, 536
Nullstellensatz, 548

Hocquenghem, A., 416
homogeneous coordinates

projective line, 341
projective point, 341

homogeneous linear system, 325
homomorphism

commutative rings, 240
groups, 156

conjugation, 162
natural map, 177

Hume, J., 431
Hungerb ühler, N., 363

ideal, 246
colon, 522
elimination, 578
finitely generated, 533
generated by a1, . . . , an , 533
maximal, 519
prime, 517
principal, 246
radical, 545

identity
function, 84
group element, 122
matrix, 128

if and only if, 25
IF-THEN-ELSE, 585
image

commutative ring, 245
function, 85
group, 85
linear transformation, 377

inclusion, 85
independent list, 332

longest, 337
indeterminate, 236
index

cycle, 210
subgroup, 153

indirect proof, 4
induction, 5

base step, 5
double, 15
inductive hypothesis, 6
inductive step, 5
second form, 9

inductive reasoning, 1
infinite order, 133
infinite-dimensional, 331
injective, 88
inner product, 326

nondegenerate, 326
integer, 1
integers mod m, 168
integral domain, 220
interpolation, Lagrange, 254
intersection, 81
invariance of dimension, 335
invariant of group, 159
inverse

2 × 2 matrix, 128
commutative ring, 224
function, 92
group element, 124
image, 95
matrix, 326

invertible matrix, 387
irreducible

algebraic set, 550
in k[x], 260
in commutative ring, 523
polynomial, 260



INDEX 611

irredundant intersection, 552
irredundant union, 552
isometry, 135

glide reflection, 504
half-turn, 505
reflection, 499
rotation, 498
translation, 499

isomorphism
commutative rings, 241
groups, 156
vector spaces, 367

Jordan, C., 487
Julian calendar, 72

kernel
group homomorphism, 160
linear transformation, 377
ring homomorphism, 245

Khayyam, Omar, 430
Klein group, 145
Klein, F., 141
Kronecker

delta, 370
product, 309
theorem, 299

Kronecker, L., 43, 487
Krull, W., 549
Kummer, E., 274

Lagrange interpolation, 254
Lagrange theorem, 153
Lagrange, J.-L., 153
Lam, C., 320
Lam é theorem, 47
Lam é, G., 47
Laplace expansion, 386
Laplace, P.-S., 386
Latin square, 305

diagonal, 313
law of substitution, 122
laws of exponents, 132
lcm

in � , 55
polynomials, 259

leading

coefficient, 233
column, 346
entry, 346

leading term, 250
leap year, 72
least common multiple

in � , 55
polynomials, 259

least criminal, 3
least integer axiom, 3
Leibniz, G. W., 34
length of cycle, 105
Leonardo da Vinci, 506
Leonardo of Pisa

see Fibonacci, 430
Levi ben Gershon, 4
lexicographic order, 560
Lindemann, F., 342
linear, 237
linear code, 408
linear combination, 328

commutative ring, 224
in � , 38
vector space, 328

linear system, 324
homogeneous, 325

linear transformation, 367
adjoint, 371
nonsingular, 367
orthogonal, 384

linearly dependent, 332
linearly independent, 332, 333
list, 328
local ring, 522
longest independent list, 337
loop

FOR, 585
REPEAT, 584
WHILE, 583

lowest terms
in � , 41
in k(x), 262

magic number, 310
magic square, 310

diabolic square, 312
Mann, A., 200
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Mars, 400
Mascheroni, L., 363
matrix, 127

adjoint, 387
elementary, 347
generating, 410
inverse, 326
invertible, 387
linear transformation, 370
nilpotent, 400
nonsingular, 326
orthogonal, 385
permutation, 166, 349
row reduced echelon form, 346
scalar, 382
symmetric, 325
transpose, 325
Vandermonde, 398

Maurolico, F., 4
maximal element

partially ordered set, 535
maximal ideal, 519
maximum condition, 533
Mayan calendar, 66
McIver, A., 192
McKay, J. H., 200
metric, 403
minimum distance, 405
minimum polynomial

algebraic integer, 288
modulus

complex number, 21
congruence, 57

Mohr, G., 363
monic polynomial, 237

several variables, 559
monomial ideal, 568
monomial order, 559

degree-lexicographic order, 562
lexicographic order, 560

Moore theorem, 455
Moore, E. H., 456
Motzkin, T. S., 268
moves, 105
multidegree, 557
multiple

commutative ring, 224

in � , 37
multiplication table, 156
multiplicity, 274

natural map
groups, 177
rings, 291
vector spaces, 344

natural numbers, 1
n choose r , 18
needs no parentheses, 130
Neumann, B. H., 155
Neumann, P. M., 192
Newton’s method, 584
nilpotent

element, 545
matrix, 400

nilradical, 555
[n,m]-code, 401
(n,M, d)-code, 405
Noether, E., 177, 453, 534
noetherian, 534
nondegenerate, 326
nonempty, 3
nonsingular

2 × 2 matrix, 128
linear transformation, 367
matrix, 326

nontrivial subgroup, 145
norm, 266
normal

extension, 457
series, 464
subgroup, 161

normalizer, 489
Nullstellensatz, 548

weak, 546
number of steps

Euclidean algorithm, 45

O’Brien, E., 192
odd permutation, 119
one (in commutative ring), 216
one-one correspondence

see bijection, 91
one-to-one

see injective, 88
onto (function)
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see surjective, 87
operation, 121
orbit, 194
order

group, 148
group element, 133

infinite, 133
Oresme, N., 14
origin, 356
orthogonal

complement, 327
group, 136
group O2( � ), 139
Latin squares, 307
matrix, 385
transformation, 384

orthogonal set
Latin squares, 316

complete, 317
orthonormal basis, 384
Oughtred, W., 431

p-adic norm, 56
p-group, 199
p-primary abelian group, 477
pairwise disjoint, 99
pairwise relatively prime, 276
Pappus, 345
parallelogram law, 322
parity check code, 401
parity check matrix, 421
parity group, 127
parity, same, 57
Parker, E. T., 309
partial fractions, 276
partially ordered set, 535
partition, 99
partition notation, 409
partition of n, 486
Pascal theorem, 19
Pascal’s triangle, 16
Pascal, B., 16
Pell’s equation, 2
perfect code, 428
perfect squares, 2
permutation, 103

complete factorization, 110

cycle, 105
disjoint, 108
even, 119
odd, 119
order, 133
parity, 119
regular, 121
signum, 117
transposition, 105

permutation matrix, 166, 349
permutation-equivalent codes, 409
PID, 258
pigeonhole principle, 102
Plato, 355
point group, 510
polar coordinates, 22
polar decomposition, 21
P ólya, G., 212
P ólya theorem, 212
polynomial, 233

n variables, 238
cyclotomic, 29
equality, 238
function, 238, 539
irreducible, 260
leading term, 250
monic, 237
solvable by radicals, 458
zero, 233

powers, 131
predecessor, 9
primary component, 477
prime

field, 231
ideal, 517
number, 2

primitive polynomial, 281, 527
primitive root of unity, 29, 301
principal ideal, 246
principal ideal domain, 258
projective algebraic set, 554
projective plane, 318, 339, 340

order n, 319, 338
proof by contradiction, 4
proper

divisor, 525
ideal, 246
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subgroup, 145
subset, 81
subspace, 324

pseudocode, 583
action, 584
assignment, 583
branching structure

IF-THEN-ELSE, 585
loop

FOR, 585
REPEAT, 584
WHILE, 583

public key cryptography, 68
pure extension, 458
pure subgroup, 478
Pythagorean triple, 52

primitive, 53

q-binomial coefficients, 497
quadratic, 237
quartic, 237
quartic formula, 441
quaternions, 164
quintic, 237
quotient

division algorithm
� , 36
polynomials, 252

group, 176
ring, 290
space, 344

r -cycle, 105
radical

extension, 458
ideal, 545
of ideal, 545
tower, 458

Rahn, J. H., 431
rank

linear transformation, 384
matrix, 347

rate of information, 407
Ray-Chaudhuri, D. K., 416
Recorde, R., 431
reduced basis, 577
reduced mod {g1, . . . , gm}, 566

reduced polynomial, 433
reduction, 564
Reed, I. S., 419
Reed-Solomon code, 419
reflection, 136, 499
regular

permutation, 121
representation, 204

relation, 96
relatively prime

in � , 40
polynomials, 262
UFD, 527

remainder
division algorithm

in � , 36
polynomials, 252

mod G , 567
REPEAT, 584
repeated roots, 271
representation on cosets, 190
restriction, 85
ring

commutative, 216
noncommutative, 217
zero, 220

ring of polynomials, 237
Rivest, R., 68
root, 252

multiplicity, 274
root of unity, 27, 450

primitive, 29, 301
rotation, 136, 498
roulette wheel, 213
row space, 329
RSA public key cryptography, 68
Ruffini, P., 447
ruler, 355
Ryser, H. J., 319

S-polynomial, 571
same number, 94
same parity, 119
Sarges, H., 536
Saturn, 400
scalar, 322

matrix, 167, 382
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multiplication, 321
transformation, 382

Schering, E., 487
Scipione del Ferro, 431
second form of induction, 9
second isomorphism theorem, 180
semigroup, 130
separable polynomial, 470
sequence, 233
Shalev, D., 131
Shamir, A., 68
Shannon, C. E., 401
Shrikhande, S. S., 309
Sierpinski, W., 2
signum, 117
similar matrices, 376
simple group, 201
simple move

15 game, 116
Singer, R., 286
single-valued, 88
Singleton bound, 428
Singleton, R. C., 428
singular, 379
skew-symmetric, 344
smallest subspace, 330
Solomon, G., 419
solution

linear system, 325
set, 325
space, 325

solution space, 325
solvable by radicals, 458
solvable group, 464
spans, 328
Spec(R), 555
special linear group, 154
special orthogonal group, 128
splits, 450
splitting field, 450
squarefree integer, 51
stabilizer, 194
standard basis, 331
Steinitz, E., 471
Stickelberger, L., 487
stochastic group, 144
straightedge, 355

subfield, 231
subgroup, 144

center, 163
commutator, 189
cyclic, 147
generated by subset, 150
nontrivial, 145
normal, 161
proper, 145
pure, 478
Sylow, 487

subring, 221
subset, 81
subspace, 323

proper, 324
row space, 329
smallest, 330
spanned by X , 328

subtraction, 219
summand, direct, 474
support, 408
surjective, 87
Sylow subgroup, 487
Sylow theorem, 490, 491
Sylow, L., 487
symmetric difference, 100, 127
symmetric group, 103
symmetric matrix, 325
symmetry, 140
symmetry group, 140

target, 85
Tarry, G., 309
Tartaglia, 432
third isomorphism theorem, 180
topological space, 543
topology, 543
torsion subgroup, 485
total degree, 557
trace, 392
transcendental, 342, 449
transition matrix, 370
transitive

equivalence relation, 96
group action, 194

translation, 137
transmission, 401
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transpose, 325
transposition, 105
triangle inequality, 403
triangular matrix, 387
tridiagonal matrix, 398
triple repetition code, 402
type, pure extension, 458

UFD, 524
union, 82
unique, 11
unique factorization, 273
unique factorization domain, 524
unit, 224
unitriangular, 493

van der Waerden, B. L., 42, 354
Vandermonde matrix, 398
Vandermonde, A.-T., 398
variables

fixed, 351
free, 351

variety, 550
Varshamov, R. R., 428
vector space, 321
vectors, 322
Viète, F., 431, 444

Wantzel, P. L., 363
weighing, 50
well-defined, 100
well-ordered, 558
WHILE, 584
Widman, J., 431
Wielandt, H., 491
Wiles, A., 275
Williams, K. S., 268
Wilson theorem, 174
Wilson, J., 174
word, 401

year, 72
leap year, 72

Zariski topology
on kn , 543
Spec(R), 556

Zariski, O., 556
zero

polynomial, 233
ring, 220
several variables, 539

Zorn’s lemma, 535


