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BASIC CONCEPTS
1. Sets.

{a) Def. A set is a well defined collection af objects, which are called members or elements or points
of the set.
For Examples : () The collection N is the set of all natural numbers.
{if) The collection Z is the set of all integers.
{iii) The collection Q is the set of all rational numbers.
() The collection R is the set of all real numbers.
(v) The collection C is the set of all complex numbers. *
If S be a set and x be an element, then
(i) x € 5 means “x belongs to 5°
(if) x & S means “x does not belong to 5.
Notations. The sets are usually denoted by capital Roman letters and the elements are usually by
small Roman or Greek letters.
(b) Representation. A set is represented either by describing all |its elements or by stating the
property which determines whether an element belongs to S or not.
For Examples : (/) If A has integers 1, 2, 3, 4, 5, then we write A = {1, 2, 3, 4, 5}.
(i) If B is the set of those integers which are squares of some other integers, then B
has integers 0, 1, 4, 9, 16, 25,......
‘We write B = {x: x is a square of some integer}.
In general, A = {x: P(x)} means & set.
A consists of those elements, which satisfy the property P.
(c) Subset. Def. A set A is said to be a subset of a set B if every element of A is also in B.
For Examples : (i) The set Z of all integers is a subset of Q, the set of all rational numbers,
(ii) The set Q of all rational numbers is a subset of R, the set of all real numbers.
() Null Set. Def. A set having no element is said to be a null set.
It is also known as Empty set or Void set.
Null set is usually denoted by ¢.
For Examples: (/) A={x:x>0andx<0}is¢.
(i)B={x:xERandx*+1=0}is¢.
(e} Union and Intersection.
(#) Union. Def. (4 U B) is the set (Union of A and B), which consists of all those elements which are
either in A or in B or in both. )
For Examples: (/) LetA={1,3,59)andB= {3,510}, then AUB={1,3,5,9,10}.
(i) LetA={1,3,57,9) and B= {2, 4, 6, 8}, then
AUB={1,213,456,789}
(i) Intersection. Def. (A N B) is the set (Intersection of A and B), which consists of all those
elements which belong to A as well as B,
For Examples : (i) Let A= {1,3,5,9} and B= {3, 5, 10}, then A N B = {3, 5}.
(if)LetA={1,3,5,7,9}and B={2,4,6,8),thenANB=¢.
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2 Gotdos LINEAR ALGEBRA

(f) Cartesian Product.

Given two objects a and b, we form an object (g, b), called an ordered pair of @ and b, with a as first
co-ordinate and b as second co-ordinate such that

~ {a,b)=(c,d)holds iffa=cand b=d.

Thus (1, 2) and (2, 1) are not same. ’

Def. Given two sets A and B. The set consisting of all ordered pairs (a, by witha EAand b €8, is
called the cartesian product of A and B and is denoted by A x B.

For Examples : Let A= {1,2, 3} and B = {1, 6}. Then

() AxB={(1,1),(1,6),(2,1),(2.6).(3, 1) (3,6)} ; and

(i) B x A= {(1,1),(1,2),(1,3), (6, 1), (6,2), (6, 3)}.
2. Functions.

Def. A function f from a set A 1o a set B is a rule or law which associates each a € A fo a unigue
element b €B.

This is also known as mapping.

S A = B means that “f is a function from A o B",

Here b is called the image of @ under fand, we write b =f(a).

Theset A= { a,f(a):a € A} is asubset of A x B is called the graph of £

Other Definitions :

(/) Theset {a:(a, b) €S for some b} is called the domain of 5.

(i) Theset { b:(a, b) € S for some a} is called the range of S.

(iify The function f: A - B is said to be one-one if for any a, , a;
fa)=fla) = a= aér

fla)=f(a) = a=ay
(iv) The function f: A -+ B is said to be onto if Rf (Range of f)=B.
A function, which is one-one onto, is called a bijection.

3. Binary Compositions.
See Art | ; Chapter 2.
4. Group.

(@) Let us deal with operations of addition and multiplication among numbers.

(1) Consider Z the set of all integers.

We know that for any two integers @ and b, the sum a + b is also an integer.

Given an ordered pair (a, b} of the elements of Z, addition (+) determines a unique element a + b of Z.
Thus we say that Z is closed under addition.
Other Properties of Addition

() Associativity. (a+b)+c=a+(b+c)Va, bcEZ

(if) Existence of Identity. 'l'here extsts 0EZsuchthata+0=g=0+aVaEZ

Here 0 is called the additive id Jm'zam 1 tof Z.

(iif} Existence of Inverse. There exists a’ € Z such that

ata =0=a +a¥a€LZ
Here a' (= — a) is called the additive inverse or negative of a.
(iv) Commutativity. a+b=b+a¥a b EZ
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(Ill) Consider Q*, the set of all non-zero rational numbers.
Here Q* is closed under multiplication.
[ Given an ordered pair (a, b) of the el af (*, multiplication ( . ) determines a unique
element a . b of 0*]

Other Properties of Multiplication

(i) Associativity. (a.b).c=a. (b.c})Va, b, cEQ* .

(if) Existence of Identity. There exists | € Q* suchthata.l=a=1.aVaEQ*.
Here 1 is called the multiplicative identity or unit element of Q*.

(iif) Existence of Inverse, There exists o’ € Q* suchthata.a’'=1=4a".a¥Va EQ*.
Here a’ (= a '} is called the multiplicative inverse or reciprocal of a. *

(iv) Commutativity.a.b=b.aVa, b€ Q.

(&) 1. Group.
A svstem <G, =2, where Gis mn—empry set ar:d = is a binary composition on G, is called a group if
i satisfies the following p (G.N.DA. 1997)

(i) Closure Axiom : Va.bEG = a*bEQG.
(if) Associative Law: a*(b*c)={(a*H*cVa b cEGC.
(iif) Existence of Identity : There exists an element e€G, called an identity, such that a*e=a=e*a¥ a €G.
() Existence of Inverse : ¥ a € G, there exists an element @ '€ G, called the inverse of a, such
that a*a'=e=a'*a

Caution. a ' does not mean l
a

2. Commutative Group or Abelian Group.

If in addition to the above four postulates, the following postulate is also satisfied, the group G is
called a Commutative or an Abelian group.

(v) Commutative Law. Ya,bEG a*b=b"a.

3. Non-Commutative Group or Non-abelian Gmup.

If the group does not satisfy the above postulate (v), then the group G s called Non-commutative or
Non-abelian group.

4. Finite and Infinite Group.

If the number of elements in the group G is finite, then < G, * > is called a finite group, otherwise it is
called an infinite group.

5. Order of the group.

The number of elements in a finite group is called the order of the group.

This is denoted by O (G) or | G |.

The infinite group is of infinite order.

6. Semi-Group.

A system <G, *=, MGuammmnlM‘uabmmcmﬁmmG is called a semi-
group if it satisfies the following p

(/) Closure Axiom:Va,bEG = a"bEG

(if) Associative Law: a*(b*c) =(@*b)*cVa b cEG
Conclusion : Every group is a semi-group but every semi-group may or may not be a group.
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| SOLVED EXAMPLES |
Example 1. Prove that < Z, + >, where Z is the set of all integers, is an infinite abelian group.
Sol. The system is < Z, +>, where
Z={....=3,-2,-1,0,1,2,3,......} and *+" is the binary composition in Z.
(i) Closure Axiom. Va,hEZ = a+bEZ.

[*> Sum of any two integers is an integer]
(i) Associative Law.a+(b+c)=(a+bd)+cVa b cEZ
{iii) Existence of Identity. There exists an element 0 € Z, such that a+ 0 =a=0+aVa € Z
(iv) Existence of Inverse. ¥V a € Z, there exists an element—a € Z, such thata + (-a)=0=(-a)+a.
Remember : — a is the inverse of a under addition. Thws < Z, + > is a group.
(v) Commutative Law, Va b EZ, a+b=b+a.
Thus < Z, + > is an abelian group.
(vi) Since the number of integers is infinite,
Z is an infinite set.
Hence <Z,+ > is an infinite abelian group.
Example 2. Prove that < Q, + >, where () is a set of rational bers, is an infinite abelian group.
Sol. The system is < Q, + >, where Q is the set of rational numbers and *+' is the binary operation in Q.
(i} Closure Axiom.Va,bEQ = a+hEQ.
[ Sum of any two rational bers isar
(i) Associative Law. a+(b+c)=(a+b)+cVa,bcEQ.
(iify Existence of Identity. There exists an element 0 € Qsuchthata+0=g=0+aVa€Q.
(i) Existence of Inverse. ¥ a € Q, there exists an element - o € Qsuchthata + (-a)=0=(-a)+a.
Thus <, + > is a group.
(v) Commutative Law.Va,bEQa+b=b+a
M€Q,+>uanabdiangmup
(vi) Since the ber of rational is infini
Q is an infinite set.
Hence <Q,+>is an infinite abelian group.
Example 3. Prove that <R, +>, where R is the set of real bers is an infinite abelian group.
Sol. Exactly similar to Ex. 2. [Re'placeQbyR]
Example 4. Prove that <C, + >, where C is the set of compl, bers is an infini group.
Sol. The system is <C, +>, where C is the set of complex numbers and *+' is the binary operation in C.
(i Closure Axiom.¥a bEC = a+bhEC.
[~ Sum of any two compl bers is a compl ber]
(if) Associate Law, a+(b+c)=(a+b)+cVa b cEC.
(iif) Existence of Identity. There exists an element 0 € Csuchthata+0=a=0+a¥aEC.
|Remember : 0 is a complex number because 0 = 0 + i (0)]
(iv) Existence of Inverse. ¥ a € C, there exists an element — 2 € C such thata + (- @) =0=(-a) +a.
Thus <C, + > is a group.
(v) Commutative Law.Va,bEC,a+b=b+a.
Thus <C, + > is an abelian group.

3
1
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(v)

Since the ber of | bers is infinite,
C is an infinite set.

Hence <C, +> an infinite abelian group.
Example 5. Prove that < N, +>, where N is a set of ratural numbers, is a semi-group and not a

group.

Sol.

O]

(if)

(iid)

The system is < N, +>, where N is a set of natural numbers and *+" is the binary operation in N.
Closure Axiom.Ya bEN = g+hEN.

[ Sum of any two natural bers is a natural her]
Associative Law, a+(b+c)=(a+b)+cVa, b cEN.
Thus <N, + > is a semi-group.
Existence of Identity. Under addition composition, 0 is the identity element.

But0 € N. [~ 0is not @ natural mumber)
Thus <N, +> is not a group.

Hence <N, + > is a semi-group and not a group,
Example 6. Prove that < N', + >, where N' = {0, [, 2, 3,......} is a semi-group and not a group.

Sol.
)
(i)

(diry
(iv)

The system is <N’ +> where N'= {0, 1, 2,3, ...... } and *+° is the binary operation in N".
Closure Axiom. Va, b EN' = a+bEN'.

Associative Law, a+(b+c)=(a+b)+cVa b cEN"

Thus < N', + = is a semi-group.

Existence of Identity. There exists an tlement 0 € N', such thata + 0 =a=0+a¥VaEN".
Existence of Invcrlse. Under addition composition, — « is the inverse of a.

But —a @ N". [+ N’ contains no - ve integer}
Thus < N +> is not a group.

Hence <N', +> is a semi-group and not a group.
Example 7, Prove that <N, X>, where N is a set of natural numbers is a semi-group with an identity

element.
Sol.
0]
(if)

(iid)

The system is <N, x>, where N is a set of natural numbers and * %" is the binary operation in N.
Closure Axiom. V a,bEN = aXbEN.

[+ Product of any two natural bers is a natural number)
Associative Law.a X (b X ¢)=(a X b)) xcVa b, c EN.
Thus <N, %> is a semi-group.
Existence of Identity. There exists an element | € Nsuchthat a X 1 =a=1xa¥aEN.
Thus <N, &> is with an identity element.

Hence <N, x> is a semi-group with an identity element.
'Etample 8. Prove that <0, %> is not a group, where Q is a set of rational numbers.

Sol.
0]

The system < Q, X >, where Q is a set of rational numbers.
Closure Axiom. Va, b EQ, a. bEQ.

[~ Product of two rational numbers is a rational numb

—
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(i) Associative Law. a.(b.c)=(a.b).cVa, bc EQ.
(iif) Existence of Identity, There exists an element | € Qsuchthata. | =a=1.aVa€Q.
(iv) Existence of Inverse. There is no multiplicative inverse of 0 € Q.
Thus 0 has no inverse under multiplication.
Henee < Q, > is not a group.
Example 9. Prove that <S, X>, where § = {1} is a finite abelian group.
Sol. The system is <8, x>, where S = {1} and * %" is the binary operation in 5.
The element 1 can be repeated again and again.
1t is closed, associative law holds.
The identity element | exists.
The inverse of 1 is 1, which is in S.
Also S contains only one element.
Hence <8, x>, where 5= {1} is a finite abelian group,
Example 10. Prove that the set of non-zero real numbers from a group under multiplication.
Sol. The system is <R’, %>, where R’ is the set of all non-zero real numbers.
(/) Closure Axiom. Ya,hER' = axbER'.
[+ Product of two non-zero reals is a non-zero real)
(if) Associative Law. a X (b X ¢)=(ax by X cVYa b cER"
(iif) Existence of Identity. There exists an element | ER' suchthata X l=a=1xXaVaER'"

(iv) Existence of Inverse. ¥ a € R’, where a # 0, there exists 1 € R’ such that
a

g. ===,
a a
Hence the set of non-zero real numbers form a group under multiplication.
Example 11. Prove that the set of o compl bers form a group under multiplication.

Sol. The system is <C', x>, where C' is the set of all non-zero complex numbers.
Here C' = {x + iy | x, y are not both zeroand x, y ER }.
(i) Closure Axiom. Let zy=a+ibandz,=c+id €C".
Then z, z, = (a + ib) (¢ + id) = (ac — bd) + i (ad + bc).
Now z;2,=0 if ac—bd=0 and ad+bec=0 )
ifa=0=5b or ¢c=0=d
ifeithera+ib or ¢+ idis a zero complex number.
But a + ib and ¢ + id are both non-zero complex numbers.
Thus z, 2, is a non-zero complex number.
= 55EC. .
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(i) Associative Law,
Letzy=a+ibzy=c+idandzy=e+ifEC'
Then (z,z; }z; = [(a+ ib) (c + i)} (e + if) = [(ac — bd) + i (ad + be)] (e + i)
= [(ac - bd) e - (ad + bc) f] + i [(ac - be) f+ (ad + be) €]
Also 3, (72 29) = (@ + ib) [(c + id) (e + if) ] = (a + ib) [(ce— df) + i (¢ + de)]
=[a(ce-dN)-b(cf+de)] +i[b(ce-df) +alef+de))]
= [(ac - bdy e - (ad + be) /] + i [(ac - bd) £+ (ad + be) ]
@ z) s =2 (22 2)
Thus C' is associative.
(iif) Existence of Identity.
For a + ib € C', there exists 1 + {0 € C’ such that
{a+ib) (1 +i0)=a+ib=(l +i0) (a+ ib)
Thus 1 + {0 is the identity element.
(i) Existence of Inverse.
Letz=a-+ib € C', where a, b € R and a, b are not both zero.
1 a-ib a-ib a [ -b ]

1
Now —= = = = i .
a’+ b

z a+ib (a+B)a-ib) o' +b® a+ b
Since g, b are both non-zero, therefore, o* + 4% = 0.

Thus l ec
z

= +f[ - 2] is the multiplicative inverse of a + .
a“+ b a + b
Hence C’ is a group under multiplication.
Example 12. Show thai the set of all even integers (including zero} is an abelian.group under
addition. (P.U. 1990)
Sol. The system is <E, +>, where E is the set of all even integers (including zero).
() Closure Axiom.Va,bEE = a+bEE.
[+ Sum of wo even integers (including zero) is an even integer]
(i) Associative Law.
Let x=2k ,y =2k and z =2k, where k, .k, . k; EZ.
TNow  (x+))tz=(2ht 2k )+ 2k =20k + k) + 2K =2 [(h + k) + k]
=2 [k + (ky + k)] [+ Associative Property holds in Z)
=2k, +2 (ky + ky) = 2k, + (2hy+ 2hy) =x + (y + 2),
Thus associative law holds in E.
(iif) Existence of Identity.
For each x= 2k € E, there is 0 = 2 (0) € E such that
x+0=2k+2(0)=2(k+0)=2k=x
and 0+x=2(0)+2k=2(0+k)=2k=x
sothat x+0=x=0+x,
Thus 0 is the identity element in E.
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(i) Existence of Inverse.
For each x=2kEE, thereis-x=-2k=2(-k)EE

suchthat x+(~x)=2k+(-20=2(k+(-K))=2(0)=0

and

(x)+a=(-200+2k=2((-D +k) =2 (0)=0.
Thus each element of E possesses its inverse.
{v) Commutative Law.
Let x=2k, and y =2k, € E, where k,, k; E Z.
Then x+y=2k + 2k =2(k, + k) = 2(k, + k) =2k, + 2k; =y EE
Thus x+y=y+x ¥Yx,yEE.
Hence E is an abelian group under addition.
Example 13. Prove that <8, x>, where § = {1, - I} is a finite abelian group.
Sol. The given system is <8, x> where S = {1,-1}.
() Closure Axiom.
Since | X (-1)=-1€S,

5 is closed under ‘%",
(i) Associative Law is obvious.
(iii) Existence of Identity.
Here | is the identity element.
{~) Existence of Inverse.
1 is the inverse of 1 and — 1 is the inverse of - 1.
(v) Commutative Law.
Here I x (=1} =(=1)x I.
Thus commutative law holds in S.
Hence <S, X> is a finite abelian group.
Example 14. Prove that <5, X >, where S = {1, w, &/}, where I, , &/ are cube roots of unity, is a

[inite abelian group. {Pbi. U. 1996)

and

and

Sol. The system is <S, %>, where
S = {l,m,w’} while |, », o’ are cube roots of unity and thus " = 1, and * X" is the binary operation is S.
(7) Closure Axiom.
Since Ixw=wmeES,1 Xxw'=w' €S
wxo'=w’=1ES,
S is closed under * X",
(i) Associative Law.
Ix@xo)=Ix@)=1x1=1
(1 % w) Xw'coXw =w =1
Thus 1 x (@ w2)=(l X w) X @
Associative Law holds.
(i) Existence of Identity.
Under multiplication 1 works for identityand 1 € §
Identity element ie., | exists.
(i) Existence of Inverse,
Since 1x1=1=1x1, - listhe inverse of 1.
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and

Sincew X w'=1=0’ X o, [+ a = 1]
@’ is the inverse of w.
Sincew’ X =1=0 X ', [ & =1]

w is the inverse of w’.

Inverse of each element of S exists.
Thus < 8, %> is a group.
(v} Commutative Law.

Now I Xw=wxl, [~ each=w]
I X' =0 X1 [~ each=w’]
oxa' =o' X [ each=a’=1]

Commutative Law holds.
Thus < §, X> is an abelian group.
(vi) Since S contains three elements, .. S is finite.
Hence <S8, X> is a finite abelian group.
Example 15. Prove that <8, x>, where S is a set of 4th roots of unity ie, S={l,- 1, i,-i},isa

group, where i* =~ 1.

and

Sol. The system is < S, x>, where $= {1, - 1, ~ i} and * %" is the binary operation in S.
(i) Closure Axiom.

Since 1x(-1)=-1€S, I1xi=i€S,
I x(-i) =—i€ES, (-)xi=-i€S,
(- x(-) =iES, ix(-p=-PF=1€S.
S is closed under * X',

(it Associative Law,
IX(E=1XD)=1X(=d==i
(I x(=N)xi=(=1)xi==i
Ix(1x)=(1%x(=1))xi
Similarly with any other three members of S.
Associative Law holds.
(iii) Existence of Identity.
Under multiplication | works for identity and 1 € S.
Identity element i.e., | exists.
(iv) Existence of Inverse.

Since Ix1=1=1x1, o1 isthe inverse of 1
EDxXEN=l=E=Dx (1), o =1 is the inverse of — 1
ix(-D=1=(-fxi o =i isthe inverse of
—iXi=1=ix (=i, i isthe inverse of — i,

Inverse of each element of S exists.
Hence <8, x> is a group.
Example 16. Prove that Q+, the set of posi ional bers is an abelian group wnder the

operation defined as a * b= a—: Yabe Q*,
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Sol. () Closure Axiom.
Va,beQ = abeQ” = .%.EQ
» athQ“ .
Thus Q" is closed under ‘»’.
(i/) Associative Law.
Leta,b,cEQ‘.

a
Now a*(b*¢c) =a ("’3‘]=__.=__.‘

And(a*b)sc= [?J eE ———,
as(bee)=(asb)»ec.

Thus Associative Law holds under *»"

(it} Existence of Identity.

To Prove : VaEQ+.thm uisiseEQ+mchﬂ|atate-a-e-a.
Nowase=ag = %‘-a

ae a
= ?-a=0 -?(9-3)-0
> e=3, [+ az0asa Q)
Similarlyesa=a = e=3.
Thus Q" possesses identity element 3 €Q".
(iv) Existence of Inverse.
To Prove : Va € Q', there exists x € Q such thatasx=3 =x+a,

9

Now awx=3 = Lo > x=—
3 a

. 9
Similarlyx«a=3 = x= .

Thus Q’posmmanmvmeehnm-g-eo‘ofaeqﬂ
(v) Commutative Law.
Va,bEQ a-b—Tb-%-=b-a

Hence <Q +> is an abelian group.

Example 17. vaelhm:hemnfaﬂrﬂamdmbﬂ'sofﬁwgﬂpefS (a, b € Z) is a group with
respect to multiplication of rationals.



BABIC CONCEPTS 11

Sol. Wehave G={x|r=23";qb€Z}.
() Closure Axiom.
Letx=2“3bnndy=2c3d,whcred.b,c,d'EZ,
NOW:y=(2ﬂ35 (2.:3:‘):(2111:)(35 Sd}=za+c3b+d
€ G. [ a+candb+d € Zasa b, c. dE Z)]
Thus G is closed under multiplication.
(i) Associative Law.
a b € od 4
Let x=23%y=23%and z=2° ¥, wherea b, ¢, d e FE Z.
Now  x(ra)= “3%[e )(23’)] (23)[{22 )6 )]= @[]
= @2 ) 3"y =ttt
Similarly (ry)z=2""* @),

- x(a)= (xy)z Yxyz€G
Tims Associative Law holds in G.
(iif) Existence of Identity.

Forw:hx=2 3"ec there s 1+ 2°3° € G such that

= @*3"e 3“) R AT o L
and 1x=2%3% 3 "*"3“”’ =2"3 =y
= x. l=x=1.x
. Thus G possesses identity element | € G.
(#v) Existence of Inverse.

Foreachx=2°3" € Ghereisy=2"23" € G suchthatzy=1=yx

[ abEZ » —a-bEZ
Thus G possesses 2 37 € Z as the inverse of 2° 3° € G.
Hence <G, - > is a group.
a b

Example 18. Let R, be a set of matrices of the form [ dl

Prave that R, is a group under matrix multiplication.
Sol. (i) Closure Axiom.

 a-[ Badz B

] u*ema,b,qdamrm}mldﬂd—-bca'o.

€ 4 €2 dy
Thus A, B ER,.
Now AB = [:I‘:: :3:2 :II:: :j:j:]e R, [ 14]%0,18) =0, 48| = 0]
(if) Associative Law.
(A.B).C=A.(B.C) [+ Matrix multiplication is associative]
(fif) Existence of Identity.

1= [:] ?] acts as multiplicative identity because
AXI=A=]XA,
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(fv) Existence of Inverse.
A”' exists because | A | # 0 and belongs to R,.
Hence R, is a group under multiplication.

Example 19. (a) Show that the set of all matrices [; :j| ,aand b being non-zero reals, is a group

under matrix multiplication. (P.U. 1992)

[
(b) Show that the set of all matrices [: c],wfm‘ea b and ¢ are non-zero reals, is a group under

matrix multiplication. (P.U. 1992 5)

Sol. (a) () Closure Axiom.

Let A=|% N ., B=|™ 0 ,where a, , b, ; a, , b, are non-zero real.
0 & 0 b

Thus A,BER,.

_a,Oa; 0]_|aya; 1]
ovsa- [ 9] [ ][, Jen.
(i) Associative Law. (A.B).C=A.(B.C)
[+ Matrix multiplication is associative]
(iif) Existence of Identity.
{= [:) ?]amasmuhipliuﬁnidmﬁtybowm
AxXI=A=IxXA
(iv) Existence of Inverse.
A™" exists because | A | # 0 and belongs to R;.
Hence R, i.e., the set of matrices of given type is a group under multiplication.
(6) () Closure Axiom.
e 0 o 0 A 3
Let A [51 C::|, B |:b1 cz],wherea,,b,.c,,a,,b,,c,mnunumrul.
Thus A, B €R,.

N AB = a 0l[a, 0 _ aa, 0 eRr
™ b ajlh o bayteid, e ”

(i) Associative Law.
(A.B).C=A.(B.C) [~ Matrix multiplication is T
(ii)y Existence of Identity.

1= [t" ﬂ acts as mutliplicative identity because A X 1= A =1 X A.

(#v) Existence of Inverse.
A™" exists because | A} =a, ¢, # 0 and ER,.
Hence R, f.e., the set of matrices of given type is a group under multiplication.



BASIC CONCEPTS 13

cos @ -sina

Example 20, Prove that the set of mairices of the type A, = [ :l, where # €R, isa

sin a cos @
group under matrix multiplication.

cos § -sin 8

cosa —sina|
:|EGa.11dAﬂ- [sin 8 cosﬁ'] € G, wherea, 8 € R.

Sol. Let A= [sin a cosa
(i) Closure Axiom.
_|cosa —sine||cos B —sin B
Ac [sin a cos a] [sin B cos ,ﬂ]
B cos a cosf -sinasinf ~cos a sin f-sin a cos §
sin @ cos § +cose sinf  -sin a sin f + cos @ cos
- cos (a+f) -—sin (a+8)
sin (@+f8)  cos(a+pf)
=Ay+pEG [v a,fER = a+FEG]
(i) Associative Law.
Let Ay, Ag , A, €G, wherea, By €ER.
Then (Aq Ag) Ay=Aqsp Ay =g apyey
and f‘a\(ApAy)’AaAﬂ-l-y'ﬁuﬂﬂiyj
Since {(@+@)+y =a+(@+y), . [ Associative law holds in R]
(Ag Apr Ay = Ag (Ag Ay).
(iif) Existence of Identity.
cos0 -sin0

1A €0, then o= G003 Ol suh that A, Aq= A, = Ao,

[ AgAde=Agso=Agand Ay dg = Ap . o = Ag]
Thus A, is the identity element of G.
() Existence of Inverse.
Foreach A; € G, thereis Ay EGsuchthat Ag A ;= A=A ; A,
[v Ag Ag=dg_q=Apand A_ g Aq=A.q+a=4d)
A_ is the inverse of A,
Hence G is a group under matrix multiplication.
Example 21. Show that the set G of all real valued conti functi lefined on [0, 1] is an
abelian group under addition defined as (f + g) (x) = f(x) + g(x) V [ g €G.
‘Sol. LetG={f|f(x) ERforx €[0, 1]}, where R is the set of real valued continuous functions.
(/) Closure Axiom. Letf, g € G.
Since the sum of two real valued continuous functions is a real valued continuous function,
) =flx)+gix) = )"+£EG
Thus G is closed under addition.
(i) Associative Law. Letf, g, h € G.

Then [(/+g)+ Al ()= (F+@ @ +h ) = [f(x) +g @]+ kix)
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=f )+ [g () + h(x)] [ Associative law holds in reals]

=[f+g+m]E
Thus (f+g)+h =f+(g+MVYf g hEG.
(iif) Existence of 1dentity.
For each f € G, there is O € G defined as O (x) =0 Vx &[0, 1)
such that (O +N(x)=f(x)=(+0)(x)
Now O+NE=0x)+f()=0+f(x)=f(x)VxE[0, 1]

= O+/=f
Similarly f+0o0=f
Thus O+f=f=f+0.

Thus O € G is the identity element.
{iv) Existence of Inverse. For cach f € G, there is — f € G such that (- f) (x) = - f(x).
Now [f+-N]@=f@)+EN@=f)-f)=0=0@VxC{ 1]
3 f+=f) =0.
Similarly (=) +f/=0.
Thus SHEN=0==NHf
Thus each fhas its additive inverse (/).
G is a group under addition.
(v} Commutative Law .
VALEG (g )= flx)+ g
=gx)+fx)
= (g+Hx)¥xE[D, 1]
Thus frg=g+f
Hence G is an abelian group under addition,

{c) 1. Ring.
A system <R, +, >, where R is a non-empty set and addition ( + ), multiplication . ) are two binary
compasitions on R, is called a ring if it satisfies the following p f :

Under Addition :
(i} Closure Axiom. Ya, hER = a+bER.
(if) Associative Law, a+ (b +c)=(a+ bd)+cVa b cER
(iify Existence of ldentity. There exists an element 0 € R, called the identity under addition, such
that a+0 =a=0+aV¥aER. [0 is also called the zero-element]
(iv) Existence of Inverse. ¥ a € R, there exists an element a € R, called the inverse of a under
addition, such that
at(-a)=0=(-a)+a
{v) Commutative Law.Va,bER a +bh=b+a
Under Multiplication :
{vi} Closure Axiom. Ya,bER = a.bER.
{vif) Associative Law. a.(b.c)=(a.b).cVa b cER.
(viii} Distributive Laws. ¥V a, b, ¢ ER, )
() a.(b+c)=a.bta.c [Left]
(iN(b+c).a=b.ate.a [Right]
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Conclusion. (/) R forms an abelian group under addition
(/) R is a semi-group under multiplication
(i) R satisfies distributive Laws.
.= Note. The ring is called r iative if iative law under multiplication does not hold.
2. Commutative Ring or Abelian Ring.
In addition to the above eight postulates, if the following postulate is also satisfied, then the ring R is
called a Commutative or an Abelian Ring.
(ix) Commutative Law.Ya, bER,a. b=b.a
3. Ring with Unity,
A ring R which contains the multiplicative identity (called unity) is called a ring with unity.
(Pbi. U. 1997)
Thus if | € Rsuchthata. ! =a=1.aV a € R, then the ring is called a ring with unity.
4. Ring without Unity.
A ring R which does not contain multiplicative identity is called a ring without unity.
5. Finite and Infinite Ring.
If the number of elements in the ring R is finite, then <R, +, . > is called a Trite ring, otherwise it is
called an infinite ring.
6. Order of Ring .
! The number of elements in a finite ring is called the order of the ring.
This is denoted by O(R)ori R |
7. Units of a ring with unity.
The elements which possess inverses under the second operation (. ) are called units of a ring.
In the set | of integers, we know that (- 1) (- 1) = L.
Thus — | is the unit but not unity of the ring.
Againl.1=1.
Thus | is the unit as well as unity of the ring.
Note. Unity is a unit but every unit is not a unity.
8. Zero divisors of a ring.
— Let<R,+,.>bearing.
~ Va bER wherea=0,b%=0.
If @b =0, then R is called a ring with zero divisors. .
Here a is called the left-zero divisor and b the right-zero divisor.
An element which is left as well as right-zero divisors is called the zero divisor of the ring.
In abelian rings, every left-zero divisor is also the right-zero divisor and vice-versa.
In non-abelian rings, there may be some elemeuts which are simply lefi-zero divisor or simply right-
zero divisors.
9. Ring without zero-divisor,
The ring which is not with zero divisor is called the ring without zero divisor
te, iFaz06=0thenab=0

| SOLVED EXAMPLES |

Example 1. Prove that <Z, + =, where Z is a set of all integers, is a ring. (G.N.D.U. 1998)
Sol. The system is <Z, +, ->, where
Z={iniiininy=3,-2,-1,0, 1,2, 3,......5

and "+ and *." are binary compositions in Z.
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Under Addition :
(/) Closure Axiom. Ya, bEZ = a+bEL [+ Sum of two integers is an integer]
(i) Associative Law.a+(b+c)=(a+b) +cVa, b cEZ
(iify Existence of Identity. There exists an clement 0 € Zsuch thata+0=a=0+aVaEZ
(iv) Existence of Inverse. ¥ a € Z, there exists an element - a € Zsuch thata + (—a)=0=(-a) +a.
(v) Commutative Law. Va,bEZ, a+b=b+a.
Under Multiplication :
(vi) Closure Axiom.Va. bEZ = a. bELZ [+ Product of two integers is an integer]
{vif) Associative Law. a.(b.c)=(a.b).eVa b cELZ
(viif) Distributive Laws. ¥ a,b,c EZ,
() a.(b+c)=a.bta.c
{n (b+c)y.a=b.at+tc.a
Hence <Z, +, > is aring.

Example 2. (a) /s the set of even integers a ring under usual addition and multiplication ? Does it
contain identity ? (Pbi. U. 1997)
(b) Prove that <M, +, ->, where M is a set of those integers which are multiples of 5, is a ring.

Sol. (a) Let the system be < E, +, ->, where
E={ . ~4,-2,0,2,4,...... } and *+" and *." are binary composition in E.
Under Addition :
() Closure Axiom. Ya, b EE = a+bHEE [ Sum of two even integers is an even integer]
(i) Associative Law. a+(b+¢c)=(a+b)+cVa, b cEE.
(i) Existence of Identity. There exists an element 0 € E suchthata+0=a=0+a¥Ya€E.
{v) Existence of Inverse. ¥V o € E, there exists an element - g € E such that
at{-a)=0=(-a)+a.
(v) Commutative Law, Ya bEE = a+b=b+w
Under Multiplication :
(vi) Closure Axiom.Va,bEE = a . hEE [+ Product q"l‘wmmtegmummxwegﬂ]
(vif) Associative Law. a.(b.c)=(a.b).c¥a b ,c€EE.
(viii) Distributive laws. Ya, b, ¢ EE,
{) a.(btc)=a.bra.c
{I) (b+ey.a=bh.atc.a
Hence <E, +, == is a ring and it contains identity.
(b} The system is <M, +, ->, where

M={. . ~10,-5,0,5.10, ......}
and *+" and *." are binary compositions in M.
Under midltion

(i) Closure Axiom. Leta =5k and b= ."ni:2 whemk..i, (=¥ A

Then a+b=5k +5ky=5(k + k) EM.

(ii) Associative Law. Let a = 5k, b= 5k, , ¢ = 5k ; where k), ky , k; € Z.
Then a+(b+c)=5k +(5k+ 5k) = (5k; + 5k) + Sky=(a+ b) +c.
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(iti) Existence of Identity. There exists an element 0 € Msuch thata+0=a=0+aVaEM.

Let a=5k,.
Then a+0=5k+0=5k=a and 0+a=0+5k =5k =
0 is the identity element of M.

(iv) Existence of Inverse. ¥ a € M, there exists an element — aEMSlld‘lﬂmla+(—u) O0=(-a)+a.
{v) Commutative Law.Va, b EM = a+b=b+a
Under Multiplication :
(vi) Closure Axiom. a . b= (5k, ) (5k; ) =25k &, E M.
{vii) Associative Law. a.(b.c)=(a.d).cVa b cEM.
(viif) Distributive Laws. ¥V a, b,c EM,
Ma.(b+c)=a.b+a.c () (b+c).a=b.a+c.a
Hence <M, +, > isaring.
Example 3. Prove that <, +, ->, where Q is a set of all rational numbers, is a ring.
Sol. The system is <Q, +, ->, where Q is a set of rational numbers and '+’ and °." are binary
compositions in Q.
Under Addition :
() Closure Axiom, Va,bEQ = a+bhEQ,
[~ Sum of two rational bers is a rati ] B
{ii) Associative Law.a+(b+c)=(a+b)+cVa bcEQ.
(iii) Existence of Identity. There exists an element 0 € Q such that
a+t0=a=0+a¥aEQ.
(iv) Existence of Inverse. ¥ a € Q, there exists an element —a € Q such that @+ (- a)=0=(-a)+a.
(¥) Commutative Law.Va, b EQ,a+b=b+a.
Under Multiplication :
(vi) Closure Axiom. Ya,bEQ = a.bEQ.
[+ Product of two rational bers is a rational b
(vii) Associative Law. a.(b.c)=(a.b).c¥a bcEQ.
(viii) Distributive Laws. ¥V a, b, c € Q,
Ma.(b+cl=a.b+a.c (I (b+c).a=b.atc.a
Hence <Q, + , > is aring.
zample 4. Prove that <R, +, ->, where R is a set of all real numbers, is a ring.
Sol. Exactly similar to Ex. 3. [Replace Q by R)
Example 5. Prove that the sef R, of all ordered pairs (a, b) of real numbers is a commutative ring
under the addition and multiplication of ordered pairs defined as
(a, ) +(e,d)=(a+c,b+d)
(ab)c.d)=(ac,bd)¥ (a b).(c.d) ER. (P.U. 1992)
Sol. The systemis<S, +, > where S={ (x,»}|x,yER}
Under Addition : '
() Closure Axiom. ¥ (a, b), (c,d) ES = (a,b)+(c,dHES
[ (ab)+ic.di=(la+c,b+d)ESasa,cER = a+cERandbdER = b+dER]

—
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(i) Associative Law. ¥V (a, b),(c,d) . (e, N ES
(@, 0)+ ((c,d) + (e.)) = ((@+B) +(c. ) + (e.])
[ @8+ (@d e, ) @b+ cre,d+f)=(a+(c+e),b+(d+])
=(@+ote,@+d)+f)= (@ b)+(c D) +(e )]
(iif) Existence of Identity. There exists an element (0, 0) € S such that
(%) +(0,00=(x)=(0,00+(x. )V (v, y) ES.
(iv) Existence of Inverse. ¥ (x, ») € S, there exists an element (- x, — ¥) € S, such that
@)+ (=x,-p) =(0,0)=(-x,~ ) + (x, ).
(v) Commutative Law. ¥ (a, b), (c,d) EZ
(a, b))+ (e, &)= (c, d) + (a b). [ @b+ (c.dy=(@+ec,brdy=(c+a,d+b)=(c,d) +(a,b)]
Under Multiplication :
(vi) Closure Axiom. ¥ (g, b),(c,d) ES = (a,b)(c. ) ES
[ (a,b)(c,d)=(ac,bd) EZ asa,cER = acERandb,dER = MER]
{vii) Associative Law. ¥ (a, b), (c,d), (e, /) ES
(a,b).((c.d) . (e.N))=((a.b). (e, ). (e.f)
[+ @b).(cd).(eN)=(ab).cedf)=(alce)b.@N)=(@c)e,(bd)f)
=(ac,bd) (@) =((a,8). (. d) . (/)]
(viif) Distributive Law. Y (a, 8), (c, d). (e,f) €S,
M (@) (. d)+(e.N)=(ab).(c.d) +(a,b).(e.[f)
1y (. d+@f) . (@by=(cd.(ab)+(ef) @, b
Hence < S, +, > is a commutative Ring.
Example 6. Prove that the set of matrices of order 2 X 2 forms a ring w.r.i. addition and
multiplication of matrices. (G.N.D.U. 1992)
Sol. Let S be the set of given matrices.
Let A, B, C be any three elements of S such that
_[0 g _10 & 20 &
M[“ by :[’B [0 by ].c [“ "’3]’
where a,, b, ;a;, b; ; a3, b; are real numbers.
Under Addition :
(i) Closure Axiom. *

0 a 0 a 0 aj+a 0 a .
I 2 I 2 = '

A+B= = N = =h',

+ [0 b|]+[0 bz]+[0 bﬁb;] [IJ ﬁ'] where ay+a;=a'and b, + by=b

Since a, + @, = a’ and b, + b, = b' also belongto R,

0 a'
e
S is closed w.r.t. addition.

(if) Associative Law. .
We know that addition of matrices is associative. [Verify 1]
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(#ii) Existence of Identity.

00

(iv) Existence of Inverse,
. 0 a 10 -a 0 a 0 -al_|0O
Additive inverse of [0 .’;j| €5is [0 -b] because [0 b]+ [0 —6:[ _[0 0

Obviously [g ::] €Sas-a,-bER.

|:I] [Ij| is the zero element of S.

=2
—_

Thus additive inverse of every elemeni of § exists in S,
(v) Commutative Law.
We know that addition of matrices 15 commutative. [Verifi 1]
Under Multiplication :
(wi) Closure Axiom.

0 g jfo a ]| [0 ab
AB= [o b,]' [n bz]_[l)' by b,
Since a,b, and b,b, € R, - ABES

S is closed w.r.t. multiplication.
(vii) Associative Law,

We know that multiplication of matrices is associative. [Ferify 1]
(viif) Distributive Law.
We know that multiplication of matrices is distributive w.r.t. addition. - [Verify 1]

Hence the given system is a ring.
Example 7. Prove that the set M of all n X n mairices over reals is a non-commuitative ring with
unity, with zero divisors under addition and multiplication of matrices.
Sol. Let A, B, C € M be n X n matrices over reals
= A=[g;laxn B=lbylixn  C=le)jlyxn  whereay; by cyERforl sisml<jsn
(a) Under Addition :
() Closure Axiom. Vﬁ,BEM,ﬁ"‘B”[ﬂU]“x,“" b,-_,-],,,.(,,=[a”+bul,,,mEM
[V @by €R =ay+ b;ER]
(i) Associative Law. YA, B,CEM, A+B+C) =(a;; Lysn+ ([ 8 laxntcijlnxn)
=l daxnt[bijtednxa
=[a;;+ (bt i) nxn
= [la + i)+ el nnn .
[ Associative Law holds in R)
=la+blaxntlelaxa=(A+B)+C
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(i) Existence of Identity.
For A € M, there exists O =[0], x , EMsuchthat A+ O=A=0+A,
NWA+0'lajj]nxn+[0]uxn= [ajj"'u]uxn:[“tj]nxn':a'
Similarly O + A= A.
A+O0=A=A+0.
Thus O is the additive identity.
() Existence of Inverse,
For A € M, thereexists— A € Msuchthat A + (= A)=0=(-=A) + A,
Now A +(-A) = [a;]xnt [~ ;] s [ —d=[-aylnxn]
= [a;;+ ;) ]axn= [Olyx 0 =O.
Similarly (- A)+ A=0.
A+(-A)=0=(~A)+A,
—Aistheinverseof AEMand-A EM.
Under Multiplication :
(vi) Closure Axiom.
Let  A=lalixpand B=[b;;],xnEM.

L
Then AB=[cig ], n.Wheteciz= D a;; b, ER
s=1
> ABEM.
(vif) Associative Law.
Let  A=[ajj]lyxnB=[Bji]nxnmdC=[cplnxn EM.

Then AB = [dj¢ 1, heredig= 3.0, b,
J=!

1]
and Bc'leipln""'wh“‘i‘.fth Skp
kw]

Now (i, p)th element of A (BC)
= (ith row of A) (pth column of BC)

" L L " L " "
= A e,= 2 ay {Z"Jt ‘tp] =2 Zasbpcap=Y Daybuce,
i= =t N -1

k=l =l

=t

Similarly (i, p)th element of (AB) C = i tau by,

k=l j=1
A (BC) = (AB)C.
(viii) Distributive Law.
Let a=[a”],,x,,.B=[&“],,”andc=[c_“],,”5M.

Then B+C=[by +cisluxn
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(i, Hth element of A (B + C) = Z,"y(b,-'k +ep)
k=1

L Lid n
= Ylajby vagep)= Yay by + ¥ ag.cy
k=1 k=1 k=1
= {i, k)th element of AB + (i, k)th element of AC
= (i, k)th element of (AB + AC)
Also A(B + C) = AB + AC are of type n X n.
Thus M is a ring
(b} In general, matrix multiplication is not commutative,
M is non-commutative ring.
(¢) Sincel,,, EMsuchthat Al=A=1AVAEM.
Thus [ is a multiplicative identity.
(d) Weknow that if A= O,B = O, but AB=0. [Ferife 1]
Hence M is non-commutative ring, with unity and with zero divisors.
Example 8. Give an example of the following :
(i) A commutative ring without unity
i) A non-commutative ring with unity
i) A ring with zero divisors
{iv) A non-commutative ring.
Sol. (i) The ring of even integers is a commutative ring without unity.
(i) The ring of 2 X 2 matrices over reals is a non-commutative ring with unity.
(iii} Thering of 2 X 2 matrices is a ring such that [A] = O, [B] # Ostill AB=0.
(iv) The ring of matrices is non-commutative.
Example 9. () Ifa’ =a Va ER thena+a=0.

(i) Ifeveryx ER:a.r.‘:ﬁesx"‘x.pmve.‘hal‘ R must be commutative. {(G.N.D.U. 1981)
Sol. () (a+af =(a+a) [Given)
= (a+d)(ata)=a+a
> d+d+d+d =ata [Distributive Laws]
= at+tatara=ata
= a+a=0. {Cancellation Laws]
(i) Let abER=a+bER

We have (@ + b =a+b
> a'+ab+ba+b =a+bh
= a+abtbatb=a+h [ @ =aandb* =]
= (at+by+(ab+ba)=a+b
= ab+ba=0 [Cancellation Laws)
= ab + ba=ab+ab
» ba =ab [Left Cancellation Law]
= R is commutative.
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Example 10. [f R is a system satisfyving all the conditions for a ring with unit element with the
possible exceptiona + b = b + a, prove that R is a ring.
Sol. (@+B).(1+N)=(a+d). 1+{@+b).1=a.l+b. 1+a. 1+b.1
=g+(h+a)+b
Again(a+8).(1+D=a.(1+D+b. (1 +D=a.l+a. 1vb.1+b.1
=g+{a+b)+h
Then a+(b+a)+b=a+(a+b)+b
= b+ra=a+b
=  addition is commulative.
Hence R is aring.
Example 11. Frove that the set G = {a+\6b| a, b €0}, where Q is the set of rationals, is a ring.
Sol. Wehave G ={a+ Jfbia.b € Q }, where Q is the set of rationals.
Under Addition :
(f) Closure Axiom.
Let x=1+ﬁ mandy=n+ﬁp.wh:re!.m.n.pEQ.
Now x+y=(I+J2m)+(n+ J2p)=(+m+J2(m+p) €G.
[*LinEQ = I+nEQandmpEQ =2 m+p (]

(i) Associative Law.
Lctx=.’+\5m,y=n + ﬁ'pmdz =g+ JEr.whml‘.m,n,p,q,r €qQ.
Now x+(y+z2) =(f+ﬁm}+[(n+ﬁp)+{q+ﬁr)]=(f+ﬁ m)+[{n+q)+J?_.Qp+r)]

=[1+(n+@)+V2[m+p+n]

= [+ m+g]+d2 [(m+p)+r] [ Associative law holds in O}

=[e+m+d2 m+p)+@+d2n

=[@+VZm+ 42 p) 1+ (g+2 ) =@ +)) + 2.

(iif) For x =1+2 m € G, there is 0 =0 +4/2 0 € G such that
x+0=x=0+x [Verifi' 1]
G possess D{:0+J5 0) as the identity element.
() For x=f+J5 mEG.mmisy=—-’+\E{—m)EGsuchﬂlatx+y=0*y+x.

Now x+y=(1+J2 m)+(D+J2Em)=(1+ D)+ V2 (m+(-m)=0+ J2(0)=0
Similarly y +x=0.
x+y=0=y+ x,
Thus v is the inverse of x.
Hence <G, + > is a group.
(v} Commutative Law.

Letx=/+y2 mandy=n+ﬁ PEG.

x+ty=ytx
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xtyp= (+J2m)+(+vIp)=(+n)+J2 (m+p)
=(n+D+2 (p+m) [+ Commusative Law holds in Q)
-(n+ﬁp)+{l+ﬁ m}-y+x.
Hence <G, +> is an abelian group.

Under Multiplication :
(vi) Closure Axiom.

Let x=/+2 mmdy==n+ﬁp.whetel‘,m,n,pEQ.
xy-(.!'-'-\ﬁm) (n+\5p)=(in+2mp}+ﬁ (p+mm)EG

[“imnpEQ = int+2mp,lp+mn €Q]
(vif) Associative Law.
Let x=f+vﬁm,y=n+ﬁ p,z=q+s5rEG,whaﬁ,m,mp, q.rEQ.
Now x(2)=(1+v2 m) [(n+42p) (g +VZ )] = (1+V2 m) [(ng + 2 pr) + V2 (pg + nr)]
=1(ng+2pr)+2m(pg+mr)+42 [1(pg+nr)+m(ng +2pr)]
= (I ng +2 Ipr +2 mpq +2 mnr) +2 (Ipg + Inr + mng + 2 mpr)
Similarly (xy)z = (Ing + 2 lpr + 2 mpq + 2 mar) + Y2 (Ipg + Inr + mng +2 mpr)
x(pz)=(xy)z
(vitf) Distributive Laws.
Letx=n"+ﬁm.y =n+ﬁp,z=q+ﬁr,w}mﬁ, mmnpqr€Q
2 (y+)=(+2m).[ (1442 p)+(g+¥2 D] =(1+V2m) [+ @)+ V2 (p+7)]
[+ +2me+n]+ 21+ N+ men+ 9]
=(In+Ig+2mp+2mr)+42Z (Ip+ Ir+ mn+ mq)
=[tn+2mp) + (g + 2 m)] + 2 [(ip + mn) + tr + mg)]
and xy+xz=(1+ 2 m) (rr.+ﬁp)+(f+ﬁm) (g+¥27)
= [(n+2 mp) +JZ (lp + mm)] + [(lg + 2mr) + V2 (Ir+ mg))
=[n+2 mp) + (lg + 2 mA)] + /2 [(ip + mn) + (Ir + mq)]
x.(p+z)=xy+xz
Similarly (y+2).x=p.x+zx
Hence <G, +,.> is a ring.
Example 12. Prove that Q is a ring under the compositions ® and © definedasa® b=a+b— | and
a®b=a+b-ab, wherea b €0 and Q is a set of rational numbers,
Sol. Under Addition :
(i) Closure Axiom.
Leta, bEQ = a+b-1EQ [ abEQ » a+bEQ =» a+b-1EQ]
= aBbEQ.



24 Gotdew LINEAR ALGEBRA

(i) Associative Law,

Leta, bc €EQ.
Thena® (bBc) =a@(b+c-1)=a+(b+tc-1)-l=a+b+e-2
and @@ b)@c=(a+b-N)Bc=(a+b-1)+c-l=a+b+c-2
a®B(b@c)=(aDbH)Dec.

(iif) Existence of Identity.
Foreach a € Q, there exists e EQsuch thata® e=a=¢e® a.
Now a@®e=a+e-1
aBe=ag = agte-l=a = e=1€E€Q.
Similarlye®@a=a = e=1EQ.
(iv) Existence of Inverse.
For each a € Q, there exists b E Qsuchthata@ b=e=h @ a.
Now a® b=ag+b-1=1= b=2-ag€EQ
Similarly b@a=e=1 = h=2-a€Q.
Thus b (= 2 — a) is the inverse of a € Q.
(v) “Commutative Law,
VabEQa®b=a+b-1EQ = h+a-1EQ = bd a
Under Multiplication :
(v) Closure Axiom.
Leta, b€EQ = a+b-ab €Q [+ a,bEQ = a+bab EQ » a+b-ab €Q)
= a@bEQ.
(vif) Associative Law.
Leta bc€EQ.
Then a@b@c)=a Ob+c-bc)y=a+(b+c=-bc)-a(b+c-be)
=a+b+c-be-ab-ac+abe.
Similarly (@ © ) ® ¢ =a+ b + ¢~ bc — ab - ac + abc.
a®@(B®c) =(a®h)Oc.
(viif) Distributive Laws.
Leta, b,c€Q.
Then a@pDcYy=a®b+c-D)=a+b+c=1)-a(b+c-1)
=atbht+e-l-ab-ac+a=2a+b+ec—ab-ac—1
and (@b D (a®@c)=(a+b-ab)®(a+c-ab)=(a+b-ab)+(a+c-ac)-1
=2a+b+c-ab-ac-1
a®b®c)=(a @b)® (a @c).
Similartly(bD c) P a= (b Pa) B (c @ a)Va, b, c EQ
Hence Q is a ring under given operation.
Addition and Multiplication Modulo m
(i) Addition modulo m.
If @ and b are two integers, then by addition modulo m expressed as a+b we mean least non-

negative number r which is the remainder when a + b is divided by m.
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Thus a+b =r,where0 = r<m.
-

For Examples: 3+20 =23=6(3)+5=5
L]
T+5=12=6(2)+0=0.
&
(i) Multiplication modulo m
If @ and b are two integers, then by multiplication modulo m expressed as @ = b we mean least

non-negative number » which is the remainder, where a b is divided by m.

Thus a x & =r,where0 = r<m.
-

For Examples: 3 x 20=60=7(8)+4=4
7
4% 3=12=6(2)+0=0.
6

Example 13. Show that the set Z,= {0, 1, 2,......, 6} forms a ring under addition and multiplication
modulo 7. (Pbi. U. 1996)
Sol. The givensetisZ,={0,1,2,3,4,5,6 }.

The composition tables for addition and multiplication modulo 7 are :
*, IU 123 4356 x, |0 123 4356 .
00T 23456 6Jj000D0DO0OD0T0
112343560 1101 23 4 56
212345601 2102 46245
Jl3 456012 30362514
414 56 001 2 3 4104135263
5156 01234 5105316 4 2
616 01 2 3 45 6|0 6 5 4 3 21

Under Addition :
() Closure Axiom.Va, bEZ, = a+bEL,,
(i) Associative Law. Va, b, cEZ; a+(b+c)=(a+ b +e
[+ a+(b+c)and(a+ b)+ ¢ will have same +ve remainder when a + b + ¢ is divided by 7]
(#if) Existence of Identity.
Here the element 0 is the identity clement becausc a+ 0=a=0+aVa € Z,
(iv) Existence of Inverse.
Here inverse of 4 is 3and 3 is 4 ; and so on. [ 4+3=0and3+4=0]
Thus the inverse of @ € Z, is obtained by subtracting a from 7.
(¥} Commutative Law.
YahEZ, = a+b=h+a(mod6)
Hence Z,is an abelian group.
Under Multiplication :
(vi) Closure Axiom .
Yab€EZ, = a. bELZ,
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(vif) Associative Law.
YabecE€EZ,, (axb)yxc=ax(bxc)
1 7 T

(viif) Distributive Laws.
Yabc€Z,, a 3; b+c)=axb+axc
. 7 1 7

and (b+c) xa=bxa+cxa.
7 7 1 1

Hence Z, forms a ring.
5. Field
Consider Q, the set of all rational numbers.
Q admits two operations viz. addition (+) and multiplication (. ).
Q is an abelian group under addition.
Multiplication in Q is associative as well as commutative.
1E€Qsuchthatl .x=xVxEQ.
" Here 1 is called the multiplicative identity or unity.

For each non-zero x € Q, there exists x” [= -::) such thatx . x" =1,

Thus every non-zero element of Q has inverse under multiplication.
Further for any x, y, z in Q, the following property holds :
x.(p+)=x.y+x.2 (Distribution of multiplication over addition)
Def. A set F having at least two elements and two operations addition (+) and multiplication () are
defined, which for every ordered pair (x, y) afeiemem.r of F, determine elements x + y, x y in F is said to
be a field if it satisfies the following p (Pbi. U. 1997)
(@) For Addition :
() Commutativity.x+y=y+x Vx,yEF.
(if) Associativity. (x+y)+z=x+(y+z) Yx,y,zEF.
(iif) Existence of Identity. There exists 0 € F (called zero element of F) such that
x+0=x=0+x¥Yx€EF.
(iv) Existence of Inverse. There exists x' € F (called negative of x) such that
x+x'=0=x"+x Yx€F.
(5) For Multiplication :
() Commutativity. x.y=y.x Vx,yEF.
(i) Associativity. (x.y).z=x.(y.2)¥x,»,zEF.
(iii) Existence of Identity. There exists 1 € F (called unity of F)such that x. 1 =x=1.xVxEF.
(iv) Existence of Inverse. There exists x' (# () € F (called reciprocal of x) such that
x.x'=1=x" xVxEF.
(¢} Distributive Laws. For all x, ¥, z in F, the following hold :
Left. x.(y+2)=x.y+x.z
Right. (y+z).x=y.x+z.x
In above, it is observed that ;
(i) Postulates (a) (i) — (iv) show that a field F is an abelian group under addition.

(i) Postulates () (i) — (iv) show that a field F* (of all non-zero elements of F) is an abelian group
under multiplication.
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[ SOLVED EXAMPLES |

Example 1. Show that the set of numbers of the form a + b J2 with a, b as rationals is a field.

(G.N.D.U. 1990)

Sol. LetQ(V2)={a+b+2 ;a0 b€Q}.

@
®

()

(i)

(w)

(&)

U}

(i

(i)

)

()

Under Addition.

Commutative.x +y=p+x Vx,yEQﬁ [ ."f.\‘=a+bﬁ.yﬂc+dﬁ
Y x+y=(a+b&)+(c+dﬁ)
=(c+dﬁ)+(a+bﬁ)=y+x]

Assoclative. (x+y)+z=x+(+2) Yxy:€Q(J2).

Existence of Identity. There exists 0 € Q(+/2 ) such that

x+0=x=0+xvxeQ(VZ) [Here0 =0+ 047 ]
Existence of Inverse. There exists x’' € Q (2 ) such that

XX =0=x+xVr€Q (v2) Ufx=a+bd2, thenx' =(-a)+ (- b}42 |
Under Multiplication.

Commutativity. x.y=y.x v’x,yEQ(JE),
Associative. (x.1).z=x. (0. 2)Vx, 0,2 €Q (V2).
Existence of Identity. There existalEQ(vE)such that )
. 1=x=1.x¥x€Q(V2) [Here 1 = 1+042 ]
Existence of Inverse. There exists x' € Q { Jf) such that
x.x'=l=x"x VxEQ(JZT}.
Distributive Laws. 'lfx,y.zEQ(\E).lhe following hold :

Left. x.(y+z2)=x.ptx.z

Right. (y+z).x=y.x+z.x

Hence Q (/2 ) forms a field.

Example 2. Prove that the set R of real numbers is a field wr.t. the addition and multiplication
compositions defined as if. (G.N.D.U. 1991)

Sol. (@) Under Addition :

G}

()
(i)
(iv)

Commutative, x+y=y+xVx, yER.

Associative. (x+ ) +zr=r+(p+}Vxy,z€R

Existence of Identity. There exists 0 € R such that x+0=x=0+xVxER.
Existence of Inverse. There exist y € R, wherey =~xsuchthatx + y=0=p+xVxER.

(6) Under Multiplication :

U]
(i
Giif)

Commutative. x.y=y.x ¥Yx,yER.
Associative. (x.¥).z=x.(y.2)Vx, 3,z ER.
Existence of Identity, There exists 1 € Rsuchthat x.1=x=1.x VxER.
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(iv) Existence of Inverse. There exists y € R, where y = i suchthatx.p=1=y . xV xER.

(c) Distributive Laws : ¥ x, ¥, z € R, the following hold :

Left. x.(y+z)=x.y+x.z

Right. (y+z).x=y.x+z.x

Hence R forms a field.

Example 3. Prove that the set of all complex numbers forms a field. (G.N.D.U. 1992 §5)
Sol. Let C be the set of all complex numbers.

(a) Under Addition :

(i} Commutative. x+y=y+xV¥x,yEC.

(i) Associstive. (x+y)+:=x+(y+2) Vx,y,2€C,

(iii} Existence of Identity. There exists 0 € Csuchthat x+0=x=0+x YxEC.
(iv) Existence of Inverse, There existsx ' € Csuchthat x+x'=0=x"+x YxEC.
(&) Under Multiplication :

(i} Commutative. x.y=y.x ¥x,yE€C

(i) Associative, (x.)y).z=x.(v.2) Vx,),z€C.

(iify Existence of Identity. There exists | ECsuchthat x. 1=x=1.x VxEC.
(iv) Existence of Inverse. There exists x’' € Csuchthat x.x"= 1 =x".x YxEC.
(c) Distributive Laws. ¥ x, y, z € C, the following hold :

Left. x.(y+z)=x.y+x.z2

Right. (y+z).x=y.x+z.x

Hence C forms a field.
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VECTOR SPACES

1. Binary Compositions.

There are two compositions viz.

() Internal Composition

(if) External Composition.
‘() Internal Composition. Def. 1. Let A be a set. Then the mapping f: A X A = A is said to be
internal composition in it. )

This is also called binary composition.

The mapping associates to each ordered pair (4, b) € A, a unique member f((g, b)) of A, wherea, b € A.

For example : Consider R, the set of all real numbers.

Let f: R X R - R be defined as :

flab)=abV¥(a, ))ERXR;a bER

Then fis a composition in R.

Del. 2, Let A be a set. If there exists a rule, denoted by @B, which associates to each ordered pair

(a, b), a, b € A, a unique element a @ b of A, then @ is said to be binary composition in A.

In scalars, we use addition by *+' and multiplication by *.’

(i) External Composition. Del. Ler V and F be any two non-empty sets. Then the mapping
f: ¥V X F =V is said to be an external composition in V over F.

(G.N.D.U. 1993)
2. Vector Space.

Def. Let (F, +.) be the given field in which elements of F are scalars. Further let V, be a non-empty
set, where the elements of V are vectors. Then V is said to be a vector space over the field F if it safisfies
the following postulates : (G.N.D.U 1993)

. L Under addition. The addition of vectors (denoted by ‘+°) is defined as internal composition in V
satisfying the following :
V,. Closure. Ya,fEV,a+fEV.
V;. Associativity.a+(B+y)=(@+f)+y YV a,B,yEV.
V,. Existence of Identity. There exists 0 € V such that
a+l=a=0+a Va€l

Remember : 0 is called as zero-vector in V.

V,. Existence of Inverse. There exists —a € V'V a € ¥ such that
(-a)+a=0=a+(-a).

Remember : — a is the negative of a.

Vs Commutativity. a+f=8+a Ya,fEV.

1L Second Scalar Multiplication. The scalar multiplication is defined as external composition in V
over F satisfying the following :

Ve YVa€EF andVa €V, ax EV.

Vo al@+f)=aa+af VaEF and Va,f €V.

29
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Ve la+b)a=an+ba ¥ a, bEF and Yac V.
Voo (ab)a=a(ba) YV abEF and Va€EV.
Ve l.a=a Y e€F
Remember : (i) 1 is the unity element in the field F.
(i) 0 is the zero element of V and 0 is the zero element of F.
Notation. The vector space of V over the field F is denoted as V (F).
(i) V(F)isa real vector space if F is the field R of real numbers.
(if) V (F)is a rational vector space ifF is the field Q of rational numbers.
(iif) V (F) is a complex vector space if F is the field C of complex numbers.
[ PROPERTIES OF VECTOR SPACE |
Let V be a vector space over a given field F.
Propertyl. a.0=0,0EV, YaEF.
Proof. Since 0+ 0 =0, where 0 is the zero element of V,
. a(0+0)=al Ya€EF
= @l +al =al

> ab+abd=ald+0 [ Note it}
Hence al =0 [By Cancellation Law]

PropertyIl. 0.x=0 VxEV,0EF0€EV.
Proof. Since 0+ 0=0, where 0 is the zero element of F.
O+0x=0x VxEV

= Ox + Qx = 0x
= Or+0x=0x+0 [Note it]
Hence 0x=0. [By Cancellation Law]
Property lIl. (—ak=-(ax) VaEFandx €V.
Proof. Since a €F, s ~a€EF
- a+(-a)=0€F.
Now ax+(-ax=[a+(-a)lx VxEV
= ax + (—a)=0x VxeEV
- ax+(-ax=0 VxeEV [Property 1]
= (—a)xis the additive inverse of ax in V.
Hence (—a)x =—(ax).
Property IV. a(-x)=-(ax), VaEFand xEV.
Proof. Since xEV, s =xEV
- xt(-x)=0EV.
Now arta(-x)=a[x+(=x)] VxEV
= ax +o(-x)=al VeV
= ax+a(-x)=0 YxEV [Praperey 1]
= @ (-x)is the alditive inverse of ax in V. :
Hence a (—x)=~—{ax).
Property V. a(x-y)=ax-ay Ya@aE€F andx, yEV.
Proof. a(x—y)=a[x+(-p)]
=axta(-y)=ax-(ay) [Property IV]

Hence alx-y)=ax-ay.
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Property V1. ax=0, x=0
= a=0, wherex€ V,a € F.
.‘- Proof. Let ax=0, x-ﬂl

.,[fpoulble,lctauto Thena ex:m wherea™ ' EF.
i a (ax)-a {0)
- (@'ayx=0

= Ix=0 [a'a=1 wherea € F]
= x =0, which is a contradiction,
Hence a=0.
Property VII. () x+y=x+z=>y=z Vi yz€V.
(ii)y+x=z24x2>y=2

Proof. () x+y=x+z
- X))+ +y)=(-x)+(x+3)

[Adding (- x) on the left to both sides]
= (x)+x)+y=(-x)+x)+z [By Cancellation Law)
= Q+y=0+z
= y=z
(0 ytx=z+x
- y+x)+(-x)=(z+x)+(-x) [Adding (- x) an the right to both sides)
- yrE+Ea)=z++x)

- y+0=z+0
- y=r

Hence the result.

| SOLVED EXAMPLES |

Example 1. What is the zero vector in the vector space R* 7
Sol. (0,0,0,0)..
Example 2. Which of the following sets form vector spaces over reals ? If not why 7
(i) The set of all rational over R. (G.N.D.U. 1987)
(i) ¥={a+ib;foralla bEL}. (G.N.D.U. 1987)
(iii} All polynomials aver R with constant term zero. (G.N.D.U. 1987)
(iv) All polymials over R with constant term 1. {G.N.D.U. 1998)
(¥} All polynomials with positive real coefficients.
(vi) All polynomials f (x) over R such that f(1) = 0.
(viiy All polynomials f(x) over R such that f(1) = 5.
(viii)y All upper (lower) triangular matrices of order n over R.
{ix) All n-rowed 5 ic (skew ic) matrices over C. (G.N.D.U. 198T)
Sol. (/) No ; not closed under scalar multiplication.
(i) No; not closed under scalar multiplication.
(iii) Yes.
(i) No ; not closed under addition.
(¥) No ; zero element does not exist.
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{(vi} Yes
(vif) No, not closed under addition.
(viif) Yes.
{ix) Yes.
Example 3. Examine the truth or otherwise of the following statements :
(i) A vector space must have at least two elements. (G.N.D.U 1985 §, 85)
(i) In the definition of a vector space V (F), the axiom 1 . v=v, for allv € V can be dropped.
) (P.U. 1996 ; G.N.D.U. 1993, 86)
(iii) A vector space has always an infi ber of el (G.N.D.U. 1985 S)
Sol. () False ; A vector space may have only one element.
(if) False (iif) False.
Example 4. Does the set V of all orderedpmrs ofweger:form a vector space over the field R of
real numbers with addition and scalar multiplicati fined as foll:
(ay,ay )+ (by, by)= (ﬂ'l+6llaz+bz)ﬁ”(a|-a:)-(5|-bz)e 4
ala, ;m)=(aa,aq) fora €ER,(a,,5)EV?
Sol. Wehave: V={(q;, q;) Va;, ;ET}.
Since V is not closed for scalar multiplication as defined ie., the product of an element of V by'a
scalar ER may €V

[ Forex s evand L er,
.. by scalar multiplication, as defined, we have

1 56 56
7 &6 [7'?)¢v because 7.3 ez]
V(R) is not a vector space.
Example 5. Let V be the set of all pairs (a, b) of real numbers. Examine each of the following cases,
where V is a vecior space over R or not .
) (aby+(@,b)=(0,b+b);a(a b)=(aaab)
(i) (aby+(@, b)=(a+a",b+8);a(a b)=(0,ab)
(i) (@ b)+(a',b)=(a+a ,b+b);a(a b)=(a"a,a’ b)
() (a ) +(@. b)=(a b):a(a b)=(aaab),
wherea, b, a'. b, a ER.
Sol. Inordermshmmaxvxsnmavectorspwe.wchnvgmlymslwwdntmufﬂlepmmlntuuh
vector space does not hold.
() Here there exists no additive identity ie., there exlsbs no ordered pair (c, d)E V such that
(c.d) +(a. b)=(a b) Y(a. ) EV. _
[ (e d) + (@ b) = (0,d + b) (by def)
# (a, b))
Thus V; is not satisfied.
Hence V (R) is not a vector space.,
(i) Let(a, b) EV fora = 0, then
1(a, )= (0, 14) (Def)
=(0,b) = (a b)
Thus V, is not satisfied.
Hence V (R) is not a vector space.
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(iii) Bydef,(@+M(a b) =((a+pya(a+pf)b)fora,fER

and a(@b)+plab)=(@ad B)+@ afb)
=@a+Fadb+fb) (Def))
=((a+F ) a, (@ +)b) [By Disiributive Law in R]
Since (@+p) 2z’ +f Va,fER,

; (@+f)(a b)# ala b)+p(a b).
Thus V¥ is not satisfied.
Hence V (R) is not a vector space.
(iv) By def., (g, b)+(a', b") = (a. b)
and (@, b')+(a b)=(a',d")

= (a, b)+{a',b") # (a', ")+ (a b)
Thus V4 is not satisfied.
Hence V(R) is not a vector space.
Example 6. If(F, +,.) is a field, then show that F (F) is a vector space and deduce that
(i) C is avector space over field C

(i) R is a vector space over field R

(iffy C is a vector space over field R

() R is not a vector space over field C.
Sol. In order to prove that F (F) is a vector space, we have to verify all the postulates for the vector

Since (F,+, .) is a field, (Given)
(F, +) is an abelian group.
V, -V, are satisfied.
The scalar multiplication is the same as multiplication of field because the set F and field are same, so
V. a{x+y)=ax+ay VYa€Fand Vx,yEF
[ Elements of the field are distributive)
Vi (@+fx=ax+fx Ya,AEF and YxEF
Ve alfix)=(aP)x Va,fEF and VxEF
[+ Elements of the field are iative for multiplication)
Vs l{(x)=x forl EF, Yx€EF

[+ 1 is the multiplicative identity of F]

Hence F (F) is a vector space.
(i) Since (C, +,.) is a field,

as proved above C (C) is a vector space.
(if) Since (R, +,.) is a field,

as proved above R (R) is a vector space.
{iif} In order to prove that C (R) is a vector space, we have to verify all the postulates for the vector

space.

Since (C, +, .) is a field,

(C, +) is an abelian group.
v+ W)= V. are satisfied.
V. Since the product of a real number by a complex number is again a complex number, so

aERxEC = axrEC.
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Thus closure property is satisfied.
Since the elements of R are also elements of C (Le, R C C) and elements of C are distributive w.r.t.
addition and multiplication, so
Vy. ax+y)=ar+ay Va€ER and Vx, yEC.
Ve (+Hx=cx+fix Va,fER and YxEC.
. Ve a{f=(af)x Ya,fER and ¥YxEC.
ie., the elements of C are associative for multiplication.
Vo L(x)=x for 1ER and YxEC.
ie, 1€ R is the multiplicative identity of C.
Hence C (R) is a vector space.
(iv) Since product of complex number by a real number is a complex number and not a real
number i.e.,
aEC, xER=axEC butar &R,
R (C) is not closed for scalar multiplication.
Hence R (C) is not a vector space. '
Example 7. If R is the field of real numbers and V:s:hemdmarunapm Further if addition
of vectors is the internal binary composition in V and the multiplication of the elements of R with those of V
as the external composition, prove that V (R) is a vector space.
Sol. Given:
V={(Nlxny€ER}
[ = Vis a set of vectors in a plane, .. elements are ordered pairs]
Let us define the addition of vectors in V as
)+ y)=(x+xy+y")
and the sealar multiplication of @ € R and (x, ¥) € V as
a (x, y) = (ax, ay).
1. Under Addition :
V). Closure. (x,+x,n+Wm)EV
Vi, nhin,mEY
[ oxupinn ER B xta, ptyy ERand (3, )+ y) = (5 +x, 0 +39)]
V,. Associativity.
Gy, 20+ (e 12D+ (x5, 3) = Gy, 20 + (32, 32) + (35, 5)
Y (), (e, yah () E V.
Proof. ((x;,3) + (¥, y2)) + (¥, 33)

Slxtx iyt (60 [def]
= txtx, ity ty) [def]
=(x) )+ (t g, tys) [Associativity in R)
={x;, )+ ((xz W)t (x -.VJ)}-
V,. Existence of Identity. Y(xEV,3(0,0) €V such that
(x. ¥) +(0,0) = (x, ¥) = (0, 0) + (x, y).
Proof. (x)+(0,0)=(x+0,y+0) [def]

=(x.5)
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Similarly (0, 0) + (x, ») = (x, »).

Thus (x, »)+(0,0)=(x, y)=(0,0) + (x, y).

Here (0, 0) is the zero element of V.

V.. Existence of Inverse. ¥ (x, y) EV, 3 (-x, -y) € V such that
o=+ )N=(0,0=y) +(x-y).

Proof. (-x-y)H(xp)=(Cx)+x(-)+y) [def)

. ={0,0).

Similarly (x. y) + (~x =) =(0, 0).

: (=x, =)+ (x ¥)=(0,0) = (x. y) + (- x, - y).

Here (—x, - ) is the inverse element of (x, y) in V.

Vs Commutativity. (x,, )+ (x2,32) = (x2, 32) + (%1, 1)

Yz e,y) €V, '

Proof.  (xy, ) + (a2, 30 = eyt g, 3+ 1) [def]

=(xy+x .2+ 0)
[ x,x2: 0, )2 € R and commutative law holds in R}
[def]

= (xy, ¥ * (xp. 1)

II. Under Scalar Multiplication ;

V. VYa€R andV(x))EV,xyER
a(xy)=(ax,ay) EV. [ex,ay € R]

Vi a((x, )+ (g, ) =a(x,y) taly, )

¥ a € Rand ¥(x,,»), (xs, W) EV.

Proof. a((x,..y,)+(xl.h))‘*ﬂ'{x\+x1.y| +») [def]
=(“(-'1"’{’1L“()‘1"‘h)) [ of ¥l
=(ax) +ax;, ay, +ay; ) =(ax,, ay) + (ax; ,ay;) [def]
=a(n .,y +aln,n) [ of Vel

Vi (@+Pxy=a@xy+fxy) Va,f ER and V(x,y) EV.

Proof. (@ +f)(x))=(@+P)x (@+h)) [ of 3}
=(ax+fx,ay+fy) [ of 13
= (ax, ay) + (Bx. By) [def]
=a(xy+pxy), [ of Vil

Vo @B xy=a(@x)) Va,fER and ¥(x,y)EV.

Proof. (af)xy)=(@fHx(@py) ( of Vel

' =(a @x).a B)) =aBx. ) [ of Vg
=a (B xy).

Vi 1= Ey)VxyEVadl ER [~ of V]

Proof. I(x.))=(LxL)y) [def’]
=(xy).

Hence V (R) is a vector space.
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Example 8. Prove that the set V,, (F) of all ordered n-tuples of all elements of any field F is a vector
space with vector addition and scalar multiplication defined as below :
Vx=(x,x,...

Xy Y andy =y Y2 s ) EVL(F)
E e T T R e D

where X; X3 yecieeis X3 V1 o V2 3 cennes Vo EF and Va € F, we define

ax =(ax; ,ax; ... ax, ).

Sol, Here
xty=(x,+y, 22t Y1, ceerens XnF¥n)
Va=(x, % s X ¥ =V 0 V2 geeeneny Y in Vi (F),
where X, %, Xy i M Vs My EF
and

ax = (ax,, axy ,......,ax,) Ya EF.
I. Under Addition :
V. Closure. (x;+3,,5+¥ 0. Vgt ¥ EVL(F)

Y, X s X ) 0 Y2y oo V) E VL (F)

[ s et i X I, EF x4 yim+p;
and (x; , X3 yeoeney

‘‘‘‘‘‘ i Xgt YV EF
0 L (TR0 DR vl By o T S TR S 0 ||
xty EV,(AVxyEV,(F).
V. Associativity.
({3 T PR o S TR T ) 1 NN SR |
= (X1, X oo X ) H (O 2 D20 v I dHE T 3))
Yy X X W M Vs e ¥p W (215 224000y 20) € Y, (F).
Proof. ((x), %3, Xy )+ (M0 b0 ooy Ya D+ (10 23 seneeen 2}
wyF Wy Xyt W e X F Y Y H (2 21 0 T [def]
=yttt 3 X+ Y+ ) [def]
=00, x, X )R (O + 7)), Ontz) + o, O+ 2)) [Associativity in F]
=(X) 3 Xy yeennenr B )+ (015 425

(x+y)+z=x+(y+1) ¥x yzEV,(F).

¥V, Existence of Identity. ¥ (x,,x,

....... LX) EV,L(F)3 (0,0, ......,0) ¥V, (F) such that
...... O =y X i Xy )

=(0,0, ..., 0) 4 (X, X2 500000y X ).
Proof. (¥, 2.0 Xy JH(0,0, e, 0) = (% + 0,2, 4+ 0,0, 2, +0)

[def]
=(xy, X, ......,x,l}.
Similarly (0,0, ..., 0) + (X, , X3 yeerenn Xy ) = (%), Xp peveeeny Xy )

(%) %2 4eennnn %y ) (0,0,

(X 2 )4 (0,0, 0 =2y Xy Xy )

Here (0, 0, ......, 0) is the zero element of V,, (F).
Thusx+0=x=0+x ¥x €V, (Fland 0 € V,(F).
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V,. Existence of Inverse.
Vx=(x,% Xy ) E Yy (F), 3
—x=(=X, , = X3 4eeeuny— X ) € V,, (F) such that
(—x)+x=0=x+(-x).
Proof. (-x)+x={-x ,— %o, =5 ) F (X%, X3 e Xy )
Ll TR T TS SRS SE S R [def]
=(0,0,.....,00=0
Similarly x + (—x) = 0.
S (=x)tx=0=x+(-x)
Here — x is the inverse element of x in V, (F).
V,. Commutativity, x+y=y+x ¥Yx,y €V, (F).
Proof. x+y= (X, %00 Xy ) Vs )
=(’l+yllx2+y2v ''''' 'xn"'yn] [‘kf]
=(y X, Yt X YntEe)

[ X2 Xpaeeeiy Xy i Vi V2 veseenns Vg € F and commutative law holds in F}
bl T CTRORNS ) Rl IV PONPNE Y [def]
=y+x

II. Under Scalar Multiplication.

Ve VYa€EF and¥x= (x),x5,...... %, ) EV,(F),

where X, ,X3,......, X, EF,ax EV,(F).

Proof. x,.x%;........%, EF, anda EF. .

= %) , 0%y yoeeenny @ Xy EF [ = Fis afield]

- {ax, ,axy ,...... Jax, ) EV,(F)

Ed ax €V, (F).

VY a{x+y)=ax+ay YVa EFand¥x y EV, (F)

Proof. a(x+)y)=a((x, %, ... R T (N0 O V) |
=a () + ¥, X3t Yo Xy T Vs ) [def]
= (@@ *y)a @ty ). @yt y,) [+ of ¥l
= (ox) tay, ax; @y ... 2 @y +ayy )
= (@x; , @x3 yournnn 2 Rl (5 U - s D ay,) [def]
A TRE RTINS T V) [* of Vel
=ax+ay.

Ve (a+P)x=ax+PxVa,BEF, VxEV,(F).

Proof. (a+fMx=(a+f)(x, X0 2 Xp)
=((a+fx . @+Bxz s @+ P)x,) [ of ¥
= (ax, +fx, , @y + Pz ... 6y + fixy ) [ af¥3)

[def ]

= (a@x; , @xp peeeeen s axy )+ (B, Bxg s Bry)
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=@ (X, Xy ey g Y F AN X2 s Xy ) [ of 1]
=ax+ fix.

A/ (af)x ~a(x)Va,BEF, YxEV,(F).

Prool. (af)x =(af) (x,.%;,..c.. Xy ) .
= ((aP)xy , (@f)ey ..., (@B, ) [ of Vsl
=(aBx,) . aBxy ),......, alBx, ))
=a(fix,,fx; ""'"vﬂxn}

=a(Bry, XXy )) [ of ¥4
= a(fx). [ of Vil
Vie Lx=xYxEV,(Flandl EF.
Proaf. Lax=106, X ey X )
=(1x, 1xy 40y 12) [def]
=Xy X3 periennn Ty )
=x,
Hence V,, (F) is a vector space.

Example 9. [ V is the set of all real-valued continuous (differentiable or integrable) functions
deﬁnedm.sm:ﬂerva-"[ﬂ f] Then show that V (R) is a vector space with addition and scalar

multiplication defined as fe
0‘+g)w—f{x)+g(r) VAgEYV
and (afx= af(x) Y a€ER, feV.

Sol. Wehave V={f| f(x) ER fuer[O,l]}

I Under Addition :

V). Closure. Slq:eiﬁesumufhvowntmumls functions is also a continuous function and the sum
of two real values is also a real value,

o (F+egr=f)+g@
: assr.ﬂsthﬂ {f + g) is also a real-valued continuous function.

f+g EVY fgEV.

V,. Associativity. (f+g)+h=f+(g+RNYfahEV.

Proof. [+ +Hl ) =+ () +h () {def]
= {ix) + g(x)} + hlx) [def]
= flx) + {g(x) + h(x)} [ By associativity for addition in R)
=fx)+(g+ A) (x) [def]
=[f+(g+ M @VxE[0,1].

¥V, Existence of Identity. First of all, let us define 0 as below :
0(x)=0ERYxE[D 1],
then 0 is real-valued continuous function € V.
So 30 € V such that
(0 + fix = 0(x) + f(x) [def]
=0+f(x)=f(x) YxE[0,1] [ = 0 is additive identity in R)
Thus 0+f=f
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Similarly f+0=f
Here 0 is the additive identity.
V, Existence of Inverse. For each f€ V, let us define — fas
N =-fx),
then — fis also a real-valued continuous function € V.
YfEV, 3-f€V,such that
S+ EME) =@+ ) R [def)
=f@)+ {-f()}
=0, additive identity in R
=0(x)Y¥x€E[0,1].
f+EN=o.
Similarly -+ f=0.
Here — fis the additive inverse of f{
V. Commutativity, f+g=g+f VYfg€EV.

Proof. F+a)®)=fl)+g() [def ]
=g(x)}+f(x) [Commutativity under addition in R)
=(g+/1x) Vxeo,1] [def]

II. Under Scalar Multiplication :

Ve YaER, VfEV,

@fNGx)=afG)ER

- af EV.

Vn a(f+g)=af+agVa€ER, VfigEV.

Proof. [a(f+@]@=al(f+g]@VYxE(0,1] (def)
=aff(x)+g )] . [def]
=af(x) +ag (x) : =
=@fx)+@g)x . . [ of ¥y
=(af+ag)(xn VxE[0,1). (def}

v @+p)f=af+ff Va,fER, VSEV.

Proof.  [(@+P)f1(x)= @+ fVaE0,1]
=aflx) +ffix) = (af) (x) + () )
=(af+fHxVxE[0,1]

Vy (@B)f=a(ff) Va,BER, VFEV.
Proof. (@A) f1(x) = @P) fix) = a 1B ()]

=a [N x)]

=la@N@] Yxe[o, 1]
Vie If=fVfEV, 1€ER
Proof.  (/)()=1/(x)

=f(x)Vx€[0,1] [~ I € R is multiplicative identity]
Hence V (R) is a vector space. .
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Example 10, Let ¥ be set of all real-valued i functi defined as [0, 1] such that

! [%} = 2. Show that V is not a vector space over R (reals) under addition and scalar multiplication

defined as :
F+g)x)=fx)+glx) VigeV
(af) (x}y=af{x) Ya ER, f EV.
Sol. We have

Vo { £ | f is real valued continuous function defined on [0, 1] such that {%)- 2}.

Let £ g € V.Bydef, f g are real valued continuous functions defined on [0, 1] such thatf[%] =32
and g (%) =2

Now (f+s)[§]=f 3 *3@)

=2+2=4

= [tz &V

= Closure property does not hold.

Hence V is not a vector space over R.

Example 11, [f P{x) denoles the set of all ploynomials in one indeterminate x over a field F, then
show that P (x) is a vector space over F with addition defined as addition of polynomials and scalar
multiplication defined as the product of polynomial by an element of F. )

Sol. We have : ’

Pi(x)= {plx)|plx)=ay+ax+ ... +a,,x"+,.,.,. }={ ia"x' fora's € F}

n=0
Let us define the addition as :
If pix)=Ea,x" €P(),
gx)=X b, x" €P(x),
then  p(x)+qx)=Z(a,+b,)x" (D)
Let us define scalar multiplication as :
If px)=Xa,x" EP(), aEF,
then a plx) = £ (aa,) x" e

I. Under Addition :
V,. Closure. ¥ p(x), g(x) E P(x)
= pWrex)=L(a,+ b x" EP(X)
[ ifa,, by, €EF=a,+b, EF asfield is closed for addition)
V, Associativity. Yp(x)=Xa, <, gix)=Lb, =3 € i ep (x),
we have (p(x) + g(x)) + r(x) = p{x) + (g(x) + r(x)).
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Proof. (p(x) + g(0)) + r(x) = {L @, x" + L b, x"} + L x"

= {Z(a, + b"} + T, x" [Bv(N]
=Gy + b+ cp) X' (B (1]
= 2(“5 +(by+cy)) X

[ if 0y bycy EF 2(ay+ b) +cy=a,+(b,+c,)]
=Ya,x +(Zh,x"+Te,x")

= plx) + (g(x) + r(x)).
V, Existence of Identity.  V p(x) € P(x), 3 0(x) € P(x)
such that
0(x) + p(x)= p(x) + O(x).
Proof. ‘Here o(x)= £0x" EFx)
Now 0(x) +p(x)=20x"+ T a, x" V¥ p(x) EP (x)
=50 +a,)x"
=Xa,x" [+ 0 € F is the additive identity in F)

Similarly  p{x} + 0(x) =p(x)
- 0(x) + p(x) = plx) = plx) + 0(x).
Thus 0 (x) is the additive I.dcnmy of P (z).
V. Existence of Inverse. Yp(x)=La, X" € P(x),
3-plx) = T~ a,1" € P(x)
such that )+ (= p(x)) = 0(x) = (- p(x)) + p(x).
Prool.  p()+[-px) =T a,x" +T(-a)x"

=X(a, +{-ap) 5" : [By (1]
=501" [ - ay is the additive inverse of a,, in F}
=0(x).

Slrmiﬂrl? (=p(x) +plx) =0 (x)

- plx) + (= plx)) =0(x)=(-p (x)} + plx).

Thus additive inverse of each element in P (x) exists.

V;. Commutativity. p(x) + g(x) = g(x) + p(x) ¥ p(x), q(x) € P (2).
Proof.  p(x)+q(x)=Za,x"+Zbyx"

=X(a, + b} [By(n)
=¥(b, + ax” [+ Elements of F are commutative for addition)
=X b, x" + L a, x" =q(x)+p().

‘Thus elements of P(x) are commutative for addition.
1I. Under Scalar Multiplication :
Ve Va €F, and ¥ p(x) € P(x),
apix)=aXa,x” =%(aa)x € P(x)
[+ @ € F, a, € F = aa, € F because F is closed for multiplication)
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Va a(p(x) + gx)) =ap(x) + ag(x) V a EF and ¥ p(x), gx) € P(x).

Proof. a(p(x)+g@)=a(Ta,x +Lb,x")
=a(X(ay + by [8v (D)
=3Za(a, + bp)x" [By 2]
=Y(aa, +aby) " [+ Elements of F satisfy distributive law ]
=X (aa,x" + X (abp) 5" [ay(n]
=a¥a,x +alh,x [By ()]
=ap (x) +aq(x).

Ve (a + B) pix) =ap(x)+pp(x) Va,F EF,

and ¥ p(x) € P(z).

Proof. (a+P)p(x)=(a@+P)Ta,x,
=X(a+p) an" [8y ()]
= ¥(aa, +fa) x" [+ Elements of F satisfy distributive law]
=Xaa, " + L fa, 5" 20)
=aXa, " +fLa, x" (8 @)
=ap(x) + Bp(x).

Ve (@.p)px)=a@p(x))Va,p EF and ¥ p(x) € P(x).

Proof. @.f) plx)=(@fZa, x"
= S(@Bay" [y (2)]
= Za Bax") [y (2]
=a(fEax")) . & @]
=a (B Ip(x)).

Vie L p(x)=p(x) ¥ p(x) EP(x) and 1 EF.

Proof. Lp(x) =1.Za,x"= Z(lay" [By(2)]
= Ya, 5 [~ 1 is the multiplicative identity of F]
= pix).

Hence P(x) is a vector space.

Example 12. Let V, (F) denote the set of all polynomials in x of degree < n (a non-negative
integer) and the zero polynomial. Prove that ¥, (F) is a vector space over the field F under the usual
addition and scalar multiplication of polynomials.

Sol. We have

V, (F)={f(x) | f(x) isa polynomial of degree =mor f(x) is a zero polynomial}.

Letus

and

define the addition and scalar multiplication as :
If flix)=ay+ax+...+tagx
gx)=by+bx +..... +b*x*,

where either f(x) is a zero polynomial or deg f(x) < n

and

£ (x) is a zero polynomial or deg' g (x) < n.

(Pbi. U. 1986)
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and

Then f(x)+g(x) = (a+bo) +(a, + b)) x+......

af (x) = (aay) + {aa) x +...... +(aa;,)xk, wherea €F.
I. Under Addition :
V,. Closure. Let f(x), g(x) €V, (F).
Now f(x)+g(x)=(ap+ba) +(@+b)x+.....

EV,(F) [+ f(x)+ g (x) is either a zero polynomial or a polynomial of degree =< n)
= V,(F)isclosed under addition.
V-V, are similar to those in Ex. 11.
Under Scalar Multiplication :
V.. Ya €F undf(x) EV,(F)

af (x) = (aay) + (@a) x + ...... +(aa‘)x*
€V, [ af(x)iseither a zero polynomial or a poly ial of degree < n]

V,—V,, are similar to those in Ex. 11.
Here V,, (F) is a vector space.
Example 13. Let F be a field and V the set of all m X n matrices over the field F. The addition of

matrices is defined as internal composition and multiplication of any scalar with a matrix as the external
composition. Prove that V (F) is a vecior space. (G.N.D.U. 1986, 85)

Sol. Let A=[ajjlpmxr B=1b;)mxn C=lciflmxn €VEF),

where ﬂu.bu.f-‘uEF.

L. Under Addition :

V,. Closure. V4, BE V(F), A + BE V(F).

Proof. A+B=[aglpxnt bl mxn=Ia;+bijlmxn €VF)L

V;. Associativity, (4 +B)+C=A+(B+C) YA, B C € NF).

Proof. (A+B)+C= ([aulmxn"' [bfj]nxn)*'krj]nxu
=[@;+bipmxnl*leidmxn =la;+b;)+ cilmxn

=[a;+®i; + i)l mxn [ Associativity under addition in F)
=["uluxn+ [b.'_n"" "l}]nxn=[aU]l|><n+ ([buluxs +{‘-'U]u>tu)
=A+(B+C).

¥V, Existence of Identity. A+O0=A=4+ 0V A EVF),0 EVF).

Proof. A+0=[a|‘j)n:a+ [o]nxn'- [afj"'o]-wxn_[ﬂ:j]-:&n""

Similarly O+A=A,

Thus A+O=A=0+A,

Here O =0, x , = [0],y x » is the identity.
V,. Existence of Inverse. ¥ A4 €WF),
there exists — 4 € WF) suchthat A+ (—A)=0=(-A}+ A
Proof, ﬁ*’(“‘)'["lj]mxn'* ["‘[j]ux""[a.'j+(_“Jj)]nku-[u]n>(n-0‘
Similarly (- A)+A =0.



Thus  A+(-A)=0=(-A)+A.

Here "= Ais the inverse of A,
Vs Commutativity. A +B=8+A4 VA B €V(F).
Proof. A"'B:["‘Uluxn"' u'fj]nxu =[a.'j+b.')‘]~xn
=lbij*admxn [ Commutativity under addition in F]

=i mxnt [@laxa=B+A
H. Under Scalar Multiplication :
V. VYa€F, YAEV.
aA=ala)mxn= [@8]nx . € V(F).
v, (@+P)A=ad+pfi Va BEF, VA EVF).
Proof. (ﬂ"‘mﬁ'(a"'m[“fj]nxn'[{G’""ﬂ)aij]mxn'(mfj*'ﬁaf;]uxn
'{aﬂ':ﬂmxn"‘[ﬂau]-xn'a[ﬂ'u]nxn*ﬂ[“:_f]nxu
=ah +fA.
A/ alA+By=ad+aB Va€F, VA B EWF)
Proof. a(A+By=a(la)mxn+bidmxn)=ala;+bidnxn=la@;+b))mxn
=lagyvabjlpxn=00 ) mxnt @il mx i@ @ muat @b mxn

=aA +aB.

Vs () A=alfd) Va fEF, VA EVF).

Proof. (W'(aﬂ)[“.ij]nun'[(“ﬁ)“u]nxn'[uwﬁu)]nxn'ﬂmaij]uxn
-a(s[al,‘]qxn)-ats“)-

Vie L.A=A VAEWR, I EF.

Proof. LA=1 (@ mxn =[Gl mxn =[0G ]mxn=A

Hence V(F) is a vector space.

Example 14. Show:themMofnxndlagacmimmlhsﬂddquafshamajsm
under the usual addition of matrices and the scalar multiplication of a matrix by a real number. i

Sol. Wehave: M-{AIA-[aul,x,,.aj)ml)foﬂij;a” ER}.

Let A,B,C EM, Whm-i\=[au]nxms= lbrj]nxn-c= ["U]uxn.

Then “!j-bij "'C.lj"‘o for i=j;1=ijsn and a, by;,¢;;y ER

Under Addition :

V;. Closure. Let A,BEM.

w aj;=0 fori=j and Ie‘.'lj-lll fori=j
and a;;. b; ER
 AYB=laglaxat Bilnxa
=[aj;+ bijlaxn [v a;+b;=0+0=0 fori®j anda;;+b;; ER)
EM

. M is closed under addition.
V-V are same as in Ex. 13.
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Under Scalar Multiplication :
Ve Leta€EF and AEM.
Now AEM =g;; =0 fori=#j and q;; ER
- aA=alaylyxp
= [0a;)n x ns [ ag;=a(@)=0 for i #j andaa;; € R)
eEM
*. M is closed under scalar multiplication.
V,—V, aresame as in Ex. 13.
Hence M is a vector space over F.
Example 15. Show that V={if|B € R} is a vector space over the field R where addition of the
vector space md:k:cnfarmnﬂ(plmtan of the elements q‘Vﬁy!ﬁmzq‘Rw‘empemMrheaddfﬁan of
complex numbers and the multiplication of a real mumber with a compl

Sol. Wehave: V={if|BER}, wherei=J-1.
Let x, yEV. Then x=ig y=ib, wherea b €R.
We define addition and scalar multiplication as :
x+y=i{a+b) andtx=i(ta) forrER.
I. Under Addition :
V. Closure.
Let x, yEV.
Then x +y=ia+ib=i(a+HEV
*. ¥ is closed under addition.
Vi  Associativity.
Letx,y,z €V ie x =ia, y=ib z=ic;abc ER
Then x+(y+2)=ila+(ib+ie)=ia+i(b+c)=ila+(b+c)] )
=i[(a+b)+e] [+ Associative Law holds in R)
=ifa+tby+ic= (ja+ib)+ic= (x +y)+z.
Associative Law holds in V.
V5 Existence of Identity.
Let xEV e, x=ia; a€R.
Then O=i0EV
Now O+x=i0+ia=i(0+a)=ia=x
Similarly x+0=x
O+x=x=x+0
O is the additive identity.
. V. Existence of Inverse.
Let xEV ie, x=ia; a€R.
Then —x=—(i@)=i(-a)EV ['a€ER = -a€R]
MNow =x+(-x)=ia+i(-a)
=ila+a)=i@=0
Similarly (-x)+x =0.
-x = i (- a) is the additive inverse of x =iain V.
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V. Commutativity,. Letx,y €V ie, x=ia, y=ib, abER.
Now x+y=ia+ib
=i(a+B)=i(b+a) [+ Commutative Law holds in R]
=jihtia=y+ux
addition is commutative in V.
IL Under Scalar Multiplication :
Ve VYIER andxEV.
Then x=t{ia)=i(ta) EV
*. 'V is closed under scalar multiplication.
¥ Letf,s ERandxE€V.
Then (t + s)x = (t + 5) (ig) =i [ (t + $)a] = i [ ta + sa] = i (ta) + isa) = ¢ (ig) + s (ia)
= [x + sx.
Ve Lett€R andx,yEV.
Thent(x+y)=t(ia+ib)y=t(i{a+ b)) =ift(a+ ] =i[ta+1b]=i(ta)+i(th) =1t (ia)+ 1 (ib)
=+ .
Vs, Lett,sER andx €V,
Then (ts)x=(is) (ia) = i [(15) a] = i [t (s@)] = ¢ [ (sa)] = ¢ [5 (ia)] =1 (sx).
Vie Let1beunity clementof Randx € V.
Then 1.x=1.(ia)=i(l.a)=i(a)=x.
Hence V is a vector space over R.
Example 16. Show that the set of all elements of type

u+bu"5+c¥}:a.b,cEQ

form a vecior space over the field Q under usual addition and scalar multiplication of real numbers.

and

Sol. We have V*{a+bﬁ+c¥§|a,b.c€0}.
Letx=a+b ¥2 +¢, V3, y=a+b,¥2+, 3 4y, 8,050, 8.0, €Q.
We define addition and scalar multiplication as :
x4y = (a,+a,)+(b,+b1)ﬁ +(ey+ ) el
s = (aay) + (@b) V2 + (ac) V3.
I. Under Addition :
V. Closure. Letx, yE V.

Then x+y=(ay+ 6,42 +¢,¥3)+(ay+5,¥2 + 6, ¥3)

=@ +a)+ (b + b2 (e +e) I3

eV [voaby,eysa, by €EQ = aytay, byt by, 0046y €Q)
¥ Associativity.
Letx, .z EV.

Then x+(p +2)=(a,+ b, 2 +c; ¥3)+ [(ay+ b2+, Y3) +(ay + byd2 + ¢, Y3 )]
=(@+b,¥2+¢, V3) [@+a)+ (b + b)VZ +(cr+ ) 3]
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=(a,+(a; +a)) + (b + (b + y)) V2 + (e +{e2+¢y) Ve
=((@,+a; )+ a) + (b + by 1 b,) V2 +{(e, + ey ) e)) VB
[+ Associative Law holds in 0}
Associative law holds in V.
V,. Existence of Identity.

LexEV ie, x=a+by2+c¥3 ;abcEQ.

Then 0=0+042 +0¥3 €V
Now  O+x=(0+0vZ +0¥3)+(a+b6vZ +c¥B)=(0+a)+O+HVZ+(0+c) 3
I -a+b‘r2- +cﬁ-x.

Similarly x+0 =x.
- O+x=x=x+0.

- 0=0+042+0 Y3 s the additive identity in V.
V,  Existence of Inverse.

Let €V ie,x=a+by2 +c¥3 ;abc€Q
Then —x=(-a)+(=8) v2 +( ¥3 €Q
[abe EQ=—a-v-c €]
Now x+(—x)‘=(a+bﬁ +e eﬁ)+((—a)+(—b)s‘r2_ +(~c) ﬁ)
=(a+a))+ G+VZ+(c+(c) V3 =0+042+033 =0.
Similarly (-x)+x=0.
x+(—x)-0 (-x)+x.
- —x=(-a)+(-b) V2 +(-¢c) ¥3 isadditiveinverseof x=a+by2 +c ¥3 inV.
Vs Commutativity. Letx, y €V.
Then  x+y=(a,+5v2 +¢, )+ (@ + 5,42 +6, V5)
= (@ + @)+ (b +b)V2 +(e,+e) V3
= (@+@)+ G+ b2 +(e+e) V3 [~ Associative Law holds in 0]
'{"z"‘f’:\{z- +e; Y3)+(a+ 5,2 +¢, YB) = y+x
*. Addition is commutative in V.
1L Under Scalar Multiplication :
Ve Leta€QandxEV.
Thenax=a(a+by2 +c ¥3) = (@a)+ (@b)v2 + (@c) I3
EV [+ @aa €EQ = an €Q ;etc]
V is closed under scalar multiplication.
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Vs, Lete, fEQ andxEV.

Then (a+fx=(@+P)(a+b 2 +c¥B)=@+Pa+@+PHb V2 +@+p) c 3
= (aa+fa) +(ab +pb) V2 + (ac +pc) I3
=(aa+aby2 +ac Y3)+(Ba+pb J2 +pc ¥3)
=ala+b 2 +c¥3)+p(a+b 2 +c ¥3)
=ax +fix,

Vi Leta€Q andx, yEV.

Then  a(x+p=al(a+bV2 +¢, ¥B)+(a+5,42 +¢; UE)]
=a[(a+a)+ (b +bIV2 +(c+e;) V3]
=la(@+a)]+ [a (b + 512 +[a (e + )] 3
= (aa, + aa) + (@b, +ab) V2 +(ac, +ac,) B
L(aa,+ab.ﬁ +ac, ﬁ)+(ﬂa;+ab:ﬁ +ac,; VS-)
=a(a+b¥2 +c, B)+a(a+5,¥2 +6, ¥3)
=ax +ay.

V, Leta,BEQ and xEV.

Then  (@B)x =(aP)[a+b V2 +c ¥3]=[@B)a] + [(@B) B]V2 + [(@B)c] ¥3
= [aBa)l+ [« B5]VZ +[a )] V3
=a[pa+pb 2 +pc P31 =a[B(a+b V2 +c ¥3)]
=a (fx).

Vi Let 1 be the unity element of Qandx € V.

Then 1.x=1(a+b 2 +c VBl apr (L.BVZ +(1.c) V=a+b 2 +c I3
=x

Hence V is a vector space over Q.

3. Vector Sub-spaces.
Del. Let V be a vector space over the field F, then the non-empty subset W of V is said to be the
vector sub-space if W itself is a vector space over F under the operations of V.

Thus (1) V is a sub-space of V [+ V is a subset of itself and is a vector space under operations of V]

(11) {0} is a sub-space of V. [+ {0} is a sub-set of ¥ and is a vector space under operations of V]

These two vector sub-spaces of V viz, {0} and V itself are called trivial sub-spaces.

All other vector sub-spaces of V are called non-trivial sub-spaces.

For Example. Consider V=¥;(R)= {(a,,a;,a;):4a,,a;,0; ER}.

We can easily see that it is a vector space for addition and scalar multiplication of vectors.
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Consider W= {(a),a;,0):a,,a; ER}.
We can also easily see that it is a vector space for addition and scalar multiplication of vectors,
Further since W C V, therefore, W is a vector sub-space of V.

THEOREMS

Theorem 1. A non-empty sub-set W of a vector space V(F) is a sub-space of V iff W is closed under

vector addition and scalar multiplication. (GN.D.U. 1985 S)
Proof. Since W is a sub-space of V (F), [Given]
W is closed under vector addition and scalar multiplication.
Hence the result.

Conversely. Given. W is a closed under vector addition and scalar multiplication.
To prove. W is a vector sub-space of V.,

(I} Since W is closed under scalar multiplication, [Given]
VxEW,-1EF = (-1)xEW
= -—xEW

[ YxEW = xEVand(-N(x)=-xEV¥]
Thus additive inverse of each element of W exists.
(II) Since W is closed under vector addition, [Given]
YxEW, -xEW = x+(-x)EW
[ xEW = -xEW = x+(-x)=0€F]
= 0EW
Thus 0 is the additive identity of W.
(I1I) Since elements of W arc elements of V,
~ vector addition is commutative and associative in W.
Thus W is an abelian group under vector addition.
Further W is closed under scalar multiplication and, therefore, the remaining properties of vector
space also hold in W because they hold in V.
Hence W is a vector space and is a vector sub-space of V.
Theorem Il A4 sub-set W of a vector space V(F} is a sub-space of V iff
() W is non-empty
(i) Yz, yEW = x-yEW
(i) VaEF,xEW = axEW.
Proof. (i) Since W is a sub-space of V(F),
*. (W, +) is an abelian group and is a sub-group of (V, +).

. W possesses the additive identity 0.

Hence W is non-empty.

(i) ¥x,yEW * x-yEW [y EW = —yeEW

’ = x+t(-»EW . [By Closure Property under addition)
® x-yEW

(iiiy ¥a €F,x € W, where W is a vector space
L ax€EW. [By def)
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Conversely. Given. (7), (i) and (iii) hold.
To prove. W is a vector sub-space of V (F).
To prove this, all the properties for a vector space must hold.

VxEW = x€V [+WCV]
Also 1EF = -1€E€F
~ YyEW and -1€EF > (-)yEW [By (iin]
= -yEW
Thus inverse of every element of W exists. -
VxeEW and yYEW
= xEW and ~-yEW » x-(-y)EW [+ By (in)]
= x+yEW
Thus W is closed under addition.
YxEW and -xEW = x+(-x)EW
= 0EW,

Thus identity exists in W under addition.

The remaining properties also hold for W. [+ WCH

Hence W is a vector sub-space of V(F).

Theorem 1II. A sub-set W of a vector space WF) is a sub-space of WF) iff Ya,BEF and
Ve, yEW max+fyEW. (P.U. 1985)

Proof. Given. W is a sub-space of V(F).

Toprove,. Va,fEF and V. yEW =sax+fyEW

a€EF,xEW = ax €W
and PEF,yEW :ﬁyEW}

Now ax EW, fyEW = ar+fy€W [+ W is closed under addition)
Hence Va,fEF andVx,yEW = ax+fyEW.
Conversely. Given. Ya,fEF andVx,y EW
= ax+fy EW.
To prove. W is a sub-space of V(F).
Let us take a=1 and f=-1.
Here lLx+(-DyEW = x-yEW,

[= W is closed under scalar multiplication]

Let us take p=0.
Here ax+0.yEW = ax+0EW [ 0y=10]
- axEW. ’ '
Hence W is a sub-space of V(F).
Theorem 1IV. The intersection of the sub-spaces W, and W, of a vector space WF} is also a
sub-space. (G.N.D.U. 1998, 96)

Proof. Letx,y EW,NW, and @, EF.
Now xEW, NW, = xEW,and xEW,
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and YEWNW, = yEW, and yE W..
Since x, y € W, and W, is a sub-spacc of V, .
: ax+fy €W, () (TR
Similarly ax+fvE W, (2}

(1yand (2) = ax+fly EW,NW,.

Hence W, MW, is a sub-space of V(F).

Remark. The union of the sub-spaces may not be a sub-space.

For Ex. Consider Vy(F) to be a sub-space and W, , Wy be its two sub-spaces with elements of the
tvpe (a, 0, ) and (0, b, 0) respectively.

Let x={a 0,0) € W, and y=(0, b, 0) € W,.

Ifa, # are two non-zero scalars, then

ax + fiv= a(a, 0,0)+ (0, b,0)

= (aa, fb, 0)
= ar+fy @& W andax+fy & W,
= ax+fy €W, NW,.
Hence W, N'W, is not a vector-space.

| SOLVED EXAMPLES

Example 1. [f W, and W, are sub-spaces of V (F), prove that
Wi+ Wy={w +w | w €W, w, EW,}

is a sub-space of V. (P.U. 1985 §)
Sob If v, , ; EW,; y1, 1 EW,
so that Xx=xphy L, p=xty €W, + W,
Now «a,f€Fand x,,5,EW,
ax, + fir, EW, [+ Wy is a sub-space]
and a,fEFand 3,1, EW,
- an + By EW, [+ W, is a sub-space]
Thus (ax; +fx; )+ (ay, + Bya) €W, + W, 1))

Alsofora, BEF,x, yEW,+W;
= axtfy=alx b+t ) =axn T ay + fx+ By = (@x o) + (@ + )
EW, +W, [Using (1))
Hence W, + W, is a sub-space of V.
Example 2.  Prove that the intersection of an arbitrary family (W, : @ € V} of sub-spaces of a
vector-space, V is a sub-space of V. Does the similar result hold for union ? Justify. (G.N.D.U. 1989)
Sol. () Let W, , W,......., W, be n sub-spaces of a vector space V.
Let W=nNW,;a=1,2,....n
Since 0 € W, S 0EN W,
= 0EW
= W is non-empty.
Let g, b E Fandx, y € W, thenx y € each W,
= ar+ by € each W , which is a sub-space
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= am+hyENW,

> agx+hyEW.

Hence W = N'W,, is a sub-space.

(i} No. See Ex. 3.

Example 3. Prove that union of two sub-spaces of a vector space is sub-space if and only if they are

comparable. {G.N.D.U. 1993, 85 ; P.U. 1989)
Or
Prove that the union of two sub-spaces W, and W, is a sub-space iff one of them is a subset of the
ather, (P.U. 1997)
Sol. Let W, C W, Then W, U W;=W,.
Since W, is a sub-space, [Given)

s W, UW,; is also a sub-space.

Again let W; CW,. Then W, UW,=W,.

Since W, is a sub-space, [Given]
W, U W, is also a sub-space.

Conversely. Given. Let W, UW, be a sub-space.

To prove, Either W, CW, or W, CW, ie, W, and W, are comparable.

Proof. Let us assume that W, is not a sub-set of W, and W, is not a sub-set of W,.

Since W, ¢ W,, s JaEW,,agW, (D)
and Wo W, s ABEW,, BEW, (2)
From (1), a€ W, U W, [va€ W]
From (2), € W, U W, [~ BEW]
But W, U W, is a sub-space [Given]

a+Falso €W, U W,

= a+fEW, or W,

Let a+fEW,. Alsox € W, and W, is a sub-space

o (@+B)-a€EW, = fEW,.

But from (2), BEW,

Thus there is a contradiction.

Hence either W, C W, or W, C W, ie., W, and W, are comparable.

Example 4. Discuss whether or not R is a sub-space of R .

Sol. We know that R® = {(a, b) | @ b € R} is a vector space over R under usual addition and scalar
multiplication of ordered pairs.

Also  R'={(a b ¢) | a b ¢ €R} is a vector space over R under usual addition and scalar
multiplication of 3-triples.

But R® isnota sub-set of R® [“(ab)ER = (ab) &R)

Hence R? is not a sub-space of R’.

Example 5. Let V be a vector space of polynomials of degree < 6. Which of the following are sub-
spaces ? Justify vour answers. In each case f(x) belongs to V.

) W={f&|1O0=1

(i) W= {f(x)|degf(x) =4}
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(i) W={f(x)f(1)=071(3)=0}

(¥) W= (f(x)|coeff of ¥ is I or— 1}

(v) W= {f(x)| having + ve coefficients}. (G.N.D.U. 1988 5)

Sol. (i) W is not a sub-space of V, because zero polynomial does not belong to W.

(i) W is a sub-gpace of V.

Clearly W is a non-empty sub-set of V.

Consider f(x), g (x) € W, then deg f(x) < 4, deg g (x) <4.

Foralla,f EF,

af(x) + fg (x) is a polynomial of degree < 4

= af(x)+fgEW = W isasub-space of V.

(iif) W is a sub-space of V.

Let f(x)=x'2-4x+3. which is a polynomial in x of degree 2 and f(1) = f(3) =0, so f(x) E W
and thus W is non-empty sub-set of V.

As in part (b), we can prove that W is a sub-space of V.

(iv) W is not a sub-space of V, because zero polynomial does not belong to W.

(v} W is not a sub-space of V, because zero polynomial does not belong to W,

Example 6. Let V(R) be a vector space of all functions from R to R. Show that Wy and W, are sub-
spaces of V(R),
where W, = set of all even function ie. {f | f€ Vand f(- x)=f(x)}
and W, =set of all odd functions i.e. {f| f€ Vandf(-x)=-f(x)}.

Also check that V= Wy + W,.

Sol. () Wehave W,={7| f€ Vand f(- x)=f(x)}.

Clearly fEW, = W,isnotempty [ f=x+x'ew,]
Now leta, ER andf g€ W,
sothat f(-x)=f(x) andg{-x)=g(x) VxER.
(af +B) (-3 = (@) (-3) + Bg) () = a.f(-3) + . g (- x) = f (x) + Bg (x)
= (@) () + (Bg) ()= (@f +BR) ()

= af+fgEW,

Hence W, is a sub-space of V over R.

(i) Exactly similar to part (§).

(ifi) To prove: V=W, +W,

Let fEV.

Then f()= 3 (W+fCx)+ 3 Y@-F(-0) VxER
“F(x)+G(x), where % (O +fx))=F ()

nd 2 (0 -f9)6)
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Clearly F(-x)=F(x) and G(-x)=-G(x)
and G(x) EW,

- Fix) EW,

Thus f=F+G, where FEW, andGEW,.

Hence V=W, +W,

Example 7. Let V be a vector space in R'. E
(D W={(abec)| azl}

(ify W={(a b, c)| cisaninteger}

(i) W={(a bc)| abcEQ)

(V) W={(abc)|lashsec}

™ W={(abc)|d +b+’s 1}

(viy W={(a b c)| a-3b+4dc=0)

(vif) W={(a, b c)| b+de=0}

(i) W={(a b¢c)| a-b+c=02a+3b-c=0}

Sol. (i) Let(a, &, ¢) € Wand -5 €R, then

~5(a, b c)=(-5a-5b,-5c) €W
Thus V is not closed for scalar multiplication.
Hence W is not a sub-space of V.

(ify Let{a, b, ¢) €W, wherec isan integer.

and J2 €R, then

V2 (@ b, )= (V2a, 426, 2c) & W

Thus W is not closed for scalar multiplication.

Hence W is not a vector space of V.
(ifi) Let(a b,c)EW and 2 ER, then
V2 (@ b, 0)= (V2a, V2b,2c) & W.

Thus V is not closed for scalar multiplication.

Hence W is not a sub-space of V,

hether the following are sub-spaces or not :

(P.U. 1995)

[ =5a<0]

[ c is an integer but \Ecisnota?rr'mesw]

[+ J2a, J2b, J2¢ & 0]

(iv) Let{a b, c) EW, where a < b s cand- 1 E R, then

-D(abe)=(-a-b-c)&W

Thus W is not closed for scalar multiplication,

Hence W is not a sub-space of V.

[v-a>-b>-¢]

(v) Let(a b, c) € W, wherea+b'+¢* < 1and -2 R, then

(-2)(a b, ©)=(-2a,-2b,-2) EW

Thus W is not closed for scalar multiplication.

Hence W is not a sub-space of V.
(vi) Since a=3b+4c=0,

o a=3b~dc.

[ 4@+ 6+ cz)maynotbe =1]

Let us select two elements of W so as to satisfy the above condition as :

x=(a,by,c1) and

y-(GZDbZ!ci)
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ie., x=(3b,-4¢c;,by,c)) and  y=(3by-4dc,, by, ).
To prove. W is a sub-space.
ax+fy €W, where a,JER.
For ax+ fly=a(3b,-4c,, by, c))+f (3b;~4ca, by, )
= {3 (ab, + fby) - 4 (ac; + fcy), ab, + b, , ac, +fic;}=(3B-4C, B, C)
=(A,B,C)EW,
where A =3B-4C or A-3B+4C=0,
where A, B, C € R because ab, + 86, ER, ac,+fc; ER.
Hence W is a sub-space of V.
(vii) Lete €R andx, yE W,
Then x=(ay,by,c)) and y=(a,,b;,c))"
such that b, +4e, =0, by+dc;=0.
Now x-y=(a;,b,c)) —(a, b, ¢)
suchthat (b, —bs)+4 (c,— €)= (b, + 4, — (by +4c) =0-0=0
x-yEW
and cx = (aay ,ab, , ac))
such that (ab,) + 4 (ac;) =a (b, +4¢,)=a(0)=0
) axr €W,
Hence W is a vector space of V.
(viify Since a-b+ec=0 and2a+3b-c=0,
a=b-c and 2a+3b-c=0.
Let us select two elements of W so as to satisfy the above condition as :
x=(ay, b ,c) and y=(ay, b3, 1)

such that ay=b~c, ; 2a, +3b-¢=0 } )
and ay=by~e,; 2ay +3b~c, =0
Mow x-y=(a.b,e)—(a;, by, c)d=lay—ay, b)=b;, £,-¢;)
suchthat &, -a;=(b;-c))~(by-c;) - [Using (1]
and Aay—a)) +3(by—by ) - (&)~ €)= (2a,+ 3by—¢)) - (20, + 3y — cy)
=0-0 [Using (1]
=0
I-yEW
and ax = afa, b .e)= (aa.ab,, ac)y

such that aa, =aib, -, )=ab, -acg,
and 2 (aa)) + 3 (ab)) - (ac)) =a (2a,+ 3b, - c)) =a(0) =0
ax €W,
Hence W is a sub-space of V.
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Example 8. Let ¥y (R) = {{a. b, ¢} | a b ¢ € R} be a vector space over reals. Show that
W= {(0. b, c)| 0, b, c €R) is a sub-space of V (R).
Sol. Let a,f€ Randx, yEW such that
x=(0,8,,c) andy=(0,b,,c,) EW, whereb,,c,,b,c,ER.
Now ax +fy=al0, by, ¢} + B (0, by, ;) = (0,ab, , ac, ) + (0, Bb, , fey)
=(0, ab, + Bb, , ac, + fc;)
EW [vapfb, by, ER = ab +f8by, ac +Pc;, ER]
Thus ax+fly EW Va,f ER andx, yEW.
Hence W is a sub-space of V; (R).
Example 9. Let a, b, ¢ be fixed elements of a field F. Show that
W={xp2) | ax+by+cz=0;xy.zEF}
is a sub-space of Vy (F).
Sol. Since (0,0,0)E W [va.0+b.0+c.0=0;0€F]
= W is non-empty.
Let a,EF and wvEW.
Then w=(x,,y,z) and v=(x,p,z) ]
where ax, + by, + ez, =0 and ax, + by +en =0 (1)
Now au +fv=a(x,p,0)+B (5. 0n. 1) = (ax ey, az) + Bx, Byz . Bz)
= (ax, + fxz, ay, + By, , az) + fz))
and o(at1+ﬂx,)+b(ay.+ﬁy,j+c(d:|+ﬂz«_) aax, + afix; + bay, + by, +caz, +cfin
=a(ax, + by +cn) + B (a@xy + by, + cz))
=a(0)+B(0)=0
Loautfiv EW. .
Hence W is a sub-space of V, (F).
Example 10, (i) Find whether W = {(a, b, a, b) | a, b € 2} is a sub-space of R* (R), where
R'={labcdlabecdER)
(ii) Find whether W {(x, x, x, x) | x € R} is a sub-space of R' (R), where R' = {(x. 5, z, w)| %, y, s, wE R}.
Sol. (DLet x=(a b.a b),y=(u,v,uv) anda,f ERanda, b, u, vE Z.
Then ax+fy=a(a, b, a b)+f (u v, u, v)=(aa, ab, aa, ab) + (u, v, fu, fv)
= (aa + fu, ab + pv, aa + fu, aa + fv)
= (A, B, A, B).
But A=aa+fumaynot €Z whena,u€Z, buta, S ER.

For Ex. Ifa=2, u=3  and a=7;-,ﬂ=-§—.men

1 2 16
aa + flu ?.2+-§,3 -,—T-QZ

= aa+fu@EW.
Hence W is not a sub-space.
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(i) W={(xxxx)|xER}
Let a, B be any two elements of Wand a, b €R.

Then aatbff=a(xxxx)+b(yyy)| yER
=(ax, ax, ax, ax) + ( by, by, by, by) = (ax + by, ax + by, ax + by, ax + by)
=(A, A A A EW [wA=ax+by€Rasa, b x y€ER)

Hence W is a sub-space.
Example 11. [f a vecior space is the set of real vatued continuous functions over R, then show that

set W of solutions of differential equation
dly &
2= -9 =420
is a sub-space of V.
Sol. We have : wa{yu:"’ 9“5’+zy = u}
where y=f(x).

Since y satisfies the differential equation, therefore, it € W.
Now select y, , y; € W so that

4 d?
2‘*—{'—9%"'2‘ﬂ=0 and2 d:’ d"* +2y,=0.

lnordermprrnvelhal\n\fisasub-spmwehavetoslwwﬂm
ay, +fiy; EW, wherea, B EF.

2
Nowz% @1 +B)=9 & @+ A+ 2an +F) =0

d? » 4 )’2 ( dyy d}';]
= M?"’w -9 GI-l-ﬁ? +2ay, + 28y, =0

'y, &, EN2
= [2‘*——9;+2y‘]+,8[ = -—‘)?ﬁ!y2 =0

= a(0)+pB(0) =0, which is true.
Since ay, + fly, satisfies the given differential equation as and when y,, y, satisfy it.

Hence W is a sub-space.

Example 12. Which of the following set of vectors
x=(a,,8; ..., a,,)iuR"mmbﬁspacuofR"?

() all x such that a, =0

(if) all x such that a, + 3a,= a,

(i) all x such that a, = a,*

(V) all x such that ay a; = 0

(v} all x such that a, is rational

(vi) all x such that x, + xy +...... + x,= k, a fived real.

(n=3)
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Sol. ()LetW={x:x ER" andaq, 2 0}.
Let x=(ay, a0ty =(by, b2y, B)EW,
where a, , b, = 0.
Now for a, f# € R, we have
ax +fy=(aa, + b, ,.......aa, + fb,) E W
Then for e, § € R, we have
ax +fy=(aa; +pb, ,......,aa, +pb,) EW
Because if a,=3,b =3 anda=-1,=-12,
Then aa, +fb=-3-6=-9<0,
Hence W is not a sub-space of R".
(i) LaW={x:xER"and a,+3m=ay }.
Let x=(a;,ds ey ag)and y=(by, by,....... ;) EW,
where a,+3a,=ayand b, +3b,=b,.
Now fora, f# € R, we have
ax + fly = (aa; + b, , ...... Laa, + f8b,),
wehave (aa,+fb,) +3 (@a, +fiby) =a (a) +3a) +f (b, + 3b)) = ag, + Bb,
Thus ax +fy € W.
Hence W is a sub-space of R"
(i) Let W= {x|xER"anda,=a,7}.
Let x=(a;, 85 ...y @y ) and y=(b;, by ,...... JB ) EW,
whtma2=a,’ mdb,ibli.
Now fora, # € R, we have
ax+fy=(aa, +fb,, ......,aa, + pb,),
we have (aa, +fb,) # aa, + fib,

[ ifay=9, ay=3, by=16, by =4, a=3, B=4, we have (aa, + fb,)
=(9+ I6) = 625 while ag, + fby= 48 + 65=113]

Thus ax+fiy @ W.

Hence W is not a sub-space of R".

(¥) LetW={x|xER"and a, a,=0}.

Let x= (8,87, cuens da, ), y=(b , bs,...... B IEW,

where a,a,=0, b by=0.
Now for a, § € R, we have
ax +fy=(aa, +Pb, , .......aa, + fib,), we have
(aa, + 8 b)) (@ay+Pb;) # 0 for a,ay=0, b, b,=0.
Thusax +fy & W.

Hence W is not a sub-space of R"
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(v) Let W= { x| x € R" and a, is rational}.
Let x=(ay, @y, ....,a,)and y=(by , by....., 0, ) EW,
where a, , b, are rationals.
Now for a, § € R, we have :
ax+fy=(aa, + by, ......aa, + fib,).
Here ¢za; + b, is not always rational. [ Whenay =4, by =5, a=+3,8=7,
we have aa, + Pby =45 + 35, which is not rational)
Thus ax + Sy & W.
Hence W is not a sub-space of R
(vi) LetWe={x[x=(x;,%,. ....xy ) ERandx, +x,+ ...+ x, = k, afixed real}
Casel. Whenk # 0.
Let x=(1,2,0,...... L0y, wherex; +x;+ ...+ x,=3#0
and y==2,-1,0, ... ,0), wherey, +y+ ...ty =-3 %0,
Then x+y=(1+(=2),2+(=1),0,......,0)
=(-1,1,.....,0), where (~1)+1+0+....+0=0

Ew.
Case Il. When k=0.
Let x=(x;,%;, ... yXp) and y=(, 000 eendn
wherex, + X3+ ...... +x,=0andy +y;+...... +yp=0.
Leta, fER.

Then ax+fy=(ax, + By, ax; +Byz ..., @y + fyy)
= (ax, + fiy) + (ax; +fyy) +......t (@x, + fyg)
=a(x +Fxt .t ) B0t +3,)
=a(0)+(0)=0.
Thus arxr+fy EW;a,fER.
Hence W is a sub-space of R.
Example 13, Let V be a vector space of a function F| V-»R,
Which of the following are sub-spaces ? In each case f(x) € V.
() allfsuchthat{()=[f(0)]*
(if) all fsuch that £(0) = f(I)
(i) all fsuch that f(- 1) =0
() all fsuch that f(3)= 1 + f(- 5)
(v} all fwhich are continuous.
Sol. () Let W={f|f€Vand/(’)=[/ (]}
Let fg€W. Thenf(x')= [/ andg ()= [g ).
Now fora, # € R, we have
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and

(af+8g) ) = (af) (') + (Bg) () = af (") + Bg (x)
(af+Bg) () = [af @+ Bg ] =& [fF + 5 [g @] + 2B/ (x) glx)
Thus (af + Bg) () # [ (af + B )]
> (af+Bg) & W.
Hence W is not a sub-space of V.
(i) Let W= {f|f€ Vandf(0)=f(1)}

Let £ g € W. Thenf(0)=/(1)and g (0)=g(l) A1)
Now fora, f € R, we have
(af +Bg) (0y=af (0) +Bg (0) =af (1) +Bg (1} [Using (D]
={af+Bg) (1)
b {af+Bg) EW.

Hence W is a sub-space of V.
(i) Let W={f|fEVandf(-1)=0}.
Let fg€EW. Thenf(-1)=0andg(-1)=0 (1)
Now fora, f € R, we have
(af+B) (- =af(-1}+fg(-D=a.0+5.0 [Using (1]
=0
= af+gEW.
Hence W is a sub-space of V.
(v) Let W={/f|f€ Vandf(3) =1 +1(-5)}.
Let fg€W. Then f(3)=1+f(-5)andg(3)=1+g(-3) (1)
Now for a, § € R, we have
(af+pg) D =af ) +PgB)=a(I+f(-N+H(1+g(-9) {Using (1]
=(a+p)+(af+pg)(-5)=1+(af+Pg) (- 5)
Thus af+ fg & W.
Hence W is not a sub-space of V.
(v) Let W= { f]f € V and fis continuous}.
Let £ g € W. Then fand g are continuous.
Now fora, § € R, we have
af+ fg is also continuous. [+ £ g are continuaus]
af+fg EW.
Hence W is a sub-space of V.
Example 14. Prove that the set of all polynomials in one indeterminate x over a field F of degree less

than or equal to n is a sub-space of the vector space of all polynomials over F.

ie.,

{p(x)] p(.t)-ao+a.x+a,x’+ wh @ EF
Sol. We know that P(x) is a vector space.
Let W= { p(x)| p(x)=ag+a,x + ...... +a,x"},a EF
W is a set of all polynomials of degree < n.’
Clearly W C P(x).
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Let p.(x)-ia: and p, (x) = ibx EW,
=0
meuam (x}+bp:(x).whmabEF

=q ta'x +b ib,x =~ t(m;)x + t(ﬁb )x'= i:(m,+bb ),
i=0

which is again a polynomial of degrus:;and ﬂleret'ore.EW
Hence W is a sub-space.
Example 15. Let ¥ be a vector space of all 2 X 2 matrices over reals. Determine whether W is a

sub-space of V or not, where :
{a) W consists of all matrices uﬂkuan-zerodelmnm
()] chi.mofaﬂwaﬁcesdshi =4

© W={[; ﬂ,m&m abeE R}

x 0
, Sol. (a) Let W= {[0 y] X,V E R}.

Since [‘

o ?] € W, W is a non-empty subset of V.

ComiderA-[ o]
0y
x 0

B=|"2 EWanda,fER

[0 J’:] ?

0 x 0

aA+fiB=a +

meefy SJls )

=[ax,+ﬂx, 0
0 ay, + Py

Hence W is a sub-space of V.

() W is not a sub-space of V because W is not closed under addition.
0

]Ew [ Jos det. #0)

1
To verify. betA=[:o ].mﬂm
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2 0 2 0 4 0
and (A+AY= + = #2A+A,
0 0 0 0 0 0

Thus A+ A& W,
(c) Same as part (a).
Example 16. Let V={A | A= [a;]], x n.9;; € R} beavector space over R.
Show that W= A € V| AX =XAY X € V} is a sub-space of (R).
Sol. Since OX=0=XOV X€EV
= 0EW
Thus W is non-empty.
Clearly WC V.
Let e, AER and P,OQEW
= PX=XP and QX=XQ YXEV A1)
(aP + AQ) X = (@P)X + (BQIX = a (PX) + f (QX)
=a (XP)+ B (XQ) [Using (")
=X {(aP) + X (fQ) = X (aP + Q)
> aP+pQ E W. '
Hence W is a vector space of V (R).
Example 17. If ¥ be the vector space of all square n X n matrices over reals. Examine whether the
Jfollowing are sub-spaces of V or not :
(i) Collection of all ic matrices
(if) Collection of all skew-symmetric matrices
(tif) Collection of all scalar matrices
"(iv) Collection of all singular matrices
(v} Collection of all diagonal mairices.

Sol. We have
V={A| A= [a”],,x, H a..jER}
is a vector space over R,
{f) W = Collection of symmetric matrices
Clearly W C V.
Let x,y € W, where x=[b;] for which b; = &,
and y=le;] forwhich ¢; = ¢ } (1)
Then ax+fy =alb;]+f[c;] for a, FER
= lab,, + fe;;] [By matrix addition and scalar multiplication)
= [d;], whered,;= ab,, +fc,;. )
Now dy =aby+fe,=ab,;+ ey [Using (1]

=d;
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Thus [ } is slso.a symmetric matrix and, therefore, € W.
__-__:.I-knuﬂ'iunh-wuf'\f.
= (i) Here W =Collection of all skew-symmetric matrices
' ={laduxnlaj=-a;Va,; ER}
Clemrly WC V.
Let x,y € W,where  x= [a,] forwhich a'-—aj‘.}
and ¥= [b,) for which by=-b,

Then ax+fy=ala+Bib,] for a,BER
"'kﬂlu*ﬁb”] [By matrix addition and scalar muitiplication)
-{q‘].. wlnncu= ﬂu"'ﬂ&u

Now Cﬂ'ﬂﬂﬂ*‘ﬁbﬂ-‘qﬂﬂu‘-ﬂbu [U-WEU)]
=—cyy

Thus {c; ;] is also skew-symmetric and, therefore, € W.

Hence W is & sub-space of V.
(i) Here W = Collection of all scalar matrices

={ladaxnlay =k fori=j, where kER)}
=0 fori®}j

(1)

Clearly WC V.,
Now proceed exactly as in part (a).
{iv) Here W =Collection of all singular matrices
Clearly W is not a sub-space of V because W is not closed under addition.

20 [
ForEx. LetA = , B= EW
o0 0 3

20
03
(v) ‘Here W = Collection of all diagonal matrices
={laidaxnla;=0 forivj, a;ER}
Clearly W C V.
Now proceed exactly as in part (@)
4. Linear Combination
Def. Let ¥V be avector space over F.  Let x,,%;,......, %, € V. Then any element 'x’ which can be
written of the type
x=aixtaxt..... + Xy

But A+B-[ ]ﬁWu&t(a\‘l-B)-éllD]

- ta,x‘ Jora,EF, where ] =i sn
i=]

is said to be limear combinstion of the vectors x, , X, ,......, X, over F.



Since V is a vector space, therefore, x € V. [By addition and scalar multiplication in V]
Note. Forx,,X;....... %y , we get different linear wmﬁwluns by 1aking different sets of scalars.
5. Generator of a vector space
Def, Lelsbeanumprymbselnfamlorspace WFA. Thens.{gsatdrobemegwamrgﬂ/{ﬂ
if each element of V can be expressed as a linear combination of the elements of 5.
Thus if § is the generator of the vector space V (F), and ifv € V, I!lmthmexistu, ,u,, ...... VU
ES5 st -
v=a taut o tagy, for @'sEF, wherel =isn
‘For Ex. LetV,(R)={(a.f)| a,fER} and
S={(1,0),(0, 1)} = {e. &}

Let vEV,
Then v=(a, fl=a(l,0)+5(0, 1)=ae, +fe
= v isa linear combination of ciements of 5.
Hence S generates V.

[ SOLVED EXAMPLES | ‘
Example 1. (1) Write the vector x = (I, 7, -J)aaaffmrcambmtmdmmu, (f =32
and x, = (2, — I, 1) in vector space V5 (R).
(i) Write the vector x = (2, - 5, «l]nw.'marmbimﬁmd’mm x,-(." -3, 2) andxy= (2, ——.f n
in vector space V5 (R).
Sol. () Letx=a,x,+a,x,, wherea,,a; ER

o R
ie., (L7, -4=a,(1,-3,2) +ay(2,- 1, 1) =(g, -_—?anza_l)-."'__(?!z,:g;ggaf-‘;)_ .-
= (e, + 2o, , = 3@, — @y, 2a,+ay). T - H x o g
Comparing, I=a,+2a, . S P P R { )
T=-3a-a, ' ~(2)
and 4=2,ta e

Adding (2) and (3}, 3=~a, = a;=-3.
Putting in (2), 7==-3(-3-a; . .
= € =9-7=2 I
ey =-3anda; =2 mpjv(!]bemi -—3+2(2} ie, l==-3+4]
x==3x) +2x, whlchexpresm:unlfnwmmtﬂmofx,mdx,

(i) Letx=a,x, +a,x;, wherea,, @, ER M
ie., (2,-5.4)=a,(1,-3,2) +a,(2,-1,1)= (a|,—3a|, |)+(2G3, a& Cl;)
= (ex) + 2ay , - da, —ay, 2a) +ag)” 3 PR )
Comparing, 2=a,+2a; im0 (D)
SRR T S, L S A (D)
and 4=2a, +a, RN )
Adding (2)and (3), -1=-ga, = a =1 i% .
Putting in(3), 4=2()+a, = a=2. g
But @ = !and a,=2 donotsatisfy (1). R [ 2=1+4]

Hence x cannot be expressed as a lingar combination of vectors x, and Xy w0 cio it «
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Example 2. For what value of k will the vector x = (1, k 5) in V, (R).lxaﬂm combination of

vectorsxy = (1, -3, 2) andx,=(2.-1, 1}?
Sol Letx=a,x,+ a,x;, wherea, ,as ER

~20 =—la, - 33,

ie, - (LES)y=a (l,.-3, ) +a, 2. - L, 1) =(a;, - 3ay, 2a)) + Qay . — a3, )
=(a, +2a,,-3a,-a,, 2a, +a,).
Comparing, l=a,+2a, D)
k=-3a,-a, (2
and 5=2a,+a, (3}
(1) =2(3) gives : -9 =—3a, = a=3. : -
Putting in(1), 1=3+2a, = 2;=-2 = a=-1. .
Putting these in (2),
==3(3)-(-1) = =-9+1,
Hence k=-8.
Example 3. Write the vector x = (1, — 2, 5) as a linear combination of vectors.
p n=(L11), ,=(,23), xu:=(2-11)
‘in vector space V3 (R).
Sol. Let x=a,x, +a;x,+a;x,, wherea, ,a;,; ER
te, (1,-2,5)=a,(1, L, D +a;(1,2,3) +a, (2, -1, 1)
=(a\.a;,a1) +(a;, 2a;, 3a)) + (203, - a5 , @)
=(a,+a;+2a,, a,+2a;-a;, a,+3a,+a,)
Comparing, l=a, +ay+2a, (1)
-2=a; + 2, —-ay ...(2)
and 5=a,+3a,ta (3)
Adding (2) and (3), 3 =2a, + 5a, (d)
(1)+2(2) gives: —3 =3a, +5a, . (5)
(5)- (@) gives: -6=a, T ® a=-6.
Putting in (4), 3=—12+5a, » 5@,=15 = a=3.
Putting in (1), 1=-6+3+2a, = 2a,=4 = a,=2.
Hence i x=—6x; + 3x; + 2r;, which expresses x as a linear combination of x,, x, and x,.
Example 4. [s the vectorx=(2, - 5, 3) in V3 (R) a linear combination of the vectors
5=01-32), x;=(2,-4.-1, x=(1.-5 77
Sol. Let x=ax +a,x,+a,x,, wherea, . a;, ¢, ER
ie. @2-53=a,(1,-3,2) +a; (2, -4, ) + a3 (1,~5,7)
=(a,,=3a,,2a,) +Qa;, ~4uy, —ay) +(a;, ~ 5a;, Ta,)
=(a, + 2o, +ay , - 3a, - 4a; - Say , 2a, —ay + Tay )
" Comparing, 2=a+2a;ta, (D)
~5=—3a,-4a,-5a, ()
and . 3 =2a,-a,+7a, A3
: 5(1)+ (2) gives: 5 = 2a, +6a, ()
7(2) + 5(3) gives :

(3)
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5 i \
@ = al"'k!:E ' w4y
20
3 = “l*h‘a“ﬁ 5)
These (4") and (5°) are inconsistent’ equations.
Thus a, and @, and hence a; cannot be found.
Hence x is not a linear combination of x; , x; and x, .
Example 5. Write the polynomial ¥ = £ + 4t - 3 over R as a linear combination of the polynomiais :
e =F=2t+5, ey=20 -3t and ey=1+3. (Pbi. U, 1997)
Sol. Let V=a,e +a,e;+a,e, wherea,,ay,ay ER
ie., Frat-3=a,(f-U+5)+a 2F -3 +a, (1+3)
=(a)+20; ) +(-2a) - 3@y +ay) 1+ (5ay + 3)
Comparing co-effs. of £,
1=ﬂ|+2ﬂ, "-(I)
Comparing co-effs. of ¢,
4"-2&|—3ﬂ’3+¢1 (2)
Comparing constants, .
—3=5a, + 3a, 3
3(2) - (3) gives: 15=—lla, -9, > lig+92 =—15 )
Muttiplying (1) by 11, la, +22a,= 11 e
(5) - (4) gives : 13a,= 26 - a;=2.
Puttingin (1), = l=ga,+4 » @ =-3.
Puttingin (3), -3=-15+3a, »  3a; =12 = ay=4
Hence V=3¢ +2e +de,
3 -1
!‘.:mnplnes.ll"r.ii:.t.'auswmamrx-[‘I 2]Jnqu2x2m.uaﬂlw
combination of
I r 1o ro-1
x = , X3= y Xy = .
I Y L PR Rl PR
Sol. Let x=a,x +a;x;+ayx,, wherea,,q;,a; EF
ie 3-:_‘211'+ Ly, 1 -1
1 -2 Do -] ®-10f" [0 o
_[a a, ] L @], [o -] [aterva; a+a;-ay
0 —a | -a; 0 0 0 -0ty —-a,
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Comparing,
J=a +a;+ay = a +a,+a,;=3 (1)
-1=a,+a,~-a = @, teat, ey =—1 w(2)
- 1 ey -as 1 Ha, 3_ (A
=-—a, = a; =-1 (3
-2=-qa, = a,=-1 e (4)
By (4) and (3), we havea, =2, a, =-1.
Puttingin (1),2- 1+, =3 = a=2.
These satisfy (2) because 2 — 1-2=-1 ie,, —1=~1, which is true.
Thus the system (A) of equations is a consistent solution.
R x =25 — %+ 2x;.
Hence x is a linéar combination of x, , x, and x, .

2 1
Example 7. Write the vector x = [
1 =1

combination of

MR

Sol. Let x=ayx; +a;x;+ayx;, wherea,,a;,a, EF

SR ) Y I
SERTRCN

Comparing,

J=a = a =3

1 =a, +2a, = a) +2a, =1

1 =a +a, = a, +a;, =1

and -1 =a, -a, = a, —a; = -1

From (1), ea; =3
Putting in (3), 3+a, =1 = a;=-2
Puttingin (2), 3+2a3=1 = 2a;=-2 = aq=-1
These satisfy (4),
Thus the system (A) of equations is a consistent solution.
Hence x=35-2x—Xx.

Example 8. Show that the vectors x,

:|J‘nmror:pac¢af 2 % 2 mairices, as a linear

A

2ay | a, @y, + 2a,

- ﬂ’ @) + iy gy — @y
()
(2)
() - (A)
we(4)

[c-2+1==1

=(1 2, 3), %,=(0. 1, 2), x;=(0, 0, /) generate V5 (R).

Sol. Here we shall show that x = (g, b, ¢) € V,(R) is a linear combination of x, , x; , x; .
Letx = a, x; + @, x; + @y x; , wherea;, @y, @; € R are unknown scalars

ie., (@ bc)y=a(1,2,3)+a;(0,1,2) +a, (0,0, 1)
=y, 2y,

3a)) +(0, a3, 2a;) + (0,0, @;) = (@, , 2a, + @, 3a, + 2a; + ;)



68 Guldes LINEAR ALGEBRA
Comparing, a=a, - = a,=a A1)
b=2a,+a, = 2a,+ay=b )
and c=3a,+2a,+a, = 3qy+layta;=c w(3)
From (1), a =a
Putting in (2), 2a+a,=b = a,=b-12a.

Putting in (3), 3a+2b-da+ay=c = @, =a-2bh+e.
Thus (a b c)=a(l,2,3)+(b-2a)(0,1,2)+(a—2b+¢)(0,0,1).
Hence x, , x; , X, generate V5 (R).

6. Linear Span

Def, Let 5 be a non-empty subset of a vecior space V(F). The set of all linear combinations of any

Sfinite number of elements of S is said to be linear span of 5.

(G.N.D.U. 1997 ; HP.U. 1990)
This is denoted by L(S).

ThusL(S)= {  a; %+ x; ESanda EF, 1Sisn}.
i=1

7. Smallest Sub-space

Def. Let V be a vector space over a field F and S C V. Then W, a sub-space of V(F), is said to be the

smallest sub-space of V containing S iff

and

5 SCW (i) Wyisasub-space of VIF)s.t. SC W, , then WCW,.

The smallest sub-space is generally denoted by <§ >,
Remark. For each subset S of V(F), there exists a unique smallest sub-space of V(F) containing S.

THEOREMS
Theorem L The linear span L(S) of any subset S of a vector space W(F) is a sub-space of V(F).
(G.N.D.U. 1997,90; P.U. 1992 ; H.P.U. 1990 ; Pbi. U. 1980)

Proof. Let x, y € L(S).
Then by def., x=Zea;x;, where q;€F, x;, €E5;i=1,2,....,n

y=XpBiyi, where B,EF, ¥ €S5;i=12,....m
To prove. L(S) is a sub-space.
In order to prove this, we are to prove that

for a, FEF and x, yEL(S) = ax+fyEL(S).

Nowaxeprea( x| 8 50,5 ) Sewn+ $o0m
i=1 i= i1 j=t
=3 (@a)xn+ 2 BBy [ Using Associative Law)
i= i=1
=(aa)x +(@a)xn+ ... +@a)x, + @8I+ B +..... + (BBw) ¥
[ aaq EF =+ aa; EF;ﬂ,ﬂjEF = ﬂﬁJEF; i=12 ..nand j=12 ..,m]

= ax+fyis expressed as a linear combination of finite number of vectors viz.
Xy, Xz, Xy And ¥y, ¥0, 0

of S and consequently it belongs to L(S).
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Thus ax + fy € L(S), where ¢, EF and x, y € L(S).

Hence L(S) is a sub-space of V(F).

Remark. If W is any other sub-space of V(F) containing S, then L (W) C W.

L(8) is the smallest sub-space of V(F) containing S and is called sub-space spanned or generated by S.
Theorem IL. If'S and T are any subsets of a vector space W(F), then

M SCL@D = USHCTLD

@ scr = LUHCLD

(iif) §isasub-spaceof V(F) < L(S)=S (P.U. 1992 ; G.N.D.U. 1990 ; Pbi.U. 1986)
(v) LEUD) = L(S)+ L(T) ) (Pbi.U. 1997)
) LLES) = LUS).

Proof. (i) Given: S CL(T). oo

Let xELS) = Ix;,X%,.00¥y E8;

st x+ Lapx; for i=1,2,...,n
£ x €L(T) for i=1,2,..,n [+ scLn)
- Za;x ELT) for i=1,2,..,n [+ LT is a sub-space of V(F))

- x EL(T).
Thus  L(S) C L(T).
Hence SCL(T) =L{S)CL(T).
(i) Given: SCT.
Let x€ELS) = 3x.%,...% €S8;
a,,a;,...,a, EF
st x=Xa;x; for i=1,2,..,n
» x=ZLa;x; €L(T) [ SCTs0x,%,.00., %y ET]
Thus  L(S) C L(T).
Hence SCT = L(S)CL(T).
(iify Given: S isa sub-space of V(F).
To prove. L(S)=8S.
Let x€EL({S) .= 3x,%,..,%, €5;
al,a,.....a', EF
x=Xax for i=1,2,...n
» x=Ya;x, €S
[ §isasub-space of V(F), hence it is closed for addition and scalar multiplication)
us)cs (1)
Also obviously SCL(s) .(2)
From (1) and (2), L(S)=8.
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Conversely : Given : L{S)=5.
To prove : S is a sub-space of V(F).
Since L(S) is a sub-space of V(F),
. 5 is also a sub-space of V(F).
(iv) Letx EL(SUT) = 3Ix,x,.,% ESUT
and @y, @, ..., 8, EF
st x=Ya;x for i=1,2,..,n
> x= La;x+ Lagx, wherex's € §and remaining x's €T
[+ Each x; is either an element of S or an element of T or an element of both,
so dividing the el xy into el belonging to S and belonging to T
=  xELS)+LM
Thus L(SUT) C L(S) + L(T) ()
Let :z€L(S)+L(T)
= z=x+y, where x EL(S), y EL(T)
= = Xayxy+ Lagx wherex's ES,x’s €T;
aj's, ay's EF
= z=Yax,wherex’s €SUT [ = ) U ()]
= z€L(SUT)
- L(S) + L(T) C L (SUT) )

From (1) and (2), L (SUT) =L(S) + L(T).
(¥) Since L(S) is a sub-space of V(F),
L(L (8)) = L(S). [Using (ii5)}]
Theorem IIL. Linear span of S i.e., L(5) is the smallest sub-space, where § is a subset of V(F).
(G.N.D.U. 1991 S, 90)
Proof. Let W be a sub-space of V such that S C W,
Let v € L (5) be an arbitrary element.

U= Ut Ut it Oy Uy wherea, EF, v, €ES; i=1,2,..m

Clearly SCW =v,,v;,....., Uy EW
sttt Ay U, EW [~ W is a sub-space of V(F)]
> vEW
> L(S)C W

= L(S) is the smallest sub-space.

8. Linear Dependence and Linear Independence

(/) Linear Dependent (L.D.). Def. [fV is avector space over field F, then the vectorsx, ,x;, ... . Xy €V

are said to be linearly dependent over F jf 3 elements a|,a;, ... ,a, € F(not all zero) such that

@ X+ Gy Xyt @ X, =0, (G.N.D.U. 1995 S)
For Example . The vectors . -
x=(1, 2 3,x=(100),x%=(01,0) and x,=(0, 0, 1) are linearly dependent (L.D.).
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Sol. 1.x5+(Dx+E2)xn+3)x
=1(1,2,3)+(-1)(1,0,0)+(-2) (0, 1,00 +(-3)(0,0, 1)
=(1,2,3}+(-1,0,00+(0,-2,0)+(0,0,-3)=(0,0,0)=0.

Thus @, x +ayx+ayx +a,5,=0,

where @, =1 #0, a;=-1#0, gy=-2#0,a,=~-3=0.

(i) Linear Independent (L.L). Def. [fV is a vector space over field F, then the vectors x, ,x, , ..

are said to be linearly independent if3 elements @, , a; , ... , @, € F (all zero) such that
axtayxnt....ta,x, =0
For Example. The veciors
x=(L 0, 0),2=(0 1, 0)andx,= (0. 0, I}
are linearly independent (L.1),
Sol. Leta, ,a,,a; be real numbers such that
anta;nta;x =0
a, (1,0, 0)+a; (0, 1,0)+a,{0,0, 1)=(0,0,0)
(@,,0,00+(0, ;. 0) +(0,0,a;)=(0,0,0)
(a, @2, 2)=(0,0,0)
a;=0,a;=0,a,=0.
9. Criteria for Linear Dependence and Linear Independence
] @bﬁuﬂaﬂbﬁmsdawbrxpmituﬂmb:LL if every subset of S is L1
This is concluded from the definition of L.1. of a finite set.
(i) Any superset of L.D. set is L.D.
Proof. LetS={x ,x;,..,%,}beal.D.set
so that &, x) + @y x; + :..+a,,x_=ll

where all x;* 5 are not zero.
Consider T={x;,X;, ... , Xy, X}, which is clearly a superset of 8.

X EV

D),

Then ayxtayxt ...t @y x, +0x=0, [Using (1))

where all @;'s are not zero,
Hence T is L.D.
(i) Any subset ofa L.1. set is LI
Proof. LetS={x,,X;,..., %y }beaL.L set
so that ayxyFayxta... + Uy X = 0y
where a,=0,a;=90,...... s O =0,
Consider T= { x,,%3,...... I}, where l Sp<m.
This is clearly a subset of S.
From (1), @, x;+a;x;+...... +@,x,=0
= X Fayxy ... Xy +0 Xy o 0x,=0

(1)

= ay=0,a,=0,...... ' ay=0 [ SisLl]

- TisL.I
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() Any subset of a vector space is either L.D. or L.I.
{v) A set containing only 0 vector ie, {0} is L.D.
Proof. Let S={0}.

Since a.0=0 forany scalara.

Hence S is L.D.

(vi) A set containing the single non-zero vector is L.I. -

Proof. Let 5={x}, where x=0. '

Since 0.x=0 = a=0 . [+ x=0]
SisL.L

(vii) A set having one of the vectors as zero vector is L.D.
Proof. LetS={x;,Xy,......, X, } have one of the vectors ; say x,= 0,
Then we have
0.0, +0. 5+ ...+l .5+ ...+ 0.x,=0
which shows that the co-eff. of x; # 0.
Hence Sis L.D.
(viif) If two vectors are L.D., then one of them is a scalar multiple of the other.

Proof. Let x, y be two L.D. vectors of the vector space V (F), then there exist scalars a, ﬂEF(nnt
both zero) such that

ax+fy=0,
If @ %0, henax=-fy = "(‘5]3’

= x isa scalar multiple of y .
Similar is the case when § = 0.
Hence the result.

[ THEOREMS ]
Theorem 1. [f V (F) is a vector space, then the set § of non-zero veclors x; , Xy ..o -4
(ie, 8= {x),%3 ueeees ¥y ) C V) is LD. iff some elements of S is a linear combination of the others.
Proof. Given. S={x,x,.....,x, ) isL.D. Then 3 &, @;,......, @ , € F (not all zero), s.t.

apx tayx ... +a,x,=0 :
- Ya,x =0 [+ setSis L.D. so at least one of a;'s is not equal to zero, let ay # 0]
i
- Za,x, +apx=0
iwk
> rqu-—Z(x,x} [By properties of vector space]
ik
a, .. -1 .
= =3 -ty [veay=0= a' €F,, thusbylefi inversé ofay ]
1=k k
mm&_umx;ESnmmadsnliumﬁmﬁmofmn,x,. ...... T TR VX

€85, ie,
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x = Zﬁ,x, for B'sE€F
[EY)
- Eﬁ.ﬂ"r*(‘ 1)x;=0 (By postulates of vector space)
twmy

Hence at least one co-efficient — 1 # 0 showing that 5 is L.D.
Theorem II. Let V be a vector space. Then
(a) The set {v} is L.D. ifv=0.

(b) The set {v,,v,} is L.D. iffv, and v, are collinear i.e., iff one is a scalar multiple of the other.
(c) The set {v,, vy, vy} is L.D. iff vy, v; and v, are coplanar i.e., iff one is a linear combination of the

other two.

st

[3 A

Proof. (a) Let v=0,
For each scalar @ # 0, av=a0=0.

“. Theset {v} isL.D.

Conversely. Let {v} be L.D.

. Thereexists ascalara # 0 stav=0

= v=0.

(b) Let {v,,v;} beL.D.

. There exist scalars a, f (with at least one of them ; say @ # 0)

av, +pu,=0 .

- e (®e

= v, is a scalar multiple of 24

=  z;and e, are collinear.

Conversely. Let 2, and 2;be collinear.

by def, #; is a scalar multiple of 15

=  y=au, wherea isascalar

= ]_g,‘__‘"&-o

=  {#,w}isLD. T e,

(c) Let{ey, 2,25} bel.D. L

. There exist scalars a, 8, y (with at least one of them ; say a = 0) ;
ay, +fu+yn=0" YA

=  an=fu+-vn

-()oe(9)

= 2 is a linear combination of oy and oy

]

= v, , vy and ¢4 are coplanar .

.- Conversely. Let #,, 2, and z; be coplanar.

" . One of them ; say v, is a linear combination of 25 and ey

. There exist scalars a, , a, s.L.
y=ay iy ta;ty

> l.yy—aqav;—a;uy=0

fvy,v;,v;, }isLD.

(G.N.D.U. 1985)

[ .

[

a=z0]

a = 0]

a=0]



74 Gutedau LINEAR ALGEBRA

Theorem IlI. If V(F) is a vecior space, then the set S of non-zero vectors x; , X3 ,...... 2 Xy €V

(ie, S={x ,x,... .x,,}ChnimbW#mdam}#’mquESJsisn,ca!be
erpressedwaimmr ion of its preceding {P.U. 1995)

Proof. Given: 5= {x,,x;,...... .x,,}isL.D.Mﬂsnlusa,,a,,....‘..a,,EFnoullm.S.t.
ax ta Xttt Ay x, =0

or Ta;x=0 for i=L2,..,n

Let & be the largest suffix of @ (Le., the largest value of i) for which a; # 0. Then

@y %ty Xyt v apxpt Oxgy  + o Ox, =0

- % + a3 Xt e x =0 (1)

Suppose k= |, then a, x, = 0, buta, = 0, sox, =0, !
which is contradictory because each x; is a non-zero vector.

Hence k>1, ie,2sk=n

By (1), we have a xp=—a; x5 —€3%; ... — @p_ 1 Xj_ -

As ap#0 = a; ' €F. Thus by left inverse of @, we have

=1 =1 -1
Xp= oy @I -Gy Xy =0 Gp_y Xp
=hm Pt B i,
-1 -1 -1
where fy=-ay a;, Fr=-0y &, ..py_1=-ay a;_, EF.

Thus x; is expressed as a linear combination of its preceding vectors. g
Conversely : Let somex; € S be expressible as a linear combination nfi‘lspmeedhuvmte
X = iyt +fy_ x5, forsE€F :

= finthnt. 4t x_ v (=1)x=0 [By postulates of ¥)
= ittt f ot D0, 0x, =0,
Thus at least one co-efficient— 1 # 0 showing that S is L.D.
Note. Ifx is a lincar combination of the set of vectors

Xy X3 greennnn
then the vectors

£ K A X, )

is lincarly dependent.
[ SOLVED EXAMPLES |

Example 1. Fill in the blanks

{i} Any set of vectors containing the zero vector as a member is linearly ......

(i} Imtersection of two linearly independent subsets of a vector space will be linearly ......

(iify A system consisting of a simple non-zero vector is always linearly ......

(iv) In the vector space V, (R), the vectors (1, 0, 1)(2, 5, 0) and (- I, 0, - I) are linearly ......

Sol. (i) A set of vectors containing the zero vector as a member is lincarly dependent.

(ify Intersection of two linearly independent subsets of a vector space will be linuﬂ'y independent.

(iify A system consisting of a simple non-zero vector is always linearly

(iv) In the.vector space V,(R), the vectors (1, 0, 1), (2, 5, 0) and (- 1, 0, — 1) are linearly
independent.

Example 2. In the vector space V; (R), let

a=(L21, B=(3.1,5),y=(3.-47,
prove that the sub-spaces spanned by '
8= {a,p} and T= {a, B, v} are same. (P.U. 1996)
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Sol. L(T), the linear span T, is a set of vectors, which is a linear combination of vectors in T.
L(T) = {aa+bf+cy|a b c ER}
=a(l,2,)+53,1,5)+e(3,-4,7) A1)
Let (3,-4,7)=x(1,2, ) +y(3, 1,5) -(2)
= 3,-4DN=(x2)+CryH)=(x+3y +y x+5)
= x+3y=32x+y=—4 andx + 5y=7
Solving firsttwo, x=-3, y=2.
These satisfy third equation.
From (2),(3,-4.7)=-3(1,2, ) +2(3, 1,5
= c(3,-4,N=-3¢(1,2,1)+2(3, 1,5
LTy=a(l,2,1)+b(3,1,5)-3c(1,2, )+ 2c(3, 1, 5) [From (D)
={a-3)(1,2, )+ (b+2)(3,1,5)
=a' (1,2, 1)+ 4 (3,1,5), wherer.rl’,b' ER
=ga+b'f
= L(S), which is true.
Example 3. Determine whether or not x andy are L.D.
() x=(43-2), y=(2.-6.7)
(i) x=(1,23,4,y=(2,46258)

Io-2 4 2 -4 8
(i) x= . oy=
i 0 -1 6 9 -2

(W) x=1"+2+4, y='-41+3.

Sol. | Remember : Two vectors are L.D. iff one is a multiple of the other. ]
() Wehavex=(4,3,-2) and y=(2,-6,7).

Since x cannot be expressed as a multiple of y,

<oox y arenot LD,

(if) Wehavex=(1,2,3,4) and y=(2,4,6, 8).

By Scalar Multiplication, y=2x

Hence x, yare L.D.

. {1 -2 4 |12 -4 8
(iif) We have x [3 0 —l] and y—v[ﬁ 0 _2],

2 -4 8 1 -2 4
Here y"[s 0 -2]"2[3 0 -1]’1"
Hence x, y are L.D. .
(iv) Wehave x=r +3r+4 and y=r -4r+3,
Since y cannot be expressed as a multiple of x.
. x yarenot LD,
Example 4. Determine whether the following system of vectors of V (R) is linearly independent :
»n=(L2-3), x=(.-32), 5,=(21-5) (P.U. 1985 §)
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Sol. Letayx, +a;x+ayx, =0, wherea, ,a; ,a; ER .
ay(1,2,-N+ay(1,-3,2)+ a;(2,1,-5)=(0,0,0)

= (a),2a,,-3a)+(a,,-3a,, 2a;) +(2ay , @y, - 5a;) = (0, 0, 0)

- (@) +a, +2a;, 2a, -3a,+a,, ~3a, + 2a;, - 5a;)=(0,0,0)
= a+ay+2a,=0 (D)
2y -3a;+ay =0 -(2)
—3a,+2a;- 5a,=0 (3

()-2@)gives: 3@, +Te;=0 = m-%a,.

Putting in (1), % aytay+2ay=0

- '!32&,+2a3-0 - a,-—ia,.

3

(1)and 2) . a-= %a,. a,-—%a,.

These do not satisfy (3). [ ~7a, +2a, +-’;’-a,¢o]

Hence the given system is not L.D.

Example 5. Prove that the following system of of ¥y (R)are L.D. :

@ x=(1,23), u={15) u=(-462) (GN.D.U. 1997)

(i x=(132), ,=(.-7-8), =2 1-1)

(i) x,=(0,2,-4), x=(1,-2-1), x3=(1, -4, 3)

V) 5 =(L23), x=(,00), x,=(0.1,0), x=(001)

™ x=(0-1, 5=(213), 5=(-1,00), x=(01

o) x=(3.0-3), x=(-112) %=42-2), x=@211).

Sol. () Leta,x,+ayx,+a,x,=0, wherea,,a,,a, €ER.

a,;(1,2,3)+a;(4,1,5) +a;(-4,6,2) =(0,0,0)

= (a,2a,,3a)+ (4ay, @y, 5a;) + (- 4oy, 6ay, 2a) =(0,0,0)

- (@, + 4, - 4a; , 2a, + ay + 6ay , 3a, + 5a; + 2a;) = (0, 0, 0)

- a, +4ay—4ay =0 ()
' 2a,+a, + 6ay =0 f2)

3a,+ Sa; +2a; =0 )
3(1) + 2(2) gives : Ta, + 14a,=0 = a=-2a,.
Putting in (1),  -2a;+4a,-4a;=0 = 2a,=da,

1
> @q=-a.
2

. (Nand(2) = ay=-2a,, a,-%a,.
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Le.,

1 4 -4] [aq 0
21 6| Jay | =]0],
3 5 2 a, 0
1 4 -4
where A=}2 1
j 5 2
1 4 -4 1 4 -4
Nowdet A=det|2 1 6l=det|0 -7 14
3 5 2 0 -7 14
=0 [
= @ ,c,,a arenot all zero.
Hence the given system is L.D.

and

and

These satisfy (3).

Hence the given system is L.D.

Aliter. Do upto equation (3) as above.

The equations (I?. {2) and (3) can be put in the form AX =0

[+

~6ay + Say +a =0]

[Operating Ry = Ry~ 2Ry, Ry = Ry~ 3R, ]

(i) Leta,x +ayx;+a,x=0, where a; @y, a; ER
a(1,3,2)+ay(1,-7,-8)+a; (2, 1,-1)=(0,0,0)
= (‘-}'l Vday, 2e) F (e, = Tay, = 8a)) + (2a; a5, —a3) =(0,0,0)

= (@, +ay +2ay, 3a, - Tay + ay, 2a, - Bay —a;) = (0,0,0)
= @ tagt2ay =0

Ja, - T, +a; =0

2a, - Sa,-a; =0

Adding (2) and (3), 5a, - 15a; =0
= a, = 3a,.
If we choose a, =k, then e, = 3k and putting in any, a,=-2k.
Hence the given system is L.D.
(fify Leta,x, +a;x;+a;x;,=0, whereea,,a;,0; ER
A (0,2, -4)+ay (1, -2, - 1)+ (1,-4,3)= (000, 0)
= (0,2a,,-4a,) +(ay,-2a;, - @)+ (a; , - 4ay, 3a;) =(0,0,0}
» (g + @y, 2ay ~ 2ay—day - day —ay + 3a;) = (0,0, 0)
= ay+ay =0

2a)- 2a;,—4a,=0 = oy-a,-2a,=0

— Ay -y + 3, =0

Subtracting (3) from (2), | Sa, - 5a,=0 = ay=day.
From (1), Q= —dy.

R, and R, are identical]

)]
..(2)
(3)

[Or multiply (2) by 2 and subtraet (1)]

(1)
(2)
(3)
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and

and

and

If we choose a;=k, then a;=%k and a;=-k.
Hence the given system is L.D. )
(i) Leta,x;+a;x; +ayx; +ayx, =0, wherea,, a;,a;, ¢, ER.
a (1,2,3)+ay (1,0,0) +a,y (0, 1, 8) + 2, (0,0, 1) = (0, 0,0)
= {a,,2a,,3a)+(a,,0,0)+(0,a,,0)+(0,0,a)=(0,0,0)
= (a,+ay+0+0, 2a,+0+ay+0, 3a,+0+0+a,)=(0,0,0)

= (&) +ay, 2, +ay, 3a, +a,)=(0,0,0)

- ay+a;=0 (1)
2a, +a;=0 (2)
3a,ta,=0 .(3)

Sty =—dy, oy =—2a, and a,=-3a,.

We can assign any value to &, and get the values of others.

Leter, =k Thene,=-k, a,=-2k and a,=-3k

Thus all «'s are not zero.

Hence the given system is L.D.

(v} Leta,x +a,x+ayx+a,x,=0, wherea,a,, ay,0,ER
a (L0, -D+a (2, 1, ) +ay(-1,0,0)+a,(1,0,1)=(0,0,0)

= (a,0,—a))+ Qay, @, 3@, ) (- a5, 0,0) + (@, 0,2)=(0,0,0)

= (o) + 2ty —ay + @y, @y, —ay + 30y va,)=(0,0,0)
= a +2a,—a; +ag=0 A1)
a; =0 .A2)
-y + 3y ag=0 (3)

From (2}, =0,

From (3), &y =—ay.

From(l), -a,+0-a;+a,=0 = a;=0.

Let a,=k. Then «,=-k, ay=0, ;=0 and a,=k

Thus all &’s are not zero.

Hence the given system is L.D.

(vr’} Leta,x, +ayxy +ayxy +ayx,=0, wherea,, a;,a,,a,ER

R @ (3,0,-3)+ay(-1,1,2) + ;3 (4,2,-2) + (2,1, 1)= (0,0, 0)
= (3a,,0,-3a)) +(-ay,a;, 2a;) + (4ay, 20y, - 2a3) + (224, a4y, @) =(0,0,0)

= 3oy — oy + day + 2y, 0y + 205 + @y, - 3ay + 2a; - 2a;+a,)=(0,0,0)
= da, —ay +4a; +2a,=0
ay +2ay +a;=0 .(A)
-3a, +2a, - 2a, +a,=0

These can be written as
@y

3 -1 42
012|]“3=
-3 2 -2 1%
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and

and

3 -14 2] "7 To
= 0 121 =10 [Operating Ry, (1)]
0 12 3||% 0 g Ry
ay
3 -14 2][ 5 o
- 0 121 =10 [Operating Ry (- 1)
0.00 2(|% 0 12
ay
The system (A) is equivalent to
3a, - ay +4a, + 2a,= 0 A1)
ay + 2yt ay;=0 2
2a,=0 ()
@) = a,=0
Putting in (2), ay+2a;+0=0 = ay=-2a,.
Putting in (1), 3a,+2a,+4a,+0=0 = 3a,=-6a,

= ay=-2a;.
Let us take ay = -k,
Then ay=2k, ay=2k w;=-k a,;=0.

Hence the given system is L.D.
Example 6. Let V be a vector space of real valued derivable functions on (0, ), show that the set
S= {sinx, cosx, sin(x+ 1)} is L.D. (GN.D.U, 1992)

Sol. Please try yourself.
Example 7. Prove that the following system of vectors of V (R) are L.1. :
() x=(,2-3), x=(-32), =(2.-135)
(i) x=(00), x=(0,1.0), =001
(m’) x=(0,1,-2), x=(, - L 1), x3=(1,2, D).
. () Leta;x;+a;x;+ayx=0, where @), a;,a2; ER
: a;(1,2,-3)+a;(1,-3,2)+a, 2,- 1,5)=(0,0,0)
= (), 2a,-3a) + (@, - 3ay, 2a3) + (203, - @5, 5a5) =(0,0,0)

- (@ +ay +2ay, 20, 3ay—ay, - 3a; +2a; + 5a,) = (0,0, 0)
= oy tay+2a,=0 (1)
2a,-3ay-a; =0 (2)
~3a,+2a,+ 5ay= 0 (3)
{1)+2(2) gives : Sary - 5a, =0 = oy = ...(4)
Putting in (1), Mty t2ay=0 = = =1y (5

Putting these in (3), — 3@, +2a,-5¢,=0 = —62,=0 = a=0.
4) = a;=0 and(5) = a,=0

Thus =0, a,=0, a;=0

Hence the given system is L.1.
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Aliter. Do upto equation {3) as above,
The equations (1), (2) and (3) can be put in the form AX =0

ERSIGRN;

1 1 2
where A =| 2 =3 =1]|.
-3 2 5
1 1 2 1 1 2
Now detA=det| 2 -3 -1|=det|0 -5 -5
-3 2 3 o 5 1
[Operating k3 = Ry — 2R, . R; = Ry + 3R,]
-5 -5
_l'd“[ 5 |1]

and

=1.(-55+25)=-30=0

a, =0, a,=0, a;=0.
Hence the given system is L.L
(i) Letayx, +a;x+ta;x=0, wherea,, a;,0;ER
= (1,0,0)+2,(0,1,0) +,(0,0,1)= (G, 0,0)
= (@,0,0)+(0,¢,,0)+(0,0,a,)=(0,0,0)
= (a;,a;,a;)=(0,0,0)
= =0, =0, a;=0.
Hence the given system is L.L
(iif) Leta,x;+ayx;+ayx;=0, wherea,, a@;,a; ER

= a (0, 1,-2)+ay(l,-1, 1) +a;(1,2,1)=(0,0,0)
= (0@, -2+ (@, —ay, @) + (@, 2a3,@,) =(0,0,0)
- (o *ay, ay-ay + 2y, - 20 +ay +ay) =(0,0,0)
» ayray =0 (1)
ay—ay+2a;=0 (D)
=2+t ;=0 (3)
(1)=(3) gives : 2a,=0 = a; =0 (4)
(1} +(2) gives : @, +3a;=0 > a;=0. [Using (4]

Putting in (1), a;+0=0 = ay=10.
Thus a;=a;=a;=0.

Hence the given system is L.L.

Example 8. Prove that the system of vectors

X =4, 2,0,x,=(0, 3, 1), x3=(=10,1) of V5(Q)is L.I. when Q is the field of rational numbers.

Sol. Leta,x;+a;x;+ayx; =0, wherea,,a;,a; EQ
= o (1,2,0)+a; (0,3, 1) +a (- 1,0, 1)=(0,0,0)
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(a,,M1,0)+(0,3a,.a,)+(—a,,O.a,)=(0,0,0)
(a,—ay, 2a, +3ay , ay+ @) = (0,0, 0)

a,-a;=0, 2a;+3m,=0, a,+a,=0

= a; =0, ay=0, a;=0.

Hence the given system is L.1.

Example 9. Prove that the vectors x, = (1 + i, 2iy, x;=(1, I + ) in ¥5(C) are L.D. but in V, (R)
are L1

Sol. (i) Two vectors are linearly dependent if one is a multiple of the other.

Now ifx;,x; EV;(C)and 1 +i € C, we have:

A+De=+, 1+ =0 +i,(1+iP)=(+i 1+ F+20)
=(l+i, 1=1+2i)=(1+i2i)
=x,

= n=(1+i)x;

= x;,x; areL.D.

(i) If x, ,x; € V, (R), then x, cannot be a multiple of x; . [+ !I+igR)

Hence x, , x; are L.1.

Example 10. If v,=(2, -1, 0), vy=(1, 2, I) and v;=(0, 2, - I), show that v, ,v,, v, are lincarly
independent. Express (3, 2, 1) as a linear combination of vy , vy, vy. (Pbi. U. 1990, 86)

Sol. Letax,+dayx;+ayx;=0, wherea,,2;,a; EF

o @ (2,-1,0)0+a, (1,2, 1) +a, (0,2,- 1) = (0,0, 0)

= (2a,-a,0)+(a;, 20, , @) + (0, 2a,,,—a;) = (0,0,0)

LK ]

- Qa, +ay, —a, + 2oy + 28y, ay-a,}=(0,0,0)
- 2a,+ay =0 A1)
—aty + 2a,+ 22, =0 (2)
and ay-ay=0 (3
These can be put in the form AX = O
2 1 0 a, 1]
ie., -1 2 2 @, =101,
o0 1 -1 a, 0

2 1 0
where A=) -1 2 2
vii]
21 0
Nowdet A=det| -1 2 2
0 1 -1
2 1 0
=det| -1 4 2 {Operating C; = Cy+ (5]
00 -1

1
ay =0, a;=0, a;=0.
Hencethegwensyﬁrmishl

-—det[ 2 ‘:}-—{8+l)-—9=0
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Let v=ayv, +ayv tay vy, wherea,,a;,a; EF
ie., G2, ) =a (2,- 1,0 +a (1,2, 1} +a;(0,2,-1)
=(Q2a,,-a,,0)+(a;, 2a;, @) + (0, 2a; , ~3)
= (2a, tay, —a * 2y + 2y, @y - a3)

Comparing , 3=2a,+a, (1)
2=—qa, +2a,+2a, (@
l=ay~ay -3
(2)+2(3) gives: 4=—a, +4da, @
(])+Z{4igiv=s:ll-9a, - a,-%,
11 16 8

Putting in (1), 3’*24',1-? = 2ay = — »a,-;.

]M °

n
9

Putting in (3), I= I

Hence  (3,2,1) =§(:.-l.u)+;—‘(l.2,l)+§(0.2.-1).

which is the reqd. L.C.
Example 11. Ifx, y, z are L.l vectors in a vector space V(F), then prove that
() x+y y+z z+x
() x+y x=y x-2y+z

are also LI

Sol. () Leta B,y €F such that
alx+ N+ +)+yz+x)=0 (1)
= (a+y)x+(@+p)y+B+y)z=0 [By postulates of V]
Butx, y, zare L.I. [Given]
a+08+y=0 w.(2)
a+f+0p=0 (3)
and Dx+f+y=0 o (4)

These = a=f=y=0.
Hence (1) holds only ifa =0, 8 =0, y =0, which shows that the vectorsx +y, y+z z+xareL.l.
(i) Let @, B,y € Fsuch that :

alx+y)+Pa-y)ty(x=-2p+2)=0 ()
= (a+f+y)x+(@-f-2)y+yz=0
But x,y zareL.l [Given]
: at+tfi+y=0 2
a-f-2y=0 ..3)
and y=0 o (4)

These = a=fi=y=0
Hence (1) holds only if e = 0, f = 0, y = 0, which shows that the vectors x + y, x —y, x— 2y + zare L.L
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Example 12. [n the vector space of polynomials of degree < 4, which of the following sets are

linearly independent :

B 14xoxtad, dexd et e (P.U. 1995)

(i) 2-x, 2+ F-1 x

Giy L1+x (P, (0 +x), (0 +0°.

Sol. () Herex'—1=('+x) -+ )+ +x)—(x+ 1)

Thus x* - 1 is a linear combination of others,

Hence the set is L.D.

(if) Here none can be exp d as a linear bination of others.

The setis L.I.

(i) Please try yourself. [Ans. L.1]

Example 13. Let V be a vector space of real valued derivable functions on (0, =), then show that the set
Se{e xe", (Frx-Ne’}

is LI (G.N.D.U. 1992 5)

Sol. Wehave S={* ", x", (F +x—1)e™).
Here none can be expressed as a linear combination of others.
Hence the set is L.I.
Example 14. Prove that the four vectors :
0=(L00), x,=(0, 1 0), ;=000 0, xq=(I. 1,1}

s (C) form a linearly dependent set, but any three of them are iinearly independent.

in V'

Sol. (i) Leta,,a;,a;,a,EC

suchthat ax +a;x+ayx+aux=0 (D

ie,

and

a;(1,0,0) +a3(0,1,0) +a; (0,0, 1) + e, (1,1, 1) = (0,0,0)
= {a,,0,0)+(0, @, 0)+ (0,0, @, ) + (a, , @y, ) = (0, 0, 0}
=» (, +a,,q;+a,,a+a)=(0,0,0)
a+a;=0 = ay=—ay
ayta,=0 = a=-a,
ay+ra,=0 = ay=—dy.
Thus ifa, =—k, then @, =k, a;=k a; =k, showing that
Xt tx -5 =0 [Using (1]
Hence ay,a;,y,a are LD,
(if) Leta,, @, a; €C suchthat a,x,+ayx; +ayx; =0
= o (1,0,0)+a,(0,1,0)+a;(1,1,1)=(0,0,0)
= (), 0,0) +(0, @, 0) + (a5, &5, @) = (0,0, 0)

= (o, +ay, a4 ay,a;)=(0,0,0) A
! ayta; =0 Cad2)
ayta; =0 (3)
ay =0 {4)

Thus we havea, =0, @, =0, a; =0, w-l'lil:hshowsﬂmﬂlewcm}'sxl.x,.x‘mL.l.
Similarly we can prove for other collections of three vectors.
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Example 15. Under what condition on scalar a; € C are the vectors (1 + a,, I —a))and (I —ay, | + ay)

in V3 (C) linearly dependent 7

and

Sol, Since the given vectors are L.D. ,

(l+a,l-a))=a(l-a,l +a)fora €C
= (l+a,l-a)=(a(l-a)a(l+a))
‘ 1 +a,=a-aa, A1)

l—a,=a+aa el(2)
By (1) and (2), for addition in F, we have
2=2x = a=l

Then by (2) fora = 1, we have :

N=—agy=1+g = 2a,=0 = a=0
Hence a, = 0 is the required condition.
Example 16, Under what condition on the scalars a, , by € C are the vectors (1, a)) and (I, b)) in

V3 (C) linearty dependent ?

and

Le.,

Sol. Since the given vectors are L.D. ,
(l,a)=a(l,b) fora€C
= (l,a)=(a ab)
l=a (1)
ay = ab, «(2)
From (1) and (2), @, = b,, which is the required condition.
Example 17. Show that vectors (a, , a;) and({b, ,b,) in V;(C}nrefmﬁabde;xndauﬂ'a. by=ayb,.
Sol. Given : (a,,ay) and (b, , b;) are L.D.
Toprove: a b= a; b,.
Since  (ay,a,) and (b, , by) are L.D.,
(b, b))=al(a,,a) fora € C=(aa, ;aa;)

b, =aa, (1)
b, = aa, (2)
(1) = a=bya " provided a, = 0 ...(3)
2 = b=(0a")a [Using (3)]
=ay(bya")
= ay by=ay .

If @, =0, then b, =a0 =0 and we have
b0=aq0 = bay=ab 2 g by=ab,.
Hence the result.
Conversely. Given: a, b;=a,b,.
To prove: {(a;, a;) and (b,, b;)are L.D.
Now a by=ayb, = ay=a, b, b, provided b, = 0
= a=(a b )by [~ a,a,b,5EF]
= ay ~ab, ' [where = a, b, ]
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Also ay=abh, [where ay = ab, ]

Thus (@, a)=a (b, by).

When by=0. Then a,0=byay = 0=ba
ie, either 5,=0 or a=0

() If b, =0, then one of the vectors is zero

= vectors (ay,a; ), (b, b)are L.D.

(i If a, = 0, then the vectors are (0, b)) , (0, ;) and one is a multiple of the other such
(0, b,) = by 2y (0, @) when a, #0

=  the vectors are L.D.

Also if a, = 0, then we have one of the vectors as zero

=  the vectors are L.D.

Hence the result.

Example 18. [fV(R) be a vector space of 2X 3 matrices over R, then show that the matrices

2 I -1 i -3 4 -1 2
A= i B =" :C=
3 -2 4 -2 0 5 -2 3
in V(R) are linearly independent.
Sol. Leta, 8, ¥ be the scalars in R such that

2 1 =1 11 -3 -1

"[3-2 4]*‘?[-20 5]*[1 -2
QJa+f+dy a+f-y -a-3f+2y ']
Ja-28+y -2a-2y da+58+3y 0

Then 2a+f+4y=0, a+f-y=0, —a-34+2y=0

] =0 (zero matrix)

()

and 3a-28+y=0, -2a-2y=0, da+56+3y=0.
By second and fifth, we get :
2a+f8=0.
Then by first, we get:
y=0
and so by fifth, we get
a=0, f=0.

Thus (1) is true only if @ = § =3 =0 and so the matrices A, B, C in V(R) are linearly independent.
Example 19. Show that (i) row vectors, (ii) column vectors comprising the matrix

2 7 3
3 -6 2
17

are linearly independent.
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Sol. (i} The row vectors are :
[2,7,5],[3 -6 2)and [1 17 7).
Let a, B, ¥ be the scalars in R such that
af[2,7,5]+5[3 -6 2]+y[1 17 7]=0

= [Za+3f+y, Ta-68+ 1Ty, 5a+28+Ty]=[0 0 0] A1)
Then 2 +3f+y=0 (2)
Ta-68+1Ty=0 (3)

and Sa+28+T =0 (4)

(2), (3) and (4) = a=fi=y=0.
Hence the row vectors are L.1.
(#i) The column vectors are

Hikixd

Leta, 3, y be the scalars in R such that

=0

2a+ 70+ 5y 0
= Ja-68+2y | =11 0 1)
|:a+l?ﬂ+7y [ U]
Then 2a+7p+5¢=0 -(2)
3a-68+2y=0 (3)
and at+178+7y=0 wi(d)

@.()and(@) = a=f=y=0.
Hence the column vectors are L.1.
Example 20. Find a if the vectors

! I a
-1, 21,10 |arelD. (G.N.D.U. 1986)
3 -3 1

Sol. Leta, f, y be scalar in R such that

T

a+ f+ay 0
= -a+2p ‘=|:U]
{M—3ﬂ+y} 0
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and

Then a+f+aqy=0 (1)
—a+28=0 -(2)
3a-3f+y=0 (3)
From (2), a=28 -(4)
Puttingin(3), 68-38+y=0 = 3f+y=0
= - X
B 3
Putting in (4), a=— ZTI’

2
Putting in (1), -?”-§+ar=0 = a-y=0
= a-1=0 [~ y # 0, otherwise if y =0, then a@ = = 0 also and then the system is L.1. |
Hence a=1.
Example 21. If x;=(1, 2, - }), x=(2,-32), x=(4, 1. 3) andx,= (-3, 1, 2) be vectors in

‘3 (R), show that

st
Le.,

L(fx,x3}) = L ({x35, x}).
Sol. If possible, let us assume that L ({x,, x,}) = L ({x;, x,}).
This means that there exist scalars a; , @, € R for arbitrary o, ,a; ER
antayn=axntax
a (1,2,-1)+a;(2,-3,2)=a,(4,1,3) +a,(-3,1,2)
= (@, +2a;, 20~ 3y ,~ a;+2a;) = (4a,-3a;,a, + a;, Ja; + 2ay)

B a, +2a,=4da, - 3a, D)
2a,-3a;=a, + ay wl2)
—a, +2a,=3a, +2a, «(3)

Solving (Dand @), @, = 7 (@~5a) anda, = - (Tay-az).

Putting in (2), 2a, - 3a, = 2 [%(a, - Sa,)]-s. % (Ta, - a5)

3 17 17
=(ay~5ay) - a7 (Tay—ay)=- Tal vy @ Eata
s (2)is not satisfied.
Hence L ({x;,x)) # L({x;,x}).
Example 22. Prove that the set of vectors {x,, %5, ...... \ X} forms a linearly dependent set if at least

one of the vectors is a zero vector.

Sol. Let x, =0, then show that the vectors x, , x; , ...... Xy are LL
Alsolet a=0anda=0 for i=2,3,.......n
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Then ia,xr =a xytayx+t .oty =al+ g+ 40, =0
Fel

L]
= Za,x, =0 while a, =0.
r=1
Hence the set of vectors {x,, X3, ......, X,}is L.D.

Example 23. Consider the vector space V(F) of polynomials in x and show that the infinite set
S={lxx, .. }isLL

Sol Let Sy = {x™,x" .ux’ ™ } be any finite subset of S.
Let @y, @y, ......, @, be scalars such that

alx"‘ +a1x"? +“"""+“m’“- =0 (zero polynomial)

= a =0, a;=0,.....,8,=0

= the subset 5, of SisL.L

Hence S is L.L.

Example 24. Exami) hether (1, - 3, 5) belongs fo the lincar space generated by S, where
S={12,D,(L 1L =D,(45 ~2)} ornot? (G.N.D.U. 1998, 85)

Sol. Suppose that (1, - 3, 5) belongs to the linear space generated by S.
There exists scalars &, f, y s.t.

(1,-3,5)=a(l,2,)+8(1,1,-1)+y(4,5,-2) (1)
=(a+f+4y,2a+B+5y,a-p-2)
Comparing, a+f8+4y=1 w2)
2a+f+5y=-3 (3)
and a-f-2y=5 )
Adding (2) and {4),
2a+2y=6 = a+y=3 .(5)
Adding (3) and (4),
Ja+dy=2 = a+r-% ...(6)
{5) and (6) contradict each other.
Thus (1) is not possible.

Hence (1, - 3, 5) does not belong to the linear space of 5.
Example 25. Find the linearly independent subset A of the set 8= {x| ,x; ,xy,x, } in V3 (R), where
n=(L2-1, =(-3-63), =213, x = (8, 7, 7), which spans the same space as 8.
Sol. Sincex; # 0 and x,=-13x,

we exclude x, because it is a linear combination of x, .
Again since xy cannot be expressed as a scalar multiple of x; ,



VECTOR SPACES 89

we cannot exclude x;
Clearly x, = 2x; + 3x;
= x, isalinear combination of x; and x, , therfore we exclude x, .
Hence A = {x,,x;} is the subset of S which is L.L.
10. Basis Set and Finite Dimensional
() Def. Let V(F) be a vector space and S be a subset of V so that
(/) 8 consists of linearly independent vectors of Vie, Sis LI
(I} each vector of V is a linear combination of elements of § ie., L(S)= V.
Then § is called basis set of V.
This is denoted by B.
Remember. Zero vector can’t be an element of a basis set.

Reason. A set of vectors having zero vector cannot be the basis of a vector space because such a set
is L.D.

(i) Def. A vector space is said to be finite dimensional (or finitely generated) if there exis's a finite
subset 8 of V such that

Vv =L(S).
THEOREMS

Theorem L. In a finite dimensional vector space V(F) whose basis set is B = {x, , X3, ......, x5},
every vector x € V is uniguely expressible as linear combination of the vectors in B. (P.U. 1996)

Proof. Since B is a basis set of V, [Given]

any vector x € V can be expressed as a linear combination of vectors in B

ie., x=X a;xfor a's €F )

If possible, letx =X f;x,for B s € F (2)
be another representation.

Subtracting (2) from (1), we get :

0=%a;x-Lfx;

= Zla;-pi)x=0

» a;-pi=0 for i=12 ..,n [~ B, being basis set of V, is L.1]

= aj=8;, for i=12 ..n.

Thus the expressions (1) and (2) are same.
Hence each vector x € V can be uniguely expressible as linear combination of the vectors in B.
Note. Every vector x in finite dimensional vector space V(F) with abasisset B={ x,, %3, ....... I } isexpressed as
x= Layx
by unique set of scalars {@, , @y, ..covnn ap}.
These scalars can be taken as co-ordinates of the vectors x corresponding to the basis set as co-ordinate system.
Tk L. (Exi: Tt m)
There exists a basis for each finite dimensional vector space.
Proof. Let V (F) be a finite dimensional vector space.
Since V is finite dimensional, so it is a linear span of set S having finite number of vectors belonging to V.
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Let S={n,%,. ..5pjcV
and V=1(S) (1)
Without any loss of generality, we may assume that all vectors in S are non-zero, ie, 0 € S, because
contribution of 0 in the linear combination of elements of S is zero. Now as S CV, so either Sis L.I. or L.D.

If Sis LI, then S will be a basis of V, which is the result.
If 8 is L.D., then there exists a vector, say x;, in S which is linear combination of its preceding vectors
ns, ie, '

k-1
Xp= Za,- x;, fora’sEF (2)
i=1
Consider the set
IETE TE NN M AR o AB)
Evidently §,CS8 = L(§,)CL(S) )
> LS;)CV ()

[ u=voymn]

Also ifxEV = x= iﬂfx) for s €F
i=t

» x= Zﬂjx} + B x;
ok

k=1
= XPx e L By @)
T i=1

= x=fixthhnt B X +ﬂkl+ Vet F By x,
Hhla @+ rap_ x )
=@ +Bra)x+ Byt fradxa+ ot By +Brag ) Xy
FBre 1 Xp e+t By ]

= S8 +Bra)x + 2y forcach (B +fra,)sfys €F

i=1 dmkal
= x is linear combination of elements of §,
= xEL(5,)
= VCL(S) - (4)
But(3)and (4) = V=L (S,). e(5)

Now as §; C V, so either §, is L.I. or L.D.
If 5, is L.I, then S, becomes basis set of V.
But §f 5, is L.D., then there exists a vector ; say x; (/ > k) € V in 5, , which is linear combination of its
preceding vectors in §, , ie,
5= Yy x fory/s€F ...(6)

iwl
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Mow we consider the set

LR O SR TS TTONS TIETE PR A
" and as proved above
V=L(5)

If S, is LI, then it is basis set of V, But if 5, is L.D., we repeat the procedure till we get a set which is
L.1. and linear spanning set of V, thus giving basis of V. At the most by repeating the procedure we can get
a basis set of V which contains only single non-zero vector, since the set of single non-zero vector is L.1.

Hence there exists a basis for each finite dimensional vector.

Remark, The above theorem clearly states that number of elements in the basis st of a finite dimensional vector
space is less than or equal to number of elements in the linearly spanning set of V. Thus we can say that a finite
dimensional vector space is a vector space with a finite basis set.

Theorem HIL (Replacement Theorem)

If V (F) be a vector space which is spanned by a finite set S, of vectors X, , X3 , ......, X, , then any
lincarly independent set of vectors in V contains not more than m elements. (G.N.D.U. 1997, 96)

Proof. Let S, ={y;, 1, sy ¥u)
be L.L set in V and as given

Si={x, %1, 0s X}
is a generating setof V ie.,, L(S;)=V (1)
Toprove: n < m,ie, any (m+ 1) or more vectors in V are linearly dependent.
Since T is linearly spanned by 5, and each element of S, is also an element of V, so each vector

belonging to S, can be exp d as a linear combination of el of 5;.
ie., W= zcs. x fora_,-’s #20€EF (2)
j=1

Now consider the set ;= {y;,x,, %, ..., Xy }.
Toprove: L(S;)CV.

VxEL(S) 2x=pn+fix+. .. +fpxn=y i:ﬂj X it A By, [Using (2)]
i=1
=(nea +p)x +n “1_‘-“152}—": ot Gt Pr) xm
=0 x,+dyx; +... Hdpyxg, whered; =y, a;+§, €EF,i=1,2,....m
‘® xEL(S)=V.
Hence L (S))CV (3
Evidently S, CS; = L(S)CL(S)
Thus VCL(5) ...(4)
[By (1]

()and(d) = L(S)=V.

Since one of the elements y, of S, is expressed as a linear combination of other elements of S, by (2),
so the set S, is L.D. Thus one of the vectors in S; can be expressed as a linear combination of the preceding
vectors and that vector cannot be y, as S; is L.I. So it must be one of the x,s for i = 1,2,...,m. Letitbe x; €5,

ie, ey tyy e+ .ty x . ford,yy,....¥ EF.
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Now consider the set
Se= X X2s o Xpo 1 X 410 e ¥k
Wehave V =L (5).
Thus we have obtained a new set 5, on replacing x; € 5, by y, E §,.
Again consider the set Sy = {5, Vi X1 ¥ cons Tp_ 1 Bp 4 15 o0 Ty
and repeating the above arguments, we get the new set as
R A L L R N T
on replacing x; € S, by 3, € 8, , where V =L (S).
Similarly we repeat the above procedure and in each step we are able to add one of the ;s and delete
one of the x;’s in the set S, to get a new linearly spanning set of V.
If n = m, then ultimately we obtain a linearly spanning set of V in the form
D ¥ s ¥ Xt voes X b
If 11 = m, then after m steps we obtain a set
Y2 Vim) )
which shows that y,, , , can be exp 1 as a linear combi of vectors ¥y, ¥, ..., ¥ - This implies that
¥ +1 15 expressed as a linear combination of its preceding vectors in 5; which contradicts the hypothesis
that S, is L.I., thus showing that n# m.
Hence it is established that n < m, i.e., number of elements in any L.1. set of V is less than or equal to
the number of elements in a linearly spanning set of V.
Cor. 1. If the set 8§ = |x, %2 .., xy) is a basis of vector space V (F) and set
8y = (¥, ¥y s ¥y | in Vs linearly independent, thenn = m.
Since S, is basis of V, so it is also linearly spanning set of V ie, V = L (5;). Hence by the theorem
we haven = m.
Cor. 2. If 8 is a basis sel of V, then 8, is also basis set of V.
Since V = L (S,) so to show that S, is a basis of V, we have only to show that §, is L.I. Assuming that
8, is L.D., then there exists scalars 8,, #,,... . 8, € F, such that

z.s_;x,i +B, y =0

Jwi
with at least one /3; # 0. Evidently f§; = 0, because if 8; =0, then E,B} x; =0, showing that each 8, = 0
=i
because any subset of L.1. set §; is also L.1.
Thus  y=-2 f By, [By inverse 4, # 0]
PSS
Aoy = Y a xprax, 18y (2]
ITY;
Subtracting the two, we get
B
0=3 [aj+.3_1 X 4a;x,
ey ]

but as @; # 0, so it shows that S, is L.D. which is contradictory.
Hence S, is L.1.
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Theorem IV. (Invariance of the number of elements in a basis).
If V (F) is a finite dimensional vector space, then any two bases of V have the same number of elements.
(G.N.D.U. 1996,92 5,87 S)
- Proof. Let B, = {x;, %3 ..., X}
be one basis of V, ie., B, isL.I. and V=L (B,)
and By = {y,, 4, ..., ¥} be another basis of V, i.e, ByisL.I. and V = L (B,).
Consider that V is linearly spanned by B, (i.e., V =L (B,) and By as L.I set in V, then we have

nsm (1) [Theorem IIT)
Again considering V = L (B,) and B, as L.1. set in V, we have

m=n (2) [Theorem (1]
(1) and (2)
- m=n,

Hence both the bases B, and B, of V have the same number of elements.

(#ify Dimension of a vector space. Def. The number of elements in any basis set of a finite
dimensional vector space V (F) is called the dimension of the vector space and is denoted as dim. V.

Theorem V. Each set consisting of fn +1) or mare vectors in n-dimensional vector space V (F) is
linearly dependent.

Proof. Since V (F) is a vector space of dimension n,

< each basis set of V will contain exactly n vectors.

Now let S; = {3}, Y21 ..., ¥ +1} be a LI subset of V (F). Then either this set itself is a basis set or it
can be extended as a basis set. In both the cases the basis set will contain (n + 1) or more vectors which
contradicts the assumption that V is n-dimensional.

Hence §, is L.D. i.e, any set containing » + | vectors is L.D.

Similarly we can say that any set containing more than (n + 1) vectors belonging to V (F) will be L.D.

Cor. In an n-dimensional vector space V (F) zmy L1 set of n-vectors is a basis set of V (F).

Since basis set of n-di ional space i 1 d dent vectors, therefore, any set of
r-linearly independent vectors wmotbeﬁw:ﬁmtdedm fonnaba.m,bm itself will act as a basis set of V (F).

Theorem V1. (Dimension of a sub-space) '

If V (F} is a finite dimensional vector space of dimension n and if W is any sub-space of V, then W is a
finite dimensional space having the dimension at the mast n i.e.,

dim. W < dim. V. (G.N.D.U, 1995 8,925)

Proof. Since dim. V = n, so any (n + 1) or more vectors in V are L.D. Also W is vector sub-space of
V, therefore, W C V ie, every element of W is also an element of V, so any (n + 1) or more vectors in W
are L.D. Thus a L.1. set of vectors in W can obtain at most n elements.

Now we can find a largest set of L.1. vectors in W and let it be
S={x;, X3 c0errny X} form s n.
To prove : § is a basis of W. For this prove
() SisL.l setin W,
(if) Foranyx € Wtheset S)={x,x,,x5,...,x,} isL.D.(as S is the largest set of L.L vectors in W).
Thus @ x + &) X, + oot Ay Xy = O fora,a's0EF LA
where all a;'s are not equal to zero.
Thus & # 0 because if @ = 0, then
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D, x,=0 = eacha;=0, [ SisLL}
i=l
which is a contradiction to the [
Thus as e # 0 so by (1), we have
x=—a"a.x_,—a"a-_.x,—...—a"a,,,x.

=-{—cx"a. )x, +(—a"a,)x,+ et (—c:"a,,)x,.'
which shows that each vector in W can be expressed as a linear combination of clements of § ie.,
W = L (8). By this we can say that W is a finite dimensional because its linearly spanning set S contains
finite number of elements.
Hence by (/) and (i) S is the basis set of W, so dim. W =m, wherem = n,
ie, dim. W < dim. V.
Theorem VII. (Dimension of a linear sum)
If W, and W, are subspaces of a finite di ional vector space V (F), then
dim. (W, + Wy) = dim. W, + dim. Wy~ dim. (W, 0 W),
(G.N.D.U. 1998, 92 ; P.U. 1998 ; Pbi. U. 1996, 87)
Proof. Since V is a finite dimensional vector space W, + W;, W, N W, are vector subspaces of V so
W, + W;, W, N W, are finite dimensional.
Let By = {2,275 cccoeey 5}
be the basis of W, MW, then dim W, N W,=r A1)
Since W, N W, is a subspace of W, and W, so the basis set B, can be extended as a basis of W, and W,.
Then sets By = [2), 23, oouvny Zpa Xps Xaeeees Ty o}
By= {2123 coneen - T Y. S |
are bases of W, and W, respectively.

Since B, and B, are bases of W, and W,, [Supposed)
dim W, = m and dim. W,=n A2)
Consider the s2t

S=B,UB;= {2,250 Zp X0y X0 cos X s ¥1s ¥o ooo2 Vg = r}
To prove : S is a basis of W, + W, .
(i) Firstly Sis L.L.

m—r n-F
Suppose ia,:, - Zﬂ_‘ x;+zhy*=0 (3,
i=l k=1

f=1
where a;'s, s, 7, 's EF
= IfimtIan=-Evn
= linear combination of elements of B,
= Ey ¥ €W, (B; being basis of W),
(But also Zyy vy = Zyy v+ Z 0,z for 0; being additive identity 0 of F
= linear combination of elements of B,)
= Ty € W N W, (As B is basis of W, so £y, v € W; also)

= IZInn-= id_:r
p=1
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(Since B, is a basis of W, M W), so each element of W, N W, can be exp d as linear

of elements of B))

» In )’g-zé[z;=0
= 320,70, ¥pp=0,8,=0,8,=0, ....6,=0 @)
(Since B, is L.I. being basis set of W)
As each y; = 0 sb by (3), we have
a5 +Zfx5=20y=0
= =0,a,=0,..,a=0§=0,p5=0,..,8,_,=0 (5}
(Since B, is L.1. being basis of W,)
Hmbeby{4)and(5)cncha,,ﬁ!andnism,SisL.l.
(i) Secondly W, + W, =L (8).
LetzEL(S)= z=Za;z; +Zfx + Zviwy
== (Zan+Lfx )+ (Zdi5+ Zyeyy)
= z={al.c.of By)+(al.c. of B;)
= r=x+yforxEW,yEW,
= EW,+ W,
Thus L (8) C W, + W, . A6)
Alsoletz€EW,+ W, = z=x+yforxEW,yEW,
= 1=Can+Ifx+E0y+tZrn)
(As B,, B, are bases of W, and W)
= z=Z(a+ o)+ Efa+ Eyp
= r=(al.c.ofclements of S) = :zEL(S)
Thus W, + W; CL(S) (T
(6)and (7) = W;+W,;=L(S).
Thus 5 is a basis set of W, + W, which shows that

dim (W, + Wy =r+m—-r+n—r=m+n—r -..(8)

ie.,

m+n—r=(my+{m-r
Hence dim. (W, + W) = dim. W, + dim. W, — dim (W, N W,). [From (1), (2) and (8)]
[ SOLVED EXAMPLES |

Example 1. Examine whether the following set of vectors in V5 (R) forms a basis or not :

() (LO.0L(0 10,0010

@)y (1,1 2,1, 2 5)(5 3, 4) (P.U. 1992)
i) (1.2,0,@2 1,0,(,~12)

() (1L0-01,(2 N(0-32)

) (L0000 10,0 51 D0,0010).

Sol. (/) Let S =-{(1,0,0), (0, 1, 0), (0, 0, 1)}

S will be a basis of V5 (R) if Sis L.I and L (S) = V; (R).
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LSisLl

Leta, 8,y € R such that
a(l,0,00+8(0,1,00+y(0,0,1)=0

= (z,0,0)+(0,58,0)+(0,0,)=(0,0,0)

= (@Bf=000 = a=0f=0y=0

Thus Sis L.L. '

1L L (5) = V;(R).

We know that L (S) C V, (R) (1)

Let (a, b, c) be any vector in V, (R), where a, b, ¢ € R, then as proved above
(a,b,¢)=a(l,0,0)+5(0,1,0)+¢(0,0,1)

ie., each element in V, can be expressed as a linear combination of elements of S

B V;(R)CL(S) A2)

(1yand(2) = L(S)=V;(R).

Hence S is a basis set of V5 (R).

(i LetS={(1,1,2),(1,2,5),(53,4}

S will be a basis of V; (R) if S is L.I. and L (S) = V; (R).

I.SisL1

Leta, B,y € Rsuchthat @(1,1,2)+8(1,2,5)+y(5,3,4)=0

= (a,a2a)+ (3,285 +(57.37.4¥)=(0,0,0)

®= (a+f+5y,a+2p+3y,2a+5p+4y)=(0,0,0)

= a+f+5y=0,a+28+3y=0,2a+58 +4y=0 . (A)

These equations can be put in the matrix form as '

T

115
or AX=0,whereA=|1 2 3
2 5 4

1 1 5
1 2 3
2 5
=_F+2+5=0
Equation (A) have a non-trivial solution
ie, a, 3,y are real and are not all zero.
= wvectors (1,1,2),(1,2,5),(53,4)are L.D.
Hence the set S is not a basis of V, (R).
@iy Lets={(1,2,1),(2,1,0),(1,-1,2)}
S will be a basis of V, (R) if S is L. and L (S) = V, (R)
1.SisLt
Let «,f,y € Rsuch that
a(l,2, D+, 1,00+y(1,-1,2)=0
= (a, 2a, &)+ (28, 4,0) + (.-, 2) = (0,0, 0)
= (a+28+y,2a+f-y,a+2y)=(0,0,0)

Now|A| = =1(8=15)-1(4=6)+5(5-4)
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= a+2f+y=02a+f-y=0, a+2y=0 AA)
= a=0,=0,y=0.
These equations can be put in the matrix form as

1 2 1]fa] [o

2 1 -1||g]=

10 2|y [0
121
or AX=0,whereA=12 1| -1|.
10 2

12
Now|A|=|2 1
1 0

1
—21i =1(2+0)=2(@+1)+1(0-1)

=2-10=1==920
Equation (A) have only a trivial solution.
sooa=0,4=0,y=0.
= ThusSisL.L
I L8)=F(R) .
We know that L (S) C V, (R) A1)
Let (a, &, c) be any vector in V, (R), where a, b, ¢ E R, then
(a, b,c) =a(1,0,0)+5(0,1,0)+¢(0,0,1) 2),
where  (1,0,0) =x(1,2, D+p(2,1,00+=2(1,-1,2)
=(x, 25, x)+ (20,0, 00 +(z, -2, 22) = (x+ 2y + 2, 2x + y—2z,x + 22)
Sox+ptz=l, 2t y—z=0,x+2z=0
. 2 3 1
Solving, we getx= —;,y=§,z—$.
2 5 1
(1,0,0) =— ; (1,2,1) + 3 @1 0)+-§-(l,—l‘ 2)

Similarly, (0, 1,0) = %(l, 2, I)—%(Z, I, 0)—%{1,—1, 2)

wd 0,007 3203 GLO+; (-12)
Thus from (2) on putting, we get

(@ ﬁ.c)=a[—-§-(]. 2, 1)+%(2, L 0)+%(1,-1. 2)] _
+a[iﬂ, 2,1)- l 2,1,0) - 3(1,-1, 2)]+ c[—l~ a,2,0- %(2, 1,0+ l(l,-l. 2)]

ﬂ(—%a-!-—b-l-—c)(l 2, l)+(5:—% -;] (210]+[——2—+ ](I 1,2)

i.e, each element in V; can be expressed as a linear combination of elements of S .
Vi (R) CL(S) -(9)
(Nand(3) = L(3)=V,(R).
Hence S is a basis set of V; (R).
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(iv) Lets={(1,0,-1)(1,2,1)(0,-3,2)}
Let a, f, ¥ € R such that
a(l,0,-1+8(,2,1)+y(0,-3,2)=0
= (@, 0,—a)+ (8,28, ) + (0,37, 2¢) = (0,0,0)
= (a+p,28-3y,—a+B+2)=(0,0,0)
= a+f=0, 28-3y=0, -a+f+2y =0
Solving, =0,8=0,y=0
= SisL.lL
Hence S forms a basis of V, (R).
) LetS={(1,0,0),(1,1,0,(1,1,1),(0,1,0}
M SisLl
Let a,f,y. 4 € Rsuch that
a(1,0,00+8(1,1,00+y(1,1,1)+8(0,1,00=0
= (20,00 +(5.8,0+(y,y.y)+(0,4,0)=(0,0,0)
= (a+fiy,pry+6,¥)=(0,0,0)
= ag+f+y=0 f+y+d=0,y=0
Here we have three equations for finding out four unknowns,
So it will have non-zero solution:
Thus S isnot L.1.
Hence S is not a basis set of V; (R).
Example 2. Prove that the set of vectors
(Lo0....;00 L0 ...0) ... [(000...15
in V,, (R) is a basis set.
Sol. LetS={(1,0,0, ......,0), (0, 1,0, ......, 0), ......, (0,0, 0,......, 1)}
M Sis L1
Leta,, a,......, &, € R such that
a,(1,0,0,.......00 +a, (0, 1,0, ......, 00+ ...+ @, (0,0,0, ...... ,1)=0
= (@ 0,0, e O+ (0,850, v 0) + coeert (0,0,0, ..y @) =(0,0,0, ..., 0)
= (), @ @y, e, @, )=(0,0,0, ..., 0)
= o =0,a,=0,a,=0,....,a,=0,
Thus S is L.1.
(D) L(S) =V, (R).
Let (a,, ay, ...... , a, } be any vector is V,, (R).
We can wiite @y, @y Gy e @)= @1 (1,0,0, ..., 00465 (0, 1,0, ..., 0) + ...+, (0,0,0, ..., 1)
This shows that V,, = L (S).
Henee S is a basis set of V,, (R).
Example 3. Show that the set
S={(1. 001 1,00,(1,1 n}
is a basis of vector space Vs (C).
Hence find the co-ordinates of the vector (3 + 4i, 6i, 3 + 7i) in V; (C) with respect o 5.
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Sol. AsinEx. 1, S is a basis set of V, (C).
Nowlet (3+4i,6i,3+7)= a(1,0,0)+8(l,1,0)+y(l, 1, 1), where a, 8,y €C
=@ 0,0+@B A0+ =@ty fry)

Then 3tdi=a+f+y (1)
Gi=f+y A2)
3+4Ti=y W3
From (3), y=3+7Ti
Putting in (2), 6i =f+3+7i = fil=-i-3

Puttingin (1), 3+di=a—-i-3+3+7i = a=3-2i
Hence the required co-ordinates are (3-2i,-3 -4 3+ Ti.
Exampled4. LetS={(1,2,-1),(2 -3, 2} andT={(4, 1, 3). (=3, 1, 2)}, show that L(S} = L (T).

(P.U. 1992)
Sol. If possible, let L (S) =L (T).
Consider any v s 0 € L (§), then
v =a, v, +a, v, for some v, v; € R, not both zero.
NowL (8)=L(T) = vELT
= v=a;v+a,v, for some a,, a, € R, not both zero.
@ vyt ay vy =y vyt a, v,
= (1,2, -)+a(2-3.2)=a; (41,3 +a,(-3,1,2)
= a,+2a, = da; - 3o, ) (1)
2a,-3a;, =a,+a, (2
and — iy + 2a, = 3a, + 2a, (3)
-Solving (1) and (3), we get
ay = %(“.1 -5a,) and a, =%(733'“4)
Putting in (2), we get 2a, - Ja; =a; - Sa, - % (Tay ~ay)
-— % (ay +a) # ay+a,
Thus (2) is not satisfied.
Hence L (S) = L(T).
Example 5. (a) Show that (1,0, 0), (1, 1, 0), (1, 1, 1} in R (R) is a basis. Hence find the co-ordinate
vector of (a, b, ¢) € R’ relative to this basis. (GN.D.U. 1990)
(b) Show that the set of vectors (0, 1, — 1), (I, 1, 0), (1, 0, 2) is a basis of R (R). Hence find the
co-ordinate vector of (1, 0, — 1) w.r.t. this basis. (Pbi. U. 1996 ; G.N.D.U. 1990)
Sol. (a) AsinEx. 1(/),(1,0,0),(1,1,0)(1,1,1)in R* (R) is the basis.
Now let (a,b,¢) =a(1,0,00+8(1, 1,00+ (1, 1,1),
where @, B,y ER=(a,0,00+B,8,0)+ (v, )=(a+B+r.B+n7)
Then a=a+f+y (D
b=f+y @

emy (3
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From (3), y=e.
Putting in (2), b=f+c = p=b-c.
Putting in (1), a=a+bh = a=a-b

Hence the required co-ordinates are («— b, b—¢, ¢).

(B) LetS={(0,1,-1),(1,1,0),(1,0,2)}.

S will be basis of R* (R) if SisL.L and L (S) = L (R’).

() Sis L1

Lete, S,y € Rsuchthata (0, 1,- 1)+ (1, 1,00 +¥(1,0,2) =0
= (0,a,—-a)+(B,B.0)+(0,2)=(0,0,0)

= P+y,a+f —a+y)=(0,00)

= fry=0a+f=0,~a+2y =0

= a=0,8=0y=0

Thus Sis L.I.
1L L(8) =R (R).
We know that L (S) € R (R) 1)
Let (a, b, ¢) be any vector in R’ (R), where a, b, ¢ € R, then as proved above
(a,b,c) =a(1,0,0)+5(0,1,0)+¢(0,0,1) e (2),

where (L,0,0) =x(0,1,- }+¥(1,1,00+=(1,0,2)=(0, x, - x) + (¥, 0) + (2, 0, 22)
=(p+zx+y,-x+2:).
& yrz=lx+y=0,-x+2z=0.
Solving, we get
x==_2 y=2 r==1],
(1,0,0)=-2(0,1,-1)+2(1,1,0-1.(1,0,2)
Similarly (0,1,0)=2(0,1,-1)=1.(1,1,0)+ 1.(1,0,2)
and (0,0,1)=1.¢0, 1,-1)-1.(1,1,00+1.(1,0,2)
Thus from (2), on putting, we get
(a,b,¢) =a[-2(0,1,-1)+2(1,1,0)-1.(1,0,2)]
+5[200,1,-D=1L(1, 1,00+ 1.(1,0,2]+e[1.(0, 1,- 1) - 1. (1, 1, 0) + 1. (1, 0,2)]
=(-2a+2b+) (0,1, -+ 2a-b-e)(1,1,00+(—a+b+e)(1,0,2)
ie., each element in R® can be expressed as a linear co-ordinate of S.
R'(R) CL(S) ..3)
(Hand(3) = L(S)=R’(R)
Hence S is the basis set of R® (R).
Now let (1,0,—)=a(0,1,-1)+B(1,1,00+y(1,0,2), wherea, 5,y ER
=(0,a,—a)+(B.5,0)+ ¥ 0,2
-(ﬂ+?va+ﬂ'_a+2r)

Then 1=B+y )
O=a+8 (5

~l=-a+2y ..(6)

(5) - (4) gives -1 =a-y T

(6) + (7) gives -2=y » y==2
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Futtingin (4), 1=-2 = fg=3,
Putting in (5), O0=a+3 = a=-3,
Hence the required co-ordinates are (- 3, 3, - 2).
Example 6. If V be the vector space of ordered pairs of complex numbers over the real field R, then
show that the set
S={( 0,60, D@0}
is basis of V (R).
Sol. We have S={(1,0), (i, 0),(0, 1), (0, D}.
(M SisLl
Leta, B, y, € R such that
a(l,M+F0)+y (0, 1)+8(0,)=0
= (a,0)+(i8, 0} +(0,7) +(0, i8)=(0,0)
= (a+Py+id)=(0,0)
L a+if=0 : () and y+id=0 2)
[*v Whena+ib=c+id fora b c,d ER thena=c b=d]
(1) = a=0§=0 and(2) = y=0,4=0 '
a=0,=0, y=0andd=0.
Thus Sis L.L
(D LS =V ®R).
Let x be any vector in V (R), then
x=(a+ib,c+id)fora b, c, dER
Now x=(a+ib,c+idy=a(l,0)+b @ 0)+c (0, 1)+d(0,1)
= xisa linear combination of elements of S.
Thus L (8) =V (R).
Hence S is a basis set of V (R).
Example 7. Show that the set § = {1, x, £, ..., x"} of (n + 1) polynomials is a basis set for the
vector space Py, (R) of all polynomials of degree at the moast n over the field of real numbers.
Sol. We have S={1,x,2%, ......,x"}
() Sis L1
Let ap, ay, ay......, a4, € R such that
a.,.1+a,x+a,xz+....,.+a,,x"-0 (zero polynomial)
= g1 +a.x+a,x’+ ......+a,,x"=ﬂ 140,240,587 +.....0.x"
= a=0,a8=0,a,=0,......,4,=0.
Thus S is L.L.
(11} Since any polynomial in P, (R), say
[ =atamxtar+.... +a,x
is a linear combination of the element of S.
Hence S is a basis set of P, (R).
Example 8. Extend {(3, — I, 2)} to two different bases for R'. (G.N.D.U. 1985)
Sol. It is known that the vectors v, = (1, 0, 0), v, = (0, 1, 0) and v = (0, 0, 1) form a standard basis of R’

(R).
Further, since the vectorv (3,—1,2) of R’ (R) is non-zero L.I.,
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which is of echelon fu;'m.

U, ¥y, Uy, U3 Span R
And any basis of R’ contains exactly 3 linearly independent elements

[+ R is 3-dimensional vector space]
To check : v, vy, v, are L.L or not.

We form the matrix A having vectors v, v, v, and then reduce it to echelon form*. [* Are.11]
[3°-1 2
A=|1 00
0 10
(3 -1 2
~|3 0 [Operating 3R,]
0 10
3 -1 2
~lo 1 -2 [Operating Ry = Ry, (-1)]
0 1 0
3 -1 2
-0 1 =2 [Operating Ry = Ry (-1)]
0o 0 2

Thus the eche.lom form of A has no non-zero rows

=y, v, are LI over R.

Hence v, v,, v, form the basis of R

= the vectors (3,~1,2),(0, 1,-2)and (0,0, 2) are L.I. over R
= these vectors form a basis of R’.

Hence {(3,—1,2)} has been extended to two bases :

0 {3.,-1,2),(1,0,0),(0, 1,00} and

i {(3,-1,2),(0,1,-2),(0,0,2)}.
Example 9, Find the basis and dimension of the sub-space W of. R, generated by

(L-4-21)(-3-12),(3-8-27). (P.U. 1998 ; G.N.D.U. 1993, §5)
Also extend the basis of W to a basis of the whole space R
(1 -4 -2 1]
Sol. Let A=|1 -3 -1 2
13 -8 -2 7]
1 -4 -2 1]
=10 1 11 [Operating Ry (-1) and Ry, (-3) ]
(0 4 4 4]
[1 -4 -2 1]
~fo 1 1oy, [Operating Ryy ()
0 0 o of

The non-zero rows of this matrix form the base of the row space of A.
Thus the vectors (1,-4,—2, 1) and (0, 1, 1, 1) form a basis of W and dim. W =2,
Since R* is 4-dimensional,
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7. we require two more L.L. vectors in addition to the above two vectors.
The vectors (1,-4,-2,1),(0, 1, 1, 1), (0, 0, 1, 0) and (0, 0, 0, 1) are L.1. over R.
[ they form echelon matrix)
and consequently these form a basis of R”.
Also this is an extension of the basis of W.
Example 10. (a) Prove that the polynomials 1, 2 —x, 3 + X', 4 - ¥’ span the subspace W of all
polynomials over reals and of degree =< 3. . (P.U. 1985)
(b) Prove that the polynomials 1, 1+ &, [ + £, I + (' span the subspace W of polynomials in t of
degree < 3 (including zero polvnomial) over R.
Sol. (a) Since W is a subspace of all polynomials in x over R of degree < 3 (including zero polynomial),
dim. W=4
= any four L.I. polynomials of W form its basis.
Thus the given polynomials 1,2 —x, 3 + x*, 4 - x* span all of W iff they are L.I. over R.
To prove L.L : Leta, f, ¥, 8 € R such that
al +f2-0)+y(B+H)+d@-x)=0
(@+28+3y+4d)-fx+yx* - 8x' =0
a+2f+3y+4d=0,-8=0,y=0,-6=0
a=0,=0,y=0,d=0
=  Given polynomials are L.I. over R.
(#) Proceed as in part (a).
Example 11. Let ¥ (R) = P, be the vector space of polynomials in i, over the field of reals, of degree
= n. Determine whether or not each of the following is a basis of V :
W hof . s
) (Jree+d 40 o 28
i) {(LI+6 141+ 8 14t+0+0, o, I+ 14 P+ . +7 )
Sol. We have
P,=V(R)={pl):p(=ay+a 1+ ......+a,,r~ for ag, ay, ......, a, €E R}
(i) Here S= {1, 4,7, ... O }. :

UK 2

NSisLt
Let apayaj ...... , &, € R such that
ag,l+a‘,l'+.,,+c,,,t"=ﬂ (zero polynomial)

2 gy ltay ety L =01 +0, (4. 40,0

= a=0,a;=0,.......,a,=0.

Thus Sis L1

(I L(S) =V (R).

Lelau+a.r+‘m..+a"t" be any polynomial in V,, (R).
Then ap+ @ t+ e v @yl =ag. | +at+.... +a,f
= itisa linear combination of elements of §
Thus L (S) =V (R).

Hence S is a basis set of V (R) =P,
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(iNHereS= {1+ 6,0+ AP+ 2, o 20 07 4 0y

MSisLl
Let @ @), @3y ovenrennnnn, &, € R such that
a1 +0+a ((+ A+ F+ O+ ey (248 Y 4, (P +£)=0  (zero polynomial)
s gt (@t a (@ +a) P+t (@, ra ) +a,
=0.1+0.4+0.8+ ... +0.0 " +0.7
= ay=0,ap+a,=0,a,+e;=0,.....a, ; +a, =0,a,=0
= Q= @ =™ =y =, =0
Thus Sis L.I.
(I Letay + @, t+...... +a,{" beany polynomial is V,, (R).
This is not a linear combination of the el ts of 5.
Thus L (S) # V (R).
Hence S is not a basis set of V (R)=P.
(iif) Here S= {1, 1+ 1 +1+F 1 +1+FP+0, .., 1+t+F+ ... + 'y
SisL.t
Let a4, ay,ds, ......, a, E R such that
. 1+ ay (140 +ay(l+ 14O ooty (1 414+ E 4+ 40
= () (zero polynomial)
= (gptay+azt.... +a). l+la tat ... ta, )t
@ By F e 4 @) H b (@, ra) (T e,
=20.1+0.440. 7+ ...+0. ' 50,0
= gytatapt...ta, =0,ava ..., +a,=0,..... 2O, ta, =0,a, =0
B @A AT =y =0
Thus Sis L.I.
L(S)=¥(P).
Leta,+a, t+ ...... + a,{" be any polynomial in V, (R).
Then @yt @y t+ oo tayf=a, ' +a, '+ .. +ayt+a,
—a, (14t 4P % e H " ) (@ @) (L H 1+ Pt 40 )
...... +{ay—a;) (1 + 8+ (a—a;) (1)

= it isa linear combination of elements of
Thus L (S) = V (R).
Hence S is a basis set of V (R) =P,

5

Example 12. Determine whether or not each of the following forms a basis of R®

(D60 (i) (0, 1), (0. - 3)
Sol. (/) The vectors form a basis iff they are

@y 2, 0,1, -1,(0, 2).
LL

Thus form the matrix whose rows are given vectors

o]
“[s -3

Thus the two rows of A are L.I.

= the vectorsare L.I.
Hence these form a basis.

[Operating Ry, (- 3)]
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{if) The vectors form a basis iff they are L.1.
Thus form the matrix whose rows are given vectors.

S .

- [g IIJ:| [Operating R;, (3))

* [This form is called echelon form)
Thus the echelon matrix has a zero row, i.e., has one non-zero row
= the vectors are L.D.
Hence these do not form a basis.
(iif) is not the basis of R? because a basis of R? must contain exactly two vectors.
Example 13. Determine whether or not each of the following forms a basis of R :
) 1 0U-L5)
(i (L2-10003n (P.U. 1995)
(i) (2.4.-3),(0. 1, D0 1L, -1 W (L5 0{,202-1N
M (L3-004-3@3-1) ) (1L1L2,(.25.0534
(vii) (1.5, -6),(21,8),(3-1421.1 (P.U. 1998)
i) (L 1L, (L0, =-D,(3,-0L0),(2,1,-2).
Sol. (i) and (if) are not bases of R because a basis of R’ must contain exactly three vectors.
(¢if) The vectors form a basis iff they are L.L
Thus form the matrix whose rows are given vectors.

2 4 -3
A=[0 1 1
01 -1
2 1 -3
~lo 2 {Operating Cy, (1]
00 -l

Thus all the three rows of A are L.1.

=  the vectors are L.I.

Hence these form a basis.

(iv) The vectors form a basis iff they are L.1.
Thus form the matrix whose rows are given vectors

[t 11

A=|1 2 3
2 -1 1

NS T T

~{0 1 2 [Operating Ry, (= 1), Ry, (- 2)]
0 -3 -1
1 -2 1

~lo -5 2 [Operating Cy; (- 3)]
0 0 -t

Thus all the three rows of A are L.I.
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=  the vectors are L.I.

Hence these form a basis.

(v) The vectors form a basis iff they are L.1.

Thus form the matrix whose rows are given vectors

[t 3 -3

A=l1 4 -3
12 3 -11
(1 3 -4

~lo- 1 1 [Operating Ry (- 1), Ry (= 2))
0 -3 -3
13 -4

~i0 1 1 [Operating Rs; ( 3)]
00 0

Thus the echelon matrix has a zero row, i.e., has two non-zero rows
= the vectors are L.D.

Hence these do not form a basis.

{vi) The vectors form a basis iff they are L.1.

Thus form the matrix whose rows are given vectors

M1 1 2]

A=]1 2 5
15 3 4]
1 2

~lo 1 3 [Operating Ry, (= 1), Ry, (= 5)]
0 -2 -6
(1 1 2]

~{o 1 3 [Operating Ry, ( )]
00 0

Thus the echelon matrix has zero row, i.e., has two non-zero rows
= the vectors are L.D.
Hence these do not form a basis.
(vif) and (viif) are not bases of R’ because a basis of R’ must contain exactly three vectors.
Example 14. Under what conditions on_ the scalar a do the vectors (1, 1, 1) and (1, a, az)ﬁmn a
basis of ¥ (C) ?
Sol. Since V, (C) is a 3-dimensional vector space,
the basis of V, (C) will contain exactly three vectors.
Hence the set S = {(1, 1, 1), (1, a, @)} cannot be the basis of V, (C) and so no condition on a can be
found out.
Example 15. Let W be the space generated by the polynomials
n=C-2F+ 4+, vy=20 =30+ 91,
vy=r + 60— 5, vy =20 —50+ 71+ 5.
Find a basis and the dimension of W. (G.N.D.U. 1986 S)
Sol. The co-ordinate vectors of the given polynomial relative to be basis {£, 7, 1, 1} are
v =(1,-2,4,1), fvz] = (2,-3,9,-1),
[vs}=(1,0,6,-3), [vs]=1(2,- 5,7, 5) respectively.
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Thus form the matrix whose rows are given vectors

1 -2 4 1
2 -39 -l
A=ly 06 -5
2 -5 7 §
(1 -2 4 1
0 1 1 -3 ]
“lo 2 2 -6 [Operating Ry, (= 2). Ry, (= 1), Ry (-2)]
0 -1 -1 3
(1 -2 4 1
0 11 -3
“lo 00 o0 [Operating Ry (- 2), Ria (1]
0 00 0

The non-zero rows (1, - 2, 4, 1) and (0, 1, 1, - 3) of the above echelon matrix form the basis.
Hence the corresponding polynomials £-2F+41 +1and # + t— 3 form a basis of W.
Hence dim. W =2,

Example 16, If W be the sub-space generated by the polynomials

(@) x=r+20-2t+1, y=r+3f—t+4,2=20+°-T1-7. (G.N.D.U. 1988 8, 87)
B) vy=r-20+41+Lv,=20-30+9-1,

vy=r+ 635, v, =20 -5+ T+ 5. (Pbi. U. 1986)
Find a basis and dimension of W.

Sol. (a) The co-ordinate vectors of the given polynomials relative to the basis {7, 7, ¢, 1} are
[x]=(1,2,-2,1), ) =(1,3,- 1,4),
[2] =(2, 1,—7,— 7) respectively.

Thus form the matrix whose rows are given vectors

12 =2 1

A=[1 3 -1 4
2 1 =7 -1
12 -2 1

~le 1t 3 [Operating Ry, (-~ 1), Ryz (- )]
0 -3 -3 -9
1 2 -2 1

~lo 1 13 [Operating Ry, (- 3)]
00 00

The non-zero rows (i, 2, -2, 1) and (0, 1, 1, 3) of the above echelon matrix form the basis,
Hence the corresponding polynomials £ +2F ~2r+1 and £ + {+ 3 form a basis of W.
Hence dim. W =2,
(b) The co-ordinate of the given polynomials relative to the basis {7, 7, ¢, 1} are
["'I 1=0,-2,4,1), [vi}=(2,-3,9,-1),
[val =(1,0,6,-5), [v]=1(2,-5,7, 5) respectively.
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Thus form the matrix whose rows are given vectors

A=

o b —

-2
-3

0
-5

4
9
6

1T

-2

(==

-2

1

[N

‘Thus non-zero m-ws (1,-2,4,

-5
5
1
2 (Operating Ry (-2), Ry (=1) , Ra(-D))
6
1
- [Operating Rsy (~2) and Ry (1))
0

1) and (0, 1, 1, - 3) of the above echelon matrix form the basis,

Hence the corresponding polynomials £ ~27 +4¢+ 1 and £ +¢—3 form a basis of W.

Hence dim W =2,

Example 17. Find the dimension of the sub-space W of R' generated by

M (4L4-1.3,2,1-3-
) (—4-2D0.-3-

1yand (0,2, 1,- )

1.2,G3.-8-27. {(G.N.D.U. 1987 §, 85)

Sol. () Let the given co-ordinate vectors be

B=(1,4,-1,3). ]

=(2,1,-3,-1) and[z]=(0,2,1,-5).

Thus form the matrix whose rows are given vectors

(1 4 -1
21 -3
02 1
-1
-1
2 1
-1
-1
0

A

-7
-5

]
]
]

[Operating Ry, (- 2)}

[Operating Ry, ( 1]

The non-zero rows (1, 4, - 1,3), (0, = 7, — 1, — 7) and (0, - 5, 0, - 12)

form the basis.
Hence dim. W =3,

(i) Exactly similar to part ().

[Ans, dim. W =2]

Example 18. Let V be a space of 2 XZMHkqerandfet W be the sub-space generated by

F

[
3

Show that

Al
Bt

1 -
5



VECTOR SPACES 109

o {3l i} s

| L)

Sol. The basis set of V (R) is
1 ojfo 1
s"{[o u:|’[u o]'
The co-ordinates of vectors x,, x,, X, x, relative to the basis 5, are
(1,~5,-4,2,(1,1,-1,5),(2,-4,-5,7), (1, - 7, - 5, 1) respectively.
Thus form the matrix whose rows are given vectors

(1 -5 -4 2
1 1 =1 5
A=l 4 -5 g
1 -7 =5 1
I -5 -4 2
-0 & 33 (Operating Ry (~ 1). Ry (~ ), R (= 1)
0 -2 -1 -l
1 -5 -4 2
“lo § 5% (Operating Ry (~ 1) R, (1f3)]
\a 0 0 0

The non-zero rows (1, - 5, - 4, 2) and (0, 6, 3, 3) of the above echelon matrix form the basis.
Hence the set of corresponding matrices is
1 -5]fo @ . .
5= {[_4 2],[3 3:|},whnchfarmsabamsetw.

Hence dim. W = 2.
Example 19. Let ¥, and V, be the sub-spaces of R' genc rated by
{(,1,0-D,01,2,30,(2.3 3 -D} and
{(,2,2,-2,(2 3,2 -3 (1, 3, 4,— 3)} respectively.
Find the dimensions of
@ vy vy i) K+ ¥V, () Vinv,.
Sol. () Form a matrix A whose rows are the given vectors, and further reduce to echelon form

(110 -1
A = 23 0

3 3 -1

SO e 0 = ko

1
1] [Operating Ry (= 1), Ry, (= 2) ]
1

1

1
I

O ==
Do Wwo

o

}. [Operating Ry (- 1]
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which is of echelon form.

Thus the basis of V, is {(1,1,0,-1),(0, 1,3, l)}
and hence dim. V, =2.

(i) Proceed as in par* (i).

The basis of V, is {(1,2,2,-2),(0,-1,-2, )}
and dim. V,=2.

(i) V| + V, is the space generated by the vectors of V, and V, and consequently generated by bases
of Viand V,.
Thus we have

1 1 0 -1
o 1 3 1
A=y 2 2 22
0 -1 -2 1
(110 -1
013 1 .
o1 2 -1 [Operating Ry, (= 1), Ry (- 1))
\0 0 1 2
(11 0 -1
100 1 = {Operating Ro (- )
o 1 2
(11 0 -I
] .
“[o o -1 2| (Operaing Rey ()]
00 1 2

which is of echelon form
dim. (V, +V;) = No. of non-zero rows = 3
() dim. (V, 0 V;) =dim. V, +dim. V,-dim. (V, + V) =2+2-3=1,
Example 20. Let ¥, and V, be subspaces of R’ given by
Vy={(a,b,c,d)|b-2c+d=0}
and Vy={(a,b,c,d)y|a=d,b=2c}.
Find a basis and dimension of
¥y (¥, (i) VN, . (P.U. 1997 ; GN.D.U. 1988, 85)
Sol. () V,={(a,b,c,d)|b-2c+d=0}
The vectors of V, are of the type.
(a,2c—d, ¢, d)foralla,c,d ER
These form a subspace of R* [Do if]
and (g, 2c - d, e, d)=a(1,0,0,0)+¢(0,2,1,0)+4(0,-1,0,1)
= gach vector in V', is a lincar combination of the vectors
(1,0,0,0),(0,2,1,0)and (0,- 1,0, 1).
These vectors of V, are L.I. over R [Sustifir 1]
and as such these form a basis of V; and dim. V, =3,
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(i) Vo={(abecd|a=db=2}

= The vectors of V, are of the type
(a,2c,c,a)foralla,c ER.

These form a subspace of R* [Do if)
and (a, 2¢,¢,a)=a(1,0,0,1)+¢(0,2,1,0)

= each vector in V, is a linear combination of the vectors

(1,0,0, 1) and (0,2, 1, 0).

These vectors of V; are L.I. over R [ustifi 1]
and as such these form a basis of V; and dim, V;=2.

@iy Vinvy={(a,b,c,d)|b-2c+d=0,a=d, b=2c}.

Nowb-2c+d=0,a=d, b=2c = a=0,d=0andb=2c

The vectors of V, N V, are of the type
(0, 2¢, ¢, 0) for all ¢ ER.

These form a subspace of R* [Do i}
and (0,2¢,¢,0)0=¢{0,2,1,0)

= each vector in V, M V, is a linear combination of (0, 2, 1, 0).

These vectors of V, N Vyare L.I. over R. wiustifiy 1)

Hence basis of V, NV, = {0, 2, 1, 0} and dim. (V, N V) = 1.
11, Echelon Matrices

(a) Echelon Matrix. Def. A matrix A =[aU],.x.kmldlabeanecwmm:rtx{fd'enmfm-qf
zeros after non-zero elements increases row by row ; the last row may consist of all zeros.

For examples :
1 2 3 4
1 3 5 01 2 3
0 1 3land| @ 0 3 4| etc. are all matrices in the echelon form.
0 01 00 0 4
0000

First non-zero elements in the row are called distinguished elements.
(b) Row-Reduced Echelon Matrix. Def. An echelon matrix ; say A, is said to be a row-reduced
echelon matrix if":
(i) the non-zero rows of A are at the top,
(if) the distinguished elements ars each equal to 1,
(iif) the distinguished elements are the only non-zero elements in their respective columns.
For examples :
}
0
1

013 0||1 03
001 3,01 3
000 1/]|0 00

are row reduced echelon matrices.
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12. Row and Column Space

(1 Row Equivalence of two matrices. Defl. Let A and B be two matrices. The matrix A is said to be
row equivalent to the matriv B if B can be obtained from A by a finite fumber of elementary row
transformations.

{fi) Column Equivalence of two matrices. Def Let 4 and B be two matrices. The matrix A is said
to be column equivalent to the matrix B if B can be obtained from A by a finite number of elementary
column transformations.

13. Elementary Transformations

(1) Interchanging of ith and jth rows (R; = Ry)
Interchanging of ith and jth columns. (C;=Cp)
(I} Multiplying ith row by & (= 0) (R~ kR, k=0)
Multiplying jth column by & ( 0). (C; = kCpk=0)
(1) Adding to the ith row, k times the jth row (R;~R;+ kkj, k#0)
Adding to the ith column, & times the jth column (C;+Ci+kCpk=0)

14. Row Space of a Matrix
Def. Let A =[a;; ] be any m X nmatrix over the field F. Rows of A, each having n co-ordinates, are
Ry = @y Gygs eeeveey Gy )
R’: = (@, gy cenneny Ay "}

Ry = (Gt @pzs oovvoes Gy -
These are the numbers of F* .
The linear span of these row vectors, i.e., L [(Ry, Ry, ......, Ry} ] is said to be row-space of A and is a
sub-space of. ",
The row space of A = L [{R,, R;,...... + R 11
Similarly column space of A =L [{C), C;, ...... LG 1l
where columns of A, each having m co-ordinates, are
Cy= (@, Gapeeeeeey d)
Cy=(ay, an,

C,=(a azm Gy )-
THEOREMS

Theorem L. Row equivalent matrices have same row space,

Proof. Let A and B be two row-equivalent matrices.

By def., each row of B is either that of A or is a linear combination of rows of A

=  row space of A contains row space of B A

If we proceed irom B to A by inverse elementary row operation we obtain that the row space of
B contains row space of A. : L A2)

From (1) and (2), row space of A = row space of B.

Theorem Il. Row reduced echelon matrices have the same row space iff they have same non-zero rows.

Proof is omitted.
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15. Row and Column Spaces and Rank of a Matrix

Let A be any m X n matrix.

Let Ry, Ry,......, Ry and C,, C, ......, C,, be the rows and celumns of A respectively.

Then R; is@ row n-vector and C; is a column m-vector.

(1) Row Space, The sub-space of V,y spanned by the rows Ry, Ry......., Rys called the row-space of A,

(II) Column Space. The sub-space of V,, spanned by the columns C,, Cy, ...... , C,, is called the
column space of A.

(1) Column Rank. The dimension of the row-space of a matrix 4 is called the row-rank of A.

(1V) Column Rank. The di) ion of the col space of a matrix A is called the column-rank of A.

(P.L. 1989)

Invariance of Row-Rank and Column-Rank
(a)  Pre-multiplication by a non-singular matrix does not change the row-rank of a matrix.

(b) Post-multiplication by a non-singular matrix does not change the column-rank of a matrix.
Proof. (o) Let A be am X nmatrix and P a non-singular m X » matrix.

Py P o Pim R,
Then B=PA= Pn Pn o Pim R,

Pt Pm1 o Rgn R,

PulRi+pp R+ ap, Ry
Py Ry+pp Ry +py Ry
PuiRi#Pua Rytecset Py R,y
Since each row of B is a linear combination of the rows of A,
row space of B is a subset of the row-space of A A1)
NowB=PA = A=P'B [= Pis non-singular, .. P 0]
As above, the row space of A is a subset of the row-space of B.
From (1) and (2), row-space of A = row-space of B
= row-rank of B = row-rank of A . {2)
Hence the result.
(b} Please try yourself.

- B=

Theorem L If r be the row-rank of m X n matrix A, then there exists a non-singular matrix R such.

_|la
that RA = |:0

:| , where G is anr X n matrix consisting of a set of r linearly independent rows of A.
(G.N.D.U. 1987)
Proof. Since r is the row rank of A,
A has r linearly independent rows.

Mow we bring these rows to first r places with the help of el v row fi ions of A.
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The last (m — r) rows, being linearly dependent, are linear combinations of the first r rows and thus

they can be made zero by proper row-operations without affecting the first r rows.

Also we know that row-transformation can be affected by pre-multiplying with a non-singular matrix.
Let R be the product of such non-singular pre-multipliers.

0
Theorem 1L [f s be the column rank of an m X n matrix of A, mn:bweahuam:mgﬂamk

RA = [G] where G is r X nmatrix having a set of r lincarly independent rows of A.

R such that AR = [H O, where H is an m X n matrix having a set of s linearly independt i of A.

16.

Proof. Please try yourself.
Equality of Row Rank, Column Rank and Rank
Theorem L (a) The row rank of a matrix is the same as its rank.
(b) The column rank of a matrix is the same as its rank.
Proof. (a) Let A be any m % n matrix.
Let 7, be the rank of A and r, be the row-rank of A.
To prove. ro=r.
Sincerank of A =r,
there exists a non-singular matrix R such that

G .
M=[0],whm0isrxnm [Above Th. I]
Now row rank of RA = row rank of A = r;

[g] has at the most r| linearly independent rows

mrmkof{ﬁ]isatlhemuﬂrl

= n”psErn
Again since row-rank of A =r,, WD)
there exists a non-singular matrix T, such that

TA = [g],wllml-lisrzx n matrix.
Now p (TA) = p (A) = r; and every minor of order (r; + 1) of [g] =0,

mnlr.ot’[g] ssn

* nErn : -2}
From (1) and (2), we have », = r,, which proves the theorem.
(k) Since columns of A are rows of J\',
Column rank of A= row rank of A’
= rank of A" [Th. I{a)]
=rank of A
Hence the theorem.
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Cor. The row-rank of a matrix is equal to its column rank. {G.N.D.U. 1993, 88)
Proof. Combining the results of Theorem I (a) and 1 (b), we get the required result.
Theorem IL p (A + B) < p (A) + p (B), where A and B are m X n matrices.
Proof. Let S (A) denote the row-space of A,
S (B) denote the row-space of B
and S (A + B) denote the row-space of A + B,
where S is the sub-space spanned by the rows of A and B.
Since the number of members in a basis < the sum of the number of members in the basis of A and
the basis of B.
& dim. 8 = dim. § (A) + dim. 5 (B) (1),
where dim. S denotes the dimensions of the space S ; etc.
Also row-space S (A + B) is a sub-space of §
dim. S (A + B)'s dim. (S) we(2),
From (1) and (2), we have dim. S (A + B) = dim. S (A) + dim. 5 (B).
Hencep (A +B) s p (A) +p (B).
Theorem IIL If A, B are two n-rowed matrices, thenp (AB) 2 p (A)+p (B)-n.
Proof. Letp (A)=r.
Then there exist non-singular matrices R and T, such that

1, O
RAT-[O 0]

A =K' L T (D),
o Iu-r

where null matrices O, on R.H.S., have suitable orders.
‘We define another n-rowed square matrix C, such that

,fo o .
C=R"|4 T -(2),
where null matrices O, on R.H.S., have suitable orders.
From (1) and (2),
T o 1
A+C=R" o1 T'=R'I,T'=R"'T"".

n-r
Since R and T are non-singular, then R™' and T~ are also non-singular.
A + C is also non-singular and of order n X n

pPA+C)=n.
Also p(C)=n-r=n-p(A) ()
Now p(@®B) =p[(A+C)B] [ A+ Cis non-singular]
=p(AB +CB)

=p (AB)+p(CB) (4) [Th.IN
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Also  p(CB) =p(C) [~ pAB)ysp(A)]
=n-p(A) [Using (3)]
from (4), p (B) < p (AB) +n—p (A).
Hence p(AB)zp(A) +p(B)-n
[ SOLVED EXAMPLES |
Example 1. Reduce the following to echelon form and then to row reduced form :

1 -2 3 -I
A=|2 -1 2 2|.
3 r 2 3
1 -2 3 -
A=12 -1 2 2 [Operating Ry, (- 2) and Ry\(~ 3)]
3 12 3
I -2 3 -1
0 3 -4 4
0 7 =1 6
(1 -2 3 -~
~10 3 -4 41, [Operating Ry = 3Ry + (= 7) Ry]
0 0 7 -10
which is of echelon form.
1 =2 3 -l
4 4 I !
Now A~|0 1 -3 g Operating Ry — ?R_,andﬂ,—) ;R,
1
_IJ 0 1 _
[ 1 5
4 4 .
~lo 1 -3 3 [Operating Ry, (2)]
00 1 1o
L 7
1 00 5
7
4 . 4 1
~{o 10 3 Operating Ry, 3 and Ry -3
00 1 _lo
7

which is of row-reduced echelon form.
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Example 2. (g} Reduce the matrix
o I -3 -l
A=12 =] 4 [
4 1 -1 -3
1o row reduced form. Also find a basis for the row space and its dimension. (P.U. 1985 8)
(b} Find a basis for the row space of the matrix
1 2 3 35
2 3 5 8
=13 4 7 n
Y A
and hence find the dimension of the row space of the matrix A. (P.U. 1985)
o 1 -3 -1
Sol. (@) A=(2 -1 4 0 [Operating Ry, (- 2)]
4 1 -1 -3
0 1 -3 1]
~12 =1 4 0
0 -9 -3
0 1 -3 1]
~12 -1 4 0 [Operating Ry, (- 3)]
0 0 0 o]
2 =1 4 0]
~l0 1 =3 =1 [Operating R, + Ry}
0 0 0 0
I -% 2 0 !
~lo 1 -3 -1 [Opﬂmfﬂsfﬁﬁgﬁ]
0 o 0 0
1o 4 1L
2 2 . 1
~lo 1 =3 -1| [Opﬁﬂ"ﬂsﬁn(ﬂ]
00 o0 |

which is of row reduced echelon form.

Basisforwwspnceﬂ{[1.0.%.—%],(0.1.-3.—0}
and dimension of row space = 2,

12 3 5

5 8

®& A= 7 1

2 3

—d B
—
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(===

[— I — I

O = - —

0090 -

= =T

3
1
0

0

5
2
0

0
which is of row reduced echelon form.

[EN - S VY

LS N

=N -N R}

[Operating Ry, (1), Ry; (-1) and Ry, (-1))

[Operating Ry, (~1) and Ry (-1)]

[Operating Ryy (-1}

[Operating Ry = (- 1) R;]

Basis for row space = {(1,2,3,5),(0, 1, 1,2)}

and dimension of row space = 2.

Example 3. Find the rank of the matrix
1

Sol. Let

A=

1
2
3

(= —

']

L0

2 =3
3

-2

1
-3
-2

1
-5
]

1
-5

0

I =I
41
3

17

0

(G.N.D.U. 1998)

[Operating Ry =R, — 2R, and Ry = Ry - 3R]

[Operating Ry, (-1))

which is an echelon form of A, having two non-zero rows.
Hence rank of A = Row rank of A = 2.
Example 4. Find the column ranks of the following matrices :

1 2

I

4
o |3

-1

5 5 .
8 1 @i
-2 2

I

b by -

2 -3 -2 -3
3 =2 0 -4
& -7 =2 -1y
I -9 -10 -3
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Sol. () LetA= 2

-2 2

Now column rank of A = row rank of A', where
Now try yourself,

1 2
4 5 5
5 1
-1

Now try yourself. [Ans. 3]
(if) Please try yourself [Ans. 2]
Example 5. Find the column rank of the matrix

[ Y
4 3 2 3
A=| 3 1 -1 -4|. (P.U. 1989)
-1 =2 -3 -7
-4 -3 -2 -8
Sol. We know that column rank of A is the same as the row rank of A” .
14 3 -1 -4
13 1 -2 -3
12 -1 -3 -2
2 3 -4 -7 -8

Now A'= [Operating Ry, (= 1), Ry (= ). Ru (= 2)]

[1 4 3 -1 -4
-1 =2 -1 1
-2 -4 -2 2
-5 -10 -5 5
4 3 -1 -
-1 =2 -1
0 0 0
L 0 0 0
which is in the echelon form.
Since A" (in its echelon form) contains two non-zero rows,
row rank of A’ =2

Hence column rank of A = 2.
Example 6. Find the rank, row rank and column rank of the matrix

P2 0 -1
2 6 -3 -3
3 10 -6 -5

. and show that rank, row rank and column rank are same. (P.U. 1992)

= —

[Operating Ry, (- 2), Ryz (- 5)]

o0 0 -
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Since the echelon matrix of the given matrix has two non-zero rows,

2
2
4
2
2
0

0 -1
-3 -3
-6 -5
0 -1
-3 -1
-6 -2
0 -1
-3 -1
0 0

rank of the given matrix = 2.
Similarly find row and column ranks, each = 2.

Hence the result.

[Operating Ry, (- 2) and Ry, (- 3)]

[Operating Ry, (- 2))

[Do if]

Example 7. Determine whether the following matrices have the same row space :

and

-1
-2

-1
-2
-1

1

0
1

—_— e -

:ﬂ. a-[
3
-2 }
)
H

5
3

)

-1
-1
3

1 5
2 3 13

]

I

3

-1 =1

-3

il. (G.N.D.U. 1987 S)
-1

=1
3

[Operating R, (- 3)]

-1y [Operating Ry2 (- 1]

[Operating Ry, (- 3)]

..{2) [Operating Rys (- 1]

[Operating Ry, (- 4), Ry, (- 3)]

[Operating Ry, (- 2))
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000
Since non-zero rows of reduced forms of B and C are same,
row space of B = row space of C.
But non-zero row of reduced form of A is different from those of B and C.
Hence A has different row space.
Example 8. Determine whether the following matrices have the same column space :

I 2 3 I 35
(@ A=|-2 -3 ~4|landB=|1 4 3

10 2
~10 1 3 «..{3) [Operating Ryz (- 2)]

7012 17 rire
r 33 I 2 3
by A=|1 4 3|,B=|-2 -3 -4 (Pbi. U. 1996 ; G.N.D.U. 1992 S)
119 7 12 17

Sol. A and B have the same column space iff A" and B' have same row space.

1 -2 7
(@ A'=[2 -3 12

3 -4 17
M -2 7
~0 1 -2 [Operating Ry (= 2), Ry, (- 3)]
0 2 -4
1 -2 7
~lo 1 -2 [Operating Ry, (- 2)]
o o o0
1 0o 3
~lo 1 -2 ..{1) [Operating R\ (2)]
00 0

And B'=

fr———
Wby = T

[Operating Ry, (- 3), Ry, (- 5)]

i
1
oo -
I
LS Q-
1
L

1T
OO0 = OO0 -

1

2

4
- - } [Operating Ry (2))
] ..{2) [Operating Ry, (- 1))
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From (1) and (2), non-zero rows of reduced form of A and B' are same,
row space of A" =row spmorB'.
Hence column space of A = column space of B,

. 11
(B) A =|3 41
539

11 1
- g 2! -‘i:| [Operating Ry, (- 3), Ry, (= 5)]
:1 1o
-0 cl' —3 [Operating R, (2))
0
1 0 3
~ g ‘; —g A1) [Operating C, (- I) and C5, (2)]
, :I -2 7
And B'={2 -3 12
3 -4 17

[Operating Ry, (- 2) and Ry, (- 3)]

1
1
[ —
1
LS I
[
b=
—

1 -2 7

-0 1 -2 [Operating Ry, (- 2)]
0 0 o
[1 0 3

~10 1 -2 -(2) [Operating Ry; (2)]
00 o

From (1) and (2), non-zero rows of reduced form of A' and B are same.
mwspmofA‘ﬂmwspmofB'.

Hence column space of A = column space B.
Example 9. Show that the space U generated by the vectors
m=(2~03);u=241L-Dum=(3,63-7)
and the space V generated by the vectors
v =124, IDv=(24-519
are equal, ie, U=V, (P.U. 1986)
Sol. Form a matrix A whose rows are vectors u;, u, and », and reduce it to echelon form.

12 -1 3
A=|2 4 | =2
36 3 -7



VECTOR SPACES 123

1 2 -1 3
~l00 3 - [Operating Ry, (= 2), Ry, (= 3)]
0 0 6 -16
1 2 -1 3
~{0 0 3 -8 [Operating Ry, (- 2))
00 0 0
1 2 -1 3 I
~10 0 1 -8/3 ...(1) [Operating = R,}
o 0 ¢ 0 k]
[1 2 0 I3
~l0 0 1 -8/3 (2
[0 0 0 0
Now form the matrix B whose rows are v, and v, and reduce it to echelon form.
B‘[; i :: ::] [Operating R, = R, + R;]
12 -4 11
‘-[0 0 3 -8] [Operating Ry, (~ 2)]
1 2 -4 11 .
-[0 0 1 -8}3} [Operating 1/3 Ry)
120 13
fo 5% a5l @) (Operating Ry ()

From (1) and (2), we see that the non-zero rows in the reduced echelon matrices are identical, and
therefore, row spaces of A and B are equal and thus U=V,

Also, basis of each = {[I 2,0, %] (o. 01,- %} }

Example 10. Let A and B be arbitrary m X n matrices, prove that
DpaB)ysp(d) (i) p (4B) = p (B).

Sol. Let A and B be m X nand n X p matrices respectively.

Letp (A)=r,p (B)=r,andp (AB) =r.

() There exists a non-singular matrix P such that

PA = [g]

where G is an ») X nmatrix of rank r, .
Also as the rank of a matrix does not alter on multiplication with non-singular matrix,

r=p (AB) =p (PAB) [~ Pis non-singular]

= rank of [g] B )
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Further as G has at the most r, non-zero rows,

[g:| B cannot have more than r, non-zero rows which may arise due to the mubtiplication of .

r, non-zero rows of G and columns of B

rank cf [g} B=sr (2)
From(1)and(2), r = ry.

Hence p (AB) = p(A). (3)

() r=p(AB)=p[(AB)] _ [ o) =p4"]

=p(8' A"y s p (8" {Using (3))

=p(B) [ pB)=p®B)]

Hence p (AB) = p (B).

Example 11. Give examples of 2 x 2 matrices A and B such that

() plA+B)<p(d)p(B) (i) p(4+B)=p(A)=p(B)
(iii) p(4+ B)>p(A),p (B).

Sol. (i) Let A= [}_, "J]and B= ['('. ';]

1.1 1-1] [0 o
ArBs [0+u 0+0}=[0 0]=°
p(A+B)=0.
and pAy=p(B)=1
Hence p (A +B) <p (A),p (B).

. _Jr o o 2
(i) Let A= [0 0}andn—|:0 0]

140 042] [1 2
‘“B“{ow u+u]'[o o]
pA+B)=1

- Also  p(A)=1=p(B).
Hencep (A + B)=p (A) =p (B).

i ael) ous )

1+0 0+0] |1 ©
A+B= [o+o o+1Ho 1]
0

- det(A+ B)Fdﬂ[; ;

]-1%0

p(A+B)=2
But p(A) =landp (B)=1
Hence p(A+B)>p(A),p(B)
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Example 12. Prove that if m X n matrix satisfies the equation A* = A, thenp (A) + p (I,~ A) = n.
Sol. We have
A=A » A-A’=0 = A(l,-A)=0
Since  A+(,-A)=I,,
PA+L,-A)Sp(A)+p(l,-A)
> pU)SpA)+p(I,-A)
= nsp(A)tp(l,-A) - (1)
Again since A (I, - A)= 0,
pA)+p(l,-A)-nsp(0)
= pA)+p(,-A)-ns0
= pA)+p(,-A)sn -.(2)
From (1)and (2),p (A)+p (I,-A)=n.
17. Applieation to Linear Equations
Let us consider a system of m linear equations in n unknowns ; say x,, X3, ..., X, overa field F :
ay Xty Xy bt ay, X, = by

Gy Xy +ay Xy +.. 48y, X, = by A

Oy Xy + Ay Xy 4.y, X, =b,

The system can be written as AX =B,
ay Gy .. O x b,
. A= ay ap .. Gy, X= % | g by .
Ayt 9m3 - Gy Zn b'
The augmented matrix is
ay Gy e @, - b
y Gy . G, e By B
Gpy Gug oo Gy - by

The equations (A) arc dependent if the rows of (B) are L.D. and independent if the rows of (B) are L.1.
Note. Two systems of linear equations are said 1o be equivalent if they have the same row space, ie.. ifT
& " joes are row equival

Theorem. The system of equations
ay X +ay Xy +.o4ay, %, =h
Gy X +ap Xy +.o 48y, X, =b,

Ay X) + By Xy Hoak by, X, =by,

has a solution iff
p (4) = p (AB), where A and B are as above.
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Proof. The given system of equations AX =B

[+

ay  ap a, ] x| [h
‘e, ay dp o | | %2 | by
Gy)  Gu3 Dn xl b-
ay a1
This is equivalentto x, an +xy a?
D A2
The system AX = B has a solution

+X,

An b:
T = bl
D J O

iff the column vector of B is a linear combination of the columns of A
iff the column vector of B belongs to the column space of A

iff the column space of A = column rank of [AB].

iff the column rank of A = column rank of [AB].
Hence the given system AX = B has a solution iff p (A) = p (AB).

[ SOLVED EXAMPLES |

Example 1. Find the basis and the dimension of the solution space W of the following system of

equations :

(i) x+2y—dr+ds—t=0
x+2y-22+2+1=0

2+ dy-2z+3s+4t=0

(i) x+2p+u-s+3=0
x+2p+3z+s+t=0
Ix+fy+8z+s5+5t=0

{iti) x+2y-2:+2s-t=0
x+2y-z+3s-2=0
x+dy=Tz+5+t =0

(W) x+2p—2z+2r+s=0

2x+4y—06:+5r=0 -
2x+dy=2z+3r+ds =0
Ix+6y—82+Tr+s=0

(P.U. 1997 ; G.N.D.U. 1996, 92 8, 90)

iy LT
(P.U. 1998 ; Pbi. U. 1987 ; G.N.D.U. 1986)

Sol. (i) The given system can be written as AX = B,

1 2 -4 3 -1
where A=|1 2 -2 2
2 4 -2 3 4

(G.N.D.U. 1992, 85 S)

(?_.U. 1987)
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12 -4 3 -1
Now A~[0 0 2 -1 2 [Operating Ry (- 1), Ry, (= 2)]
00 6 -3 6
N (12 -4 3 -l
~l000 2 -1 2 [Operating Ry, (- 3)]
00 0 0 o
(1 2-0 13
~(0 0 2 -1 2 [Operating R, (2))
0 00 03
The given system reduces to
x+2+s+3t=0
2r—5+2u=0
ie, x=-2y-s5-3t
=g sm
ie, x=-2y-5s-3t
g-ﬂy-i--zl-:-l.
x] [-2 ‘; -3
y 1 1 0
The solution setis |z [=| 0 |y+| — |5+ -1 |z
| of |2 0
! 0 0 1

‘We have five unknowns and two non-zero equations of echelon form.
Thus the three variables )y, s, f are independent and two variables x and r are dependent.
Hence the basis of solution space $ = {(-2,1,0,0,0),(- 1,0, 1/2,1,0),(-3,0,-1,0, 1)}
and dim. $=3. )
(i) The given system can be written as AX =B,
x

12 2 -1 3 ¥y 0
where A=i1 2 3 1 1}, X=|z|and B=|0
3 6 8 1 5 5 0
|
122 -1 3
Now A~ [0 01 2 —2] L [Operating Ry, (- 1) and Ry, (- 3)]
002 4 -4
120 -5 7 :
~10 01 2 -2 [Operating Ry; (— 2) and Ry, (- 2)]
000 0 0
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and

The given system reduces to
x+2y=-55s+Tt =0

z+25-2t=0
= =-2p+5s-Tt
z=0y-25+2t
x| [-2 5 -7
¥y 1 0 0
The solution setis |z |=| O |y+|-2 s+ 2|t
s 0 1 0
H 0 0 1

We have five unknowns and two non-zero equations of echelon fm. )
Thus the three variables y, s, f are independent and two variables x and z are dependent. Hence the

basis of solution space S

={(-2,1,0,0,0),(5,0,-2,1,0), (- 7,0,2,0, 1)} and dim. $ = 3.

(iii) The given system can be written as AX = B,

12 -2 2 - ¥ ]
where A=|12 -1 3 =2 X=lz| and B+0
2 4 -7 1 1 5 ]
]
12 -2 2 -1
Now A~{0 0 1 1 -I [Operating Ry, (— 1) and Ry, (- 2)]
00 -3 -3 3
12 0 4 -3 , . "
~100 1 1 -1 [Operating Ryy (2) and Ry; (3)]
0000 0 . .
The given system reduces to
x+2y+ds-3t =0
z+5—1t=0 E v
= =—2y—4s+3tand z=-5+1¢
-2 -4 3
x 1 0 0
The solution set is =l 0 |y+| =15+ 1 |s
z 0 1 of
0] o] 1|t
We have five unkr and for quation of echelon form.

Thus the three variables y, s, / are independent and two variables x and z are dependent
Hence the basis of solution space
5={(-2,1,0,0,0),(-4,0,-1,1,0),(3,0,1,0, 1)} and dim. 8 = 3.
(iv) Exactly similar to parts () — (iif). :
[Ans. Basis = {(-2,1,0,0,0),(-2,0,1,2,0),(-5,0,0,2, 1)} dim. W-=3]
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Example 2. Let V, and V, be two sub-spaces of R given by
Vy={(a b cd|b-2c+d=0}
={(a bcdla=db=2}.

Find the basis and dimension of
GRS CRAS i) V0V, (G.N.D.U. 1985)
Sol. We shall find the basis and dimension of the solution spaces of the following equations :
() b-2c+d=0 (i) a=d, b=2c (fi) b=2c+d=0,a=d b=2c.
() V,is the solution space of b—2c +d =0, ie, b=2c~d
a a 1 0 0
bzzcnd_0a+2c+ ”]d
¢ c 0 1 0

d d 0 0 1
Here a, ¢ and d are three independent variables and the solution space consists of three L.I. vectors, viz.
(1,0,0,0%,(0,2,1,0)and (0,- 1,0, 1)
Basis of V, = {(1,0,0,0),(0,2,1,0),(0,- 1,0, 1)} and dim. V, = -3,
(if) V, is the solution space of a= b, b=2¢

al fd] [0 1
bl {2e| |2 0
e = c =i 1 c+ 0 d
dj{d] |0 1

Here ¢ and  are two independent variables and the solution space consists of 2 L.I. vectors ; viz.
0,2,1,0)and(1,0,0, 1).
Basis of V, = {(0, 2, 1,0), (1,0, 0, 1)}, and dim. V, = 2.
(#) V, NV, is the solution space of the equations
a=d,b=2¢,b-2c+d=0
d=0,a=0,b=2¢

al 0] (0
bi_ 20 2
el =1
d 0 0

hcshwwmmhmqﬂemufmlymLJ vestor, viz. (0,2, 1,0)
Basis of V, N V= {(0,2,1,0)} anddim.V, NV, =1.

Example 3. Let M and N be sub-spaces of R* defined as :
M={(a bc d|b+c+d=0}
N={(abcd)|a+b=0,c=2d}

Find the dimension and basis of M, N and M N ¥, (G.N.D.U. 1988)



Sol. () We have M= {(a, b, ¢, d) | b+ +d=0}
ie., M is the solution space of equation
b +e+d=0 or b=-c-d
To find its basis :
a a 1 0 0
Here g: ccdnga-i- :c+ ;
d d 0 0 1
Here there are four unknowns of which three viz. a, ¢, d are independent.
Hence basis of solution space M = {(1,0, 0, 0), (0, -1, 1,0), (0,~ 1,0, 1)}
and dim. M =3,
(i) HereN={(a,b,c,d)|a+b=0,c=2d}
ie, N is the solution space of equations a+b=0, c=2d

or a=-b,c=2d

To find its basis :
al [-&] (-1 ]
-] b 1},.]0
Here cFl2sl=l o h+ 2 d
d| |d 0 1

Here there are four unknowns of which b and o are independent.

Hence basis of solution space N = {(~ 1, 1,0, 0), (0, 0, 2, 1)} and dim. N =2

(i)  HereMNN={(a,bc,d|b+c+d=0a+b=0,c=2d}
={(@ bec,d)b+2d+d=0,a=~b,c=2d}
={(a,b,c,d)| b=~3d,a=—-b,c=2d}
={(a,b,c,d)| a=3d,b=-3d,c=2d}.

To find ts basis :
a 3d 3
b -3d -3
Here | o1=l 2al"| 2
d d 1

Here there are four unknowns of which only d is independent.
Here the basis of solution space M N N = {(3,-3,2, 1)} and dim. M N N) = 1.
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LINEAR TRANSFORMATIONS

1. Linear Transformation (L.T.)
Def. Let V and W be two vector spaces over the same field F. Then a mapping T of V into W ie.,
T:V - W
iz called a linear transformation if the following properties are satisfied :
() Additive Property. T(x+))=Tx}+TG)Vx,yEV.
(I} Homogeneous Property.
T (ax) = aT(x) VYxEVanda€F.
L.T. stands for the abbreviation of Linear Transformation, which is also known as vector space
homomorphism.
The above. ioned two properties are combined into a single property, namely Linear Property as :
Tax+y)=aT(x)+T)) VYrxyEVandaEF
or T(ax+py)=aT(x)+ST() Yx,yE Vanda,fEF.
2. Linear Operator (L.0.)
Def. If in the above definition of linear transf ion, the vector space W is the same as V, then the
linear transformation
T: V=V
is called the linear operator.
Thus T(ax+pBy)=aT(x) +fT() Yx.yEVanda,BEF.
L.O. stands for the abbreviation of Linear Operator, which is a mapping from one vector space into
itself.
3. Linear Functional
Let V (F) be avector space and T be a mapping from V into F
ie, T:V=F
such that T (ax + 8y) = aT(x) + BTY) ¥ x, ¥ € V and a, B € F, then the mapping T is called linear
Sunctional on V.
This is also known as scalar valued function.

THEOREMS

Theorem L. Zero Transformation (Operator). If V (F) and W (F) are vector spaces, then a
mapping T defined as
T:V=W,x)=0VzEV
is a linear transformation (or operator).
Proof. Firstofall, T:V - W(orV) [~ 0is the common element of V and W]
Now for , yEV ,a,fEF = ax+fyEV . [+ VisaV8§]

131
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Thus by def. of T, we have
Tlex+fy) =0=a0+p0=a.T(x)+f.T()
= bydef of L.T, TisaL.T.
Hence T is a linear transformation (or operator) and it is called z¢ro transformation (or operator),
denoted by O. . . .
Remember : O (x)=0VxEV.
Theorem IL Identity Operator. If ¥ (F) is a vector space, then the mapping T defined as
Tx)=xVx€EV

is a linear operator. (G.N.D.U, 1985 8)
Proof. Firstofall, T:V = Visdefinedas T(x)=xVxEV A1)
Now, forx,y EVanda,EF = ax+fy€V,
T(ax+py) =ax+py [ of (1)
=aT(x) + fT()

=  Tisa linear operator.

Hence T is a linear operator, called Identity operator, denoted by 1.

Remember: Ix)=x¥xE€YV.

Theorem I11. Negative of transfor ion (or operator). If V(F) and W(F) are vector spaces and
T is a linear transformation from V to W, then the mapping — T defined by

Nx=-[M)]YxEV

is a linear transformation.

Proof. Firstofall,-T:V - W is defined as

(-Tx=-[TE)VYxEV 1)

Now forx,y EVanda,fEF =ax+fyEV. :

(=T (@x+fy) =~ [T (ax + H)] [+ of (D)
== [aT(x) +AT()] [+ TisLT]
=—-aT(x)-AT()
=a[-T]+8[-TON
=a[(-T]+B[(-T)y]

= -~-TisLT. .
Hence - T is a linear transformation carresponding to linear transformation T.
Theorem IV. Properties of linear transformations.
If the mapping T': V' W is a linear transformation from the vector space V (F) to the vecitor space W (F), then
() T(0) =0, where left hand 0 € V and right hand 0 € W
(i) M-x)=-Tx) V¥V x€EV
(i) Tx=p)=Tx)-TYVxyEV.
Proof. () T(x)=x'forxEV,x' €W (1)
Then T(x) = T(x + 0) = T(x) + T(0) . [+ TisLT]
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= ¥ =x +T(0) [By (]

- x'+0=x"+T(0) [+ ' =x'+0]

- T(0)=0. [Using Cancellation Law]

(i TEx)=T(-1x) [« TisLT)
= DTE By def)
=-T(x).

(i) Ta-p=TE+E=P)=TE+T(=y) [+ TisLT)
=Tx)-T). [Using (if))

Theorem V. Linear transformation for same dimensional vector spaces. If ¥ (F) and W (F) are
n-dimensional vector spaces having their bases as
By = {xy, Xpyrenna X} and By =y, Vaveroones ¥k
respectively, then there exists a unique linear transformation T from V (F) to W (F) such that
Tx)=ypi=12, ... 1. (A)
Proof. Since B, is basis of V, so x, any vector in V, can be written as
x= ta,xf fora/'s €F (1)
iml
() Toshow the existence of T.

We define a mapping )
TE=TEax)=Za,T(x) [By property of T}
-2::,), for a)sEFandVx€EF .(2) (By (A))

ial

Now we show that T is a linear transformation.

Since T:V=+W [ Ea;y; € Was B, is basis of W]
and for each x,,;, EVanda, FEF = ax,+fx, EV,
where x, and x, can be written as ’ '

x, = ip,x, forfs EFandx,= 3 y,x, fory sE€F .(3)
i=1 1 |
Tlax+px)=T@ZIfx+pEy;x) . [+ of(N]
=TE@f+Brdx)=Z@p+Bydx [ of(2)]
=aZfy+BZyy=aTx)+AT(x)
= Tis linear.

Further particular case of (2) is given as
x=x=0.x,+0 . m+. . +1l. 5+ . . +0.x, EWfori=1,2,...,n
ie, T(x)=Ly =7y fori=1,2,...,n
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Thus T is the linear transformation from V -+ W by the property (A) showing the existence of a linear
transformation.
(if) Uniqueness of T.
Let T' be another transformation such that
T () =ypfori=1,2,..,n )
Then T (x)=T (Zax)by(l)VxEV

=2aT) (8 linearity of T')
iwl

=2ay [ of (9]
=1

=T (x). . [ of (]

As above equality is true for each x € V so
T=T
showing the uniqueness of T. o

Theorem VI. Let T: V - W be a linear transformation and suppose x,, x,..., X, € V have the
property that their images T (x,), T (x3),..., T(x,,) are L.I. Show that the vectors x, x5, ..., x, are L.I.
(G.N.D.U. 1986 ; P.U. 1985 S)
Proof. Let there exist scalars @,, aj,... ..., @, € F such that

ayx, +ay Xt tayx, =0
Now Tla, x, + @ x; + ... +a,x,)=T{0)=0
» aTx)+a,Tx)+.....+a, T(x)=0 [ TisLT]
= a;=0a;=0,.... ,a,=0 [ Tx), Txdy voeee y Mx,) are L1)

Hence xy, x5, ...... ,xparcalsoL.l.
| SOLVED EXAMPLES |
Example 1. Find out which of the following are linear transfe i
() T:R = Rdefinedby T (x,y)=(x)
(i) T:R = Rdefined by T(x,y)={(x~)
(i) T:R-> e defined by T (x) = (2x, 3x) (P.U. 1996, 92 ; GN.D.U. 1985 S)
(") T:R = R definedby T(x,y,2)=(x+1,y1)
) T:R -~ RdefinedbyT(x,y,2)=(z,x+y)
(vi) f: R = Rdefined by f(x, y) =] 2x - 3y|. (GN.D.U. 1985 §)
Sol. () We have T: R’ - R defined by T (x, ) = (x)). |
Leta =(x,») € V, (R) and b = (x;, 3,) € V; (R) and a, B be any two real numbers.
aatPb=a(x,y)+fxpy)=@x,+fxyay +fy)
= Tlaa+pb)=T(ax+Bxpay+By)=(ax+Bx)lay+fy) 1)
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and aT(a)+AT(E) =aT (x, y) + fT(xp ) =axy yy +Bxa s
From (1) and (2), T(cza + Bb) = aT(a) + AT(b).
Hence T is not a linear transformation.
(i) Wehave T: R* - R defined by T(x, y) = (x- ).
Letg=(x,, 1) € V;(R)and b= (x5, y)) EV;(R)
and a, § be any two real numbers.
aa+fb=a(x,y)+B (xny)=(ax,+fx,an+py)
- T(ea+pb)=Tax +fx,ay +fy)= (@x +fx)-(ay+By)
=a(n-y)+Bx-y)=aTE ) +BT (0
=aT(a)+8T(b)
Hence T is a linear transformation.
(/i) We have T : R - R? defined by T (x) = (2x, 3x).
Leta=(x) €V, (R)and b=(x) EV,(R)
and a, A be any two real numbers.
aa+fb=a(x)+px)=(ax,+fx) .
& T{aa+pb)=T (ax, +fx;)=Qax, +2Bx, 3ax, + 3fx,) (D)
AndaT (@) +AT(b=a T (x) + B T (x)
=a (2, 3x)) + B (2ry, 3x)) = (2ax,, 3ax,) + (2fx; + 3fx;)
= (20xx, + 28x;, 3ax, + 3fx;) -(2)
From (1) and (2), T (aa + fb) =aT (a) + AT (8)
Hence T is a linear transformation.
(iv) Wehave T:R' —+ R’definedby, T(x,y,2)=(x+1,5,2)
Let a=(x,y,z) EV;(R)
and b= ymz) EV;(R)
and a, A be any two real numbers.
aa+fb=a(x, y1,2,) + B (¥ ¥ 22) = (ax; + fixy, @y, + Py, a2, + firy)
T(aa +Bb)=T (ax, + fxy, ay, + fiyy, az, + fz;)
= (ax, +fix; + 1, ay, + Py, az, + fz) (1)
And aT(@+BTR) =a T2+ T ypz)=a (i + Ly, 2) +f(n+1,m2)
=(ax, +a,ay, az, )+ (fx; + B, Byy Pry)
={ax, + fix; +a + B, ay, + fyy, az, + fizy) A2)
From (1) and (2), T (aa + b} # a T (@) + B T (B).
Hence T is not a linear transformation.
(v) Wehave T: R’ -+ R? defined by
Txy)=(zx+))
Leta=(x,, 3, ;) € V; (R) and b = (x3, y3, 7;) € V; (R) and a, § be any two real numbers.
aa+fb =a(x,y,2)+p (2,51, 1) = (@x, + fxy, ay, + fiyy, az) + fz))
o T(@a+pb)=(az, + Pz, ax, + fxy + ay, + fy)
=(az, +frpa (5 +y) +B (12 +37) )
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136 )
and aT(@)+fT(B) =aT@,ynz )+ TGz =a (@ x +y)+B (2% + 3i)
=(az,, & (x; +y)) + (Bz2, B (x1+ 1)
=(az +fza(x +yn )+ (x+y))
From (1) and (2), T (aa + fb) = aT(a ) + T(b).
Hence T is a linear transformation.
(vi) Wehave
! f:R* = Rdefined by f (x, ) = 2x - 34,
Let a=(x,») €V (R)and b =(x;, })) EV: (R)
and a, § are any two real numbers.
aa+fb=a(x, )+ (6, ) =(ax, +fx, ay, + fy)
Slaa+Bb)=f(ax, +fx;, ay, + By)
=|2 (ax, +fx) -3 (ay, + By
=la @ -3+ -3
And af (a) + Bf (b) = af (x,, »)) + Bf (@2 )
=a|2x =3y | +B 25 -3yl
=la@n-3p)|+ |8 (@n-3)|
From (1) and (2), f (aa + Bb) # af () + Bf ()
Hence f: R? - R is not a linear transformation.
E:‘a-plez. Mmmﬂmmrmfmmww:
() T:R = R definedby Tz y)=(x +y,%)
(ii) T:R -+ R definedby T(x.p)=(x+y,x-y.5)
(i) T:R -+ R defined by T(x,y,2)=(x—y,%~1)
() T:R = R definedby T(x,y,7)=(3x-2y+2,x~3y-21)
) T:R -+ Rdefined by T(x,y,5)= (25— 3y + 42).’
Sol. (/) We have T : R? = R* defined by
T y)=(x+y3)
Let a=(x, ) EV,(R), b=(x2y) EV2(R)
and a, § be any two real numbers.
aa+fb=a(zuy )+l =laxi+fxpay +py)
T(aa+pb) =T(ax+fx.ay, +fy)
=lan+fn+ay+fypax+px)

And aT(a) + BT(B)=aT (x, y)) + BT G y2) =@ (xy + y1u x) + B (34 yo, 3
=(axn+ay,axn)+@rn+py.fx)
=@xntay+fn+fyax+pfx)
=@x+fntay+fpaxn+px)

From (1) and (2), T (@a+Bb) =a T (a) + B T (6).
Hence T is a linear transformation.

D)

(1)

-(2)

(G.N.D.U. 1996)

()

-(2)
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(i) Wehave T : R* = R defined by
TxY)=(x+ty.x-5))
Let a=(x, ) )EV;(R), b=(xpy) EV:(R)
and a, f be any two real numbers.
aa+pb=a(x, )+ (x )
= (ax, + fix, ay, + fy1)
T(aa +Bb) =T (ax, + fx,, ay, + fyy)
= (ax, + fixy + ay, + Py, ax, + fxy — ay, — fyn ay, + fy)
AndaT(a) + BT(B)=a T (x, y) + B T (v, y2)
=a(x+yx =y ) tB (%t yu X =y 12)
= (ax, +ay,, ax, —ay,, ay;) + (Bxy + By, fxy — Py, By2)
= (ax) +ay, + fx; + By, ax, —ay, + fix; - By, ap, + By)
= (ax; + fx; + ay, + By, ax, + fx, ~ ay, - fyy, ay, + fy)
From (1) and (2), T(aa + fb) = aT{(a) + BT(}).
Hence T is a linear transformation.
(iif) Wehave T: R® - R? defined by
T(x, 5. 2) = (x~y,x~3)
Let  a=(x,x» 2)€EV;(R)
b=(x, y»2) EV,(R)
and a, f be any two real numbers.
ax+fb=a(x,y,n)+BGuynn)~@x +ix.ay +Byaz+fn)
Taa+pb)=T(@x;+pxpan+fynazn+pz)
'-(ax|+ﬂx,-—ay|—-ﬂy,,ax| +ﬁx=-clz‘—ﬂz,)
AndaT(a) +BT(E) = aT(x,, y;, 2;) + fT(xy, ¥y 22)
=a(n-yux-a)+fx—ynx-2)
=@x-ay,ax—az)+@x-fy,fx-p)
=lan-an+fx-fpax-an+fn-fz)
=lan+fx-ay-Py,ax+prn-azn-§z)
From (1) and (2), T(aa+Bb)=aT(a)+B T (b).
Hence T is a linear transformation.
(iv) We have T : R’ = R? defined by
Tix, y,2)=(Gx -2y +z,x-3y-22)
Let a=@,y, 7)) EV3(R), b=(xyyn2) EV,(R)
and a, f be any two real numbers.
aa+pb=a(x,y,u)+P (32
=(ax, + fixy, ay, + fyy, @z, + Pz}
v T(aa+pby="T (ax, + fry;ay, + By, . azy + fz))
= (3 (axy + )~ 2 (ay + ) + (2, + Bz, axy +fix, = 3 (o, + o) - 2 (az, + Bz)

1)

)

1)

-(2)



=(a (n -2 +2)+ B (Bxs- Dy + 3, @ (5= 3y, - 22,) + B (x; - 3, - 23))
=(a (n -2 +),a (- 3y, - 22)) + (B By~ 2 + 2) + B (5, - 3y, - 23)
=a (3x -2y + 2,3 =3y, - 22)) + B 3y = 2 + 23, 3, - 3y - 21)
=aT (Y520 +B T (e 13, 22) = aTla) + BT (D).
Hence T is a linear transformation.
(v) Wehave T: R® - R defined by
Tx,y,2)=(2x-3y+42)
Let a=(x.yn)EV;R), b=(xyn5n)EV;[R)
and a, # be any two real numbers,
aa+fib=a (x, y,,2)) + B (xz, 2, £2) = (@2, + fxy, @y, + Py, @z, + Bz2)
T(aa +fb)=T (ax, + fx;, ay, + fy,, az, + fiz;)
= (2 (ax, + ) - 3 (ayy + Byo) +4 a2y + B2)
. =a(2x, -3y, +42)) + B (2x; -3y, + 4z))
. =aT (x,, y, 2,) + AT (3 y1 )
=aT (@) +fT (b)
Hence T is a linear transformation. )
Example 3. Show that the following mappings T are not linear transformations :
() T:R =R defined by (x,y,2) = (|1, 0)
(i) T:R - R defined by T(x,y)=(x+ 1, 2y,x+)).
Sol. (i) Wehave T:R® - R* defined by
T@y,2)=(x10)
Let a=(x,y,2) EVi(R), b=(ryyn2)EV,(R)
and a, § be any two real numbers,
aatfo=a@,y,n)+fuynn)=(ax +fx,ay +fyaz +f)
Tlaa+pb)=Tlax +fx,ay +fyan+fz)

=(lax +$x]0) 1))
And aT(a) + BT(b) = aT(x;, y1, 2,) + BT(en yu 2 =@ (I3, |, 0) +8 (1 5|, 0)
=(a|x|+B]x10) )

From (1) and (2), T(aa+fb) = aT(a)+B T (5).
Hence T is not a linear transformation.
(i) Wehave T:R* = R’ defined by T (x, ) = (x+ 1, 2y, x + )
Leta= (x,, ) € V2(R), b= (x5, 1) EV: (R)
and a, # be any two real numbers. '
aa+fb =a(x,y)+ P (x) = lax, + fxy, ay, + By} .
< T(aa+pb) = (ax) +px; + 1, 2ay, + 2y, ax, + fx;+ ay, + By,) (1)
and aT(a)+BT(b) =aTl(x), »,) +BT(xy y2)
=a(x+ L, 20,2t y) +B 0+ 1, D xy + )
=(ax, +fry +a+P,2 (v + yo), ax) + fxy + ay, + By) --{2)
From (1) and (2), T (aa + Bb) # aT(a) + B(b).
Hence T isnota linear transformation.
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Example 4. Let V (F) be a vector space of all m X n matrices over a field F and let P and Q be two

fixed matrices of order m X m and n X n respectively over the same field F,

T:V - Vdefinedby T(A)=PAQ VAE V.
Show that T is a linear transformation.
Sol. SincePism X mandAlsm X n,
PAism X n.
AlsoQisn X n.
~. PAQism X nand thus PAQ € V (F).
LetA,BEVanda,fEF
aA and SB are also matrices of order m X n
= agA+fBEV [ Aand Barem X n)
T(aA +fB) =P(aA +fB)Q
~(P(aA)+P(6B)) Q=(aPA +BPB)Q
=(aPA)Q+(AFB)Q=a(PAQ) +j (PBQ)
=aT (A)+fT (B).
Hence T is a linear transformation.
Example 5. Let ¥V (F) be a vector space of n X n matrices. Let M be a fixed n X n matrix. Then the

mapping defined by

(} MAY=AM+MAVAEYV .
(i) MA)=AM~-MAVAEYV

are linear transformations.

ie.,

and

Sol. Since cach element of V is a m X n matrix, therefore, their product will also be a m X n matrix
AEVMEV = AMMMAEYV '
= (AM+MA)EYV and (AM-MA)EV [+ Vis avector space)
ThusT:V - V.
Alsofor A, A, EV

a,fEF
= aA +fAEV.

D T(aA;+BA) =(aA, +BA) M+ M (aA, + fAy)

=a (A M)+B(A; M) +a (MA)) +8 (MA;)
=a (A M+MA)) +8 (A; M+ MA;)
=aT(A)) +T(A) :
Hence T is a linear transformation.
(i) TlaA,+pA) =(ah, +fA)M~-M (aA, + Ay
=a (A M)+ (A; M) -a (MA))-f (MA,)
=a(AM-MA))+B(A;M~-MA;)
=aT(A,) +ST(A)
Hence T is a linear transformation.
Example 6. Let F be a field and let V be the space of polynomial functions f from F into F, defined by
[ =ae+a x4 @+ ... +a,x
Let (D) (x)=a,+ 2ay x+ ...+ na,x
Prove that D is a linear transformation from V into V.
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Sol Let f(x)= Go+ @ x+@X +.rers +ap X"
and g =by+ b x+b X+ .t by X"
be two polynomials € V.
Leta, S EF.
v oaf)+fgl) ma (@t axta X+t ayg X +f (bt by x+ byt + ... b x™)
= (aay +fbe) + (aay + Bb)) x + (g, + fb) £ + .....
Dlar@m+pg®) .
=(aa, +Bb) +2 (ag, +fib)x+......
=(aa; +2ag; x +.....) + (Bb, + 2Bb x +......)
=a(a +2a,x+ ... Y+B (b +2bx+ ... )
=a(Dfx+f(Dg)x.
Hence D is a linear transformation.

. ]
Example 7. Let V (R) be a vector space of integrable functionson R Defimne T: V= R:T(f)= If(.t)dc,

fEV,a,b € R. Prove that T is a functional,
Sol. Since T maps elements of V to the field F,
T is functional.
To prove. T is linear.
Letf,,fEVandes,c; ERsothate, i+, L EV.

9 » LI
Now T (e fy +erfd= [(e fi ()4 fo () s

b b
= o [fi@ds+e, [
=aT@+aTE.

Hence T is linear.
Example 8. Lelee:heﬁequfmnimbmandVbeﬁcmofdfﬁmmﬁ'auRMRM

are continuous.
x
Now T is defined as (Tf) x = [f()dt.
[

FProve that T is a L.T. from V into V. .
Sol.Luf(x}andgLr)betwuﬂmmmVuda.ﬂE R
Thenaf (x) +Bg (x) EV.
Since V is a vector space,

(af+fg)x=afx)+fgx)

= (Taf+f)x= [@f+B®a = [(af () dt+pgt)dt
0 0
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= Jj'af(r)dhj_r[ﬂz(!)d = a?f(f)d + ]z(r)a&
o o

'ﬂ{TJ')x*ﬂfTs)x
Hence T is a linear transformation.
Example 9. Describe explicitly the linear transformation T : R® - R such that T (e,) = (a, b) ;
T (e,) = (c, d), where e, = (I, ) and e, = (0, I) are unit vectors.
Sol Let T (x, x;) €R%.
We are to find T (x,, x,) subject to the conditions
T(e))=(a, b)and T (e;) = (c, d).
We know that {e;, e;} is.a basis set for R®,
any vector (x,, X;) € R’ can be expressed as a linear combination of the elements of the basis set.
Now (x,x)=x,(1,0)+x;(0, 1) =x; &, +x;€;
Tlxy, x)= T(x,) &, + x; 8;) =x, T(e)} + x3 T(e,) = x (&, b) + x, (¢, )
=(ax,bx)+(cxndx)=(ax +ex, bx +dx,),
 which is the required L.T.
Example 10, Describe explicitly the linear transformation T: R —~ R such that T (2, 3) = (4, 5) and
T 0)=(0 0).
Slol. First of all, we shall establish the given vectors of domain of T form a basis for the domain of T,
Le, R°.
To prove : (2, 3)and (1, 0) are L1
Let a(2,3)+5(1,0)=0=(0,0)
= (2a+b,3a+0)= (0,0) = (2a+b,3a)=(0,0)
= 2a+b =0,3a=0 = a=0,b=0.
Thus (2, 3) and (1, 0) are L.L
To prove : (2, 3) and (/. 0) span k.
Let (x,, x;) ER.
Let (x,x)= a(2,3)+b(1,0)=Qa+b,3a)
= la+b=yx, la=x,

= a-le‘bsa_xl_sﬁ.
> @=L ey 2 a0
Thus (2, 3) and (1, 0) span R®.
x Ix) -2x, X5
Hence, 'r(x,,x,)-T[-zl(z. 3)+—-i—-(1.0)] 2T, 3+ 2
. 3x -2, ..(_’15_’1)
3 @ +—5—0,0= 17,

which is the required L.T..

Jx) -2x,
—=T(1, 0
3 (1,0
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Example 11. A linear transformation T of R® itself is defined by T(e,) =g teyte, Tle)=ate
and T(e;) = e; — e, where e,, e, €, are unit vectors of R
(i) Determine the transformation of (2, - 1, 3).
{ify Describe explicitly the linear transformation T.
Sol. Since ), ey, e, are unit vectors of R’,
e, =(1,0,0),e;=(0, 1,0)and &, = (0, 0, ).
Wehave T(e)=eg +e;+te; = Tle)=(1,1,1)
Tle) =ey+ e > T(e)=(0,1,1)
Tley) =ey—ey = T(g)=(0,1,-1).
Since e, e,, e; form a basis of R,
. every vector of R® can be uniquely expressed as a linear combination of e,, &, e,
() MNow(2,-1,3)=2(1,0,0)+(-1)(0,1,0)+3(0,0,1)
=g +(-1)e;+ 3¢
T2,-1,3)=TQ e, + (- 1) &+ 3&)) = 2T(ey) + (- 1) T(ep) + 3T(e;)
=2(L L, D)+ (10,1, 1)+3(0,1,-1)
=(2,4,-2).
(i) xy:)ER.
Now {x3,2) =x(1,0,0)+y(0,1,0)+2(0,0, 1) =xe, + ye; + 1e5
T(x, y, 2)= T(xe, + ye; + ze3) = xT(ey) + yT(e;) + 2T(es)
=x(1, 1, 1}+p(0, 1, 1)+=z(C, 1,-1)
=(x,x+y+z x+y-12),
which describes completely the given linear transformation.
Example 12. Find (x,, x;), where T : B = R® is defined by
N TLH=3-15T0ONHN=@21L-1) ) L
(i) T2 -5=(=12DTEN=01273). L (P.U. 1986)
Sol. () Toprove: (I, 2),(0, I)areL.i.
Leta(1,2)+5(0,1)=0=(0,0)
= (a+0b,2a+b)=(0,0)
= a=0, 2a+b=0
> g=0, b=0,
Thus (1, 2) and (0, 1) are L.1.
To prove : (/, 2) and (0, I) span R.
Let (x,, x;) € R
Let (x), x;)=a(1,2)+ 5(0, 1) =(a, 2a + b)
= a=x,2a+b=x,
= a=x, b=x,-12x,
(xx) =x(1,2) + (x5~ 2x,) (0, 1}
Thus (1, 2) and (0, 1) span R,
Hence T(xy, x)= Tlxy, (1,2) + (53 = 26 0, D] =5, (1, 2) + (5~ 25, ) TO, 1)
=x(3,= 1, 5+ (= 2x) (2, 1, 1)
=(3x) + 2ry — dx), —x; + X - 2xy, Sxy - x2 + 2xy)
=(—x,+ 2xy, — 3x) + x5, TX) —X3).
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" (i) Toprove:(2, -5, farelL. 1.
Let  a(2,-5)+5(3,4)=0=(0,0)
- (2a+3b,~Sa+4b) =(0,0)
®  2343b=0,~5a+4b=0
» gulb=0,
Thus (2, - $) and (3, 4) are L.L.
To prove : (2, - 5) and (3, 4) span R,
Let(x, %) ER%
Let (x, x2) =a (2, - 5)+ b (3, 4) = (2a + 3b, - 5a+4b)
s 2a+3b=x,-Sa+db=x,

Solving, a= ‘_*1;3_3’1.,.“.5_’1%*1

4x,

- -3x; | Sxy+2x5
(x), x) 7] (2,-5) T (3,4)
Thus (2, - 5) and (3, 4) span R’

Hence T(x, %) =T ["" 234 5,5+ 34 ;:” (3,4}]

23

4x -3x, Sx;+2x,
w272 T(2,-5)+ 222 T (3,4
23 @-5) 2 G

4X| —3!1 5.\']1‘213
= (=12, =0l
5 LB 0L3)

_(-4x|+3x2 8x,-6x, S5x;+2x, 12x,-9x; 25x +10x,

F R 23 23 23
_(-4:,4-3;, 13x,-4x, 37x,+x,]
23 T 13 " 23 )

Example 13. Find T(x,, x,, x,), where R® -» R is defined by
T L D=3.T01,-2=1,T00N=-2

Sol. Toprove:(J, 1, I),(0, I,-2)and (0, 0, I) are LI

Leta(l,1,1)+56(0,1,-2)+¢(0,0,1)=0=(0,0,0)

= (ga+ba-2b+c)=(0,0,0)

» g=0,g+b=0,a-2b+c=0

= g=0,b=0,¢c=0.

Thus (1, 1, 1), (0, 1, - 2) and (0,0, 1) are L.I.

Toprove: (I, 1, 1), (0. I, - 2) and (0, 0, I span R’.

Let (x;, x;, x;) ER®.

Let(x, x5, %) =a(l, 1, 1)+56(0,1,-2)+¢(0,0,1)

=(g,a+ba-2b+c)

= g=x,a+b=x,a-2b+c=x .

= a=x,b=x;—x,c=x-x,+2 (x,—x,) = x; + 2y - 3x,.

Thus (1,1, 1), (0, 1,-2) and (0, 0, 1) span R .

)
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Hence T (x,, %5, %) =T [x, (1, 1, 1) + (g —x) (0, 1, = 2) + (%, + 20~ 3x,) (0, 1, 1)]

=5 T, 1, 1)+ (5 -x) T(0, 1, -2) + (x, + 25,'~3r,) T (0,0, 1)

=x(3)+ (e —x) (1) + (xy + 205 - 3x)) (- 2)

=3x) +x3 7 %) — 2x; - dx; + 6,

= 8x, - 3x; - 2x;.
Example 14, Find a linear transformation T R - R such that T (1, ) =(1, 1) and T(0, N=(- 1, 2).

Prove that T maps the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) into a parallelogram.
(G.N.D.U. 1998, 88 5)
Sol. AsinEx. 13,
Tz =Tk (L0 Fx0, D=5 TA,0+xTO,1)
=x, (1, N +x5(~1,2)

=5y =31+ 2x) (1)

Let the given vertices of the square be A, B, C, D respectively and let A’, B', C', D’ be their T images.
s A'=T(A)=T(0,0)=(0,0) [Putting x, = 0,x,= 0 in (1))
=TB)=T(1,0=(,1) [Puttingx, = 1, x;= 0 in (1)]
=T(C}=T(l.l)=(n,3) [Putting x; = 1,x,= 1 in(1)]
D'=T(D)=T(O,1)=(-1,2) [Putting x, =J,0.x;=1'fn(f}]

AR = J0-02 +(140)F = fT41=42 !
and IC'D] =J(=1-0) +@2-3)? =fT+1=42

Thus JA’B'| =(C'D'| = 42
Also |A'D'| =[B'C'|= 5. [Verify 1]
Also slope of A’B’ =slope of C'D' = 1.
Hence T maps into a parallelogram.
Example 15. If ¥ (F) and W (F) be two vector spaces and Ty, T, are linear transformations from V
into W, prove that the mapping T defined by
T(@)=cT (@) *Ty(a)aEV,cEF
is a linear transformation from V into W.
Sol. Wehave T,:V = W, T,: V - W are lincar transformations.
T EW, T(@)EWVaEV.
Tia) = cT, (a) + T, (&) also belongs to W ¥ @ € V because V is a vector space.
Hence T is a mapping from V into W,
To prove : T is linear.
Let a,SEV andkEF,
then ha+BEV
T(ka +B) = ¢T, (ka + f) + T, (ka + ) [Def of T}
= ¢ (KT, (@) + T, (§)) + kT3 (@) + T2 (f)
[ T, and T, are linear transformations]
= ckT, (@) + cT (B) + kTy(a) + T, (B) [Using Distributive Law)
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=k[cT, (@) + Ty (B)] + kT, (@) + T, () [ ck=ke]
=k[cT @+ Ty (@) ] +cT, () + T2 ()
=kT(@+T@ [Def of T]

Thus T(ka + ) =kT () + T(H).
Hence T is a linear transformation.
4. Range
Def. Let U (F) and V (F} be two vector spaces and let
T:U=V
be a linear transformation, then the image set of U under V is called the range of T.
This is usually denoted by R (T).
Symbolically. Range (T) = {T (x) : x € U}.
Theorem. [f T is a linear transformation from one vector space U (F) to another vector space V (F),
then the range set T (U) of T is a sub-sapce of ¥ (F). (P.U. 1986 S, 85)
Proof. T (U) = {T (x) : x € U}.
SinceT:U-»VandVxEU = TR)EYV,
T{UCV.
Let x, y € T (U), then
xET(U) = Ix, EUst Tix)=x
YETU) =3y, €EUsLT)=y
Leta,fEF. .. ax+fy,EUforx,yEU [+ U(F) is a vector space]
Tlax+f)=aTE)+BT ()
=Tlax +By) [By linearity of ]
= ax+fyeT(U)forx,yET(U)anda, fEF.
Hence T (U) is & sub-space of W (F).
Range : Range of T is a vector space so it is called range space.
5. Null Space/Kernal
Def. Let U (F) and V (F) be two vector spaces and T : U ~» V' is a linear transformation. Then the set
of all those vectors in U whose image under T is zero, is called the null space or kernel of T.
This is usually denoted by N (T).
Symbolically. N(T) = {x:x €U, T (x) =0 € V}.
Theorem. Let U(F) and V (F) be two vector spaces.
© Then N(N={x:xEU,T(x)=0}
is a sub-space of U (F).
Proof. Here N(T) = {x:x €U, T (x) = 0}.
Clearly N(DCu.
Now forx, yEN(T) = T(x)=0,T(3)=0 1)
Alsox, yEN(T) = r,yEU
=+ ax+fiy€EUfora, fEF

Tlax+) =aTEH+BTE) [By Linearity of T]
=a.0+£.0 [+ of (1]
=0.

= ax+fyEN(T).
Hence N (T) is a sub-sapce of U.
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6. Rank and Nullity

() Rank. Def. Let U (F) and V (F) be two vector spaces and T : U = V be u lincar transformation,
then the rank of T is a dimension of the range space of T.

This is usually denoted by p (T).

Symbolically. p (T) = dimension [Range (T)].

(if) Nullity. Def. Let U (F) and V (F) be two vector spaces and T : U —+ V be a linear transformation,
then the nullity of T is the dimension of mull space of T.

This is usually denoted by v (T).

Symbolically. v (T) = dim. [Null space of (T)).

Theorem. If T be a linear transformation on an n-dimensional vector space V (F), then

p(D+v(D=n

ie, Rank (T) + Nullity (T) = dim. (V). (G.N.D.U. 1997 ; Pbi. U. 1997, 96, 85)

Proof. Since N (T) C V (F) and V (F) is finite dimensional, so let
By={x, % ...53 } CV,wherek s n
is the basis set of N (T). Also we can extend this basis set to the basis set of V (F) and let after extending
By = X, X0 coveeny Xy Kl 1y worvens X}
be the basis set of V (F).
Consider the set
By= {T (xhet 1 T (aa2)h oo T (50}
and show it to be the basis set of R (T).
() Toprove: Byis LI

Let Y @T(x,)=0€ Wforeacha, €Fandx; €V

=kl

= ZET(a,=0 {ptmwafﬂ
= TEax)=0 [By linearity of T)
= Za;x; EN(T). [+ Zax €V

Now i a,x_.——-iﬂmvﬂj EF.
i=1

i=k+1

[*v each element of N (T} is linear combination of elements of By]
= Z(-a,-)x, 1-;,8_,,\:;- =0

= (ie, of elements of B,) =0
= eacha; = 0and eachf;=0.
Thus set B; is L.I.
(i) To prove : R(T) = L (B,).
For any vector y € R (T) 3 x € V such that T (x) =y (1)
Since B, is basisof Vandx € V,
x=a x5 taxnt.rap gt tagx,fora’sEF.
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So by (1), we have
y=Tayx +ay s+ A apx + ot @xp)
=a T(r) + @y Tlx) + ..t Tl )+ @p 4 Tlres 1) + ..o @ Tlxy) [By linearity of T)
=a0+a, 0+ ... +a 0+ag, Tlxp, ) +...+a, Tlx,)
[Since xy, x5, ..., ;pEN(T) 50 T (x)=0,T (x; ) =0,..., T(x) = 0]
il T T(‘I'H)"‘ﬂlumhz}*' coo Faty Tlxy).
Thus B, linearly spans R (T), i.e., R(T) =L (B,).
Hence by () and (if), B is basis of R (T) and as number of elements in By is # — k so dimension of
R(Tyisn-kie, p(T)=n-k
Also since B, is basis of N (T)so v (T) =%
Thus we have (n - k) +k=n.
Hencep (T)+v(T)=n.

[SOLVED EXAMPLES |

Example 1. For each of the following linear mappings T, find a basis and the dimension of
(a) its range, (b) its null space.

Also verify Rank (T) + Nullity (T) = dimension V.

() T:R'- R defined by

T(xy, X3, %3, %) = (%) — Xy + X3+ X, %) + 20y — 2, %)+ x5+ 32y - 3x)

@ T: R R’&ﬁmdby T(xy, xp x3) = (%) + X3, X3 + 23)

(i) T: R = R defined by T (x), x3) = () + X3, X, — Xy, %3}

(iv) T:R'= R defined by T(x),3,) = (x; = X3 X3 — X}, — X;)

(V) T:R = R defined by T(x), X3, X3) = (x; + 253, X3 — X3, X, + 2%3) (Pbi. U. 1986)
() T:R =R definedby T(x y,2)=(y+z,x+y=-25,x+2y-2) (Pbi. U. 1990)
(vil) T: R =+ R’ defined by T (x,y,2)= (3x,x -y, 2x +y + 1), (P. U. 1996)

' Sol. (i) We know that the set A = {e,, e,, &, ¢} is a basis set for R®,
where ¢,=(1,0,0,0), e; =(0,1,0,0),"¢,=(0,0,1,0), ¢=(0,0,0,1).

By def., T(e)=T(1,0,0,00=(1-0+0+0,1+2(0)-0,1+0+3(0)-3(0))
=(1,1,1).
Similarly Tlen)=(-1,0,1), T(e;)=(1,2,3)
and Tle) =(1,-1,-3) [Verify 1}

Now foranyx ER' =a,e,+aye, +a;y e, +a, e, a5 A is basis.
YERM=TE=Tlme tae;+are;+ase)
=aT(e)+aT(e)+aTle) ta,Tl(e) [By Linearity of T)
=a (1,1, D+ay(-1,0, 1) +a;(1,2,3) +ay(l,~1,-3).
To verify whether y € R(T) expressed as linear combination of four vectors € R’ can be expressed as
a linear combination of fewer number of vectors or not.
For this, we compute a matrix whose rows are these four vectors
11 1
-1 0 1
1 2 3
1 -1 -3
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0 1 2
“lo 1 2 [Operating Ry = Ry + Ry, Ry = Ry =R\, Ry = Ry~ R)]
. 0 -2 -
ST .
01 2| -
“lo 0 ol [Operating Ry = Ry — Ry, Ry = Ry + 2Ry]
(000 .

which is echelon form of matrix.
Thus the set of non-zero vectors {(1, 1, 1), (0, 1, 2)} is the basis for R (T).
Hence dimension R (T) ie, rank (T) = 2.
To find the basis and dimension for N (T).
xEN(D if T(x)=0.
MNow T (x), X2, X3, %) =0
= (= Ep Xy F X Xt 2xy - X, X+ X +323-32,)=(0,0,0)

= X=Xy +xy+x, =0
X +2xy-xy=0 (D)
X +xy+3x3-3x,=0
1 -1 1 1
Co-efficient matrix=|{1 0 2 -1
113 =3
1 -1 11
-0 11 =2 [Operating Ry = Ry~ R\, B; = Ry - R))
(0 2 2 -4
(1 -1 1 -1
~l0 11 -2, [Operating Ry - Ry - 2R3}
j0 00 0
which is echelon form of matrix.
Thus the system (1) is equivalent to
CX =Xty tag=0 | -(2)
X txy~2x=0 (3

From (3), x;==x;+2x,
Putting in (2), x; + 3, - 2x, + 2y + 2, =0
= X ==2x+x
Thus x;=—=2x;3+x,
X = —xy+2x.
Here x, and x, are free variables.
Hence nullity T = dimension N (T) = No. of free variables = 2.
Choosingx; = 1,x,=0,x,=-2,x5,=- 1.
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Choosing x, =0, x,= 1,x,=1,x,=2.
{(=2,-1,1,0),(1,2,0, 1)} constitutes a basis for N (T) because the above system is L. also.
Now dimension R* = 4, dimension R (T) = 2, dimension N (T) =2
Rank (T) + Nullity (T) = dimension R".
Other forms
() LetT:R'- R’ bea linear mapping defined by
T,y z,)=(x-y+z+t,x+2 -t x+y+3z-31).
Find the dimensions of
(@) Rangeof T (5) Null space of T, and verify that
: Rank (T) + Nullity (T) = dimension (R*). (Pbi U. 1990 ; P.U. 1987, 85 ; G.N.D.U. 1986)
(i) Let T:R' - Rbea linear mapping defined by :
CTEpnu)=(x-ptztux+2r—ux+y+3z-3u).
Find the dimensions of . o
(a) Rangeof T (b) Null space of T, and verify that
Rank (T) + Nullity (T) = dimension (R*). (P.U. 1985)
(n w=knwﬁmﬂwsﬁA~{e,,ez,e,}isabasbsaibrk’.whmelﬂti.o,m.e,=(IJ, 1, 0),
e;=(0,0,1).
By def., T(e,)=T(1,0,0)=(1+0,0+0)=(1,0)
T(e)=T(@®,1,0=(0+1,1+0)=(1,1)
and T(e) =T(0,0,1)=(0+0,0+1)=(0, 1).
Now for any x € R = a, ¢, + a, &, + g, &, as A is basis.
YERM=T)=T(a e +aye;+aye5)
=a, T(e)) +a, T(e;) + a; T(ey) [By. Linearity of T]
=a;(1,0,0)+a;(0, 1,0) +a, (0,0, 1).
To verify, whether y € R (T) expressed as linear combination of three vectors € R’ can be expressed
a¢ a linear combination of fewer number of vectors or not.
For this, we compute a matrix whose rows are these three vectors.”
L o]
11
0 1

B=
[Operating R, - Ry)

~[o 1], [Operating R, - R;)

which is echelon form of matrix.
Thus the set of non-zero vectors {(1, 0), (0, 1)} is the basis for R (T).
Hence dimension R(T) {e., rank (T)=2.
Now it is same as part (i).
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(iif) We know that the st A = {e,, ¢; } hlbuismwa’.whme,-{l.O)mdc,-(D. 1).
Bydef., T(e)=T(1,0)=(1+0,1-0,0)=(1,1,0)
and Tled=TO, =0+ L0-1, )=, -1 1)
NawformyxER’-a,eﬁ-n,c,uhlsbuls
YER(T) =T(x)=T(a e, + a ;) .
=a T(e)) + a; Tey) [By linearity of T]
=a,(1,1,0)+a,(1,- 1, 1),
To verify whether y € R (T) expressed as linear combination of two vectors € R’ can be expressed as
a linear combination of fewer number of vectors or not,
For this, we compute a matrix whose rows are these two vectors.

I -1
Thus {(1, 1, 0), (1,- 1, 1)} is the basis for R (T).
Hence dimension R (T), ie. rank (T)=2.
To find the basis and dimensian for N (T).
x €N(T) if T(x) =0.
Now T(x), xy) =0
= (xtxx—2x,x)=(0,0,0)
= x0+tx=0,x-x=0x=0
- x=0,x=0
. x) =(0,0)=0 ER".
Hence the null space consists of only zero vector,
N(D= 0
Now dimension R® = 2, dimension R (T) = Z,dimwlmhlﬂ') 2
. Rank (T) + Nullity (T) = dimension R?,
(iv) We know that the set A = {a..e,}unbuuutfnrll’whwue.-(l 0)lnd¢; (0, 1).
By def, T(e)) =T(1,00=(1-0,0-1,-1)=(1,-1,-1)
and Tle)) =T, )=(0-1,1-0,0)=(-1,1,0).
Now for x€ R” = g, e, + a, &; 25 A is basis
xER(T) =T(x)=T(a, e, +ay &)
=a, T(e,) +a; Tle) [By Linearity of T]
=a(l,-1,-D+a(-1,10).
To verify whether y € R (T) expressed as a linear combination of two vectors € R’ can be expressed
as combination of fewer number of vectors or not.
For this, we compute a matrix whose rows are these two vectors

B-[| ! ‘:].whinhisnotmhnfumofmmk.

B= {_: ‘: _;].which is not echelon form of matrix.

Thus {(1,~1,-1),(=1, 1, 0)} is the basis for R (T).

Hence dimension R (T), i.e., rank (T) = 2.

To find the basis and dimension for N (T},
rEN(Mf  TE=0.



I._II_!ARWTION' 151
Fow Txx) =0
(%) + ¥y Xy =2 =21 =(0,0,0)
= !’|+-":=ﬂ,-"3—.¥|‘0.—xl‘°
= (r,x)=(0,0)=0E R’
Henge the null space consists of only zero vector.
N(T)=0.
Now dimension R* = 2, dimension R (T) = 2, dimension N (T) =2
/ Rank (T)+ Nullity (T) = dimension R".
) WchowhthesetA-{c.,e,,c,}hlbuksafuk’.u&mt.-(l.o,o).a,-(ﬂ.I,O).
e=(0,0,1)
By def., T(e,) =T(1,0,0)
=(1+2.0,0-0,1+2.0)=(1,0,1),
T(e) =T(0,1,0)
=(0+2.1,1-0,0+2.0)=(2,1,0)
and T(e)) =T(0,0,1)
=(0+2.0,0-1,0+2.1)=(0,-1,2).
wanrmyx&R'-aw,*-a,a,-*a,a,nAhM
& YERM=TE)=T(me+tmetae)
“a, T(E)* ;T *aT(e) (By Linearity of T)
=a,(1,0,1)+a; (2, 1,0) +a; (0,~ 1,2).
To verify whether y € R(T) expressed as a linear combination of three vectors € R’ can be expressed
85 a linear combination of fewer number of vectors or not.
For this, we compute a matrix where rows are thess three vectors

1 01
B=12 1 0
o -1 2

t

1 0 1
«[ 1 —2] [Operating Ry~ 2R,]
0 -1 2 .
] 1o 1
~[ l—z]. ' [Operating R; + Ry)
o0 0
which is echelon form of matrix.

Thus the set of non-zero vectors {(1, 0, 1), (0, 1, - 2)} is the basis for R (T).
* Hence dimension R (T) j.e., rank (T) = 2.
To find the basis and dimension for N (T).
xEN(T) if T(x)=0
Now T (x), x5, 1) = 0
= (% + 20,0 -x, 5 +25)=(0,0,0)
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- a=x,2a+b=x,
- a=x,b=x -2,
= (v,%) =5 (1L2)+(p-2¢)(0,1)
Thus (1, 2) and (0, 1) span R?,
Hence T(x,x) =Tla (LD +(x-2x)0 D] =x T(,2)+{x-25)TO,1)
=03, -15)+(x-2x)(2,1,-1)
=20y =2y, %= 30, 63, - 1),
which is the required L.T.
(b) Null space of T
Letx=(x, x). thenN(T = {xr € R : T(x) =0’ €R’}
But T(x)=(2x;—-x),x3—-3x,6x,—x3)=0'=(0,0,0)
> 2x-x,=0.%-3%=0,6x-x,=0
= x=x=0
x=(x, %) =(0,0)=0ER?
Thus null space consists of only zero vector of the domain.
Range space of T
Range space of T= (y ER’ 1y =‘-T|‘_rli‘uru:wm:r::El?.’i
Thus range space of T consists of all 1 plets of real, x,, x, such that (x,, x;) € R},
Nullity T
Nullity T = dimension of null space = 0.
Rank of T : In order to find Rank T, we should find basis for R (T) and the number of elements in
the basis set = Rank T.
YER(M=T(x)=T(x), x;) = (2x; - x), X~ Ix,, bx, - x) )
Now (x),x;) € V2 (R) =x, (1,0) +x;(0, 1)
=x &, +x; €, where e,, &; € V; (R)
y=Tlnx) =Tx e trne)=xT(,0+xT(01)
=x5-1,-3,60+x(2,1-1)
Sincey € R(M=x,(= 1,—3.6) +x; (2. 1,- 1),
s the vectors (- 1,—3, 6)and (2, 1, - 1) span R (T).
To check whether these are L.I.
Considera(—-1,-3,6)+5(2,1,-1)=0"=(0,0,0)
» (~a+2b-3a+b6a-b)=(0,00)
= a=h=0.
Thus L.1.
Hence (~ 1.~ 3. 6), (2, 1, - 1) is the basis set of two vectors and dimension (T) = rank (T) = 2.
. Example 4. (i) Find a linear transformation T : R - R* whose range is generated by
(LO=Nand (1,2 2). (G.N.D.U. 1995 S)
(i andafimnwgfwm}on?:k‘*l‘wbmewwismedby
(1.2,0,~$and(2,0,-1,-3). (G.N.D.U. 1996)
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Sol. (¢) The basis of R® is A = {e,, &, &3},
where e, =(1,0,0),e;=(0,1,0)and e, = (0,0, 1).

Let T(1,0, 1) =(1,0,— 1), T (0, 1, 0) = (1, 2, 2) and T(0, 0, }) = (0, 0, 0)

R(T) is geperated by T(ep), i=1,2, 3.

For each (x,, xy, x;) € R’, we have

(xy, X3 x3) =2 (1,0,0) +x,(0, 1,0) + x5 (0,0, 1)
= Tl x2, %) =5, T(1,0,0) +x, T(0,1,0)+x,(0,0, 1)
=x,(1,0,-1)+x(1,2,2) +x(0,0,0)

"Hence T(x), X3, X3 ) = (x, + X3, 2x3, — X, + 2x;), which is the required L.T.

(/) The basis of R’ is A = {¢,, &, &, }, where ¢,=(1,0,0),e;=(0, 1,0) and e; = (0, 0, 1).

Let T(i,0,0)=(1,2,0,~4), T(0,1,0)=(2,0,—1,—3) and T(0,0,1)=(0,0,0,0)

R (T) is generated by T(ep}, i=1,2,3.

For each (x), %, ;) € R’, we have

(Fpxnx)=x(1,0,0)+x, (0, 1,0) +x, (0, 0, 1)
- T(x), 23,23} =%, T(1,0,0) +x; T(0,1,0)+x,(0,0,1)
=x (1,2,0,-4)+x,(2,0,-1,-3)+x,(0,0,0,0)

Hence T(xy, ¥, x3) = (x; + 203, 2 x), — X3, — 4 x, - 3 x3 ), which is the required L.T.

Example 5. (/) Find a linear transformation T: R® - R whose image is generated by (1, 2, 3) and
4. 5, 6).

(i} Find a linear transformation T: R -» R® whose null space is generated by (1, 2, 3, 4) and

©110n. (Pbi. U. 1987 ; G.N.D.U. 1985)
(iii) Find alinear transformation T: R' = R’ whose null space is generated by S = {(2, 3, 4, i),
(1,01 0} (GN.D.U 1989 ; P.U. 1987)

Sol. (/) Thebasisof R’ isA={e,,e;,e},
where e, =(1,0,0), e;=(0,1,0)and e, =(0,0, 1).
Let T(1,0,0)=(1,2,3),T(0,1,0)=(4,5,6) and T(0,0, 1)=(0,0,0)
R (T)is generated by T(ep) ; i=1,2,3.
For each (x, , X, x;) € R®, we have
(x1, X %)= % (1,0,0) +x, (0, 1, 0) + 3 (0, 0, 1)
= Tixy, %3 %3 )= x, T(1, 0, 0) +x, T(O, 1, 0) +x; T(0, 0, 1)
=x(1,2,3) +x,(4, 5,6) +x,(0,0,0)
=+ dx, 2x,+ 52,30, +6x,),
which is the required L.T,
(i) Let K be the null space of T.
Since K is generated by v, = (1,2, 3,4) andv,=(0,1, 1, 1) and v, is not a scalar multiple of v, ,
. these are L.I. over R, and dim. K=2.
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L Ty zd) -aT((?., 3,4, I)} +_bT((1,0,- 1, l)) +c'I((0, 0,1, I]))-I-dT(U, 0,0,1)
=a(0,0,0)+5(0,0,0)+¢c(1,0,0)+d(0,1,0)
=(c,d,0)

= [t—x—z—y.r—:+z,ﬂ).
3 3

Example 6. Describe explicitly a linear transformation from R to R® which has as its range the
sub-space spanned by (1, 0,-1) and (1, 2, 7).
Sol. The basis of R’ is A = {e,, e, &},
where e, =(1,0,0), e,=(0, 1,0)and e, = (0, 0, 1).
Let T(1,0,0)=(1,0,~1), T(0, 1,0)=(1,2,2) and T(0,0, 1)=(0,0,0).
R (T) is generated by T (e)), i= 1,2, 3.
Formh(x,.x,.r,)ek’.wohavc ]
(®p X3 x3) =2, (1,0,0) +x, (0, 1, 0) +x, (0, 0, 1)
®  T(,x,x) =x T(1,0,0+xT(0,1,0)+xT(©,0,1)
=x,(1,0,- 1) +x;(1,2,2) +x, (0, 0, 0)
=X +x,2%,-x,+2x),
wll.tchlsﬂ:emqul&lLT
El!lﬂph? (a) Let V be a vector space of 2 X 2 matrix over R and let

M I 2
0 3|
Let T:V - V be the linear map defined by T (4) = AM — MA. Find the basis and dimension of the

null space of T.
(b) Let V be the vector space of 2 x 2 matrices over R and let

I =1
v 3] |
Let T: ¥ = V be the linear map defined by T (A)= MA VA € V. Find the basis and dimension of :
() Null space of T, (i) Range of T.

Sol. (a) Here we are to find [i f:|snc.hchn
{2 12

il BN ] U B
F 2x+3y] [x+22 y+2r]

22+ 3 3z 3t

x- x-2¢ 2x+3y-y-2t
2z+3t-3
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-2z 2x+2y-U
-2z 2z

. From(l),|:-2: 2.t+_2y—2l}_[0 0

~2z 2:|7[0 0
> —2r=0, 2&+2Y-2=0
= =0, x+y—t=0
= =—y+i, z=0.

Here y and ¢ are free variables,

Hence dim. (N (T))=2.

For basis of Null space of T :

(I) For y=—1, t=0, we get
x=1, y==1,2=0, t=0.

() For y=0, t=—1, weget
x=1,y=0,2=0,¢t=1

v {fs "o o 1]}

is the basis of null space of T.
(b) (f) Asin part(q), the basis set will be

1 o] [o 1]fo o} [o 0]]
o {[a Lo o2 M
Under T, the image of element of B generates the range of R (T) of T.
By def. the generators of R (T)are

oI o“] 1 =171 0] [ 1t 0]
(0 0] -2 240 o] |-2 0]
T 0 1] 1 =10 17 _[o 1]
00 -2 2floo) [0 -2]
- : e 1 or . (1)
T{on]_ I -1]f0o e]_[-1 0
t o)) -2 2]|{1 of 2 0]
T‘o.n' v =1qfoe o] _[o -1]
Lo 1] I_-z 2flo 1] [0 2]

Now we farm the matrix whose rows are elements of generators (1) of R (T)
1 0 -2 0]

0 1 0 -2

-1 0 2 0
0 -1 0 2|
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1 0 -2
0 1 0 -2
~“lo o 0 ol [ Operating Ry + Ry and R, + Ry
0 0 0 0
which is of echelon form.
1 0 0 1
i it fR(T).
Thus {[_2 0].[0 _2]}|srhebassseto (T).
Hence R(T)=2.

b b
) Th:nnllspaccnfTismesctofallzximatrices{:: d:|such1.hat‘r[: d]=o
1 =1]|la & 00

= [—2 2][;.- d]'[o u] U By def.}
- a-c b-d _|o o

2a+2¢ -2b+2d Do
Thus we get

g-c=0, b-d=0, -2a+2¢=0 and -26+24=0
= a-c=0, b-d=0
. ¢, d are free variables.

Hence dim. (N (T))=2.
When c=1, d=0,

we get the solution [ : 2]

When ¢=0, d=1,

we get the solution [: ::l,

Hence the basis set N (T) of T is

10 [0 1
{2 o]} i
Example 8. Let V be a vector space and T a linear transformation from V. Prove that the following
wo statements are equivalent ;

(i) . The intersection of range of T and null space of T is the zero sub-space of T.
(ify If MTe)=0, then Ta)=0.
Sol.- Given : R(T) N N (T)= {0}.
Toprove: T(Ta)=0 = T(@)=0.
Put Ta =8, by def. of R(T), 8 € R (T) (D
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Also T(Ta) =0 [Given]
= T@=0 =BENMD )
(1)and (2) = BERMNN
' = BE{0} = f=0

= T(a)=0

and

Hence () = (i)
Given: T(Ta)=0 = T(a)=0.
To prove : R(T) NN (T) = {0}.
Let SER(T NN
. BER(T) and FEN(T)
Now BER(T) = f=T(a)forsomea €V
BEN(T) = TE =0 » T(Ta)=0 = T(a)=0 [Given]
= f=0as f=T).
Thus R (T) NN (T)= {0)
Hence (i) = ().
Example 9. Ler ¥ (F) be an n-dimensional vector space and let T be a linéc. . ansformation from V

into V such that range and null space of T are identical. Prove that n is even.

=

and
and

Sol. We know that

Rank (T) + Nullity (T) = dim. V= n ()
Since R (T) and N (T) are identical, [Given)
~ dim. R(T)=dim. N(T)

- Rank (T) = Nullity (T)

From (1), Rank T + Rank (T)=n

= 2Rank (T)=n = niseven.

Example 10. Let V be a finite dimensional vector space and T a linear operator on V such that rank

rank T. Prove that the range and null space of T are disjoint. {G.N.D.U. 1987)
Sol. T: V-V = T:V-V,
Rank T+ Nullity T = dim. V )
Rank T + Nullity T =dim.V ..
(1)and (2) = Rank T+ Nullity T=Rank T + Nullity T
= Nullity T = Nullity T* [ -+ Rank T* = Rank T (given)]
= dim. (null space of T) = dim. (null space of T ) ' E))
Now aE€mullspaceof T = T@)=0
= TT@)]=TO) = T (@)=0
= a € null space of T
= null space of T C null space of T )

From (1), dimensions are equal
. null space of T = null space of T
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', a € nullspace of T® » & € null space of T

. T@=0 = T(@)=0

~ R(T)NN(T)={0}.

Hence Range of T and null space of T are disjoint.

Example 11. What do you understand by invariant sub-space ? Hence prove that range and space
of a L.T.T on ¥ are invariant under T,

SoL [Def. LetT:V - V. Let W be the sub-space of V, then W is invariant under T if ¥V « E W
= T(a) EW]

R(T)= {f:8=Tia) for some @ € V}

We know that R (T) is a sub-space of T because T:V -V

s BER( = fBEV
and BER(T) = TEERM

Hence R (T) is invariant under T.

Now N(T)={a:a €V, T(a)=0}

We know that N (T) is a sub-space of V.

Since T : V-Vandcomequemlyitmmmmvm

aE&N(T) = T(@)=0and0 EN(T)
Since N (T) is a sub-space,
aEN(T) = T(@) €N(T).

Hence N (T) is invariant under T.
7. Singular and Non-Singular Transformations

() Singular Transformation. Del. A linear transformation T: U -+ V is called singular if the
null space of T consists of at least one non- zero vector.

Remember : Tissinguiarif a#0 = Ta)=0' forsome a € U.

(i) Non-Singular Transformation, Def. A linear transformation T: U - V is called non-
singular if the null space of T is the zero space {0}, Le., it consists of only the zero element.

Remember : If Mla)=0' = a=0, then T is non-singular.

Ifa 20 = Ta)=0', then T is non-singular.
8. Injective, Surjective and Bijective Transformations

() Injective T il Def. The transformation T : U - V is called injective if distinct

!/ of the domain have distinct images.

This is also called one-cne transformation.

Symbolically : T(x,)=T(x;) = x=x;

Tlx) = Tlx;) = x #x;.

(if) Surjective Transformation, Def. The transformation T : U ~+ V¥ is called surfective if each
elementy €V is the T image of some element x € U.

This is also called onto-transformation.

Symbolically: yEV = IxEUst T(x)=y.

Thus R (T) = V.
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(iii) Bijective Transformation. Def.  The transformation T : U ~ V is called bijective if it is
infective as well as surjective.

This is also called one-one and onto-transformation.

(iv) Isomorphism of vector space. Let U(F) and V (F) be two vector spaces over a field F and
T: U -V be a linear transformation, then it is said to be an isomorphism of U onto V if T is one-one and
oo,

Then the two vector spaces U and V are said to be isomorphic and we write itas U = V.

| THEOREMS |

Theorem 1. Twao finite dimensional vector spaces L\F) and WF) over the same field F are
isomorphic iff they have the same dimensions, i.e., '
U=V e dim U=dm V. (G.N.D.U. 1989)
Proof. Given. U(F) and V(F) be isomorphic.
() To prove. dim. U=dim.V.
Let T be an isomorphism from U to V, so that T is one-one and onto L.T. from U to V.
Since U is finite dimensional,
it has a finite basis set.
Suppose B, = {uy, 13, ...... + 4,} is a basis of U, where dim. U= n.
Let the set of image vectors by T be
By = {T(w, ) T(wy ),y vovos T(up )
which is a subset of V consisting of n elements.
1f we prove that B, is a basis set of V, then dim. V =n.
For this, we shall prove wat B, is L.I. and linear space of By is V.
(i) To prove. B, is L.
ey Tl Y +as T ) + e + ¢, T(u,)=0

= Tieeyuy )+ Tlezgug ) + ... + Tiez,u,)="T (0} [+ T®=0]
= Tieeyuy + eamy + ...t @)= T0) [ = Tis linear]
= iy + oty * L a, =0
= ay =0, ¢;=0, ... ya,=0 [ - Byisabasis, ~. ByisL.1]
Thus B, is L.I.
(iif) To prove. B, spans V.
Letv e V.
Since Tis onto, .~ there exists v € Us.t. T (w) =v.
But w=pfuy + g + ot By, [ - By is a basis of U]
S ov="Tu) .
=T + fauy + .4 By}
=8 Tl )+, T(uy ) + ... +B, T(uy ) [ - Tis linear)

< 1 is a linear combination of the el of B;.
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Thas B;spans V. - :

Hence dim. V=n = du'n U= :hmv

Conversely : Given dim. U=dim. V=n.

Toprove. U=V, ie, ﬂrmexmmiwmm'phlsmbﬁwemlland\’

Sincedim. U=dim.V=n,

there exist basis sets U and V, each having n elements.

LetB, = {u), 1y ..o y i) and By = {vy, v, ... , ¥} be the basis sets of U and V respectively.

. Each member of U and V can be expressed as a linear combination of the elements of B, and B,
respectively.

“ w€U = thereexistscalarsa,, @y, ......,a@, EF

st ‘usapytagu R a,
Letus define T: U - Vas

T(u) =aw, +ay+ ... +auv,.
We say that T is isomorphism,

T(ﬂ:)'l-‘,;r'-l.l“, ...... L.
() Toprove. Tislinear.
For x,yEUanda,f EF,

x= lgly!”.p andy = ’gal‘ﬁ

ax +fy= i(av.wé,)m
i=1

T(ax+8y)=T [t(‘-"h"‘ﬂ";)%] = 2(01’;"'.&;)"1 [By def]
il i
- t‘-ﬂ’i"i + iﬂém = "Zh".‘"’ﬂ 2";";
i1 il i=1 i1
= aT [s:m]*ﬂ[il"m]
it i=

= aT(x)+f T(y).
Thus T is linear.
(i) To prove. T is linear.
Let T(x)=T(»)

271"1 "261".'
T

30, -8)v=0
i=1
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= Tietyr, +asxs +...... +apx, ) =0 [ = T is linear]
= ax o tax, =0 [~ of (1))
= a; =0, ay=0, ...... Gy =0 . [ SisLl]
Hence S' is LI
Conversely : Here T-image of any L.I. setis L.I.
To prove : T is non-singular,
Now x20 = Txp=0
or Tx)#0 = x=20.
When x = 0isa vector, then {x} is a L.L set and its T-image
ie {T(x)} is also a L.I and, hence, T(x) = 0'.
Hence T is non-singular.
Theorem V. Let T: U = V be a linear transformation of U(F) into V(F). Suppase L{F) is finite
dimensional. Prove that U and the range space of T have the same di ion iff T is non-singular.
Proof. Let dim. U = dim. (Range T) = Rank (T) D)
Since Rank (T) + Nullity (T) = dim. (U)
Nullity (T} =0 [ of (N

=  Null-space of T is zero-space {0}

Hence T is non-singular,

Conversely. Here T is non-singular.

Then the null-space consists of only zero element

= Nullity (T) =0 «(2)
But Rank (T) + Nullity (T) = dim. (L)
Rank (T) = dim. (U) [ of(2)]

Hence dim. (U) = dim. (Range T).
Theorem VL. [f U and V are finite-dimensional vector spaces of the same dimension, then a linear

mapping T : U -+ V is one-one iff it is onto.

Proof. T inoné-one < N(T)= {0}
@ u(T)=0
e p (T)+ v (T) = dim. U =dim. V
< p (T)=dim. U=dim. V
®«R(M=V
< T is onto.

[ ALGEBRA OF LINEAR TRANSFORMATIONS |
Theorem L. The set L{U, V) of all linear transformations from L{F) into V(F) isa vecror'spme over

the field F with addition and scalar multiplication defined by

(M+LY)=T@+LHVYxeEUad T, T, ELU
(@l Yx)=aT, (x) VxEU, T, EL(U, V) anda EF.



LINEAR TRANSFORMATIONS 167

Proof. In order to prove that L(U, V) is a vector space, we are to verify all the properties of a vector
space.
I. Under Addition :
V). Closure Property. Let T, : U -» Vand T, : U - V be two linear transformations.
To prove : T, + T, defined by
(Ty+ Ty e =Ty(x) + T(x) ¥x € Uisalsoa L.T.
Since T, and T, are linear transformations € L (U, V),
T T (E V¥xeU
= T (x+Tx)EV [ = ¥ is a vector space]
= T +Ty: U=V
Also forx,yEUanda, FEF = ax+fy€U
so (T +T;)(ax+By) =T, (ax +fy) + Ty (ax + fy) =aT, (x) + fT, () +aT; (x) + fT3 (1)
=a(T)@)+ T (N +A(TI (N + T (M) =a(T+Ty)x+A(T+Ty)y.
Thus T, + T, is a linear transformation from U—= V.
Hence the verification, ie,
T, T, ELU,V) = T,+T,EL,V).
V,. Associative Property. VT, T, Ty € L(U, V), we have
M+ T)+T) @ =T+ T+ T:(x) VxEU
=TI+ T () + T (x)
=T, () + (T2 (x) + T; (x)) [By Associativity in V]
CET () (Te+ T3) ()= (T) +(To + T3 ) (x).
Hence the verification.
V;. Existence of Identity.
First of all, we define a zero mapping O : U - V as
O(x)=0 ¥V x€U
For x yEU and a,fEF,
Olax +px)=0 © [Bydef]
=a. 0+4.0
=a.0x)+p.0(y)
= 0:U-VisalL.T. and consequently O € L(U, V).
Forall T, €L (U, V)and O € L (U, V), we have
(O+T)(x)=0(x)+T{x) V=xEU

=0+T(x)
Thus (O + Ty (x) = Ty(x) Yxeu
Similarly (T, + 0) (¥) = T,(x) VxEU
Thus O+T,=T,=T,+0.

Hence O is the additive identity for L (U, V).
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=@T) @+ ETI )
= (@, +T)(x) Vzx€EU
Thus {a+f) T, =aT,+fT,.
V, For all T, +T; EL (U, V) and @ €F, we have
(@M +T))()=a(T,+TH(x) VreU
=a (Ty(x) + Tox)) = aT(x) + aTy{x) [ By distributivity in V]
=(aT, +aTy) (x)
Thus a (T, + Ty =aT, +aT;.
Vs Fm'allT,El.:(U.V)lnda,.BEF,wchw
((@f) T\) (x) = (@f) T\{x) VxeU

= a (BT(x) [By associative law)
=a (fT)) (x)
Hence @f) Ty =a (fT)).
Vie TorallT,€EL(U,V), 31€E€F,st
(1T ) = 1T, (1)) VxeU
=Ty(x)

= 1.T=T,.

Thus all properties of vectors space are verified.

Hence L{U, V) is a vector space over the field F.

Theorem II. Let LAF) be a finite dimensional vector space with B = {x), x,, ...... » Xz} an ordered
bazis for U(F). Also W(F) be a vector space and yy, ¥z, ......, ¥y be any vector space in V(F). There exists
a unique linear transformation T from U into V s.t.

T(x)=y;, where i=1,2,......,n.

Proof. Existence of T.

Y x €U, 3 unique scalarsa,, @y, ...... a2, EFst
x=ayx taxy ... + Xy,

We define a mapping T as

Tx)=ay, +ay;+ ...... +agyy,

Clearly T(x) is a unique element of V.

Thus T is a function U into V.

§o each x; € U can be represented as a linear combination of the vectors € B (basis), iLe.,

x;=0x) +0x, +...... +l.xg+.... +0x,

Thus Tl =0y + O+ + 1y + +0y,
ie, T(x,}=)_»~,,!- | P W
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(I) To show B, is L.I.

N "
Let iaHTx =0 Vay €F
k=1=1

= [ii“ﬂﬂ] x)=Oxpfori=1,2,..c.nn

k==l
= i ia uly G=0 [ By linearity of Tyand zero transformation O]
k=1=1
= S:an‘r,, (x)=0 [ Tas(x)=0 when i# kby (D]
i=1

= i“ul’: =0
=1

= apn eyt V=0 fori=1,2, ... Wn
P Ay EAg= . = Q=0 fori=1,2,......,n
Thus the set By is L.1.

(I1) To show L(U, V)=L (8).
Consider any linear transformation T € L (U, V) so that

T(X;) eu.
Thus T(x;) can bt expressed as a linear combination of elements of B, , being basis of U, and let
Te) =ZBun ..(3)
ConsiderS= > > B, T, (@)
k=lin1

Since § is a linear combination of elements of By € L(U, V) and L{U, V) is a vector space s0 S is alsol
a linear transformation € L(U, V).
“Thus the result (2) will be true if S = T is proved.

3
From (4), 5(x;) = [ P ﬁuT,,J x for i=1,2,.....,n
kI

= ZZ BuTy &) [ Tif'sarelinear]
k0

= iﬁ.,T., (x) [ From (D), Ti(x) =i when k=1i])
I=1

=¥ 8., [ of ()
=1

=T(x) [ of(3)]
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Again TD (p(n)) = TD(p(0) =T, [%{a‘, faprap+..... .)]
L
=T(a+2a+ .o )= [ (@204 )
L]
- [a,r+2a, —tan ] =gt +al + ...
0
- TD = plf) # 1(p(n)) #1 )
(1) and (2) = DT# TD.

Theorem L. Let U, V, W be vector spaces over the field F and
TV -WhL: U=V
be two linear transformations, then T, Ty is a linear transformation from U to W.
Proof. T;:V-+WandT,: U=V,
We define the mapping T\T,: U -+ Was
MTYE=T(T:®) VxEV.
Let x, y €V anda, f €F, then
T\Ty (ax + fy)="T, (Tax + By)) = Ty [aTy(x) + AT:0)]
=aT\(Ty(x) + BT, T,()) = a (T,T)x) + B (T T)0)

Hence T, T, is a linear transformation.

(G.N.D.U. 1987 §)

Theorem IL Ler U, ¥ and W be three vector spaces over the field F. Let T,, T, be linear

transformations from Uto V and S, , 8, be linear transformations from V to W, then
) S(N+NR)=5T)+5 T,
() ($i+8$)N=8T+5:T
(i) a (5, Ty)=(aS,) T) =, (aT\), where a € F.
, Proof. Letx be any element € U.
() STy + T (x) = §,((T, + T) () = $(T, (x) + Tofx))
=Sy(T, @) + 8Ty () = (5,Ty ) (1) + (8,T2 ) (¥)
= (5T, +5,Ty) (x)
Hence S, (T,+ T)=ST,+5T;.
() (S +S) T (@) =(Sy+5) (T, (1) =8, (Ty(x)) + 5, (Ty(x))
=(5,T) () +(8;Ty) (x) = (§;T, + 5,T) (x)
Hence (S, +S;)T, =§,T;+5;T,.
(i) a($,T)) @) =aS(Tyx)Y=((@S) T)) x)
and (S(eT) () =S,((aT)) (x) =S, (aTy(x))
=a8,(T,(x)) = ((aS)) T\(x))
From (1) and (2),
a($Ty) =(@S) T, =5, (GT_I)-

(1)

(2)
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Smce the product of two linear transformations is again a linear transformation, therefore, any linear
comt ion of linear transfc it as power of one linear transformation T, by the elements of F, is
again a linear transformation. This is known as polynomial linear transformation in T over F.

In Symbols : P(T)=a,l + T +aT +...... +a,|'I";
where a's € F.

The behaviour of such polynomials is the same as that of ordinary polynomials.

12. Inverses

Def. A linear operator T : V —+ V is said to be invertible if there exists an operator S : V -+ V such
that TS = 1 =ST.

Here S is said to be the inverse of T and is written as T~

THEOREMS

Theorem k. Let T be a linear transformation on vector space V(F). Then T is invertible iff T is one-
one and onto. (Pbi.U. 1986 ; G.N.D.U. 1985)

Proof. LetS:V -V be defined as :

YvEVandTisonto,3x €V such that T(x) =v.

We take S(v)=x.

To prove. S is well defined.

Let S)=x, and S@)=x,

= T(x))=v and T{x)=v [By def)

= T(xy) = T(xy) '

= X =x.

Hence S is well defined.

Also T:V-+V and S:V=aV

= TS:V-+V  and ST: V-V

Vx €V, (TS)(v)= T(S())

=T@ (By def)
=v. ' (Bydef)

Thus (TS)(@)=v=1(v) Yvev

= TS=1

Similarly ST=1

Thus TS=1=5T.

Hence T is invertible having S as its inverse.
Conversely. T is one-one.

Suppose that  T(v,)= T(v,) You =y
= S (Tw))=8 (T(va)
= (ST) (v))= (ST vy

- )= ) (vy) [ §T=1
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= v, =v,, which leads to contradiction.
Hence T is one-one.
T is onto.
Now S(v)y=x YxeEV
T(S(v)) = T(x)
(TS)(v) = T(x)

I(v)=T(x)

v=T(x)
Tx)=vEV Y xEV.
Hence T is onto.
Theorem IL Let T\, Ty, T, be linear transformations on V such that
nh=TT=1

Then T, is invertible and T, ' = Ty = T, .
Proof. (a) To prove. T, is invertible.
For this, we have to prove

L I I

() Tyisone-gne (if) T, is onto.
() Ty isone-one. Tx))=Tx)

- Ty (Tylx)))= T (Ty(x2)

= (15T G = (T5T) (x2)

= 10x,)=I(x;)

Ed X=X

Hence T, is one-one.

(if) T, is onto.
VyeV,AxEVst T =x
Thus VYyeEV, Tid=x

(P.U. 1985)

[ " Tyis a mapping |

[ Given]

[ Ty isamapping)

= Ty (T:00) = Ti(x) [ 7 is a mapping]
= (T, Ty) ()= Ty(x)

- 1(y)=Ty(x) [ Given]
- y=Tx).

Hence T, is onto.

Combining (#) and (i), T, is invertible.

(b) Toprove, T, '=Ty=T,.

Now T\T; =1

= T, '(MT) =T,7"1 [ T, is invertible, proved in (a))]
- ' T, =T, [By associativity)
= m,=T"

> T,=T,"" ()
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Again T;Ty=1
= (LT T, =11, [ T, is invertible, proved in (a))
= (T =T [By associativity)
= TI=T,""
= T, =T,"" (2)

and

and

Combining (1) and (2), T, ' =T, =T,.

Theorem III. Uniqueness of Inverse.

Let T be an invertible transformation on vector space V(F). Then the inverse of T is unigue.
Proof. Let T, and T, be two inverses of T.

By def,, TT, =I=T,T D)
TT,=1=T,T (2)
Now T (TT)=T,l [ ef(]
=T, (3)
(LD T, =IT, [+ of@]
=T, (4
By associativity,
T(TT)=(T;T)T,,
. From (3) and (4),
T; = T| .
Hence the inverse of T is unique.

Theorem IV. Let T be a linear transformation on the vector space V(F) and T is invertible. Then the

inverse mapping T~ defined as

yo=Tlx) @ T o) =x Y x5, nEV
is a linear transformation.
Proof. Let y,,¥, € V, 3 unique elements x, , x, € V s.t.
Te)y,  ad Ta)=y
- n=T () and  x=T ;) [By def]
For x,%EV  and a,a,EF
= a5 +ay;EV.
Now  Tawx, +axxy) =aT(x) +a;T(x) [« Tis a linear]
=ay, tay,;

= T ap tay) = ax tax
=aq,T () +a, T ()
Hence T ™' is a linear transformation.
Theorem V. A linear transformation T on a finite dimensional vector space V(F) is invertible iff
T(x)=0 = x=0
Or iff T is non-singular
Oriff YyeEV,3xsty=T(x) ie, Tisonto
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Proof. (=) Tisinvertible {m T'is one-one

(ii) Tisonta

(if) foreach y € V, Jxs.t.y = T(x)
( =) (I)First of all, we shall show that if T(x) =0 = x=0, then T is invertible.
Nowlet T(x)=0 = x=0 forx€V A1)
(1) Toprove. T isone-one.
¥, nEV,
Tx)=T(r) =T)-Tx)=0
=>T(x-x)=0

=x-x=0 [ =+ Tis linear)

{(i) T(x) =0 = T(x) =T@O) =x=0forx eV

= X=X

Hence T is one-one.

(if) To prove. T is onto.

Let B= {x), x,, ......, X,} be one basis set of V.

Toshow. B, = {T(x)), T(xs), ......, T(x,)}
is also a basis setof V.

Since T is a linear transformation from V - V, therefore, B, C V, ie, B, is a subset on n
dimensional vector space V(F). So in order to show that B, is a basis set of V, we have only to prove that
B,isL.L

To prove. B, is L1

Let Y aT(x) =0V qEF
i=l

= T(Zax)=0 [ = Tis alinear)
- Zax, =0 [~ of(1)]
= each a;=0 for i=1,2,...... Wn [ BisL.t)
= B, is L.L and so B, is also basis set of V.
Now VyEV » y= 3BT(x) [+ B, is basis of V]
i=1
»y=T [iBix‘i] [ Tis a linear)
i=

= y=T(x) for xEV [ Bishasisaf VsoLB,x, =x € V]

Thus T is onto.

Hence by (i) and (i), T is invertible.
So (T(x)=0 = x=0) = Tisinverible.
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(I} Secondly, we show thatif Tisonto = T isinvertible,

MNow let The onto, ie, ¥V yEVIxE Vst y=Tx) A1)
Since T is onto, so in order to prove that T is invertible we have only to show that T is one-one.

(/) To prove. T is one-one.

Let By = (v g ooenen + ¥} be a basis of V.
Since Tisonto, .. ¥y, €B, Ix;E Vst

»=Tex) | e
Now we show that B = {x,, x3, ...... » X5} is a basis of V under the condition (2). 1

N \b
Again in order to show that B as basis of V, we have to prove that B is L.I.
To prove. Bis L.l

Let ia'xI =0 Y o, €EF

il
- T(Zax;) = T(0) [ = Tis a mapping]
= T Tx) =0 [ Tisalinear]
= Tayy; =0 [By ()] [vBisLli]
= each @; =0 for i=1,2,......,n

Thus BisL.l.  So B is also a basis of V.

Nowifx €V = x=LBxForB/s€V (3
So T(x)=0 =»T(ZBpx)=0 [+ B is basis of ¥]
» 3 B,T(x,)=0 ' '
i=1

‘iﬂfyl =0
i=1

= each B;=0 [« BisLlI)
=x=0 [~ of(3N
Thus T is one-one.
Also T is onto [Given]
. T is invertible.

Hence Tisonto = T is invertible.

Theorem VL. Algebra of Invertibles.

Let V{F) be a vector space and Ty, Ty be linear transformations on V. Then () if T, and T, are
invertible, then T\ Ty is invertible

and (nny'=n"'n"". (G.N.D.U. 1990, 85 ; Pbi.U. 1986)
(ify If T, is invertible and a =0 € F, then aTy is invertible and
@r) '=1ar,"". (G.N.D.U. 1985)

(i) If T, is invertible, then T, " is invertible, and(T,”'Y ' =T,. (Pbi.U. 1986)
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Prool. Given. T, and T, are invertible,

T, ' =T,7'T, =1 )

and T,T; ' =T, 'T,=1 (2)

and

Also T,™", T, ™" are linear transformations.
() Toprove. T\T, is one-one.
Yr.nEVIf
(TyT2) (%)= (T, Ty) (x2)

b Ty (Toxy)) = Ty (Ta(xp) i
= Ty (xy) = Ta(x3)
= X=Xy
Hence T,T, is one-one.
To prove. TyT; is onto.

YyEVIxEVsLT (x)=y

YxEVIzEVsLT;(z)=x

VyEVIzEVsty=T,@)=T,(T: () =(T\T2) ()
Hence T, T, is onto.
(3)and (4) = T,Tyis invertibie.
Further since T, and T, are linear transformations,

ML) =T (LT
=T,(OT,"
=TT, =1

Similarly, (T,"'T, " )(T\T) =1
Wand®) = (ITL'T )= T, (MTy) =1

Hence T =171,
(i) To prove. al, is one-one.
Y x5 EV,if
(aT) (x)=(aT)) {xp)
= aT, (x;) =aT, (x3)
= Ty k) =T (x)
= n=x

Hence aT) is one-one.

Since (aT)(x)=aT,(x) YxEV

T, is onto.

So aT, is also onto.

Since T, one-one onto, therefore, aT, is invertible

[ * T, is one-one]
(3)

[ T, is onto]
[ Ty isonto]

...(4)

[+ o)

B I )|
...(B)

[ T\T is invertible]

[a=0]

[+ T\ is one-one]
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ad  (aT)(@"' T, =ea" T, T, [45s @ = 0s0a” exists)
=1.1
=1
Hence  (@T)" =o' T '= ;’- St [ =+ aT, is invertible}
(iii) To prove. T,”' is one-one.
Let y,=Tyx) for yox; €V = T () =x, (D)
[ T, is invertible]
and  p=Tixm) for mm€V = T, () =x 2
Yy €V, if
T on=T" 0
- x=x [ of (1) and (2)]
- Tils) =T, (x) [ Tyis a mapping}
- n=y: [ of(Nand(2)].

Hence T,” is one-one.

Toprove. T, isonto.

Since T, is 2 mapping,

: ¥ xeEVIyeEVsty=T,(x)

= ¥ xEVIYEVsLT ()=x [ T, isinvertiblesoy =Ty (x) = T," () =x)

Hence T, is onto.

Since T, is one-one onto, so T, is invertible.

Also by (1), (T Ty = (T, ' T =1

Hence @'yt =T, [ Ty is invertible]
[ SOLVED EXAMPLES |

Example 1. Fill up the blanks in the following statements :
@ A meropemmr?mk’ defined by T(x, ¥) = (ax + by, ex + dy) will be invertible iff......
(i) If T is alinear operator on R defined by T(x, )= (x—y, ) then T (%, ) = .....
Sol. () ad-bc=0, (i) (x~2.))
Example 2. State whether the following statements are true or false :
() For two linear operators T, and Tyon R
nh=0 = TN=0.
(i) If S and T be linear operators on a vector space ¥, then
S+ =5+25T+T.
Sol. (i) False, (i) False.
Example 3. Pmﬂmflkmhwnmbguhfﬁwmﬁrmﬁmﬁmk‘ toR.
Sol. 1f there is a non-singular linear transformation T,
dim. (Range T) = dim. R' [+ dim. (Range T) = dim. V]
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= dim. (Range T) = 4, which is impossible because Range T is a subset R’, and dim. R* = 3.

Hence dim. (Range T) can’t exceed 3 (= dim. R).

Exampled. If T,: V » Wand T, U -+ V are two linear transformations, prove that T\T, is also a
linear transformation.

Sol. Since range of T, is in the domain of T},

T,T, is defined and
(TiT () for xEU=T (T, () =T,(H EW,

where y=T,x})EVV xEU

ie., T\ Ty: V=W,
Vrxy€EUand a,fEF = ax+fiyeEU
o (T (ax+By) =T, [Tolax + )] = Ty [aTyx) + AT,0)] [ By linearity of T
=a [T, (T:()] +8 [Tu(T: 0N} (By linearity of T))
=a (T\T) )+ (T\T) ()

Thus T, Ty is linear.
Hence T, T, is a linear transformation from U into W,
Example 5. Show that T: R’ - R’ defined by
T(x,yz)=(xcosB-ysinf, xsin8+ycasb,z)
is non-singular, where 8 is any angle. (G.N.D.U. 1995 §)
Sol. Clearly if x=0, y=0, z=0, then the image of (0, 0, 0) under T is (0, 0, 0).
Butif (x, ». z) = (0, 0, 0), then the image is not zero for any 6.
Thus (0, 0, 0) is the only vector in the null space of T.
Hence T is non-singular.
Example 6. (a) Let T, and T, be linear operators on R® defined by
Ti(x ) =(0.2) and T} (x, y)=(y x).
Compute Ty+T),2Ty=3T, T2l T\Te T Ty
() Let Tyand T, be linear operators on R® defined by
T\x, )= (v, x) and Ty{x, y) = (x, 0).
Compute Ty+T,TaT, Ty T T T
Sol. (a) Since L (R% R?) is a vector space, which is closed both for addition and scalar multiplication.
" Ty+Ty, 2Ty - 3T, TyTy, TyTa T2, Ty will be all linear transformations.
Wehave T,(x ¥)=(0,x) and Ty(x ¥) = (¥, x).
@ (T +T)) (x )= Tylx. ) + Tylx. y) = (. x) + (0, x)
={p+0,x+x)=(y, ).
@i (2T,=3T)) (x y)= (2T (x, ¥) - (3T)) (x. ) = 2Ty(x, ¥) = 3Ty(x, )
=2(y, x)=3(0,x)=(2y, 2x) + (0, - 3x)
=2y +0, 2x~3x) = (2y, —x).
(i) (12T (= )= T; [Tilx, ] = T2 (0, ) = (x, 0).
() (TyT2) (6 3)=T [Tolx, )] = To(y x) = (0, ).
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O] (1) & )= T2 [Tofx W] = T2 02 1) = (5 ).
(vi) (1) () =T, [Ti(x. )] = Ty(0, x) = (0, 0).
(b) As in part (@), we have
Tilx y)= (. x) and T; (v, ) = (x, 0).
O] (T + T} (x 1) = Tyfx, ¥) + Ty(x, ) = (x, 0) + (3. x)
=(x+y0+x)=(x+yx)

)] (LT (5 Y)=T: [Ty & M =Ty (. x) = 0).
(i) (TiT) (% )= Ty [T2 (x. )] = Ty (x, 0) = (0, x).
() (T =T, [T (& W] =T, x) = ).
@) (1) (6 =T [Ta (5 )] = T2 (x, 0) = (x, 0).

Example 7. (a) LetT,:R* =R and T,: R = R be defined by
Ti(a b c)=(3a b+c) and T,y (a, b, c)=(2a-3c, b).
Compute T+ Ty, 5T, 4T, = 5To, \Ty and TyT} .
(B) Let T,: R » R and Ty: R = R’ be defined by
Ty 2)=(2x,p+z2) and Ty (x, y. 2) = (x— 2. ).
Compute T,+ Ty, 3T, 2T, - 5Ty
© LeaTy:R~FR andTy : R » R be defined by
Ti(y2)=0x 2v+2) and Ty (x, y, 2) = (x -2, ).
Compute 3T, -4T;.
Sol. (a) Since L (R’, R?) is a vector space, which is closed both for addition and scalar multiplication.
T, +Ty, 5T, and 4T, - 5T, will be all linear transformations.
() T,+Ty:R*=R'.Let a=(a b c)ER’
Ty + T a=(T)a+(T)a=Tla)+Tya)
=Ty(a, b, c) + Tia, b, ) =(3a, b + c) + (2a—3c, b) [By def]
=(Ba+2a- kb+c+b)-(5a—k,2b+c).
(u) ST,:R* =R’ Let a=(g b,c) ER’
(5T} a=5T (@) =5Ty(a b, c)=5(3a, b + c) [By def]
=(15a, 5b + 5c).
(iif) 4T, - 5T;:R* = R*. Leta=(a b, c) ER®
(@T, - 5Ty a = (4T,) a - (5T,) @ = 4T (a) - 5Ty{a)
=4Ty(a, b, ¢)~5Ty{a, b, c) =4 (3a, b +c)-5(2a-3c, b) [By def]
=(12a, 4b + 4c) - (10a - 15¢, 5b) = (12a~ 10a+ 15c, 4b + dc — 5B)
=(2a+15¢,~b+4c).
(iv)}(v) Both T,T, and T,T, are not defined because in each case the range of post-factor
transformation is not equal to the domain of pre-factor transformation.
(b) Since L (R’, R’} is a vector space which is closed both for addition and scalar multiplication,
T, + Ty, 3T, and 2T, - 5T, will be all linear transformations.
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() T,+Ty:R*=>R’.Leta=(zy ) ER’
(T)+ T)a=(T))a+(T)a=T(a)+ Tya)
=Tyx . 2+ Tolr p 2) =@, y+2) + (x-2z,5) [By def]
=(x+x—z,y+z+y)=(Ix~2,2y+2).
(i) 3T,:R°+R. Leta=(xy z) ER’
(AT a=3T(x ) =3 (25, y+1)  [Bydef]
=(6x, 3y + 3z). '
(i) 2T, =5T,;: R* +R*. Leta=(x y,z) ER’
(2T, - 5T a = (2T)) a - (5T) @ = 2T,(a) - 5Ts(a)
=2T(x, y. 2)=5Talx, 3. ) =2 (25, y +2) -5 (x~2,)) [By def]
= (4x, 2y + 22) - (5x — 5z, 5p) = (4x - Sx + 52, Yy + 22— 53)
=(-x+5z,-3y+22).
(c) SincelL (R’, R?) is a vector space which is closed both for addition and scalar multiplication.
*. 3T, —-4T, will be a linear transformation.
3T,-4T;:R* = R* . Leta=(x, y,2) ER’
: (3T, - 4Ty a = (3T)) a — (4T;) a = 3T\(a) - 4Tx(a)
=3Tilx, y, 2) = 4Tofx, 1. 2) =3 (5x, 2y +2) -4 (x -2, »)
= (15x, 6y + 3z) — (4x — 4z, 4y) = (15x — dx + 4z, 6y + 3z - 4y)
=(1lx+4z, 2y + 3z).
Example8. LetT,:R' =R, T;:R =+ R and T,: R+ R be defined as
Nz y2)=@x+2)
Tox. 3. 2) = (22, x =), T3 (=, y) = (v, 22).
Find formulae defining the mappings
() TyTlyand T,y (i) TyTyand ToT,
(i) T(T, + Ty and Ty,T + 3T .
Sol () (T3 =T [Tyx p D] =T+ = +5,%)
and (T,T) (x, 3. )= T3 [Tofx. 3. )] = Ty (22, - 3)
=(x—y, 43).
(i) (MTy) (x, 3, 2)=T, [Talx, y. 2)]
Here T; (x, y, z) is not defined.
Hence T, T; is not defined.
Similarly T,T, is also not defined.
(i) Ty(Ty+ Ty 2) =T [(T) + T (5 3, D] = Ty [Ty(x, y. 2) + Tolx, 3 2)]
=Tl x+2)+ Qe x—3)] =T, (y+25, 2x +2-))
=(2x +z-y 2y+4z).
And (TyTy + TsTa ) (5 3 2) = (T5T)) (5 v, 2) +(TeTy ) O, . 2)
=Ty [Tyx, 3 )] + T3 [Talx. 3, ]
=T; (hx+2)+T; Qe x-y)=(x+z,2) +(x-y, 42)
=(2x-y+z,2y+42).
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Example9. (a)LetT,: R -+ R 5.t Ty(a, b, &)= (3a, 4b-¢)
T:R+R st Ty (@ b)=(-ab).
Compute T\Ty and T,T, .
G)Let TR +RandTy: R+ R st
T\(a b, c)=(2a,b + c)and T;(a, b)= (b, a).
Compute T\Ty and T,T, .
Sol. (a) Since the range of T, ie., R® is not contained in the domain of T}, i.e., R’.
.~ T Ty is not defined.
But the range of T), ie., R’ is equal to domain of T, ie., R%,
. TyT, is defined and in this case T,T, is a transformation from R’ to R*.
Let x=(a, b c)ER’
(T,Ty) ()= T, (Ty () = T, (Ty(a b, ©))
=T,(3a,4b~c)=(-3a,4b-c).
(b) Since the range of Ty, Le., R? is not contained in the domain of T,, ie., R’,
. T,T; is not defined.
But range of T, Le., Rlis equal to domain of Ty, i.e., o
*. T,T, is defined and in this case T, T, is a transformation from R to R* .
Let x=(a b c)ER
(T Ty) ()= Ty (T, () = T (T, (@, . ©))
=T, (2a, b +c)=(b+c,2a).
Example 10. LetT: R = R andS: R* = R be linear transformations defined by
T(xy2)=@-3y—25y-42),5(x y) = (2 4x -y, 2x + ). Find ST-and TS. Is product
commutative ? (P.U. 1989)
Sol. (i) ST is defined because range of T = domain of § = 2
ST(xy.2) =S[T(xy 2] =S (x-3y-25,y-42)
= (2x— 6y — 4z, 4(x — 3y — 22) — (y—42), 2 (x ~ Iy - 2z) + 3 (y— 42))
= (2x— 6y — 4z, 4x — 13y — 4z, 2x -3y — 162) )
(i) TS is defined because range of S = domain of T =3
TS ) =T[S(x ]
=T (2x, dx -y, 2x + 3y)
=(2r-3(x-y)-2(2x + ), 4x-y-4 (2x+3))
= (- 14x -3y, - 4x - 13y) (2)
From (1) and (2), ST = TS
ie, product is not commutative.
Example 11. Let T: R+ R andS: B+ R* be defined as follows :
TOopz)=(2x+y, =3y +2), 5 y)=(Fx-y -x+ )
Find a formula for ST. Does TS exist ? (GN.D.U. 1992)
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Sol. ST is defined because range of T = domain of S=2.
ST(x3.2)=S[Try)]=S@x+y,-3y+3)
=(3(2+y)-(-3y+a),-(x+)+3(Iy+2)
=(6x+3y+3y-z -~ y—9p+32)
=(6x+6y—z,- 2x— 10y + 32).
TS is not defined because range of S # domain of T [w223]
Hence TS does not exist.
Example 12. Let T, Ty : B = R be defined as
Ti(a, b) = (a,0), Tz (a, b)=(0, a).
Prove that T, =0, TyT, =2 O, T =T,.

Sol. We have T,T,:R* » R’ [+ T, T2: R =R}
() (T,T) (a b) =T, (Toa b)) =T(0, a)= (0, 0).

Hence T,T,=0.

(i (T;T)) (g b)Y =T:(Ti(a b)) = To(a, 0) = (0, a) = (0, 0).

Hence T,T, # O.

(i T (a, 8= T, (T\(a, b)) = Ty(a,0) = (@, 0) =Ty{a, b)

Hence T,*=T,.

Exmaple 13. Find two sets of linear transformations Ty and Ty : K = R suchthat T, T, = Oand T, T, # O.
Sol. One of the sets of linear transformations is defined in Ex. 12,
The other set can be defined as
T, (a, b) = (0, 6a) and T, (a, b) = (24, 0).
Here again as in Ex. 12, T,T, = O while T\T, # O.
Example 14. Show that the linear operator T on R' is invertible, and find a formula for T~ ', where
Mx, v, 2)=(x—-3y~2z, x -4z, 2). (G.N.D.U, 1992 5)
Sol. We know that T is invertible if T is one-one and onto.
Letr=(x, 3, 31), s=(xpyp2) ER’,
then T(r)="T(s}
= (a-3n-2z,x-42,2) = (- I - 25, 53— 4, 1)
d Xy =3y =22 =Xy =3y - gy Xy~ AL =B -, e
- =X N "V =1
= r=s
Thus T is one-one.
Let(a, b, ¢) € R*, We shall show that 3 a vector in R® whose T image is (g, b, c).
Let that vector be (x, y, 2) so that
Ty 2)=(a b c)=(x=-3y-25,x-4z,2)
= a=x-3y-2z, b=x-4z, ¢c=z

= x—b*-‘lc,y--;-(~a+b+2c),x'c.
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Sincea, b,cER, .~ xpz alsnERso!hm(::.nz)ER"
Thus T is onto.
Hence T is invertible

Txyz)=(abc)
= T'@bo=(xy2)

1 - 4a b 2

Hence T (a. b, c) = [b + 4c,—3-- + 3 +;c'c]‘
Example 15. Let T': ¥; (R) = V; (R) be defined as

Tla b ec)=(3a,a-b 2a+b+c).
Prove that T is invertible and find T™
Also prove that (?2—0 (T-3n=0. (P.U. 1996 ; G.N.D.U. 1986, 85 S ; Pbi. U. 1985)
Sol. (i) We know that T is invertible if T is one-one and onto.
Let x; =(ay, by, ), %3 = (ay, by, ) E V3 (R),

then Tx)=T(x) = (3ay, a)= by, 2a,+ b, +c,)=(3ay, a,— by, 24+ by +¢3)
= 3ay=3ana-by=ay—by2a,+ byt ;=2 + b+ ¢y
» ay=ayb,=by ¢,=c,
bl X =X

Thus T is one-one.
Let(r, 5, 1) € V; (R). We shall show that 3 a vector in V, (R) whose T image is (r, s, f).
Let that vector be (a, b, ) so that
T(a b c)=(r.s H=Ca,a-bla+b+c)
= r=3a, s=a-b, t=2a+b+c

= a-%.b-%-:,c-l—r+s.

Sincer. 5, t ER, .. a b calso € Rsothat
: (a, b, ©) € V3 (R).
Thus T is onto.
Hence T is invertible.
T(a b c)y=(rs1
= T ' (r.s 0=(a b c)

Hence T_l(l'-l.l}'(g,%—s,l—r+.r].

(i) (T-30(a b e)=Tla b, ¢)-31{(a, b e)=(3a,a-b 2a+b+c)-3l(a b c)
=(3a,a-b,2a+b+c)+(-3a,-3b,-3c)
=(3a-3a,a-b-3b 2a+b+c-3c)=(0,a-4b, 2a+ b~ 2c).
L (P =D(T-30(a 8 )= (TP -D[(T-3D(a & )]
=(T2=1)(0,a-4b,2a +b-2c)
=T (0,a-4b,2a+b-2c)-1(0, a~4b,2a+ b -2c)
=T!(A,B,C)-1(A,B,C) D),
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€ Txyz)=(x-2y-3,y-22x). (P.U. 1993 8,85 8)

" Sol. (a) (i) Let W be the null space of T.

ie.,

So W is the set of all (x, y, z) such that
T(x, ¥ 2)=(0,0,0)
(2x, 4x -y, 2x +3p-2)=(0,0,0)
= W is the solution space of
2x=0, 4x—y=0, 2x+3y—-z=0,

which has (0, 0, 0) as a trivial solution.

ie.,

Thus W = {0}.
Hence T is non-singular and hence is invertible.
(i) L T{xyz)=(rs1)

T '(rns =y 2.
Now T(x, y, z)=(2x,4x -y, 2x+3y-2)=(r. 5 1)
= x=r,dx-y=3, W+3y-z=t

= =-;-r,y-2r—.f,z='?r-33—i".
Hence T~ is defined by
T '(ns = (%r. 2r - 5,7r - 3s —I).

(b) (i) Let W be the null space of T.
So W is the set of all (x, y, 2) such that
T (x, ». 2)=(0,0,0)
(x=3y=-2z,y-4z,2)= (0, 0,0)
= W is the solution space of ;
x—3y-2:=0, y-4z=0, z=0,

which has (0, 0, 0) as trivial solution.

Thus W = {0}.
Hence T is non-singular and hence is invertible.
() Let (xy.2)=(rs1)
T (s 0= 2).

Now Ty z)=(-3y-2z,y-4z,2)=(ns1)
= x-3y—2z=r, y—4z=s z=1t
= x=l4t+35+r, y=d+s, 2=1
Hence T is defined by

T (r s, )=(141+ 35 +r, 4t +5,1).
() () Let W be the null space of T.
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So W is the set of all (x, , z) such that T (x, y, z) = (0, 0, 0)
i,'e, - (x+z, x-2,¥)=(0,0,0)
= W s the solution space of
) x+z=0,x-2=0, y=0,
whtich has (0, 0, 0) as trivial solution.
- Thus W = {0}.
Hence T is non-singular and hence is invertible.
(i) Let xya=(rs1)
T'(rnsd) =(xy2)
Now Ty =(x+5,x-2,¥)=(r51)
= x+z=f x—z =35 y=t
- x= %(r+s), z= %(r—s}, y=tr
Hence T is defined by
T, s,!)-(%rw;-s,l.-;-r—zlx).
(@) () Let W be the null space of T.
So W is the set of all (x, y, z) such that
T(x y 2)=(0,0,0)
ie., (B3x,x~y, 2x +y +1)=(0,0,0),
= W is the solution space of
3x=0, x-y=0, 2x+y+z=0,
which has (0, 0, 0) as trivial solution.
Thus W = {0}.
Hence T is non-singular and hence is invertible.
(i) Let Ty 2)=(rsi)
Tsd =@y

Now Ty )=0Gxx-y,&x+y+2)=(51)
- Ix=r, x-y=s, x+y+z=i
1 1
= X= =i y=—r-5 z={-r+s
- 30073

Hence T~ is defined by

T'(rsn= [%r.%r -s,:—r-l-.l].
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(e) (i) Let W be the null space of T.
So W is the set of all (x, y, z} such that
T(xy 2)=(0,0,0)
ie., (x-2y-z,y-2z,x)=(0,0,0)
= W is the solution space of
x=2y-z=0, y-z=0, x=0,
which has (0, 0, 0) as a trivial solution.
Thus = {0}.
Hence T is non-singular and hence is invertible.
(u’) Let T(x.y =(rs10
T'(hs N=(x»2
MNow Ty 2)=(x=-2y=-z2,y-2,3)=(ns1)
= x=2y-z=r, y-z=35 x=t

= . x=:,y=§(:—-r+s).z-%(r~r~2r}.
Hence T~ is defined by
T'(rnsn= [I,%(l—-r+s}.%(t~r~23)}.
Example 18. [fTisaL.T. on V such that T* = T+ I =0, then show that T s invertible.

(G.N.D.U. 1987)
Sol. We have

T-T+1=0
= T=T-1
- T (@=(T-Na
» T(T@) =T (@)~ @)
Let Ti@)=p

T@ =p-a

- y=#-a, where T(8) =7. .
To prove. T is invertible. |
For this, we prove (i) T is one-one, (i) T is onto. ! g
() Tis one-one.
Let Ta)=T@) -~ Bi=8: (1)
b T@E)=TE) = n=v
b fi-ay=py-a, = —ay=-a; [~ of (D]
= o=@
So Ta)=Ta) = ay =ax

Thus T is one-one.
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(if) Tis onto,

VAEV, 3yE Vst

TB)y=y
But y=f-a [As above]
VYpevV, 3f-aeV

= - VeV, aEV, st T(a)=p4.

Thus T is onto.

 Hence T is invertible.

Example 19, Canyou give an example of a linear aperator T such that T # O but T* = O ? Justify your
assertion. (G.N.D.U. 1989)

Sol. Yes.

Reason. Let T be defined as T (g, 4, ) = (0, 0, a).

Clearly T # O.

But T (a b )=T(T(a b c))=T(0,0,a)

=(0,0,0)=0.
Example 20. Give an example of a linear transformation T on V, (R) suchthat T# O, T # O but T*=0.
Sol. Let T be defined as

Ta, b, c)=(0,a b) ) (1)

Clearly T#O0.
Now T (a b c)=T(T(a b c)) =T(0,a &) [y (1]
=(0,0,4) [8y (1)}

Thus T=20.
New T (abc)=T (T b)) =T (0,28 [8y (]
=T(T(0, 4 4)=T(0,0,a) By (1]
=(0,0,0) 1:590)]

Thus T=0.

Example21. [f T: R - R’ such that Ta, b, ¢) = (0, a, b), then show that T# O, T* % O but T = 0.
Sol. Same as Ex. 20.
Example22. LetT,, T,: U~»VandT, T,: V- W.
Prove the following : (i) Ty(T\+ Ty=NT,+ )Ty
i) (H+TYTi=NNL+T0
(i) a(Ty 1) =(aTy) T, = Tal).
Sol. Given:Ty,Ty:U~=VandT;, Tq: V= W.
T +T:U=Vand T+ T:V = W.
We know that for a composite transformation, the range of post-factor is equal to domain of pre-
factor, therefore, TyT, TyTy, Ty(T, + To), TyTy, T,Ty, TT, + T) are all defined and are linear
transformations from V to W.
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(i) Here Ty(T, + Ty), T,T,, T,T; are all linear transformations formU-W VYV x&EU
Ty(Ty + Ty) (2) = T5((T, + T2) (x)) = T5(Ty(x) + To(x))
=(T3Ty) () + (TyTy) (x) = (T5T, + TyTo) (x) |
Hence Ty (T, +Ty)=TiT, + T,T,.
@) (T3+TYT, T;T,, T,T, areall lincar transformations from V -+ W YxeU
(T + T) Ty(x) = (Ty + T) (Ty(x)) = (T3T)) (x) + (T,Ty) ()
=(T3Ty + TyT)) (=)
Hence (Ty+T)T, =TT, +T.T,.
(i) ¥VxeEU
a (T,T)x=a [(1T) (9] = &[Ty (Ty)] = @T) i@ = (@T5) T)) »
Again Ty (aT)) x=Ty((@T)) x) = T; (aT,(x)) = aT; (T, (x)) =a(T; T)) x
Hence a(T; T)=(aT3) T, =Ty (aTy).
Example 23. [f T, and T, are linear transformations on a finite dimensional vector space Vnmf#'
T\Ty=1 then T,, T; are both invertible and Ty = Ty !

Sol. Given: T, T,=1.
() To prove. T, is invertible.
() Tylx) = Tolx) = T, [Toe)] = T [Talep)]

= T\Tyx) =TTylxy)

= Ix)) =1I(xp)

> x5 =X,
Hence T, is one-one.

(1) Since T, is a linear transformation on a finite dimensional vector space, which is one-one, Le.,
non-singular,
T, is one-one

Hence T, is invertible.
Similarly it can be proved that T, is invertible.

(0 Since Tyisinvertible, -~ TyTy '=T, 'Ty=1 [Def]
Also T, is invertible.
Now T,T,=1 = (TTYTy '=1ITy"!
> T(TT; D=T, ' = T1=T,"!
=T =Ty !
2T T,=T, ' T,=1 and T,T, = T;T, ' =1
Thus TT=T,T; =1

Hence T, =T/ !
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Example 24. [f V(F) be the vector space of all polynomials in t and D and T be two linear

transformations in V defined as

=%
D (p(r), -+
and Hp) =1 Vp(EV,
then show that product of these two transformations is not ive and
(ToY =T D+ TD.
Sol. We have D(p(!))=%
and T (p(©) =t (p(t))
@ ODEO-DIE) D0~ S GO)p0 L
- -T(%
and (D) 0) =0 () =7 (£)
.
rd‘ e(4)
Subtracting (4) from (3),
(DT) (p(0)) - TD (p(0)) = p (1)
= (DT -TD) (p() = 1 {p(r)), where | is identity.
As above identity istrue Vp (D E V,
50 DT-TD=1 = DT# TD.
Hence the product of D and T is not commutative.
(i) (TDY (p (0) = (TD) ((TD) p) () = (TD) (T {D (p ()})
- o) (1)
-r(2(4))or (2 d’_p]
T(dt(dz] T[d:”dﬂ
Y.
Al - 9
Also (T* D* + TD) (p()) = (T* D) (p(0)) + (TD) (p(®))
=T (0 o)+ 2L

=T (0 (D) +1 L

SCHRE

(D)
D)
(3

[Using (N]

[Using (2)]

[Using (0}

[Using ()]

[Using ()]

[Using (]
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- T:Tilx) = TaTi(xy)
- X =8 [+ TyT,, being invertible, is one-one)

Again T\ T, is onto,
¢ YyEVIxEVsit
y=TTx)=T, [TAx)].
Since T, is an operator on V,
Tyx)=z; say €V
y=Ty)
YyeEVIzeVsty=T()
= T, is onto.
Since T, is both one-one and onto, < Ty is invertible. .
Similarly T, is invertible. [Doit]
Example 26. Let 4 = {a,, ay,......, @y}, B= {f, By, ......, B} be two ordered bases for a finite
dimensional vector space V(F). Prove that there exists a unique invertible linear transformation T on V
such that Tla;) = ;.
Sol. Here we are to show that T is invertible.
We know that if V is finite dimensional vector space, then T is invertible < T is non-singular.
Here it will be sufficient to prove that T is non-singular.

ie., T@)=0 = a=0.
Let a € V and a is a basis for V such that
a=aa tayat.... ta, a,
Now T(a)=0
= T(a@a, + axty +......+ aa,) =0
= g Tla) +a, Tlay) +...... +a, Tla,)=0 .
= afytayfyt......+a,f,=0 [ Ta;=8]
= [=BisLl}
=

Thus T@)=0 = a=0.
= T is non-singular
= Tisinvertible. [ V is finite dimensional)
Example27. LetT,: R » R Ty: B = B, Ty: B -+ R be defined by
TiGy=@x+y+2x+)), T ®ya)=x+zx+y) Nxy )= (2yx). Show that
T.Tu T EL(R, RareLl
Sol. Suppose, for scalarsa, B,y ER
aT, + BT, +yT, = O (zero mapping)
For e =(1,0,0) € R,, we have
(aT, + BT, +¥T;) ¢ =aT(1, 0, 0) + fTy(1, 0,0) +yTy(1, 0, 0}
=a(L, )+, D +y 0. )=(@+2B,a+f+y)
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Its transpose is said to be matrix of the linear transformation T w.r.t. bases B and B’ and is written
symbolically as

[T:B,B'Joras[T).

Hence [T] = [ayly xn =

Method. (i) Write Tx;) for each of the basis number in B in terms of elements of B'.

(i) Write the coefficient matrix.  (iii) Take its transpose.

Particular Case. When T: U~V i.e., when T is a linear operator.

Here V = U and hence m = n so that T w.r.t basis B will be m X n matrix.

Rule for this is also same as above.

] THEOREMS |

Theorem L. To every matrix [ay) of mn scalars belonging to F, there corresponds a linear
transformation T from V into U, where F(F), LXF) are vector spaces of n, m dimension respectively.

Proof. Since T is a linear transformation from V into U and let

B= {X],X!, ------ >xu}; B'-{ylﬁyh ------ ’yil}

be ordered bases of V, U respectively.

Then [T:B, B'] = [ayl, x m

where T(.\.})*’ ia@.y, , where j=1,2,...... Wn A1)

i=1
To prove. T(x) is uniquely expressible as linear combination of the elements of B’ VxE V.
Each x € V is uniquely expressible as

x= EB;‘)
i=1
Then T(x) = [TEB{'}]- EBJ T(x_'.) [~ Tis linear]
i=t =1

- S8, Sern- 5 (S

= ir}, ¥p Where s = i:ﬂ,,ﬂ,
i=1 i=1

= T(x) is uniquely expressible as linear combination of the elements of B'. [ By's are unique)
= T(x)is uniquely defined Vx € V.
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Now V 3> @, y € U'sthereisaL.T. T from V into U s..
i

Tx) = ia,y.. where j=1,2,......n
i=

= 3 L.T.from V into U as defined by (1) corresponding to each matrix [a;].
Hence [x, B] is co-ordi matrix of x relative to B and
[T(x), B'] is co-ordinate matrix of T(x) relative to B'.
Theorem IL Let B = {x,, X3 ..oooey x,} be a basis of vector space W(F) and T be a linear
transformation on V. Then for any veciorx € V
(7, B] [x, 8] = [Ttx). B]
Proof. We have B = {x,, x;, ......, X,;} is a basis of V(F).
Let Tlxy) = ayx, +ayx + ... +ayx,

= i"u xpwhere j=1,2,......n (1)
i=]

o [T, B]is n X nmatrix whose jth column is
iy

a,

a,,

YxEV,x=ax taxt.... +ay Xy = ia_'.x} e(2)
. ) .
a
The column vector of x is [x, B] = a:,
a

Now Te)=T [iaixj] [~ o]
i=t

=Ya, )= iaj[ a,,-x,-] [~ of (]
d=1 i=1

=1

[ERRYES]
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@+ @@yt

ay a, + yy Xy *uene

*. Bydef, [T (x),B]= [ ’

@, Q) + Gy 2y Fa

ay Aoty | g
Ay @yl a
Now [T.B][xB]=|"® “# b 2
a, @y ey, | L%

Q@+ Ay @+t gy, @,
Ay @y + dyy Ty +eees +d,,4d,

Q@) + 8,5 €y +onnta,, @,

= [T, B].
Hence the result.

Theorem Il [fT, and Ty be two linear operators on vector space V (F) whose matrices w.r.t. a
fixed basis

B={x, % eeeen WXyt be [Ty] and [T3),
then the matrices of the operators T, + Ty, kT, and T\Ty w.r.t. basis B can be put in the form :
) M+ Tl=[n]+[T] (i) (k1] =k[T]
@i [T\ = [T [T
Proof. The basis of Vis B = {x}, X3, ......, X}-
Let [T)] = [a;] and T = [,
Since [T,] and [T,] are lincar operators,
[T\] and [T;] are both n X n matrices

o Ty(x) = i:a“x, and Ty (x ;)= ib* Xi.
i=1 i=

M) (T + T () =Ty(x) + Talx) . [ = of linearity)

- ia’x‘ + ibe x= i(a"- +bj)x,-
i=1 i=1

i=1
=L ¢y x, where ¢y = a;+ by
[Ty + Ta}=[ey) = [ay+ byl = lay] + [ by] = [T)] + [T2].
0] (KT)) (x)) = AT\(x;), where j=1,2,......,n; kEF

- i[‘zaﬂ,x‘] - ,;(ka.-,-}x;

=1
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Proof. V(F) is n-dimensional vector space, where
B =[x}, X3 ..., ¥,} is an ordered basis of V.
" Let T be any L.T. on V, and further let

matrix of T relative to basis B is [T] = [a)]

Let us define a mapping y as below :
¥ =LV,V)+M
y(M=[{TIEM ie,y(T)=[a;]
Let AT =1b) and [Ty =[e;g

where T, (x)= ibyx, and Ty(x,) = icdx_,
it i=l

(/) To prove.y is one-one.
¥ T, T, ELV, V)
Y(Ty)= ¢ (T)=[T]=[T3]
= [b] = [e5l
= bﬂ=cy;.‘,j=l.2,3, ...... ]

= tbuxi- 2‘&”-
i=1 =1

=Ti(x)=T(x) Vx; EB
=T =T,

Thus g is one-one.

{if) To prove.y isonto.

V["&r'] € M, there exists a L.T. T € L{V, V) s.t.

T@)= Z"J*i
i=

» [T1={ay)
- MuBluEIch
1 is onto.

(iify To prove. y is linear.
¥T,T; EL(V,V)anda, S EF
aT,+AT, EL(V,V)
¥ (aT, +fT) = [aT, + T} = [aT\) + [FT3] =a[T\]+f[T2]
=ayp(T)+py (T

Thus 4 is linear.

[ LV, V) is a vector space] *
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Combining (#), (i) and (iif), we have
L(V,V)=M.
Theorem VI. Matrix of an inverse operator.
Let ¥V [F) be n-dimensional vector space B = {x,, X3,......, X} as its basis. Let a linear operator T be
defined whose matrix relative to B is [T] = (a, ). Then
T is non-singular = [T) is non-singular and hence [T™']=[1T" =[a;,]"".

-3

Proof. Let T be non-singular i.e., T is invertible.
3 an inverse operator T™' on V such that

TT'=1=T"'T
- (TT) = =[1"' 7}
- (M =m={r71m

= [T] is non-singular and hence [T]™" = [T '],
Hence [T']=[TT" = [ay]", which is true.
Conversely. Since [T} ' is a matrix.

. 3 a linear transformation T, on V such that

[T, =(T1]"
= [T [T]=[M =TI [T}
= [T\T)=[1]1=[TT,]
- T,T=1="TT,

= T is invertible

= T is non-singular,

Theorem VIL Let F(F) and W(F) be two finite dimensional vector spaces of dimension n and m
respectively and Ty and T, be any two transformations from V into W. If v € V, then

@ [r@]=[nlkl 6@ [T+ =[N+

(i) [aTy ) =a [T)),a €EF.
Prool. Let B, = {v,, v, ......, t,} be the ordered basis of V
and By = [w), Wy, ......, Wy} be the ordered basis of W.

Let T|(UU}= iau Wi'whm j=l‘2,....ﬂ
=1

by def., [Tll"["u]uxu‘
Also Ty )= 2.‘:” w[.whefe =4L2,...n
i=l
by def., [Tz]'“’ij]m e
() Letv be any vector € V with B, as its base.

", v is a linear combination of elements of B

= veEa U taU ... +a,v,, wherea's €F.
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. The vector v is represented by the column matrix as below :

- - @
- =] %
e,

Also T} =T, (@, +ap, +...... +au,)

=T{ia‘,v1] [ = Tis linear]
i=1
= 2«1 [i:a“w[)= i[i"ﬂav] w, where j=1,2,.... W

I ISAYES

[T (u}]-[inyaj] ,where i=1,2,....m
i

=1 mxn

=[aya, +agly+ .ooo. + Ayl Iy, Wherel = i =m

[a, @, +aypay +.....+a, @,

_aye, +apay+itay,a,

= (1)
| @) + 3,3 @ Feooetay, @,
[(ayy ay .. in a,

and . Tllv]l= n e G “

Quy Gy eeenclyy | LEn
[a,a, +aya, +..+a,,a,

_|ma rapatiray,a, S
|G @y + Gy @+t Gy

From (1) and (2), [Ty()] = [T,] [v].
(if) Since T,:V-=>WandT,;: V-+W
T, +Ty: VW
T+ THEP=Ty @+ T3 (v) = anw,ir o= i(aﬂ+ bw,
i1 i1 il
[Ty + Ty = [ay + by], where lI <sismand 1 Sj=n
={[ay] +[by] =[T,] +[T2]. '
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(iif) Since T,:V-+W anda €F

and T ()= 2%1&". ywhere j=1,2,.......n
iml

Now (aTy) (v!)-a(‘r. vj)-a ta#w_,, wherej=1,2,.......n
i=1

= z(%)“&
i=1
= [aT\]= [aay], where | Sismand I Sj=<n
=alay] =a[T)].
Theorem VIIL. Let U{F), V (F) and W(F) be three finite dimensional vector spaces of dimensions m,
n and p respectively
T:U=VT: V=W
be two linear transformations, then [T,T,] = [T] [T}).
Proof, Let By = {uy, 4y, ..., tigg}, By = {v, vy ..., v} and
C ByE {w Wy Wy
be the ordered bases of U, V and W respectively.
Since T,: U =V,

so let Ty ()= D a,v,, where j=1,2,.....,m )
=1 :
= [T = [ayln xm [By def)
Again since T;: V=W,
so let T, (vg) = ibnwl ywhere k=1,2,......,n .A2)
-1
- [Tll = [bﬂ’}pxn
Since T, :U=Vand T;: V=W,
T,T, is defined [ *+ Range (T,) = Domain (T3)]
Ao T, T, :U-=W
(TaTy) "}“‘T: (Tiﬂj)

=T [ i"u"u]  wherej=1,2, ......,m
=1

n
=Y aT(v,) [ TyisLT)
=



Proof. (i) Let y= Zaqx,-a|fxl+a,j;,+.,....+a,vx,,,
i=1
where j=1,2,.....m
Clearly P is n X n matrix whose jth column is
4
B
Oy
Since By = {¥), ¥3-000-.1 V! 15 an ordered basis of Vandv € V.

vE=apy tay .. + @Yy = 2ajyj
j-
*. v can be written as
a
[v:By=| %
ﬂl
Thus v= i:ajyj = 5:::} (za,x,] [Putting the value of y;)
i=1 J=1 i=1
= i[i:“v“j]‘f' i("u"ﬁﬁrz“z* ------ +,,8,)%;
ICIAYED] F=1

Clearly [v : B,] is a column vector whose ith entry is
lapa, +apay + ... + aya,)

A @2 e G ([ g, ay ) + apdy te, +a,a,
ay Ay - @ Gy @) + Gy @y +onns + Gy, @
Plo:By=| n n ﬂ:: = fn n %2 2n %
Gy Gyg e Gy | L0 @, @) + Gyy Gy +eeen. +a,, &,

Hence P [v: By] = [v: Byl
(if) We have proved in part (/) that
Plv:B]=[v:By]
Pre-multiplying by P~ ", we get
P'Pl:B=P'[v:B] = [[v:B]=F"[v:B]
Hence  [v:Bj)=P'[v:B,].
Theorem IL. Let T be the transition matrix from the basis B, = {x;} to the basis B, = [y}] in a vector
space V. Then for any linear operator T on V,
[T:Bl=P'[T:B]P.
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Proof. We have proved in Th. I that
Plv:By=[v:B]] ¥ veEV D
Pre-multiplying by P™' [T : B,], we get
P '[T:B,]P[v:B]=P ' [T:B][v:B)]

=P '[T(v): B] (2)
[~ (T:B][v: B]=(T): Bi]]
=[T(v): B,] [Using (1]

But  [T:By] [v:By}=[T(v):B,]
PUT:B,]P[v:B)=[T:B,][v:B)

Hence [T:By)=P"[T:B,]P.
15, Similarity

Def. (i) Similar Matrices. Two matrices A = [ay] and B = [by) are said to be similar if there exists
a non-singular matrix C = [cy) such that

AC=CB Or A=CBC”.

(if) Similar Transformations. Two transformations Ty and T, of a vector space V(F) are said to be

similar if there exists a non-singular transformation P on V such that
=P, P,
THEOREMS

Theorem 1. The relation of similarity is an equivalence relation in the set M, of all n X n matrices
over a field F. (Pbi. U. 1986)

Proof. (i) Let A be any n X  matrix over F.

Then there exists an # X n invertible matrix [ s.t.

A=IAT"

= A is similar to itself,

Thus the relation of similarity in M, is reflexive.

(if) Let A, B € M, s.t. A is similar B

= there exists an n X n invertible matrix C s.t.

A=CBC'

= AC=CB

= C'AC=B

= (ChHAECH '=B

=  Bissimilarto A [~ C™" is invertible)

Thus the relation of similarity in M,, is symmetric.

(iif) Let A, B,C €M, s.t. A is similar to B and B is similar to C

= there exist n X n invertible matrices P and Q s.t.
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A=PBP' and B=QCQ '

=  A=PQCQ )P '=(PQIC@Q".P)=(PQ)C(PQ’

=  AissimilartoC
Thus the relation of similarity in M,, is transitive.

[ - PQ is invertible]

Combining (i), (i/) and (if), the relation of similarity in M,, is an equivalence relation.

Theorem IL.  Let B, = {x, x5, ...

wons X} and By = {y), yy, ...

wos ¥} be two bases of vector space

W(F). Also let Ty and T, be two linear transformations on V(F) whose matrices relative to B, and B, are
equal i.e.,

[Ti: 8))=[T:: B;] = [ay),

then Ty is similar to T,.

i.e., there exists a non-singular L.T.P. such that T= PT, P '

and

Proof. Since [T, : B|) = [a;],

T[(x}}= ia‘.l,.x, ywherej=1,2,.......n

i=]

Since [T, : By] = [ay],

T,(yj)= iayy;,whercj=l.2. ,,,,,, ]
i=l

Let [cy] be the transition matrix.
Then 3 a non-singular L.T.P. such that

[P: By]=[cy]
yi= P (3;}
Ta0) = TP (x)) = (T:P) ,
Also T = iﬂ, P (x)
i=1
-p [2% x,,) =P(T\(x})
=1
=(PT)) x
From (5) and (6),
(TJP)‘jﬂ (PTl)"'_-‘- wherej=1,2,......
> T,P=PT,
Post-multiplying by P"',
T,PP ' =PT, P’
= Tyl=PT, P’
= T,=PT, P\

Hence T, is similar to T,

(D)

(2)

(3
(@)
(5

[+ of ) and (9]

[~ o]

[By def]}
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| SOLVED EXAMPLES |

Example 1. Let B - I be defined by T(x, ) =(2x - 3y, x +y). Compute the matrix of T relative to the basis
(M B={(L 0@ D} ) B={1 202 3}
Sol. Let us compute T(x), where x; is the basis element.
() We have T y)=(2x =3y, x+ ) (1)
Tx)=T(1,0)=(21-30,1+0)=(2, )=2(1,00+1(0, )=2xr,+ Ix, ...(2)
T(x) = T(0, 1)=(2.0-3.L0+ 1)=(-3, 1)==3(1,0) + 1 (0, 1)
=—3x +Ix -+(3)

" Coeff. matrix is [_% 1:|
Thus the matrix of T w.r.t. B is the transpose of the coeff. matrix.

", From (2) and (3).
rr:B]-'[_g }]

(i) Wehave Tlx, y)= (2x =3y, x + ) 1)
TE)=T(1,2)=(2.1-3.2, 1 +2) = (-4, 3).

Let (-4,3)=a(1,2) +§(2,3)
-4=q+2f and3=2a+38
Solving @ =18 and f=-11.
Thus T)=T(1,2)=(-4,3)=18(1,2)-11(2,3) A2)
And  T(x)=T(2,3)=(22-33,2+3)=(-5,5)
Let (-5,5)=a (1,2)+5 (2,3)
-5=a'+28', 5=2a"+3§
Solving, a’'=25 and p'=-15.
Thus  T(x)=T(2,3)=(-5,5) :

=25(1,2)+(-15)(2,3) )
From (2) and (3),

(T:a]=[_ﬁ _ﬁ]

Example2. Find the matrix representation of each of the following operators T on R’ relative to the basis
@ B={(L 329 ©® B={W 0,0 N}
) Mx y)=(2p 3x-y) (i) Mx y)=(3x-4dy, x+3y)
Sol. Let us compute T(x;), where x; is the basis element.
{a) (i) Wehave

Tix, y)=(2y, 3x-y) (1)

Tle)=T(1,3)=(23,3.1-3)=(6,0)

Let (6,0)=a(1,3)+5(2,5)
6=a+28and0=3a+50
Solving, a =-30,8=18.
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Thus T(x,)= T(1,3) = (6, 0) =—30(1,3) + 18(2, 5) (2)
And T(xp)= (2, 5)=(2.5,3.2-5)=(10, 1)

Let (10, D=a'(1,3)+$' (2,5
10=a'+28" and 1=3a'+5§
Solving, a'=-48, f'=29
Thus T(,)=T(2,5)=(10, 1)=-48(1,3) +29(2, 5) o (3)
From (2) and (3), s
UL |
(i) We have
T(x, y)=(3x -4y, x + 5y) ()]
TL:_';)-T(I,S)'(B.I -43,1+53)=(-9,16)
Let -9,16=a(1,3)+8(2,5)
-9=a+28 and 16=3z+58
Sclving, a=T71, f=-43.
Thus T(x,)=T(1, 3} = (-9, 16)
=77(1,3)-43 (2, 5) .2
And T(x)=T(2, 5) = (32 -4.5,2 + 5.5) = (- 14,27)
Let (-14,27)=a'(1,3)+§' (2, 5)
-ld=a'+28' and 27=3a'+58'
Solving, a'=124, f'=-69
Thus T(x)=T(2, 5) = (- 14, 27) (3}
=124(1,3)-69(2,5)
From (2) and (3),
[T:By]= [_ o _'g;].
(6) () Wehave
T(x, )= (2, 3x-) (1)
T{x,)=T(1, 0) = (2.0, 3.1 = 0) = (0, 3)
Let 0, 3)=a (1, 0)+5(0, 1)
Iy 0=a and 3=§
= a=0 and f=3
Thus T(x,)= T(1, 0) = (0, 3) = 0.(1, 0) + 3.(0, 1) (2)
And Tilx)= T(0, 1)=(2.1,3.0-1)=(2,-1)

Let 2,-1)=a’'(1,0)+p' (0, 1)
5 2=q' and -1=§"
- a'=2 and f'=-1
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Thus T(x)=T(Q, 1)=(2,-1)=2(1,0)- 10, 1) .(3)
From (2) and (3),

{T:B]= [2 _21]
(i) We have

T(x. )= Bx -4y, x + 5) (1)

T)=T(1,0)=(3.1-4.0,1+50)=(3,1)
Let (3, D=a(l, 0)+5(0, 1)
: 3=a and 1=8
» a=3 and f=1.
Thus T(r)=T(1,00= 3, ) =3(1,0) + 1(0, 1) 2)
And Tlxz)=T(0, 1)=(3.0-4,1,0+ 5.1)= (-4, 5)
Let {—-4,5)=a'(1,00+8(0,1)
-4=a' and S=p'
> a'=—-4 and §'=5
Thus Tixy)=T(0, 1) =(-4, 5)
=~4(1,0)+5(0, 1) ..(3)

From (2) and (3),

['r:n]-[:: ';].
Example 3. Find the matrix representation of each of the following linear mappings relative to the
usual basis of K.
() T: R+ R defined by
Tlx, y) = (3x~y, 2x + 4y, Ix— 6y)
() T:R ~ R defined by :
M,y 2)=(2x + 3y=8r,x+y+1z dx— 5z, 6y). (G.N.D.U. 1985 S)

Sol. Let us compute T(x;), where x; is the basis element.
(i) We have

T(x. )= (3x -y, 2x + 4y, 5x - 6)) (1)

T(x)=T(1,0)=(3.1-0,2.] +4.0,5.1-6.0)
=(3,2,5)

Let (3,2, 5)=a(1, 0,0) + B0, 1,0) + (0,0, 1)
i=a, 2=f, 5=y.
Thus T(e,)=T(1, 0)=3(1,0,0) +2(0, 1,0) + 5(0, 0, 1) (2)
And T)=T(O, 1)=(3.0-1,20+4.1,50-6.1)= (- 1,4,-6)

Let (-1,4,-6)=a'(1,0,00+4 (0,1,0)+y" (0,0,1)
-1=a', 4=f', -6=y'
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Thus T(xz)=-1(1,0,0)+ 4(0, 1, 0)-6(0, 0, 1) wel(3)
From (2) and (3),
i)
[T:B]=|2 4|
5 -6
(i} We have
Tlx, y. z}=(2x + 3y — Bz, x + y + z, dx - 5z, 6)) (1)
T(x,)=T(1,0,0) = (2.1 + 3.0~ 8.0, 1 +0+0,4.1 - 5.0, 6.0)
=(2,1,4,0).

Let (2,1,4,00=a(1,0,0,0)+5(0, 1,0,0)+y(0,0,1,0)+6 (0,0,0, 1)
2=a, 1=5, 4=y, 0=4
Thus Tx,)=T(1,0,0,0)=(2, 1,4, 0)

=2(1,0,0,0)+1(0,1,0,0)+4 (0,0, 1,0)+0.(0,0,0, 1) )
And T(x)=T(0, 1,0)

=(20+3.1-80,0+1+0,40-50,6.1)

=(3,1,0,6)

Let (3,1,0,6)=a’(1,0,0,0)+ ' (0, 1,0,0) +¥' (0,0, 1,0)+5' (0,0,0, 1)
I=a', I1=f, 0=y, 6=4
Thus T(xz)="T(0,1,0)=(3,1,0,6)

=3(1,0,0,0)+1(0,1,0,0)+0(0,0,1,0)+6(0,0,0,1) w(3)
Lastly T(xy)=T(0, 0, 1

=(20+3.0-8.1,0+0+1,40-5.1,6.0)

={-8,1,-5,0)

Let (-8,1,-5 0)0=a"(1,0,0,0)+8" (0, 1,0,0) +¥" (0,0, 1,0)+4" (0,0,0,1)
" ~-8=a", 1=8", -5=y", 0=4"
Thus T(xs)=T(0,0,1)=(-8,1,-5,0)

=_§(1,0,0,0)+1(0,1,0,0)—5 (0,0, },0)+0(0,0,0,1) ()
From (2), (3) and (4),
23 8
(T:Bl=| 4 o 3
06 0

Example 4. Let T be the linear operator on R’ defined by
Tx, y) = (4x~ 2y, 2x + ).
Compute the matrix of T w.r.t. the basis
B={(l. 1,10}
Also verify that
(T:B)[v:Bl=[T(w):B]. (P.U. 1993 5, 92)
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And

() We have T(x, y, z) = (2y + 2, x— 4y, 3x)

Using (1), T(1, 1, 1)=(3,-3,3)=3(1,1, 1)+ (- 6) (1, 1,0) + 6 (1,0,0)
T, 1,0)=(2,-3,3)=3(1, 1, D+ (=6)(1, 1,00+ 5(1,0,0)
T(1,0,0) =3 (1, 1, D+ (=2)(1, 1,0)+ (= 1)(1,0,0)

3 3 3
-6 -6 2.
6 5 -I]
(i) Let(a b, c) ER’.
Then v=(a b c)=c(1,1,1)+(-c)(1,1,0)+(a-5)(1,0,0)

Thus [v:B]= [ ]

Tiv)=T(a, &, €)= (2b + ¢, a—4b, 3a)
=3a(l, L, 1})+{a-4b-3a)(1, 1,00+ (2b+c—a+45)(1,0,0) [ of(n]
=3a(l, 1, )+ (~2a-4b)(1,1,0) + (~a+6b+c)(1,0,0)

Hence [T:B]=

3
[Ty :B]= —20"1 4b (D)
| —a + 6b +c |
_ [ 3 3 3] ¢
[T:B]l[v:Bl=| -6 -6 -2|1b-¢
L 6 5 —l]la—b]
2 -
=| -2a-4b |=[T(v):B] [By ()]
| —a + 6b +c |

Hence [T : B] [v : B]= [T(v): B].
Example 6. Let T be a linear operator defined by
Tx, y. 2) = (2 + 2, x—4p, 3x).
Find the matrix of T w.r.t. the basis
B={(1,0,0),(0, 1,0),(0 0, h}.
Sol. Firstly, we shall find the co-ordinates of an arbitrary vector (g, b, ¢) € R’ w.r.t. basis B.

Let (a b e)=a(1,0,0)+5(0,1,0)+y (0,0, 1)=(a,0,0)+(0, §,0) +(0,0,7)
=(a.p.y)
= a=a, f=b, y=c.
(a b, c)=a(l,0,0)+5(0,1,0)+¢(0,0,1) (1)

We have T(x, 3. z)=(2y+z x— 4y, 3x)

Using (1), T(1,0,0)=(0, 1,3)=0(1,0,0)+ 1 (0, 1,0)+3 (0,0, 1)
T(©,1,0)=(2,-4,00=2(1,0,0)+(-4) (0, 1,0)+0(0,0, 1)
T(0,0,1)=(1,0,00=1(1,0,0)+0(0, 1,0) +0 (0,0, 1)

0 21
Hence n:n]-[: -4 o}.
3 00
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Example 7. (@) LetT:R' - R be linear transformation defined by
T, y. 2) = (2x +y -z, 35 =2y + 42),
(i) Obtain the matrix of T in the following bases of R and R*
By={(l, 1, ., 1,0, 0 0}
and B={(1. 3.1, 9}.
(if) Verify that for any vector v € R,
[T: By, B;l [v, B)] = [TWv), By). (Pbi. U. 1986)
(b) (i) Find the matrix representation of the L.T.
T:R =R defined by
Tlx, y}=(x + 4y, 2x + 3y, 3x - 3y)
w.r.L. the ordered bases,
B={(L1,@3} for R
and B'={(1L 101,010,000} forR. (P.U. 1987)
(if) Find the matrix representation of the L.T.
T: R - R defined by
Mx, y)=(3x~2y, 0, x + 4y)
w.r.I. ordered bases
B={, 1,02} for R
and B ={(l 1.0),(10 101D} forR. (G.N.D.U. 1989 ; P.U. 1986)
Sol. (@) () (a b) € R?and let
(a b)=a(1,3)+(1,4)= (@ +p,3a+4f)

= a=a+fl, b=3a+4f
Solving, a=4da-b, f=b-3a
*(a, b)=(4a-b)(1,3) +(b-3a)(1,4) 1)

Now, T(x, y, 2)=(2x+y -z, 3x~2y+4z)

TLLD=(21+1-1,3.1-21+4.1)=(2,5)
=3(,3)+(-1(,4 ()
[Herea=2, b=15]

T(1,1,00=(2.1+1-0,3.1-21+4.0)=(3,1)
=11(1,3)+(-8)(1,4) )
[Herea=3,b=1]

and T(1,0,0)=(2.1+0-0,3.1-20+4.0)=(2,3)
=5(1,3)+(-3)(1,4) . (4)
[Here a=2, b=3]

[T:Bt:B,I=[_:: _l; -;]
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and

i If v=(xy ) €ER
Then proceeding as above, we have
v={(x y 2)=a(l,1, D +A(1,1,0)+¥(1,0,0) ...(5)
= x=a+f+y, y=a+P z=a
Solving, a=z, f=y-z,y=x-y
Putting in (5), we get
v=(xp=z(, 1, )+E-201,1,0+x-3)1(,0,0)
Also T(W)=(2x+y—z, 3x -2y +42)
=(Bx+dy—dz-3x+2y-45)(1,3) + (Bx -2y + 4z~ 6x -3y +32)(1,4)
=(5x+6p—-82) (1, +(-Ix=-5y+72)(1,4)

Sx+ 6y ~82
[nu):az]-[_h_s;'+ 7:]

z
Also [v:Bj=|y-z
x-y

[T:B), By [v:By]
3 uwo s)fUF I [3+np-11z+5x-5p] [ Sx+6y-8z
-1 -8 -3]|[¥°* —z-8y+8z-3x+3y | | -3x—-5y+7z
x-y
=[T(v): By].
Hence [T : By, By] [v : By) = [T(v) : By).
) () (a b, ) ER’and et
(a b cy=a(l, 1, 1)+8(1,1,0+y(1,0,0)

= a=a+f+y, b=a+P, c=a
Solving, a=c, f=b-c, y=a-b
(@ bc)y=c(l,,N+(d-c)(1,1,0)+(a-5)(1,0,0) (1)

Now, T(x, y)=(r+4y, 2c+3y,3x-5))
T(L 1) =(1+41,21+31,3.1-51)=(55,-2)

=(=2)(1, 1, D+7(1,1,0)+0.(1,0,0) [Herea=5, b=3, c=-2]
T, 3)=(2+43,22+3.3,32-53)=(14,13,-9)
=(=9)(1,1,1)+22(1,1,0)+1.(1,0,0) [Herea=14, b=13, c=—9]

-2 -9
[T:B,B']=| 7 22|.
0 1
(i) (a b, ¢) €R’and let
(@b c)y=a(l,,0)+B(1,0,DN+yO, 1,1

- a=a+f, b=a+y, c=f+y



LINEAR TRANSFORMATIONS 221

. 2= T2=3(y-2)-13(x-»
4z +19(y - 2) + B(x - »)

S A LT
Hence the verification.
Example 10. Consider the linear map ¢ : R = R’ defined by
¢ (xy, %) = (32, — 23y, 0, X, + dx3).
Find the matrix of ¢ w.r.t. ordered bases
B={(, 1),(0, D} for &’
and g ={W,1,0,(,0 01D} for . (G.N.D.U. 1997, 89 ; P.U. 1986)
Sol (g, b, ¢) € R’ and let ’
(a b, &)=a(l, 1,0)+5(1,0, ) +¥0, 1, 1)

- g-a+‘3‘ b=a+y, c=f+y
Solving, a-'”;-c.ﬁ a~:+c. -a+2b+c
(@59 L2La10+ L2 00+ 2L q,1,1) ()
Now, T(x, x;) = (3x; — 2xy, 0, X, + dxy) [Herea=1, b=0, c¢=35]
T(, 1)=(~2,0,1+4)=(1,0,5)
]
140-5 1-0+5 —140+5
= 5= 010+ 2200 0+ == 0,1, )
EED(LL043(0,0,1)+2(0,1, 1)
and T(0,2)= (04,0, 0+ 8) = (~4, 0, 8) (Herea= —4, b=0, c=8]
= Z320-8, 5 e 22080 0.+ 2 0 1) '
2 , 2 2
=-6)(1,1,00+2(1,0,)+6 0, 1, 1).
-2 -6
r:B,BJ]=| 3 2|
2 6
Example 11. Gm:hemu'k[;ﬁ i],mmme.... ponding linear op Ton R
w.r.t. the basis
B={(% 0, D}. (GN.D.U. 1988 §)

Sol. We have [T:B]=[;$§ 1]

. Coeﬁ'lcicmmm'b;-[[’;z z‘{s]
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1 2 72
T(1,0)= 5“' 0}+§{1, 'J-(E'EJ
T(L D= 1(1,0)+4(1, 1)=(5,4)
Let (@ B)=a(l,0)+8(1, =[x +8,p)
a+f=a, f=b Soa=a-b,
T(a, b)=T[la-b) (1,0)+ b (1, 1)]
=(a-b)T(1,0)0+bT(1, 1) [ Tis linear)

@-»(2.2 +be.

=[%(a—b)+5b.§{a—b)+4b]

Hence T(a, b)= [M M)_

6 ' 3
Example 12. Let ¥ (F) be a vecior space of all polynomials in x of degree atmost n on a real field
and a differentiation transformation D is defined on Vas: D : P, =P,

st D[pw]= % @] px) € V().

Find the matrix of operator D w.r.t. a basis of V (F).
Sol. The basissetis B= (1, x5, ..., x"}.
Since D is a linear operator on V,

. We shall find D(.\p],p=0, 1,2,......, n Le., for each basis number.
D=0 =0140x+0x"+.... +0x"
Dx)=1 =LI+0.x+0x5+ ... +0x"

D) =2¢ = 0.0+2x+0x +......+0x

" -

Dix)=nx

010...0
002...0
000.... n



LINEAR TRANSFORMATIONS 223

-

and

Example 13. [f WF) is a vector space of polynomials in 1 of degree atmost 3 and D be the

differentiation transformation on V. Then basis for V(F) is B= {1, 1, 2, 7). Verify that

[D: B] [x: B] = [D(x): B].
Sol. Let x=p(f)=a+bt+cf+df EV.

0100
Then  [:B]=|9 5 29
000

]

Since D (p(n)=b+2ct+3df + 0.0

[=F=-]
oon

nnon

b
[D(p(r)):al-[mx):al-[ﬁ]

0
010 0ffa] [,

and :B][x:B={ 0 0 2 OllP]- ;‘;]=[D(:}:B]
00 0 olld ¢

Hence [D: B] [x: B] = [D(x) : B].
Example 14, If the matrix of the linear transformation T on R relative to usual basis of R is
1173
1 1]
Then find the matrix of T relative to the basis
B,={(, n.(1,- D}
Sol. The usual basis of R? is B = {(1, 0), (0, 1)}.

Also we have [T : B]= [:'; - i:|

T(1,0)=2(1,0)+1(0, 1)=(2, 1)
T(0, 1)=-3(1,0)+ 1 (0, 1)=(-3,1)
T(a, b)=T(a(1,0)+ b (0, 1)) = aT(1, 0) + 5T(0, 1)
=a(2, 1)+b(-3,1)=(2a-3b,a+b).
This defines T on R? .,
The basis of R*is B, = {(1, 1), (1,- 1)}
T(a, b)={2a-3b,a+b).

1 3
We have T(1, 1)=(-1,2)= Z(I' 1)—5 L-D
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and T(1, - 1)=(5,0) = ;U, 1)+% (1,-1.

Hence, by def,, [T:B,)= [_ ;ﬁ ;ﬁ]

Example 15. If the matrix of linear operator T on R relative to standard basis is [; "::l what is

the matrix of T relative to the basis B, = {(1, 1), (1, - I}.
Sol. The usual standard basis of R* is B = {(1, 0), (0, 1)}.
Also we have

[T:B]= [{ }]
T(1, 0)=1(1,0)+ 1(0, 1) = (1, 1)
T, )= I(1, 0) + 1(0, 1) =(1, 1)
T(a, b)=T(a (1, 0)+ b (0, 1)) = aT(1, 0) + T(O, 1)
=a(l,1)+b{1,1)=(a+b,a+b)
This defines T on R”.
The basis of R® is B, = {(1, 1), (1, - 1)}

and T(a, B)=(a+ b, a+b).
We have T(1, 1)=(2,2)=a(l, )+f(1,-1)
- 2=a+f and 2=a-§
= 20=4 = a=2 and §=0
T(L D=(2,2)=2(L, 1)+0(1,-1)
and T(, - 1D)=(0,0)=a(l, N+p(1,-1)
= O=a+p and O=a-8
= a=f=0

T(1, - 1)=(0,0) =0 (1, 1)1 (I, ~ 1).
Hence, by def., [T:B,) = [§ g}.

Example 16, Let A= [; i] Let T be the linear operator on R defined by T(v) = Av, wherev is

written as a column vector.
Find the matrix of T in each of the following bases :

@ B,={(L0) @D} G By={( 3, 9).
Sol () T(I o)-[‘ 2][‘]-[‘]-1(1 0)+30. 1)
A . 340 3 , .

1(0.1)-[; 3] [‘I’] = [i:|'*2(1,|])+4(0. )
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Thus [T:B]-[; ﬂ
(i) Let v=(g b)ER

and

v=(a b)=a(l,3)+f (2,5)=(a+2p,3a+5§)
o ag=a+2f and b=3a+58
Solving, a=2b—5a, f=3a-b

(a b)=(2b-5a)(1,3) +(3a-b)(2,5)

worl} 13- [3]

=-5(1,3)+6(,3)

[Puttinga=7, b=15in(1)]
res-[§ 3] (3] - 5]

=-8(1,3)+10(2,5)

Hence [T:Bil=[-: -I:]'

[Putting a= 12, b= 26 in(1)]

Example 17. (a) {f the matrix of a linear transformation Ton R relative to the basis
B={(10 0,0 1,0),(0.0 N} is

0 1 1
10 =1
-1 -1 0
then what is the matrix of T relative to the basis

B={0 1= -1 0,110} (G.N.D.U. 1988 ; P.U. 1985)
(b) If the matrix of a linear transformation T on R’ relative to the usual basis is

11 -1 )
-1 1t 1),
I -1 1
then what is the matrix of T relative to the basis
B={(1,2,2,(.12,02 N}

(P.U. 1997, 89 ; Pbi. U. 1997)
Sol. (a) The basis is given as
B={(1,0,0),(0, 1,0),(0,0, D)}.
First we define T when
[ I T
[T:B]=| 1 0 -1 (1)
-1 =1 (1}
Now T((1,0,0))=0(1,0,0)+1(0, 1,00+ (-1)(0,0, 1)
=0,1,-1)

[va=0,p=1y=-1b(1)]
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Example 19. Each of the sets
() By={Luié 'y (i) By={l 1 zin 31, cos 31}

is a basis of a vector space V of function f: R - R.. Let D be the differential operator of V i.e., D (f} = i
Find the matrix of D in the given basis.
Sol () D(1)=0=0.1+0.+0.€ +0.s¢
D()=1=1L1+0s+0.e +0.s
D(e)=e' =01 +0s+ 1. +0u'
D ()= L&' +1' =0.1+0u+ 1"+ 12

0100
0000
Hence [D: B]= 001 1)
0001
(i) D(1)=0=0.1+ 0.t + 0.sin 37+ 0.cos 3¢

D(f)=1=1.1+0.+0.sin 3¢+ 0.cos 3t
D (sin 3= 3 cos 3t=0.1 + 0.r + 0.sin 3¢+ J.cos 3¢
D (cos 31) = - 3 sin 3t= 0.1 + 0.~ 3.5in 31 + O.cos 3¢

e
HEIIOE[D:B;]=°DO_3.
003 o0

Example 20. Consider the vector space V(F) of all 2 x 2 matrices and let T be a linear transformation on
WF) such that

() = Ax, wherex € VF)and 4 = [; §:|

Find the matrix of T relative to basis
o=l 8118 4102 5105 4}
of V (F).
Sol. Given. T: V=V ;T(x)=Ax YxEV 1)
Now T(x,}=T[[tll g]) =[} ”[a g} By (1)
-[1 8] 1[6 §]+of8 o] [}
T~ T ([ o) -0 06 0= [8

0
(1]
] (By (D)
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w2 40 1 0

oo abfs oJ i SJofs 1]

~T1 0 01 00
“ofo Shafs o]t &+<[5 1]
poro] [pogo
{0 pO0rf_J0po0g
MB= 2 9 50 r0s 0
0 g 0 s 0 r 0 s
(4) Wehave T;V -V isa linear operator defined by

TA) =AM YAEV.

where M-[p q].
F 3

To find the matrix of T relative to basis

8- (e, EaEni} ={[§ 0

wee  1w0-5m=[} 8][2 7]

[SE—)
—
(=R
[ S—
—
—_—0
oo
—
—
oo
—_—
[S—
[—

re)-ea=[g ][ ¢]-[o
o oo oJ+el?
et
o o) ds ool
|

[

0 0fip g|
and T(B‘)_E‘M-[l I][r .s]_

o[} g]ﬂ{g' e

- [T:B)=
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(d) Wehave T:V -V is a linear operator defined by
T(A)=MA+AM YA EV,

=P 9
where M [r S]A

To find the matrix of T relative to basis o
o- omsd-{[4 418 4} 8)4 ]

Here T(E,)=ME,+51M=[:’ i]["] g+[“) g][f ‘::Hf

=|2r q
r 0

L A H I M R -

and  T(E,)=ME,+EM

£y g)mals )08 aJeen(t gl

and T(E.)-[f 2‘1] -o[t', g]h;[g ;]H[? g:|+23[g ‘l’]

]
—
T
L]
M
—
oo
-
——
+
—
oo
-
e
. —
-]
R
[
L
—
oo
w
—
+
—
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, ¢ 2 -1ra) [dar2-c
[T @)]p =T g x: B]-— 13 =216 Ba + 136 - 2¢
c

3-6 3 3a - 6b + 3¢

T'@W=T"(a b c)= é (4a+2b-c,8a+ 13b—2¢c,~ 3a—6b+3c).

Example 26. }f T, T; are similar linear transformations on a finite di | vector space V(F),
then prove that
det [T)] = det [T3).
Sol. Since T, and T; are similar transformations hence 3 an invertible operator T such that
T,=TT, T

det [T;] = det [TT, T™'] = (det T) (det T) (det r‘)
= (det T) (det T™") (det T;) = det (TT ') det T,
= (det I} det T,
=1det T,=det T,

Example 27. [ftwo linear mﬁmmw on V(F’) are similar, then show that T\ and Ty are also
similar and if Ty, T, are invertible, then T\” " and’ry"" are also similar.

Sol. Since T, T, are similar transformations hence 3 an invertible transformation T such that

T,=TT, T (D
Now TN T=TLT)OLT)=TLT' DT, T
=TLIT, T [~T'T=1T"=]
=TT, T =T, T
Now T =TT T o T, similarto Ty .

Now if T}, T; be invertible, then from (1),
@) =L T =Y T T =T T
Above relation shows that T, and T, are similar.
Example 28. [fT) and T, are linear transformations on V(F) and if at least one of them is invertible,
then Ty T, and T, T, are similar.
Sol. Let T, be invertible, then

T, =1 (D
Now T\T,=TTy 1 =T, T,T,T, "
- T =T (LT T,

By def,, T,T;and T,T, are similar.

Similarly, we can show by taking T, as invertible.
16. TRACE AND DETERMINANT

Definition. The trace of a square matrix A = [ay] of order n over a field F is the sum of the elements
on the principal diagonal of A.

We shall write the trace of A as tr A.

Thus trA= ;:aa '
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THEOREMS
Theorem L. Let A and B be square matrices of order n over a field F and @ €F. Then
Y0 wrlad=ard (i) rA+B)=rA+uB
(iii} tr (AB) = tr (BA). (G.N.D.U. 1992)
Proof. (i) LetA=[ay], thenaA =[aay).
Now raA= ian,‘ =a ia,,
i=1 i=l
Hence tr{aA)=atrA.
(i) Let A=[ag)and B= [by], then A +B = [cy], where c;y=ay+ by

tr(A+B)= i(:u- i(a“bu)
i=1 i=1

= tr(A+B)= ia"+ ib,
i=1 i=1
Hence tr(A+B)=wA+wB.
(iif} Let AB = [a;] and BA = [§;],

where a; = Z“ﬂbu and g, = ib‘ah.
k=1 k=1

Thus  w(AB)= 3a,= ﬁ[ Yo "’n) -3 [ i*”"‘] ) ,g.ﬂ‘*

i=1 Imlvk=] k=1 i=1

Hence tr (AB)=tr (BA).

Cor. If A and C are square matrices with A invertible, then tr (4”* CA)=tr C.

Proof. Let B=A"'C, then tr(A”' CA)=tr(BA)=1r(AB)=1r(AA' C)

tr(A”' CA)=trC.

Theorem I1. Let ¥ be a n-dimensional vector space over F. If B and B' are two ordered bases of
Vand T €A(V), then tr [T, Bl =1r[T; B

Proof. By Art. 13 ; Th. II, there exists a invertible matrix P such that

[T:B]=P"'[T;B]P

Thus by above Cor,, tr[T;B']=tr[T;B].

Remark. This theorem shows that trace of [T ; B) depends on T and not on any particular ordered bases B of V.

Definition. Let V be a finite dimensional vector space over F. [f T €L (F), then the trace of T is
defined as trace of a matrix [T ; B, where B is some ordered basis of V.

Theorem IIL. Let V be a finite dimensional vector space over F. If T, SEL (V) anda € F, then

[6)] n-'(l"+S)-n-T+n-S (i} r@N=atrT (i) tr (TS) =tr (ST).
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and

and

and

Proof. LetB' = {x;, X3, .ovunn ,X,) be a basis of V.
If A=(T;Bland B=[S;B'], then
[T+S;B=A+B
[aT; 3] =aA

Thus trT=wrA rS=urB, r(T+S)=tr(A+B)

tr{aT)=tr (aA).

6] tr(T+S)=tr(A+B)=trA+urB

try.+8)=rT+trS.

iy tr{aT)=tr (aA)=atr (A)

tr{@aT)=atrT.

(iif) tr (TS)=tr [TS, B'] = tr ([T, B'] [, B'])

=tr ([S, B'] [T, B'])=1tr ([ST, B'])
tr TS = tr ST.
|SOLVED EXAMPLE |
Example. Ler T: R' - R’ defined by
Na, b c)=(a+c da-2b-a+b-c)

beal.T

() Find the trace and determinant of T.

(i) Is T invertible ? If so, find its inverse.

Sol. Let B = {e,, e,, &;} be a standard basis of R*. We find [T;B]
Tle)=(1,2,-1)=le; + 2e;~e;
Tle)=(0,~2,1)=0¢; - 2e: + ¢
Tle))=(1,0,~1) = le; + 0e; - &5

[ 1 0 1}
(T:B}=| 2 -2 o
-1 1 -1

Now rT=tr[T;B}j=1-2-1=-2
tr Te—2,
1 0 1
det.T=| 2 -2 0]=1@)-0+1Q2-2)=2
-1 1 -1
det, T=2=0
Thus T is invertible.
Since Tle)=(1,2,-1), T(ed=(0,-2,1), T(e)=(1,0,~1)

T(,2,-1)=(1,0,0),

T'(0,-2,1)=(0,1,0)

T(L0,-1)=(0,0,1)
To find T"' (4, b, ¢). We write (g, b, c) as a linear combination of (1,2, - 1), (0,- 2, 1) and (1, 0, - 1).
Let x(1,2,- D) +y(0,-2,1)+2(1,0,-1)=(a b,¢) (1)
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Augmented matrix of this equation is

1 0 1]|a
2 =2 0f|&
-1 1 -1
1 0 1 a
R,-2R;,R;+R, |0 -2 -21b-2a
- 0 1 0| a+¢
1 0 1 a
Ry | 0 1 0] a+e¢
~ |0 -2 -2|b-2a
1 o0 1 a
-1RJ 0 1 0| a+e
gk PR P
2
1 0 1 a
R;-R,[0 1 0] a+c
- —0 01 -%—c
10 a+=—+c
Ri-Ry|0 1 0 a+c
- b
Lﬂ 01 —-i—c

Thus, x=a + -g» +¢ y=atezr=- % + ¢ is a solution of (1)

Operating T on (1), we get
T (1,2, - D+ (0,-2, D +2T7 (1,0,- D =T (a b c)
= T (a b, €) =xe, + ye, + ze,

> T"(a.b,r:}=[a+%+c.a+c.-_-2£—c).
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To prove. ¢{(f(T)) =f(A).
& is a linear transformation.
Here let T, and T, be two linear operators on V and let A, and A; be their matrix representations.
Thus [T,]=Aand [Ts] = A,
- [Ty+T]=[T)] +[T]=A, + A,
Also  [aT,] =« [T\] =aA,
> Matrix representation of aT, is aA,.
Now (T, +Ty) = [T, + To] = A, + A, = ¢(T\) + §(T) and @(aT,) = [aT,] =aA, = af(T))
Thus ¢ is a linear transformation.
#(T, Ty = [T, Tol = [T,] [Ta] = $(T)) $(T2).
Let f(x)=a,+apx-+ ,,,,.&a,,x".

We prove by induction,
Suppose n=0.
We know that matrix of identity operator 1" is the unit matrix
ie., p(IN=1
= #(r(M)=¢(r1")
But ran=a,r [ deg (F@) =0, . f(x)=a,]
= B(F(M)=¢(f(1)
=glas 1= a, (1 = ay 1=1(A)

= (M) =f(A).
Thus the result is true when =0,
Let us assume that the result is true for polynomials of degree <'n.
Then ¢(f(T))) =dlapl’ +a T+ ...... + a,'_,'IJ'-l +a,T")
=dal’ +aT+...... +a,,_|1”_|)+a,, HThH
=glal' +aT+ .o+ 0y T )+ a, gD H(T" ")
=(a+aA+...... +a,,_,A"d|)+a,,AA -1
=gl +aA+t...... +a',,_1A“"1 +a,,An
=f(A).
Thus the result is true for any n.
Hence the result is true for all polynomials.
3. Eigen Values and Eigen Vectors
Defs. (i) Eigen Value. Let T V = V be the linear operator on a vector space V over F. Then a
scalar A € F is said 1o be an eigen value if there exists a non-zero vector v € V such that T{v) = dv.
Eigen values are also known as Characteristic values or latent values or proper values or
spectral values.



EIGEN VALUES AND EIGEN VECTORS 243

(i) Eigen vector. Let T: V =V be the linear operator on a vector space V over F. A scalar 1 € F,
being the eigen value, satisfies Tlv) = Av, where v is @ non-zero vector € V. Any vector satisfying this
relation is said to be eigen vector of T belonging to the eigen value A.

Eigen vectors are also known as characteristic vectors or latent vectors qr proper vectors or
spectral vectors.

Theorem IV. Let A be an eigen value of a linear operator T : V = V. Let ¥y be the set of all eigen

vecitors of T belonging to the eigen value A. Show that V§ is a sub-space of V. (P.U. 1995)
Proof. Letv, wEYV; .
By def., T{v)=4v and T{w)=A4w 1)
For any scalars a, § € F, we have
T(aw + fw)=aT(v) + AT(w) = a (iv) + a (lv) [Using (1]
=4 (av + fw)

= av + fiw is an cigen vector belonging to eigen value 1
= av+fwEV;.
Hence V; is a sub-space of V.
Nate. V;, being a sub-space of V, is said to be eigen space of 4.
Theorem V. Let T: V — V be a linear operator on a vector space V aver F. ThenA € F is an eigen
value of T iff the operator Al - T is singular. Also the eigen space of A will be the null space of Al - T.
(P.U. 1996, 88, 85 ; G.N.D.U. 1995 S)
Proof. (i) A € F is an eigen value of T
3 a non-zero vectorv st T(v) =4 v
T(v) = Alv) | = Kv)=v]
An-Tw=0
(A1 = T) (v) = O, where v is non-zero vector
Al =T is singular.
Hence the result.
(#) A is an eigen value of T, if 3 a non-zero vector v s.t.
AlI-T)=0.
Clearly v belongs to the null space of AI-T.
Also v is an eigen vector of T belonging to the eigen value .
Thus v is in the eigen space of 4 iff v is in the null space of A1 - T.
Hence the null space of 1 - T is the eigen space of 1.
Cor. The eigen values of T are given by
det (A1 - A)=0, where A =[T].
Theorem VI, Non-zero eigen vectors belonging to distinct values are linearly independent.
(G.N.D.U. 1996 ; P.U. 1989 ; Pbi. U. 1986)
Proof. Let v, vy, ......,t, ben non-zero eigen vectors of a linear operator T : V-V belonging to
distinct eigen values 4,2y, ......, 4, respectively.

¢ s ¢80
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To prove. vy, vy, ......, v are LI

We prove the result by induction.

When n=]. Herev,is L.l becausev, # 0.

Thus the result is true when n= 1.

Let us assume that the result is true when the number of vectors <n.

Let aw +awy+ ... tau,=0 (1),
where a\, ay, .......,a, EF
= qT)+aT) ... +a,Tv,)=TO) [4pplying T)
= oTv)+a T+ ... +a,T(v,)=0
Since T(v,)=4;v; fori=1,2,.....n
adp +adan+ L tady, =0 w(2)

Multiplying (1) by 4,,,we get

a A radan t ot adw,=0 -(3)

Subtracting (3) from (2), we get
@A =)+ ~A) vt it @y Ry =Ap) Uy =0
= @ (G =A)=0, @ (Ry=Ap) =0, cooovey @y Ry —Ap) =0 ()
[ v Vs cereny Uy -y are LI (assumed)]
But since 4, are distinct,
A=Ay # 0,4, -2, #0, ..., 0, -4, #0.

A @ o= =0, a=0,....,a,_ ;=0
Putting in (1), A =0
= a,= 0. [_-_ v"#ol
Thus a, =0, a;=0, ......,a, =0.

Hence the vectors v,, vy, ......, v are LI
Theorem VIL 0 is an eigen value of an operator T iff T is singular. (P.U. 1996)
Proof. 0 is an eigen value of T
<> there exists a non-zero vectorv €V
st. Tw)=0v ie, T)=0
e  Tissingular.
Theorem VIII. [fA is an eigen value of an invertible aperator T on a vector space V. over F, then
A" is an eigen value of T™". (P.U. 1997 ; G.IN.D.U. 1997)
Proof. Since T is invertible, [Given)
T is non-singular
there exists an eigen value d # 0
= 1" exists
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1 =2 1 -2
4 5914 5
[ 1-8 -2-10]_[-7 -12
4420 -8+25 24 7]
Since f(1) =£-31+7,
F(A)= A% - 3A +71,, where [, is the 2-rowed unit matrix

o ERal e
A
[24?—12:; “11‘?-+lg:g]=[-1; _:]'
(3 1]

S I [T A St R M

Since f()=2F=31+1,
f(A)=2A"-3A + 71, where I, is the 2-rowed unit matrix

2[5 )3 i 1]
<[ 2)+[23 ek 9]

[16-31-? 20 - 6+0] [18 ]4:|

g |

(if) Here A=

30-9+0 44-12+7 21 397

12
(#if) Hcm.n"k-]:3 4:|

<[V 2][r 2].[1+6 2487 [7 10
3 4|3 4 3412 6+16 15 2
Since f(=r-5-2,
F(A)= A*=5A ~21,, where I, is the 2-rowed unit matrix

[11 al-f Ao i [s =)

7-5-2 10-10+07] [0 0] .
15-15+0 22-20-2 [0 07

]

]

-5
-15

[Given]

[Given]

ol 7s e
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Example 2. Prove that
A= [;': j] isazeroof f() = £ — 41— 5.

(14
Sol. Here A [2 3]

a1 4] 4] [r+8 44127 [9 16
2 3([2 3|7 |2+6 8+9 8 17/
Since f(N=F-41-5,
S(A)= A’ —4A - 51, where 1, is 2-rowed unit matrix

St R E P
13 9]+l Tl s 2d

_[9-4-5 16-16+07] [0 0]_,
8-8+0 17-12-5|"|0 o]

Hence A is a zero of f(1).

Example 3. Find the eigen values and associated non-zero eigen vectors of the matrix A = [:; g]
(P.U. 1996)

Sol. Let us assume that there is a scalar A and a non-zero vector X = [;] such that AX =2X.

SR MM

) x+2y] Ax
[22]%]
This is equivalent to system of linear homogeneous equations
x+2y=lxand 3x+ 2y =21y

. (A-Dx-2y=0
Le., i+ (-2 = 0] (1)

We know that a system of linear homogeneous equations has a non-zero solution iff determinant of
the co-efficient matrix = 0

N S

-3 4-2
iff @A-D@RA-2)-6=0
iff Ao3+2-6=0 if A-3M-4=0
iff A-4@A+1)=0 iff =4, -1

Hence the eigen valuesof Aarel=4or A=-1.
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(1) When i=4.

(d-x-2y=0
~3x+(@d=-2y=0

We easily take x =2, y=3,

From (1), } = Jx-2y=0.

Thus v =[ ; ]=[ §:| is a non-zero eigen vector belonging to the eigen value A = 4 and any other

eigen vector belonging to the eigen value 4 = 4 is a scalar multiple of v.
(1} When A=-1.
(-1-Dx-2y =10 _
From (1), —3x+(—l-2]y-0} > x+y=0

We easily take x=1, y=-1.
Thus w=[ ; ]=[ _ : } is a non-zero eigen vector belonging to the eigen value 4 = — | and any other

cigen vector belonging to the eigen value 4 = - 1 is a scalar multiple of w.
Example 4. (a) In the following matrices, obtain all eigen values and iated L.I. eigen vectors.

T4 21 . . [5 -1
0] A-—|:j, 3] (if) B—[‘f 3]‘

(b) Obtain invertible matrices P\, Py, Py respectively such that
P, ' AP, Py BP, and Py"' CPy are diagonal matrices.

Sol. (i) (g) Letus assume that there is a scalar 1 and non-zero vector X=[;]. such that AX =X

L 42:-1‘1’: 4x +2p| | Ax
A 3 3|y ¥ T 3x 4+ 3y Ayl
This is equivalent to the system of linear homogenecous equations
4r+2y=JAr and Ix+3y=Ay
(A-4)x-2y =0
te. “x+(A-3)y= n} (1)
We know that a system of linear homogeneous equations has a non-zero solution iff determinant of
the co-efficient matrix = 0
. i-4 -2
iff det|: _3 1_3} ]
iff A-49@A-3)-6=0 iff 2-7A+12-6=0
iff F-7A+6=0 iff (A-D@EA-6)=0
iff i=1,6.
Hence the cigen valuesof A ared=1or A=6.
(1) When 1= 1.

(1-4)x-2y=0
-3x+(1-3)y=20
We easily take x =2, y=-3,

From (1), ] » —3x-2y=0 = 3x+2y=0.
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This is equivalent to the system of linear homogeneous equations
Sx~y=Ax and x+3y=Ay
(A-5x+p=10
—x+(A=-3Ny=0 (1)

We know that a system of linear homogeneous equations has a non-zero solution iff determinant of
the co-efficient matrix = 0

iff m[“’ ']-o

ie.,

-1 A-3

i L @A-5@E-3)+1=0 iff -8 +15+1=0
iff A-gl+16=0 iff *-4=0
iff A=4,4

Hence the eigen value of A isd = 4.

Wheni =4,

4=-5x+y=0 - -
From (1), —x+(4—3)y-0] = —x+y=0 = x-y=0.

We easily take x=1, y=1,

Thus v=[;]=[:} is a non-zero eigen vector belonging to the eigen value 4 = 4 and any other
eigen vector belonging to the eigen value 4 = 4 is a scalar multiple of v.
(b) P, does not exist because B has only one L.1. eigen vector and as such can’t be diagonalized .

Example 5. Find the eigen values for the matrix

311
A=|2 4 2].
I 13

Sol. Let us assume that there is a scalar A and a non-zero vector

301 1]« x I +y + 2| ra.
ie, |2 4 20l yi=d|y| ie, |2x +dy+ 2z |=|dy|.
11 3 z x+y+3z) L&

This is equivalent to system of linear homogeneous equations
x+ y+ z=Ix
2x+ 4y + 22=Jy
x4+ y + 2=z

(3-—1)x+y+z=0}

x
X-[y:|. such that AX =iX

ie., 2x+(4-Dy+2z=0
x+y+(3-A)z=0

(D)
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We know that a system of linear homogeneous equations has a non-zero solution

I-4 1 1]
iff det{ 2 4-4 2 [=0
1 13-4
3-4 0 1
iff det| 2 2-4 2 |=0 [Operating C; = Cy - Cs]
L1 -2+43-1
3-4 0 1
iff (A-2)det| 2 -1 2 |=0
1 1 3-2
3-14 0 1 ]
iff @-2det| 2 -1 2 |=0 [Operating Ry = Ry + R]
05-2
. 3-2 1 .
iff a-z}(-naﬂ[ 3 5_1]-0 |Expanding by C;)
iff —A-[B-HE-H-G)] =0
iff ~A-2)(15-34-52+1-3)=0
it ~@A-2)@R* -8 +12)=0
iff —A-D@A-2DGEA-6)=0 .
iff ~@A-2P@-6)=0 iff 1=2,26

Hence 2, 6 are eigen values.
Example 6. (@) /n the following matrices, obtain all eigen values and a basis for the corresponding
eigen space

- tahy
L]

!
(i A= !
=1

110
G B=10 1 0.
00!
(6) If possible, obtain invertible matrices P, and P, respectively such that P,” ' AP, and Py ' BP,
are diagonal matrices.
Sol. (/) (a) Letusassume that there is a scalar A and a non-zero vector.
M
X= ly , such that AX =X

x+ 2y+ 2z Ax
ie., x+2y- z|=| 4y

—x+ p + 4z Az

1AM

] (G.N.D.U. 1995 S)

LU
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~-[ il

Hence eigen spaces are (1, 1, 0)and (1,0, 1).
(b) A has three L.1. eigen vectors

8]

corresponding to eigen values =3, 3, 1.

Ot

1°1 2
Let p=l10 -1/
0

Tofind P, ":

1 -1 17 11 -1
adf P,={ 1 1 1]=/-11 3
-1 3 -1 1 1 -1

112 _
ad detP.=det[l 0 n]«lw[‘: ”-mu[} ":]
01 1

=10+ 1)-1(1-2)=1+1=2%0

LR
. 11 =1 2 2 2
p,! =.a£1. = l -1 1 3= _l l 1 .
deth, 2| -1 2 2 2
111
2 2 2
Then' A is similar to the diagonal matrix
11 1 5 1
202 2t 2 2Qfr b 2] 43 ° 3
=1 - _2 o et - - = s
R R S S | B & PR [Verify 1)
11 1 4 0 -1
2 2 2

(i) (a) Letus assume that there is a scalar A and a non-zero vector

X =

[I
ie, LU
0 0

¥ |, such that BX =4X

[RE - [2H)

- o F 1
-
Mo W
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This is equivalent to system of linear homogeneous equations
x+y=A (I=-ADx+yp=0
y=dyr = (l-Hy=0 (1)
and = Az (1-4=z=0

We know that a system of linear homogeneous equations has a non-zero solution

{1 -4 1 0 ]
iff det 0 1-4 0 =0
0 0 1-4
iff (1-4y=0 it A=1,0,1.
Hence 1 is the eigen value,
When A = 1,  from(l), Ox+y =20
0.y=10 = y=0
0z=20
Clearly eigen spaces are (1, 0, 0) and (0, 0, 1).
Example 7. Find all the eigen values and a basis of each eigen space of the linear operator T: R® = R’
defined by
Tlx, ¥) = (3x + 3y, x + Sy). (P.U. 1993 S ; G.N.D.U. 1985 S)
Sol. First of all, let us find a matrix representation of T ; say relative to the usual basis
B = {(1,0), (0, D} of R*
a=m=[} 3]
The eigen values of T are the values of 4 s.1.
det [Al-A]=0
ie., det['l__la A“_35] =0
ie. (A-3)(A-5)-3=0 ie, AF-81+15-3=0
ie. A-g+12=0 ie, @A-2)(A-6)=0.
Thus 2 and 6 are eigen values of T.
(i) Basis of the eigen space of eigen value 2,
Putting 4 =2 in (il — A) X = O, we get the homogeneous system of equations
v S He = 55
-1 =3 y 0 -x-3y 0
~x =3y=0, -x=-3y=0
ie. x+3p=0, x+3y=0.

‘The system has an independent solution x=3, p=-1.

Thus a, = (3, - 1) forms a basis.

(ify Basis of the eigen space of eigen value 6.

Putting A =6 in (A1 - A) = O, we get the homogeneous system of equations

I IH R et
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Ix =3y=0, —x+y=0
e x=y=0, x=y=0.
: . The system has an independent solution x=1, y=1.
Thus @3 ={(1, 1) forms a basis.

Example 8. In the following operators T : R® - R, find all the eigen values and basis for the

corresponding eigen space
(M Tx»)=(mx) (G.N.D.U, 1985 S)
(i) Txy)=(y-x) (i) Tx, y) = (3x + 3y, x + Jy). (P.U. 1997)

Sol. (i) First of all, let us find a matrix rep tion of T ; say relative to the usual basis

B={(1,0), (0, N} of R

A=m=[? },]
The eigen values of T are the values of 4 s.t. det [AI-A] =10
ie, det|:_'a]' ';]-0 ie. A-1=0 ie. A=%1.

Thus 1, -1 are eigen values of T.
(I) Basis of eigen space of eigen value 1.
Putting 4 =1 in (A - A) X = O, we get the homogeneous system of equations

[+ AIGHEHS

=  x-y=0, -x+y=0.

The system has an independent solution x=1, y=1,

Hence a, = (0, 0) forms a basis.

(I1) Basis of eigen space of eigen value - 1.

Puttingd = -1 in (il - A) X = O, we get the homogeneous system of equations

1 —x-=y| (0
[ 2IGHE) -5
=] —x-y=0, -x- y=0
The system has an u:dcpcndem solutionx =1, y=1.
Hence a, = (1, — 1) forms a basis.
{if) First of all, let us find a matrix representation of T ; say relative to the usual basis

B ={(1,0),(0, 1)} of R.
a=m=[_9 ¢}
The eigen values of T are the values of 4 s.t. det [AI-A]=0

e, det["‘ '1] 0 = A+l=0,

which has no solution in R.
Hence there is no eigen value in R.
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The eigen values of T are the values of 1 s.t. det [Al - A] =0
A-1 -1 -1

ie, det| 0 iA-2 -1]|=0
0 -2 i-3
e, A=-D[A-20-3-2]=0 = (A-D@E-51+6-2)=0
s (A-DA-51+4)=0 = A-1)E-D@A-4=0
= @A-1Y@A-4)=0 = A=1,14

Thus 1 and 4 are eigen values of T.
(/) Basis of the eigen space of eigen value 1.
Putting 4 =1in(Al-A) X =0, we gel the homogeneous system of equations

0 =1 =1 x -y-z 0
0 -1 =1 yI|= -y=z|=|0
0 -2 -2 z —2y—-1= 0
—yp—z=0, —y—-z=0, =2y-

or y=0 z=0, xmhavcanyw.lue.

Thus a, = (1, 0, 0) forms a basis.
(1) Basis of the eigen space of value 4.
Putting 4 =4 in (A1 - A) X = O, we get the homogeneous system of equations

3 -1 -1 x 0
] 2 =1|lyi=|0
0 -2 1 z 0
Ix=-yp-z 0

> 2y-z|=|0
-2y +:z ]

3x-y-z=0,2y-2=0, -2y+z=0
Ix—y-z=0, y=z
The system has an independent solution x=1, y=1, z==2.

Hence @, = (1, 1, 2) forms a basis.

Example 10. In the following operators T : R = R, find all eigen values and a basis for the

corresponding eigen space.

() Meyz)=(2x+yy-z 2+ 41) (G.N.D.U. 1985)
(@) Me,v2)=(x+yy+z-2y-z) (G.N.D.U. 1987)
(iii) Tx,y.2)=(x+y+z 2y+z 2y+3z)

(W) Ty 2)=(x=p 2x+3p+25x+y+22).
Sol. () First of all, let us find a matrix representation of T ; say relative to the usual basis
B = {(1,0,0),(0, 1,0),(0,0, 1)} of R’

[2 1 0]
=[T=|0 1 -1
02 4
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ie.,

ie.

The eigen values of T are the valees of A st det [AI-A]=0

A-2 -1 0
det o0 iA-1 1 =0
0 -2 A-4

(A -2) det [“_'2' 114] =0
= A-[(A-1A-4)+2]=0 » A-2)[A*-54+6]=0
= A-2)@A-2)(A-3)=0 = A-2)(A-3=0
= 1=2,23.
Hence 2 and 3 are eigen values of T.
() Basis of the eigen space of eigen value 2.
Putting 4 = 2 in (4] - A) X = O, we get the homogeneous system of equations

-1 Ojjx] 10 -y1 [0
0 1 1||»|=|0 = y+z|=|0
0 -2 -=2|z| o ~2y-2z] |0

~y=0,y+tz=0,-2y-22=0
= y =0,z =0,x can have any value.
Thus a; =(1, 0, 0) forms a basis.
(/I Basis of the eigen space of eigen value 3.
Putting 4 = 3 in (A1 - A) X = O, we get the homogeneous system of equations

R e

x—y=0,2p+z=0,-2y-z=0
= x-y=0,2p+z=0 = x=yzr==2y

[x y |

v|= = Iy

K =2y |-2
Hence &, = (1, 1, - 2) forms a basis.

(i) First of all, let us find a matrix representation of T ; say relative to the usual basis
B = {(1,0,0), (0, 1,0), (0,0, N} of R’

1 1 0
A= [T]=|0 1 1
0 -2 -1

The eigen values of T are the values of A s.t. det. [Al - A]=0

A-1 -1 0
ie, det| 0 A-1 =-1]|=0

0 2 A+l
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= a-1)de:["" "]=u = A-D[E-DEA+1)+2]=0
2 A+l
= A-D@E-1+2=0 s (A-D@+D=0
= A=l [~ £+ 1=0inR]

Basis of the eigen space of eigen value 1.

Putting 4 = 1 in (A1 — A) X = O, we get the homogeneous system of equations
0 -1 Ofx| |0
0 o -iflyl|=lo
0 2 2f=z| |0

-y 0
= ~z |=[0| =-y=0,-2=0,2y+2:=0
2y+2z| |0

»=0,z=0, and x can have any value.
Thus a = (1, 0, 0) can be taken as basis.
(iif) First of all, let us find a matrix representative of T ; say relativesto the usual basis
B = {(1,0,0),(0,1,0),(0,0,1)} of R}
1T 11
A=[T]=|0 2 1
023
The eigen values of T are the values of 4 s.t. det[Al-A]=0
A=l -1 -1

det| 0 A-2 -1|=0
0 -2 i-3
- (A-I)de:r"z _']=o > A-D[A-2D@A-3)-2]=0
-2 A-3
= (A-1)(Jl'—51+4)=0 = (A-NA-9HE-1)=0
= A=14,1.

Thus 1, 4 are two eigen values of T.

(I) Basis of the eigen space of eigen value I.

Putting 4 = 1 in (Al - A) X = O, we get the homogeneous system of equations
0 -1 -1]{x} |0
0 -1 =1{lyi=l0
0 -2 -2j|=z ]
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0 -1 -1f|x]| [0
= |0 0 0f|y|={0 [Operating Ry = Ry — Ry and R; = Ry - 2R,)
o 0 0z 0

-y=z| |0
= 0 f(=|0 = —y—z=0 = y=—z
0 0

and x can have any non-zero value.

Le,

a,=(1,1,-1).
(IT) Basis of eigen space of eigen value 4.
Putting 4 = 4 in (11 — X) = O, we get the homogeneous system of equations.

e

3 -1 -1][x] [o
= fo 2 -1f|yl=lo [Operating Ry = Ry + R;)
o o oflz] [o

[3x-y-z] [0

= 2y-z|=|0 = 3x-y-z=0 and2y—-z=0
A 0| |0

= x=yz=Y
y is a free variable Sooap=(1,1,2)

_(#v) First of all, let us find a matrix representative of T ; say relative to the usual basis

B = {(1,0,0),(0, 1,0), (0,0, 1)} of R’

I -1 0
A=[T]=|2 3 2{.
1 1 2
The eigen values of T are the values of 1 s.t. det [AI-A] =0
A-1 1 0
det| -2 A-3 =-2|=0
-1 -1 -2
A-1 1 0
= det| -2 1-3 -2{=0 [Operating Ry» Ry + R,}
A-2 0 A-2

-1 1
= (A-2)det| -2 -3 -2[=0
10
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> A-2[@-nNE-3)-1(-2+2)]=0 [Expanding by R)
= (@A-DA-2)@A-3)=0 =1=1,213

Thus 1, 2, 3 are eigen values of T.

(I) Basis of the eigen space of eigen value 1.

Putting A = 1 in (AI - A) X = O, we get the homogeneous system of equations

o 1 o]fx] fo
-2 =2 =2yl=
L-1 -1 -ljjz] |0
[0 1 o]fx] [o
- 0 0 0)y|=0 [Operating Ry = Ry — 2 Ry]
B
o 1 o]x] [o
= |-1 =1 -1||y|=|o [Operating R, + R}
Lo © 0__2] [0]
-1 -1 —I]H [o]
= 0 1 0flyl|=|0 [Operating R, += R;)
L0 0 0jz] [0
[~x-y-z] [0
- y |=|0 s —x-y-z=0,y=0
[ 0 0
s  x=-y-z,y=0 = x=-=z,y=0
a,=(1,0,-1)
(1Y) Basls of eigen space of eigen value 2.

Putting 4 = 2 in (Al - X) = O, we get the homogeneous system of equations

1 1 0jx| |0 11 o]f=x] [0
-2 -1 -2 0 - -2 -1 -2 =0 [Operating Ry = Ry + Ry]
-1 -1 oz} {0 o 0o o=z |0
x+y 0
= [—Zx —6_1!—~22:|=[g]

= x+y=0, ~x-y-2z=0 > y=-ry=-2-2z
= x=-25,y=2
ay=(-2,2,1).
(HI} Basis of the elgen space of eigen value 3.
Putting A = 3 in (A1 - X) = O, we get the homogeneous system of equations
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(2 1 ol[x] [o L MR
-2 0 -2{y|=|0 > 0 1 -2 0 [Operating Ry = Ry + R}
-1 -1 1|z (O -1 -
L L 1 -1 1 0
-1 -1 1]f«] [o

> 0 1 -2|yl=|0 [Operating Ry = Ry]
L2 1 olz] |o
-1 =1 1] [0

= 0 1 =2{y|=|0 [Operaring Ry— Ry + 2 R|]
Lo -1 2f=] [o

[ - x- 2 0
= y = 2z|=
L 1] 0

» —x—z=0, y-2z=0
ay=(=1,2,1).

= x=-z,y=2

314

[Operating Ry = R, + Ry and Ry = Ry + R;]

Example 11, LetTheal.T. onRand A =|0 2 6| bethe matrix of T w.r.. the basis

003
B={(3,00)(1 2 0), (46 3}
Find all the eigen values and the corresponding vectors of T.
Is T diagonalizable or not ?

31 4
Sol. Wehave A=|0 2 6{andB={(3,0,0),(1,2,0)(4,6, 5}
00 5
The eigen values of T are the values of  s.t.
det [AI-A]=0
A-3 -1 -4
det| 0 1-2 -6|=0
0 0 iA-5

L A-DEA-DA-5)=0 ie, 4=2,3,5.

Thus 2, 3, 5 are the required eigen values of T.

(P.U. 1998, 95)
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(1) Whend = 2.

x

Here the corresponding eigen vectora, = | y | is given by

z

[21-Ala,=0 ie, [A-2l]a,=0

0
=0
0

0
=|0
0

11 4=

ie., 00 6y
00 3=

11 4][x§

= 0 0 Oy
00 3):
[x+_v+4z_ o

= 0 =|0
k -

= x+y+4z=0,3z=0

= =0,x+y=0
= x=—y:z=0

= =

[Operating Ry = Ry — 2R;]

Thus there is only onc.LI. vector e, = (~ 1, 1, 0), which is an eigen vector of T corresponding to
cigen value 2.

(/) WhenA = 3.

x

Here the comresponding eigen vector @, =| y | is given by

[31-A}a,=0

z
ie, [A-31]a,=0

0 1 4jx} {0

0o 0 2

y+4z| |0
0-!6)!'!0 lt-y‘rézzo

zf |0 2z) |0

> y+dr=0,-y+62=0,2=0
= y=0,z=0, where x can assume any value,

Thus the eigen vector corresponding to eigen value 3 isa, = (1,0, 0).

(1) Whend =35,

x

Here the corresponding eigen vector a, = | y | is given by

[sS1-Ala;=0

I

ie, [A-5Mla,=0
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-2 1 4)|x| [0 “Ix+y+dz 0
ie., 0 -3 6ily|=[0 - “3y+6z|=|0
0o o ofz] |o o] o

s —2x+y+dz=0,-3p+6:=0"
=  2x=y+dzy=2z
Thus the eigen vector corresponding to eigen value 5 isa; = (3, 2, 1)
It is noted that eigen vectors corresponding to distinct eigen values are L.1.
Thus the corresponding set of L.1. vectors is {(- 1, 1,0), (1,0,0), (3,2, 1)}
Since there are 3 L.I. eigen vectors.
2 By taking basis of R , consisting of the eigen vectors, the operator T can be diagonalized and
the matrix T is a diagonal matrix w.r.t. this basis and the diagonal elements are eigen values.
Example 12. Find all eigen values and basis of eigen space of the matrix
I -3 1
A=|3 -5 3|
6 -6 4
Is A diagonalizable ? (G.N.D.U. 1987 S ; P.U. 1985)
Sol. The eigen values of A are the values of 4 s.t.
det. [AI-A] =0
-1 3 -3
ie., det| -3 A+35 =3|=0
-6 6 A-4
A+2 0 -3

ie, det |A+2 A+2  -3|=0 [Operating Cy = C, + Cy, C; -+ Cy + C3]
0 1+2 i-4

ie. (A +2) det

-3|=0

o -3
I
1 -4

1
1
0

10 -
> a+2)’du{g } N o}u [Operating Ry = Ry - R;]

= @A+2'@A-H=0
= 1=-2-24.
Hence the eigen values of A are—2 and 4.
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() When A=-2.

X
Here the corresponding eigen vectora = | v | is given by

[-21-Ala=0

(-2-1 3 -3][x] [0
-3 ~245 =3||y|=t0
-6 6 -2-4||= 0

-3 3 =3[{x]| [0 -3x+3p-3:z] [0
= -3 3 =3||yl=|0] = |-3x+3y-3z|=|0
-6 6 -6llz| lo ~6x+6y-6z| |0]"
e —3xr+3y-3:=0,-3x+3y-dz=0,-6x+6y-6z=0
= x-y+z=0 = x=y-1
Thus y and z are free variables.

w9

Thus a, = (1, 1, 0) and @; = (1, 0, — 1) are L.L. eigen vectors corresponding to eigen value - 2.
Since these are L.1., which generate the eigen space of - 2,

every eigen vector corresponding to — 2 is linear combination of @, and a;.
(i) Whend=4.

Here the corresponding eigen vector @ = is given by

[T Y

[dl-Ala=0

4-1 3 -3] x| o
-3 4+5 =3||y|=|0
-6 6 4-4J z] |o

3 3 =-3|ix] |0 3x+3p-3z] [0
= =3 9 =3|ly|=|0| =|-3x+9y-3z|=|0
0

-6 6 0f[z] |0 ~6x+6y
» Ix+3y-3:=0,-3x+%-3z=0,-6x+6p=0
= x+y-z=0 (1)
—x+30-z=0 .(2)
rey=0 e(3)

2)-(1) = -2x  y=0 =-—x+y=0 whichis(3).
Thus we have only ::vo equations :

x+ty—z=0 and —x+y=0
Ed ‘x=y and =2y
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i

Thus y is a free variable.
Hence any particular non-zero solution i.e., x = 1,y = 1, z = 2 generates the solution space.
Thus a; = (1, 1, 2) is an eigen vector, which forms a basis of eigen space of 4.
Since A has three linearly independent eigen vectors,
A is diagonalizable.
Let P be the matrix whose columns are three L.L. vectors

11
ie, LetP=|1 0 1}.

0 -1 2
-2 0 0
ThenP'AP=| 0 -2 0.
0 0 4

The diagonal elements of P~' AP are eigen values of A corresponding to columns of P.

Hence A is diagonalizable. [+ A has 3 L.I eigen vectors]

Example 13. Suppose A is an eigen value of an operator T. Show that f (4} is an eigen value of {(T).
(G.N.D.U. 19925, 88 )

Sol. Letv € V be an eigen vector of T associated with the eigen value A.

Then v # Oand Tv=1v RE)]

To prove. 7" (v) =A" v for all + ve integral m (D)

For m = 1, the result is true by (1).

Let the result be true for a + ve integer k

ie., TA () = .lku .3
Then T @)= DE =T Tv ‘ [Using (1)}
=T Av) =4 (T @) [ 7% is linear]
=10'v) [Using (3))
=@ye=2"
Hence, by induction, T" (v) =A™ v for all integral m.
Let )"(:r}=e;;‘,+a..1'+{,l‘,x:+...,,.+a,,x'"ll
be any polynomial over T,
then M =al+a, T+ay T+ bty T

Now (f(TH®)=(al +a, T+@ T+ .ot @y T (V)
= (aoh) (1) + (@ T) () + (@ T @) + ..ot (@ T ) )
-a,(]'u)+a.(Tv)+a,(1au]+..,...+a,,('[‘u)
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Then there exists an invertible matrix P such that

B=P"'AP (1) [ By def]
Alsofl =P P (@) [+ P up=tP'IP=tP ' P=1]]
Now |fl-B|=|i-P""AP| [+ of (D]
=[P 4P - P" AP L of ()

=P (-A)p|
=[P 0= AL {P =[P [P |1 - Al (3

Since determinants are scalars,and | P~ | [P{=[P"' P| =|Ij=1
from (3), |1 —B | =| 11 - Al
= A and B have same characteristic polynomial.
Hence the result.
6. Characteristic Polynomial of A Linear Operator
Def. Let T : ¥V - V be a linear operator on a vector space V with finite dimension over F, then
characteristic polynomial A (f) of T is said to be the characteristic polynomial of any matrix

representation of T.

Theorem L If T be a linear aperator on a finite dimensional space V and A be a scalar, then A is an
eigen value of T iff det (T = Al) = 0 (ie., iff Al — T is singular) ie.. if A is a root of characteristic
polvnomial of T. (P.U. 1985)

Proof. 4 is an eigen value of T
iff  there exists a non-zero vector v € V such that Tv =4 v
iff (T-Alyv = 0iff T - Al is a singular operator
i det, (T—Al)= 0 iff det. (A1 -T) =0
iff 4 satisfies the polynomial [T — I
iff A is a root of characteristic polynomial of T.

Remark. If A is an ecigen value of T, fe. if A is a root of characteristic polynomial of T, then
det (T-Al)=0.

Further degree of characteristic polynomial A (f) of T = dim V.

The no. of eigen values of T can't be more than the dim V.

Theorem Il. Let T be a linear op on a finite di ional space Vand Xy, Ay, ....... Ay be

distinct eigen values of T. Then T is diagonalizable iff the characteristic polynomial for T is
A =(r=2))" (1=, (=2 )%,

where dy+dy+.....+dy=dimV.
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Proof. Let 4,,4,,.......4; be distinct eigen values of T and dim V = n. T is diagonalizable iff there
exists an ordered basis B in which T is represented by a diagonal matrix which has for its diagonal entries
the scalars 4, , 4, ......, 4; (each being repeated many times). If ¢, is repeated d times, then

Al 0 ']

V] Al 0 i N .
A=[T:n]= s + where I; is d; X d; identity matrix.

'] 0 Ay

Now T is diagonalizable iff there exists an ordered basis B such that characteristic of T is
A()=det(11-A)

(t-a)1, 0 0
. 0 u-dyl, 0
0 0 n(t=Ay)1,

where degree of characteristic polynomial = dim V.
But degree of characteristic polynomial = d, +d, + ...... +dy

dy+dy+ ... +dy=n

A =(r=R)" (1=2;)" .. (1-A)"™,
where d, +dy+ ...... +dy=n.
Hence T is diagonalizable iff characteristic polynomial of T is

A@= (1-2)" (=A™ t=2 )™

where d) + dy + ...... +dy=n
Theorem 1L Cayley — Hamilton Theorem
Let T be a linear operator on a finite dimensional vector space V over F. If A (1) is the characteristic
polynomial for T, then A (T) = 0 (i.e., T satisfies its characteristic polynomial).
(Pbi. U. 1997, 96 ; G.N.D.U. 1996, 93, 90, 89)
Proof. Let the ordered basis of V be {v,,v3, ..., Up}.
Let A be the matrix which represents T in {v,, vy, ......, 0,}.
Tw;)=ZA v, 15isn D
where A=[Aly«n
The equivalent form of the equation is
Z@;; T-A;Dv=0,0sisn \ (2),
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1 ifi=j

0 ifi=].

We denote B as the matrix of ordered # X n with entries
B;;=0d;, T-Ayl e
From (2), £B;;¥,=0,0 5 i<

When n=2.

T-Ayl  -Ayl

-Apl T-Anl]

where b= {

Here B=[

etpoga T-ANT Al
—~Apl T-Anl
=(T-A(T-ApD-Ap Ayl [ =1
=T~ (An+ AR T+(A; An—Ap Ayl
= A(T).
To prove. A (1) is the characteristic polynomial of T.
Ay ﬁn]
Whenn=2 A=
[An An
Characteristic polynomial of T is
- - t=Ay  -Ap
A () =det (- A) du[_An :—An}
=t =AY (- Ap) A Ay =~ Ay + AR 1+ (A Ap— Ay A
Thus A (¢) is the characteristic polynomial for T.

When n> 2,

Here also det. B=A (T).

To prove. A (T)=0.

For A (T) to be zero operator, it is necessary and sufficient that (det Byay =0 fork=1,2,......, n.
[+ detB=4A(T)]

Bv def., from (3), the vectors v, , v, ...... , Uy, satisfy

Y Bju;=0,1<isn;
J=1

When n = 2, (3) takes the form

[ront e
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o [T-Apl. Ayl
HereadjB= n-_ An ]
ere ad) { Al T-A,l

Also (adj B) B = B (adj B) = (det B) |
o= [

(et B) [:ﬂ = (adj. B4B) [:j‘ ajB [B [;’;”- (a4 B) {E] (Using (9]
0

1ol
Let B = adj B, in general, then from (3),

i'm.- Bya,; =0V k,i [« By istk, thenryof B]

J=t

Summingon 1,0= 3" 3 BuBya,= 3 [iﬁnﬂ,]aj (8

J=1 = J=i i

But BB=detl, - 3 Bu B, =3, detB,
=1 .
1 ifk =
“here  dy {o if k=j

from (5), 0= Zn:d” (detB)a;,0 S kS n= (detB)ay
J=t

Thus(detB) g, =0for 0sk=sn
(AT)ay =0for0sksn
- A(T)=0.
Hence the theorem.
7. Minimal Polynomials

Definitions :

(i) Minimal Polynomial of a Matrix. Let A be a n X n matrix over F. Then the monic ial
m{1) over F is said to be the minimal polynomial of A if m (1) is of lowest degree such that m (A)= O ie., A
isazeroofm (1).

(i) Minimal Polynomial of an Operator. Ler T be an operator of a finite dimensional vector space ¥
over F. Then the polynomial m (1) is said to be the minimal polynomial of T if m (1) is of lowest degree with
leading co-efficient 1 s.t. T is a zero of m (f) i.e, m (T)=O.

[_THEOREWS |

Theorem L Let T be a linear operator on a finite dimensional vector space V over F and if T is
rep d in some ordered basis by the matrix A, MTWAMI&MMMM

Proof. Let/()=ay+a,t+.....4a, ., ' ' +a, " beany polynomial over F.

Firstly, 1o show that if the matrix representation of T w.r.t. some ordered basis of A, then matrix
representation of f(T) is f(A).
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We have [T] = A, [Given]
Now (T =ayl+a T+...... +a,_,'['"_)+a,, T
Let [f(T)] be the matrix representation of f(T).

[fm] =lag+a, T+... +a,_, 7! +a,T]
=[a]+[a T 4.+ [ T T+ [0, T [Using [T, + T3] = [T,] + (T3]
=gy (1] + [T+ .t gy y [T )+, [T") [Using [aT) = a[T]]
=al+a)A+. ..+a,_, il +a,,A"
=f(A).

Let m (£) be the minimal polynomial of T,
Then m (A) is the matrix representation of m (T).

m(Ty=0iffm(A)=0.
Thus m (r) is the minimal polynomial of T iff m (1) is the minimal polynomial of A.
Hence T and A have the same minimal polynomial.
Theorem . The minimal pol) ! m (f) of an op T divides every polynomiai which has T as a zero.
In particular, m (1) divides characteristic polynomial of T.
Proof. Since f(¢) is any polynomial s.t. f(T) = 0.
By division algorithm, there exists polynomials g (1) and r (£) s.1.

SW=m)g)+r( 1)

where either r (£) = 0 or deg (r (1)) <deg (m ().

Putting =T, f(T)=m(T)g(T)+r(T)

> 0=0+M [ f=0=mm)
= r(T)y=0.

If 7 (¢) 20, then r (r) is a polynomial of degree less than that of m (f), which has T as a zero,

This leads to contradiction. [By def. of minimal polynomial]

Thus r (£) = 0 is only possible.
From (1), f(1y=m (1) q ().
Hence m () | f().
Theorem I11. Suppose Ta =c a. If ¢ is an eiger value of T, then f (c) is an eigen value of f(T).
Or

I £(1) is any polynomial, then f(T)a =f(c) a.
Proof. Let f()=ay+ a1+ ..+ a5y ' +a, "
f(Mi=al+aT+..... +a"_|1"!-lfa,1"
fMa =@ +aT+ . tay T+, a
= (gD a+@na+ ...+ (@ T Na+ (@Ta
=gla+aTa+t...+a,_ {T""}rx+ a,(Ma 1)
But Ta=ca [Given]
(Ma=(TNa=T(Ta)=T(a)=c(Ta)=c(ca)=c'a
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Assumingthut'l“_la=cn_1a

Ma=TT Ya=TM" '@)=T(" o) [Assumption)
-c"-‘{'[‘a)-c"-l(ea)-c”a,
Thus Ta=c"a¥n
Putting in (1), /(M a = aoa+a,ca+,.‘+a,,_|c'-la+a,,c"a

-(ao+a.r:+......+a,,_|c"_|+a,'r:")a
Hence Ff(Ma=fic)a.
Th IV. The ch istic and minimal polynomials for an op T (or a matrix A) have
same irreducible factors.
Or

Let T be a linear operator on n-dimensional vector space V (or A be n X n matrix). Then the
characteristic and minimal polynomials for T (or A) have same roots except for multiplicities.

Proof. Let m (f) be the minimal polynomial for T.
Let ¢ be a scalar.
To prove. m (¢) = 0 iff ¢ js an eigen value of T.
Suppose m (¢) =0,
Thenm () =(t-c)gq (1) ..(1), where g (1) is a polynomial.
Further as deg (¢ (1)) <deg (m (1)),

g(M=0 [By def. of minimal polynomial m (1)]
Let us selecta vector f E Vst g(T)f = 0.
Leta=g(T)B. Thenm(T)f=0 [~ m(y=0]
= (T-chg(Mp=0 [ From(I),m(T)=(T~chq(N]

(T-elfi=0
= ¢isagiven value of T = ¢ is a root of characteristic equation of T.
Conversely :
Here ¢ is an eigen value of T, i.e., ¢ is a root characteristic equation of T.
‘Then there exists a non-zero vectora € V s.t. Ta = ca.
Sincem(Ma=m(c)a [Th. 111}
Nowm (T)=Oanda = 0. Somie)=0
= ¢ is aroot of the minimal polynomial m (¢).
Hence the result.
Theorem V. A (a scalar) is an eigen value for the operator T on V iff 4 is a root of the minimal

polynomial of T.
Proof. We know that is an eigen value for T iff4 is a root of the characteristic polynomial A (1) of T.
But the characteristic polynomial and minimal polynomial have same roots. ' [Th IV]
Hence 4 is an eigen value for T iff 4 is a root of the minimal polynomial m (1) of T.
|SOLVED EXAMPLES |
Example 1. Find the characteristic polynomial of the matrix
i3 1]
A ==2 2 -]
4 0 =2
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Example 4. Find the polynomial whose one root is
3 -7 2 3 =2
(G} A-|:4 j] (i) B=|0 5  4].
o 1
3 -7
Sol. (!)Wellxveﬁ-[‘ 5:[.
The required polynomial of A is
t-3 7
A(r)=|.'l-A|=det|:_4 -5
=(t=3)(=5)—(-28)=F Bt +15+28 = F — 8+ 43,
2 3 =2
(i) WehaveB=|0 5 4|.
10 1
The required polynomial of B is
-2 =3 2
AN =|t1-B|=det 0 -5 -4
-1 0 ¢-1

-5 -4 -3 2
-(f—z)det[o :-1]'1"“[:-5 __,‘] [Expanding by C|]

(-2 -5 -1)-[12-2¢-5)]=(F-T+10) (t-1)-12+2-10
=P 7+ 10t -+ T-10-12+2¢- 10
=7 - 8F +19¢-32.
Example 5. Find the characteristic polynomial of the matrix
310

(™
S W o—m T D
)

3
0
o0
0
Sol. Characteristic polynomial of A is A () = [Ir— A|
t=3 =1 0 0 0
0 -3 0 0 0
0 -3 -1 0

0 0 -3 -1
0 o 0 -3

o oo
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-3 0 0 0

-3 -1 0

e ¢ 2 L0 (Expanding by C;]
0 0 0 -3
-3 -1 0

-(:4)’«:[ 0 -3 -|} [Expanding by Cy}
0 0 -3

= (-3 det [';3 :'_'3] (Expanding by C,)

=(-3)' [t-37-0)=(-3)".
Example 6. Let T be a linear aperutor on R' and the matrix representation of T w.r. some ordered basis be
2100
0200
%10 0 2 of
0005
Find the minimal polynomial m (f) of T. (G.N.D.U. 1995 S, 93 ; Pbi. U. 1986)
Sol. The characteristic polynomial of T is
-2 1 0 0
0 -2 0 0
0 0 (-2 0
0 0 0 (-5
=(t-2) (- 9)
Thus AW=0-2(-9.
But characteristic polynomial and minimal polynomial have same irreducible factors.
both ( — 2) and (1 — 5) are factors of m (1).
Since m (1) divides A (1),
m (1) is one of the following polynomials
m (== (=5) my ) =(-2V (-5} my@=(-2) (t-5).
Now my (A) = (A - 21) (A - 51)

A (f)=det [1l - A] = det

010 0||-3 1 00} |0 -300

- 0 00O O0-3 00 - 0 000 »0
00000 0-30/1]0 000 '
000 3|0 0 0O |0 000
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my (A) = (A=20) (A= 50)= (A - 21) [(A - 21) (A - 51)}

000 O0jf0 -3 00 0O 0 0 0
_ 000 0jj0 000 0 00 0 =0
000 O0j0 00O 00 0 0 '
00030 0oo0o (0000
niy (A) =0 [By Cayley-Hamilton Theorem)

Thus minimal polynomial of A is
m () =(—-2) (1-5).
But minimal polynomial of A and T are same.
the minimal polynomal for T is.
m (0= (t-2) (t-3).
Example 7. Let T be a linear operator on T which is represented in the standard basis by the matrix

5 -6 -6
A=|-1 ¢ 2|
3 -6 -4

Find the characteristic and minimal polynomial for T.

5 -6 -6
Sol. Here A=|-1 4 2},

3 -6 -4
Characteristic polynomial of A is
[;-s 6 6 ] {r-s 0 6 ]
[el-Al=| 1 =4 =2|=[1 -2 =2 [Operating Cy = Cy~ Gy}
=3 6 1+4 =3 =(1-2) r+4

t=-5 0 6
=(-2)| 1 1 =2
=3 =1 r1+4

== [-U+4-D+6(=1+3)]=(-D (-5t +2)+12)
=(-2D@-3t+D=0-2)@-2)(t-1)
=(-22(-1).
Hence A(f) = (t-2) (t- 1) is the characteristic polynomial.
Since the characteristic polynomial and minimal polynomial have the same irreducible factors,
(¢—1)and (r-2) are factors of a1 ()
minimal polynomial m () is one of the following :
m () =(¢=2)(t-Dand my ()= (-2 (¢~ 1),
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[2 0 -1][2 0 -1
Now A'=|5 1 of|s1 0
[0 1 sfjo 1 3
[4+0-0 0+0-1 -2+0-3 4 -1 -5
= 104540 0+1+0 -5+0+0(=[15 1 -5
[ 04540 0+1+43  0+0+9 5 4 9
[4 -1 -5 20 -1 100
From{1), A" =[15 1 =5|-6{5 1 oOf+11{0 1 0
(5 4 9/ |01 3] [poo0
(4 -1 -5] [-12 0o 6|11 0 0

15 1 =5/+|-30 -6 O|]+(0 11 0
s 4 9] | o -6 18] |o

[ 4-12+11 -140+0 -5+ 6+0 -1 1
=[15-30+0 1-6+11 =5+ 040 |=| -15 6 -5/|.
| 5+ 040 4-6+0 9-18+I1

Example 12, Find the characteristic equation of the matrix

2 -1 1

W A=|-1 2 -1 (GN.D.U. 1998 ; P.U. 1992)
I =1 2
12 1

@ A=|o 1 -1 (P.U. 1995)
3 -1 1
1 Y7 0

i) A= |2 -1 0 (P.U. 1995, 91)
0 0 I

and using Cayley-Hamilton Theorem find A”".
Sol. (i) (a) Characteristic polynomial of A is
A() =[1=A|
-2 1 -1
=det| 1 -2 1

[Operating Ry = Ry + Ry, Ry = Ry + Ry)
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4 1 1 12 1 1 1
e ——md =40 - 0 = =
+ +9 23+13+-l 0+I+D I g :;
= =+0+0 —;+3+-9~ -—--;-I-U' -i ;’ -;.
-=+1+0 ----—»!-+0 —£+-!—+-!- -l- SN
3 9 39|/ [3 9 9
1420
(if) Wehave A=|42 -1 0
6 01
(a) Characteristics polynomial of A is
-1 -2 0
AD=|A-A]=det|-y2 41 0 |=@-D[F-1-2]=@-D(EF=-3)=F=F=3+3,
b0 sl
(b} By Cayley Hamilton Theorem,
A -A-3A+31=0
so that l=-%(Aj—A2—JA) = I--%A(A’—A—SI)
-1 1 1 I 1
=— AT+ A+ = (1
> A 3;vu+34\+3| (1)
1 V2 ol[ 1 42 0
Now A’= |42 -1 0f[JZ -1 0
o o 1]l o 01
14240 V2-V2+0 0+0+0] [3 0 0]
=|42-42+0 24140 0+0+0[=|0 3 0
0+0+0 0+0+0 0+40+1) [0 0 1
300 1 ¥2 0] [t oo
a1 1
From (1), A™'=-3]0 3 of+=[+2 -1 of+3f0 1 0
00 1 o o 1] “lo o1
1 42
35 Oz 00
-0 ol | 2
71 1
=l 0o -1 of+|= -= of+0o = o
NI 1+ 3
0 0 -—
0 -llo 0o =
3 3 3
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2 -1 12 -1 1
Now A'=|-1 2 -1I{[-1 2 -1
1 -1 2|1 -1 2

d+1+1 -2-2-1  2+1+2 6 -5 5

al-2-2-1 14441 -1-2-2|=|-5 6 -5

24142 ~1-2-2  1+1+4 5 -5 ﬁJ

From (1),
| 100 . 2 -1 ] . 6 -5 5
A"-5010+5~1 2 -lf-5(-5 & -5
00 1 1 -1 2] 5 -5 6
- 1
Y g ol 2 L (.2 5 35
9 3 3 3 3 9 o9
o L olslot 2 _Mpl 3 .2 3
a3 3]s 12
° °5il3 3 3 ls o9 T3
12 2 1 5 15 1 2 2
—_—4 S ==+ —— - = =
97373 T3 Q'LHS 9979 12 -2
lo-lyd 1,2 2 152l 211, )
319 93 3 3 9 2 2 9|9
1 3 15 1 2 12 2 2 1 -2 2 1
O+=—= O-—=4= —4=-= _-— = -
| 31 9 179 9 31 3 9 9 9
13 -6 5
(b) Exactly similar to part (a). Ans.; 0 3 =2
o o
| 2 -1 1
(¢) Exactly similar to part (a). Ans. 2| -1 2 -1

1 -1

Example 14. (a) Let T be a linear operator on R’ defined by
Ty z)=(2x-y,x+y+z22).
Find the characteristic and minimal polynomials for T and verify Cayley-Hamilton Theorem.
(G.N.D.U. 1985 )
(b) Let T be a linear operator on R* defined by
TEyn)=(x+y2yz+422+40).
Find the characteristic and minimal polynomials for T and verify Cayley-Hamilton Theorem.
(G.N.D.U. 1985 ; Pbi. U. 1985)
Sol. (a) The standard basis for R’ is
B={(1,0,0),(0, 1,0 (0,0 1}
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287
Bydef, T(x,y,2) =(Zx-p,x+y+z2:) (1)
T(1,0,0)=(2-0,1+0+0,0)=(2, 1,0)
T, 1,0)=(0-1,0+1+0,00=(-1,10)
and T(C,0,1)=(0-0,0+0+1,2)=(0,1,2)
g T(1,0,0)=2(1,0,0y+1(0,1,0)+0 (0,0, 1) (2)
T(0, 1:0)==1(1,0,00+1(0,1,00+0(0,0,1) .3
and T(0,0,1)=0(1,0,00+1¢0,1,00+2(0,0,1} ca(4)
Matrix of T w.rt. (1) is
2 1 0] 2 -1 o0
[Tl=A=|-1 1 0=l b1y
0 1 2 0 0 2
(f) Characteristic polynomial of T is
-2 1 0

AW=lli-Al=| -1 -1 =1[=@-D[E-1){-2+1]=@-2)(F-3t+3)

0 0 -2
A =C-5F+91-6.

(i) The characteristic polynomial and minimal polynomial have the same irreducible factors, but the

characteristic polynomial is
Cos AW == (=343,
which is the product of two irreducible factors, one being linear and the other a quadratic.

The minimal polynomial m (r) of T is the same as the characteristic polynomial A ().

Hence the minimal polynomial is m () = £ - 57 + 91 - 6.
(iif) Verification of Cayley-Hamilton Theorem
Wehn\reT(x,y,lz)-(Zr——y,x+y+: 2z)

'l‘z(x,y,z] =T[T(ry,)]=T@x-y,x+y+z2) N
=(4x-2y—-x—-y-z, -y +x+y+z+2z 42y
=(3x=-3y-1z 3x + 3z, 42)

T =TT (ny, )] = TEx—3y—z3x+ 3z, 42)
=(6x—-6y—-2z-3x-3z,dx-3y—z+3x+3z+4z82)
=(3x - 6y— 5z, 6x — 3y + 6z, 82)

A(M) =T -5T" +9T-6L
[A(T)] (x, 3, 2) = (T = 5T + 9T - 61} (x, 3, 2)
=(3x -6y - 5z, 6x -3y + 6z, 82) - 5 3x -3y —z,3x + 3z, 42)

+9(2x-y,x+y+2,2:)-6(x, )
=(3x—-6y—5z—15¢+ 15y + 52+ 1Bx - Oy — 6, 6x— 3y + 6z~ 152 — 15z + 9x
+9y+ 92— 6y, Bz— 20z + 18z - 62)

=(0,0,0)=0(x,y2)
[AMIEy)=0Ey )V (Ey)ER
= A(M=0.
Hence the verification.

(b) Exactly similar to part (g). [Ans. A()=(r-3) -2~ :mO=0-3)(t-2)(r-1))
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Example 15. Find the characteristic polynomial of the linear transformation T: R® ~» R’ defined by
T(a,bc)=(a+h b+c,c+a)
and verify Cayley-Hamilton Theorem. (GNDU. 19928)
Sol. The standard basis for R is
B = {(1,0,0),(0, 1,0), (0,0, 1)}.
By def, T(a. b, c)=(a+b,b+e,cta) A1)
T(1,0,0)=(1+0,0+0,0+1)=(I,0,1)
T(0,1,0)=(0+1,140,0+0)=(l, 1,0)
T(0,0,1)=(0+0,0+1,1+0)=(0, 1,1)
T(1,0,0)=1.(1,0,0)+0.(0, 1,0)+1.(0,0,1)
T(0,1,00=1.(1,0,0)+1.(0,1,00+0.(0,0,1)
T(0,0,1)=0.(1,0,0)+1.(0,1,0)+1.(0,0,1)

Matrix of T w.r.t. (i) is
1o 17 1 1 0
[M=A=|1 1 of=f0 1 1|
0 1 101
() Characteristic polynomial of T is
AW =|u-A| .
t-1 -1 0
=l 0 =1 —1j=@-1P-)=F-3F+3-2
-1 0 -1

(ii) Verification of Cayley-Hamilton Theorem

T(a, b, c)=(a+b b+c,c+a)

T (a,bc) TIT(abc)]=Tlat+thb+cc+a)
={a+b+b+c b+tectctactatath)
=(a+2b+c,a+b+2c,2a+b+¢)

T (a b c)=T[T(a b c))=T(a+2b+c,a+b+2,2a +bh+c)
={a+2b+c+a+b+2c,a+b+2c+2a+btec2a+b+cta+2b+c)
=(2a+3b+3¢c,3a+2b+3c,3a+3b+2c)

AM=T-3T+3T-21
(AM)(a b,)=(T'-3T+3T-2D (@ be)
=Qa+3b+3c,3a+2b+3c,3a+3b+2%)-3(a+2b+c,a+b+2,2a+b+¢)
+3(a+b bre,c+ay-2(ab,c)
=(2a+3b+3c—-3a-6b~3c+3a+3b-2a,3a+2b+3c-3a-3b
—6c+3b+3c—-2b,3a+3b+2c—-6a-3b-3c+3c+3a-2c)
=(0,0,0)=01(a, b,¢)
[A ()] (a, b,c)=0(a, b,c) ¥ (a, b,c) ER®
» A(T)=0.
Hence the verification.
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Example 16. Find the ch istic polynomial of the transfor T: R - R defined by
T(a,bc)=(a+2b+c,b-c,3a-b+c)
and use the Cayley-Hamilton Theorem to find T™" . (GN.D.U. 1992)

Sol. The standard basis for R’ is
B ={(1,0,0),(0, 1,0), (0,0, )}.

Bydef, T(a, b,c)=(a+2b+ec,b-¢,3a-b+c) (1)
T(,0,0)0=(1+2(0)+0,0-0,3(1)-0+0)=(1,0,3)
T(0,1,00=(0+2(1)+0,1-0,3(0)-1+0)=(2,1,-1)

and T(0,0,D=(0+2(0)+1,0-1,3(0-0+1)=(1,-1,1)

3 T(1,0,00=1(1,0,00+0(0,1,0)+3(0,0,1)

T(0,1,0)=2(1,0,00+1(0,1,0)-1.(0,0, 1)
and T(0,0,1)=1(1,0,00-1.(0,1,00+1.(0,0, 1)
Matrix of T w.r.t. (i) is

1o 3Tt 2 1
M=A=|2 1 -1l={o 1 -1
[n -1 1 L -1 1]
(i) Characteristic polynomial of T is
A =|1le~Aj
-1 =2 - -1]
=0 =1 1 |=@-DE-1-1)-32+¢-1)
-3 1 -l
s(=1=(=1)=3(=3) =0 =30 +3=1=t+1-31+9
=P -3 —1+9.

(i) Exactly similar to Ex. 12 (a) (i).
Example 17. Let V be the vector space of functions which have (sin 0, cos ) as a basis. Let D be the
differential operator on V. Then find the characteristic polynomial for D and verify Cayley-Hamilton Theorem.
Sol. Wehave B = {sin#, cos 8}
: D(sin®)=cos@=0.sinf+1.cos @
and D(cosf)=-sin@=—1. sin@+0cosf

0 -1
[D]""L o]
The characteristic polynomial for D is
del[ﬂ~A}-del[_; :]uhl.
Verification of Cayley-Hamilton Theorem
D*+1=0.
Now (D + 1) sin 8 = D* (sin 8) + 1 (sin 8) = D (D sin )+ sit 6 =Di(cos @)+ gin 0
=_sinf+snf=0
and (D*+ 1) cos 0= D* (cos ) + 1 (cos 8) = D (D cos #) + cos 0
=D(-sin@)+cosP=—cos+cosf=0.
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Thus if @ € V. then « is a linear combination of sin # and cos 8.
(D’+)a =0 VaeEV.
Here D* + [ is the zero operator.

Example 18. Ler T be a linear operator on R which is repr d in the dard ordered basis by
the matrix A = 1:0,, _;:| .

Find the characteristic polynomial for T and verify Cayley-Hamilton Theorem.
Sol. The standard ordered basis of R* is B = {(1, 0), (0, 1)}.
First of all, let us obtain Linear Operator T on R’ whose matrix w.r.t. basis Bis A, '
Bydef., T(1, 0)= 0(1, 0) + 2(0, 1) = (0, 1)
and T, 1) ==1(1, 0)+0(0,1)=(~1,0) }
Since (x,») =x(1,0)+y (0, 1).
T, ) =xT(1,0+yT(0, N=x(0, 1)+ (=1,0)=(0,x)+(—», 0)=(-yx).
Thus linear operator T on R’ is defined as
Ty =33 YxyeR.
2~ Characteristic polynomial of T is det [ - A]

=det[ ' 1}=F+I,
-1 1

Now, we shall show that T satisfies characteristic polynomial i.e.,
To prove. T+1=0.
Now ¥ (x, ) € R,
(T4 D) =T ®&N+ 1) =TT EN+ &) =T+ @)

o -ty =(xrx—p+y)=(0,0)
> (FP+Dx,»)=(0,0) ¥xyeR
Hence T 4 I= Q is the zero operator.
Example 19. Prove that a matrix and its transpose A’ have the same characteristic polynomial.

(P.U. 1998)

Sol. We know that the matrix and its transpose have same determinant.
s det[fl-A) =det [(1 - AY] = det [(tD)’ - A]

= det [11-A'] [ @ =t =]
Hence A and A’ have same characteristic polynomial.
Example 20. Prove that the minimal polynomial of a matrix exists uniguely.
Sol. Let A be the given matrix.
A is a zero of some non-zero polynomial. [By Cayley-Hamilton Th.]
Let 1 be the lowest degree forwhich £ (6) exists such that f(A) = 0.
Wewe dividing /{7) by iis eading term, we get a monic polynomial m (¢) having degree n which has A as a zero,
= m{(f) is minimal polynomialtof A,
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Uniqueness. Let m' (1) be another monic polynomial of degree » for which m' (A} =0

= m(f)—m' (1) is a non-zero polynomial of dzgree less than # which has A as a zero.

This leads to contradiction.

Hence the minimal polynomial m (/) is unique.

Example 21. Let T, a linear operator on a vector space V of dimension n, be invertible, then prove
that T~ is the polynomial in T of degree not more than n.

Sol. Let m (1) be the minimal polynomial T.

Thenm () =ay +af + ...... +a,_,:r"+.".whcrcr5n.

Since ¢ is invertible, ag # 0,

oo omO=al +aT+.ta, T '+T =0

o 1= 4 (a1+ vt o, T TYT
dy

Multiplying by T~ T~ ' == 4= (a 1+ e a7 24T [Using TT " = 1)
ay

Hence T ' is a polynomial in T of degree 7 — 1, which is
sn-l<n [ r=n]
Example 22. Let A bea 3 x 3 matrix over T. Shaw that A cannot be a zero of the polynomial f(f) =1 + 1.
Sol. By Cayley-Hamilton Theorem, A is a zero of its characteristic polynomial A (1)
Since A (f) is a polynomial of degree 3,
it must have at least one real zero.
Let us assume that A is zero of £(7).
Since £(1) is irreducible over R,
s f(r) must be the minimal polynomial of A. [Def)
But f(¢) has no real zero.
This leads to contradict the fact that the characteristic and minimal polynomials have same roots.
Hence A is not a zero of f(1).
Example 23. Let T be a linear operator on a vector space V of finite dimension. Show that T is
invertible iff the constant term of the minimal (characteristic) polynomial of T is not zero.
Sol. Let the minimal (characteristic) polynomial of T be
O =agtaf+ . ta,_f ol
Now T is invertible
iff T is non-singular
iff zero is not an eigen value of T
iff zero is not a root of minimal (ch istic) pol: ial of T
iff the constant term g, is not zero.
Hence the result.
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SPECIAL TYPES OF MATRICES

1. Symmetric and Skew-Symmetric Matrices

() Symmetric Matrix. A square matrix A = [ay) is said to be symmetric if ay = ay; for all values of i

and j (ie. (i, )th element equals (j, i)th element).

Thus matrix A is symmetric if A" = A.
For examples :

a a a
2 4 1 2 3
[“ s]n ay bz €y |+
a3

L

-0 oo
oo oo
oo oo
o0 o -

" are all symmetric matrices.

Theorem, The necessary and sufficient condition for the matrix A 1o be symmetric is that A’ = A,
The condition is necessary.
Let A = [ay;] be n-rowed symmetric matrix

by def., a;=ay A1)
Also A’ will be n-rowed square matrix. wel(2)
Now (i, j)th element of A’ = (j, ith element of A = a;; = a;; [Using (]

= (i, /ith element of A
(2)and(3) = A'=A.

The condition is sufficient.

Here A'=A [Given]
= A isasquare matrix.

Also (i, /)th element of A = (i, /)th element of A’ [vA=4T]

=(f, Hth element of A.
Hence A is a symmetric matrix.
(if) Skew-Symmetric Matrix. A square matrix A = [ay] is said to be skew-symmetric if ay=—ay

Jor all values of i and j (i.e. (i, )th element if - ve of (j, i}th element).

Since the diagonal elements are of the type ay;, @y, ......, @;; and by the given condition a;; = - a; for

> 2ay=0 b d ay=0. .
Hence the diagonal elements of a skew-symmetric matrix are zero.
For example :

o h g
-h 0 [ | isaskew-symmetric matrix.
-g =-r 0
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