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Foreword

Group theory is known as a pou/erful tool in various branches of

- mathematics ‘and physics. It is particularly valuable in the study of

symmetries that occur in nature and that can be analyzed by the theory in
the visual and abstract sense. Its applications are manifold: in applied
-~ mathematics, physics, -computer science, coding theory, chemistry and
engineering. Because of its abstract nature, it develops the power of
‘thinking cohereritly, analyze an argument logically and interpret a
situation in a mathematlcally exact manner. - : ’

The book is especially designed for use as a text book for a complete
advanced group theory course for students of M.A./M.Sc./ MPhil
(Mathematics) of Pakistani Universities. Its first few chapters cover the
group theory requirements for an elementary abstract algebra course.

It is self-contained and self sufficient in the treatment of topics included in
it. Its contents can meet the requrrement for a two-term course in group
theory. |

- This book is an outcom‘elof lectures delivered by the author to t_he graduate ’
students of mathematics at Punjab University, Lahore, during the past-
several years and now at FAST National University of Computer and
Emerging Sciences, Lahore Campus, for its M. S./Ph. D. classes.

The plan of the book as follows. The first three chapters are of elementary
nature and dea] with essentials of set theory including relations and
functions, some of speclﬁc type, later used to relate various classes of
groups. The novice may enjoy reading these chapters _]USt because of the o
new treatment using ordered palrs 3 : '

A person having elementary knowledge about sets, relatlons and functrons
can straight away start from chapter Iv.

Introduction of the concept of groups is glven in chapter IV. This chapter.
contains a detailed discussion on the nature of subgroups of a group, a
description of generators and relations for a group, the cyclic groups and
the group of symmetries of some geometncal flgures :

Chapter V contains one the most. important theorems of group theory
namely the Theorem of Lagrange. This theorem gives a relationship
between the order of a finite group and that of its subgroups. The concept
of normalizer and centralizer of a (subset) of a group also are discussed in
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~ detail in this chapter. The notions of conjugate elements and conjugate
qubgroups of a group, together with their properties, are explained here.
The concept of double coset in a group, Wthh isa generahzatlon of that of
a coset, is a part of this chapter.

In Chapter VI we develSp the concept of a normal subgroup of a group and
zive a method of forming a new class of groups called quotient groups.

The relation of homomorphism between groups is examined and the

fundaméntal theorem of homomorphrsms is proved in this chapter.

As a part of new groups from old, we discuss the automorphism groups of
a group and invariance of a subgroup of a group under the effect of
automorphisms of that group.

~ Direct products and semidirect products of groups form the contents of
Chapter VII. These also relate to forming new groups. from old.

Permutations are the source of all developments of the theory. These are
~ the groups of bijective mappings of a set. In Chapter VIII we discuss the
elenientary properties of groups of permutations. The last section of this
chapter gives a brief account of the alternating group A,, its generators
and its 51mp11c1ty (the characteristic property of having no normal
subgroup) for n 2 5. Some other classes of permutatlons like transitive
and primitive groups are also discussed.

Chapter IX relates the fmlte groups and thelr subgroups These relations
are obtained in the form of Sylow Theorems. Some consequences of these’
thecrems are also examined here.. :

The idea of group actions has been developed and used to prove a number
of results in groups theory. This concept forms the core of Chapter X. An
~ action of a group G on a set X, which may itself be a group, is a special
type of mapping from (G, X) to X. A simple example is the action. of a
_permutation group G on a set X. This action is just a permutation of X.

Orbits, stabilizers, and the Orbit-Stabilizer Theorem, together with their’

applications to the problems of groups, are the s1gmflcant topics discussed
in this chapter.

Normal series in groups and its special types like composmcn series and
- chief series are introduced in Chapter XI.

Solvable groups and nilpotent. groups are considered in Chapters XII and
X1 B

Chapters XIV and XV contain discussion of free groups, free pr_odu'cts of
groups, generaiized free products of groups and other group theoretic
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constructions. All these constructions yield new groups from the known
ones. - : ‘

Basic propemes of linear groups are examined in Chapter XVI. Linear
'groups are also called matrix groups. Group representations which are just
“expressions of a group in terms reducible and irreducible representations
and their appllcatlons including a brief introduction of character“ of
representatlons are discussed here.

The book has been written in an easily readable style. Attémpt has been

made to express the difficult ideas in a simpler and comprehensible

manner.

In a.s'ense, the book, the first of its kind in Pakistan, is a revised and

extended version of my old book, The Theory of Groups. That book

-proved to be very popular with the students of post graduate classes of -

Pakistani Universities. I am sure that the pres¢nt edition will be even more
useful to the graduate students who want to specialize in Group Theory. -

Thev= material covered in the book provides sufficient necéssary
background for initiating research in some of ‘the branches of group

theory.

30-July, 2008 - Abdul Majeed -
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Chapter - I

- BASIC CONCEPTS
- OF SET THEORY

&

" Set ‘theory has. been usefully employed in various branches of
mathematical and social sciences. Specifically it forms a basis of all the
fundamental concepts of mathematics specially algebra, topology and
functional analysis. It is obviously impossible to give a complete
'discussion on various aspects of set theory, or, for that matter, to achieve
coherent exposition of such a formalistic discipline. However, we shall try
to present a summary of some of the basic aspects of the subject.

1.1. SETS

1.1. Sets and Their Description:

By a set we shall simply mean a collection S of objects. The
objects in S are called elements of S. If a certain object ‘a’ is in S thcn we
write a € S (read as ‘a belongs to S’, ‘a is a member of S, or ‘a’is an
element of S’). If an object a is not in S then we write a ¢ S (read as ‘a
does not belong to S’). :

By a set we also mean a collection S of objects with a certain
property which states whether or not a certain object belongs to S. This
characteristic property which determines the set must be such that it can be
used to decide, for every element, whether the element is'in the set or not
in it. ,

There are two ways to describe =.set. The first is by writing down
in parenthesis all the elements of that set explicitly. This is done mostly
for the set consisting of a finite number of elements. When such a
description is not possible or practical then we may, instead, indicate a

 characteristic property, which can enable us to determine whether or not a
given object is a member of that set. More precisely if P(x) is a
propositibn about a variable x, the collection of all elements x for which
the statement P(x) is true is denoted by .

1

o




2 BASIC CONCEPTS OF SET THEORY CHAPTER-|

, {x:P(x)}
read as ‘the set of all x such that P(x) is true This notatlon is usually
called the set builder notation.

~ Certain sets may be describable in both ways.

We use the letters
A, B, C, XY, Z .. etc

to'denote a set. -

1.1, 1 Examples

‘(i)  The set M of students in a class of Mathematics in a pos&
o graduate class of a university. Th1s set can be represented
by :

={s:sisa student of a class of Mathematlcs in a post
graduate class of a umversxty}

(ii) The set Z of integers, the set Q of rational numbers the set -

R of real numbers and the set C of complex numbers.

, (Hereafter the letters Z, 0, R, and C will denote number
systems as indicated unless otherwise mentioned).

, 0", R* shall stand for the sets. of non-zero pos1t1ve
»elements of these sets).

~(iii) The set C, cons1st1ng of the complex numbers 1, -1, 1, i,

that is;
Co={1,-1,i,~i}.
(iv)  The solution ‘set S of a cubic equatlon; Here
S = {o.€ C:ouis aroot of ayx® +ax2 + ayx +a; = 0}.
(v)  The set P of all points in a circle of unit radius.
This set can be represented by the equation
P={(x,y):x,YE R, x2+y2< 1}.
. (vi)  The set Zof all points on a line y mx + c. ‘This set has a
representation.
/= {(x, mx +c):m,c, x, real numbers and m,c, flxed}

| (vii)* The set ¢ of positive integers less than = 1.
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If Z* denotes the set of non- negatxve integers then ¢ can
also, among many other ways, be described- as: :

Cg= {x x € Z#, x<—1}
1.2, SUBSETOFASET

1, 2 1 Subsets and Relatlons Between Them- |

‘Let A be a set. By a subset of A we miean a set B all of whose
elements are elements of A. B is a subset of a set A if every element of B is’
also an element of A. ' - , : \

Ais then called a superset of B.

Usually when we . discuss a subset in a particular s1tuat10n we talk -
- of the subset with respect to a superset called the universal set for all
subsets under discussion in that situation. It is denoted by the letter U. For
example a universal set for the set of M.Sc (Mathematics) students in a
university may be taken as the set U of all students of that university.

If B is a subset of A then we write B C A (or A ) B) read as ‘Bis
. contamed in A’ (or ‘A contains B’). '

The symbol C is called the inclusion symbol

The inclusion relation, that is, the relation of ‘being a subset of a
set” is transitive. This.means that if C is-a subset of B and B is a subset of
A then C is a subset of A. However the membership relation, that is, the
relation of ‘being an element of’ is not transitive. Thus if an object b is a

‘member of a set B and the set B is a member of a set A, then it is not
always true that b should be a member of A. For example let B = ={a, b, c}
-and A = {u, v, B}. ThenbeBbuthA ’ ‘

7 Two sets A and B are said to be equal if they consist of the same
elements, and we write A = B.

Thus the sets A and B are equal if and onIy if every element of Bis
an elements of A ie., B C A and conversely every element of A is an
element of Bi.e,AC B.

A set which contains no element is called an empty (vacous or
null) set. It is denoted by the symbol ¢ and is taken as a subset of every
set. There is no logical difficulty in this assumption. For if S is any set
- *" >n the hypothesis that ¢ is not a subset of S implies the existence of an
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element in ¢ which is not an element of S and this contrad1cls the
definition of ¢ as a set containing no element.

A set B is cailed proper sukset of a set A if Bis a subset of A and

B#¢pand B # A, othervnse Bisan zmproper subset of A.

: _The power set P(A) of a set A is. the collection of all subsets of A.
- Both the empty set and the set A are members of P(A).

1.2.1 Examples:

(a)

(b)

(©)

(d)

©)

®

(2

(i)

A

The set E of even integers is a subset is a subset of the set Z

of all integers. _
The set M of students in a Mathematics class of| a

University is a subset of the set U of all students in that

University.

The set :

B={(xy):xyeR,2+y =1}

isasubsetof theset ,

C='{(x,vy):x,yE R, x2+y2<1} i

Let A={1,23, (1,2, 3}} and B.= {1,'2, 3}. Then B is

“both a subset and a member of A.

LetA={x:xe R,x-1=0),B={x:xe R, x>~ 1=0},
={x:xeRx¥-1=0}. =

“Then A = C and C is a subset of B.
Let A={a, b,c}. Then

P(A) ={¢}, {a}, {B}; {c}, {a, b}, {b,c}, {a, C} {a, b, c})

The power set of the empty set @ is the set { ¢} consxstmg of
the set ¢. Thus the power set of an empty set is not empty.

‘The following sets are all equal (why?).
={x:x€ Zandx?<0},B={x:x€ Z,x#x},

C = {x: xis arational solution of x2 + x + 1 =0}.
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'1.3. OPERATIONS ON SETS

1.3.1 Concepts of Union and Intersection of Sets:

Let £ be a non-empty . collection of sets. By the union of the sets in
Q we mean a set, to be denoted by U Q whose elements are all the
elements of the sets in Q. Thus
={x:xeA,AeQ}. ,
If Q consists of a finite number of sets' A, A, .., 'An, then we -
- write. C ' B

UQ uA A,quu uA‘1 _ \

In particular if A and B are sets then thelr union is a set A U B
whose elements are elements of A or elements of B, that is
AUB={x;x€ Aorx€ B}.

Dual to the concept of union of sets is the concept of intersection
of sets. : '

Let Q be a non-empty collection of sets. The intersection of the
members of Q is a set, to be denoted by N Q, cons1stmg of those elemcnts
which are common to every member of Q. Thus '

NQ={x:x€ Aforeverije Q}.
Again, for the paiticular case when  consists of a finite number
of sets only, say A;, A,, ..., A,, then.
_ . NQ= iE—.nleAi ={x:x€ Aji=1,2,..n}, and for only two-
sets A-and B, : ’
| ANB={x:x€ Aandx€ B}.
It is possible that the intersection of the members of Q is the empty
set ¢. This is always so in the case when a member of Q is itself empty.

However, only here, we do not define the intersection of an empty
" collection of sets. '

The union of an empty collection is the empty set @.
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. It is easy to see that the mtersect10n ofa non—empty collectlon isa
subset of every member of that collection.

The sets in a non~empty collection- Q are said to be disjoint if A N
B is the empty set ¢ for all A\ Be Q. N :

In particular the sets A and B are disjointif AN B = ¢. Otherwnse :

they are saJd to be overlappmg

At times we shall resort to an indexing set to deﬁne the notion of
union and intersection of sets. Let I be a set. With each i € I we associate
aset A;. Then .

={4A;: zEI}

is said to be an zndexed famzly of sets, and Lis called the indexing set. \,

With this notation it is customary to denote the union and
mtersectmn of the family Q by

YA end O A
) respectiyely _
A By a partztzon of a set A’ we mean a collectlon of subsets Aa of A
- (o belonging to some indexing set I) such that
G any two subsets of the collection are dls_]omt ie.,
AN Ag=g.azBaBel
() W A=A

For any two sets A and B we define another concept called the

- complement of B with respect to A, as follows: ‘
The complement of a set B relative to a set A is the totality of all

elements of A which are not members of B. We denote it by A\B (read as

“A minus B”) Thus
A\B={x:x€ Aandx g.B}.
A\B is also called the difference of A and B.

lAnother way of representing a set is by usmg a dlagram to
repres,ent the-elements of the set.

““" In this case the universal set is taken as the set of points in a

rectangle, circle or ellipse or any simply closed figure, supposed to

S S IR S SEEN

FRRRUY N
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' represent the objects of the set. The subsets of the set are then shown by -
closed curves, again usually circles or smaller rectangles. :

.Under this method a subset B of a set A s mdlcated as shown in
the following diagram. - : , o

: _ Such pictures are calied Venn dzagrams. e A
(after the British Mathematician John Venn) . ' o

The notion of a Venn diagram helps to
define another concept. ( Flgure 1.3.1

Let A and B be any sets. By the symmetrzc dzﬁerence between A
‘and B we mean a set A @ B given by the equation:

A@B (A\B)U(B\A)

Using Venn diagram (which is a pxctonal representatlon of sets)

A ® B is as shown in figure. .

Figure 13.2. The shaded area is A G-) B.

For any three sets A, B and C, ,
' (A@B)@C A@(B@C) (1.3.1)

Hence the relatxon @ 1s*assoc1at1ve

This can be proved by the followmg pictorial representatlon of the
two sides. ‘

| ‘Figure 1.3.3. Shaded area showing A@B®C
Here A @ B consists of the re‘gir)ns I, 4,3,6,B ® C consists of the '

regions 2,3,4,7,S0 A @ (B @ C) consists of the.regions 1, 3, 5, 7 and (A
@ B) @ C also consists of the regions 1, 3, 5, 7. Hence the relation (1.3.1).
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1.3.1 Examples: |}

(i)

IfAn={xe R'—l<‘x<lforallne Z+}

,Then u{A11 ne Z+} = u{x xX€E A, forsomeneZ+} Al-

and r\{A,, ne Z+}=n{x:xe Anforeveryne Z+} = {0).

Let

~‘C04={0‘i3':tG )= (kikeD) |
Ci=1{w=5-2,1,4,7,.} = {3k+1: ke Z}

Czé{...,-4,—1,2,_5,8_,...}:{3k+2:ke AN
Then couc,uc'z_z, CNC=9,i#jij=0,1,2.

- Therefore, the subsets Cor C,, Cz of Z define a partition of Z.

(i)

@)

-

k enuncrated in the following theorems

Let R be the set of students in the xth row of a class M of |
Mathematics and suppose that there are n distinct rows. Then

lL_{ R= M the set of students of the class of Mathematrcs, and

R,-nRj—.¢,1¢_|,1,_|-1,2_,..,

- The collection of all R;’s, is therefore, a partition of M.

LetA={¢},B=¢ThenA UB={g} andAnB=g

(Observe that A is a set consisting of an element namely the set ¢.
A set consisting of a single element is called a singleton) :

1.4. SOME FUNDAMENTAL RESULTS
"A few of the results related with the above deﬁmtlons are

' 1.4.1 Theorem:

For any sets A, B, C
(a) (Idempotent laws).
AUA=A
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 ANnA= A
(b) (Commutative laws)
 AUB=BUA
ANnB=BnnA

) (Associative laws)

AUBUC)=(AUB)UC
ANBNC)=AnB)NC ,

The proofs of the above are straxghtforward and are left to, the
reader as exercxses : ' :
1.4.2 Theorem (Distributive laws):

For any sets A, B, C, o

(@ AUBNO=AUBNEAUO

® ANBUO=ANBUANC)

Proof: We prove (a) only and leave the second to the reader as an
exercise. .

(a)Smce
BanBBanC
‘wehave = , ‘
AUBNCOCAUBadAUBNC)CAUC.
Hence . 7 |
 AUBNC)C(AUB)NAUC) . (1.4.2)
~ Twoshow that (AUB) N (AUC)CAUBUO),

letxe (AUB)N(AUC). Thenxe AUBandxe€ AUC that
is, x € Aorxe Bandxe Aorxe C

Ifxe A, thcnxe AU(BnC) andif x ¢ A, then x € Band
X€ Csxmultaneously Thusxe BmCand agamxe AU(BmC) :

Hence . .
(AuB)n(Auc)gAu(BnC) 143
* Combining (1.4.2) and (1.4.3), we have, |

AUBNC)=(AUB)N(AUC).
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THEOREM (De Morgan’s Formula): .
For any sets A,B,C, < ‘ '

| (@ A\BuUQ)= (A\B)f\(A\C)

(a)

(). A\BNO)=(A\B)U(A\C)
Proof - ‘

Letxe A\(BUC). Thénxe Aandx ¢ Bandxg Cie;xe

Aandx¢ BUC.

" de, xeAxeBandxe A,xgC | _
ie, xe€A\Bandxe A\C | - o \

(b)

ie, xe(A\B)n(A\C) -

Hence A\(BUC)C (A\B) N (A\C) (144
Similarly one can prove that | BT
Similarly one can prove that

" (A\B)m(A\C)cA\(BuC) T a4

Combining (1.4.4) and (1.4.5) we get the desired result.

This is left as an exercise to the reader.
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1 S. CARTESIAN PRODUCT OF SETS

1 5 1 Ordered Pairs and Cartesian Products

A set of the form {{x}, {x, y}} is called an ordered pair. This
- definition, which was hlstoncally important in reducing the theory of
relations to the theory of sets, is due to Kuratowski. We shall denote this
ordered pair by (x, y). Thus

| (6= {{x} {x 3} |
Tne followmg theorem shows that the fundamental axiom on the
equahty of two ordered pairs is satisfied. SR

, 1.5.1 Theorem _ o
- Two ordered pairs (x, y) and (x;, y) are equal if and only if |
— o .
Proof: -
' “The necess;ty of the condmon is obvious.

For sufﬁmency, suppose that _
(x y) = {{x}, {x ¥} ={{x}, {xp)’l,}}, (equal as sets)
o C=0ny)
Then we have the following two cases to discuss. R
@ {3 ={x} {xy} = {x,5), (equal as sets) o
. )z ={x, kb 6y} =1k} _
I (@) holds then, since {x} {xl} we havex x; and SO
B , {x,y} = {x,,yl},wnhx—x,,lmphesy. =Y.
If (b) holds then, from =~ ‘ |
| (x} = {xx} = {x, ),
we have , . ,
x=x andx=y,. . 4 o (1.5.1)
Sumlarly {x, ¥} ={x} = {x;, x,} implies | _ B
—xandx =v. : —_— - (1.5.2)
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Hence (1.5.1) and (1.5.2) yield
x=x;=y=y thatisx=x,y=y,.

In general, an ordered n-tuple is written as . (x, x,, ..., X,). The
element x; is called the ith component or the ith coordinate, of the ordered
n-tuple. We can now define the cartesian product of sets as follows:.

Let Ay, Ay, ..., Ay be non-empty sets. By the cartesian product of
A A, Ay, we mean a set P consisting of all ordered n-tuples

(a0 ...ay) ;€ A,i=1,2,.,0,
and denote it by B : : , _ \
| A XA, X .. XA, )
Symbolically ' B
P=A,xA,x ><A
'—{(a,,az,.,a)aeA,,l_lz n}.

If any one of the A;’s is empty then their cartesian product is taken |
 to be the empty set p.!

In the particular case when A; = A, = ... = An A then P is called
the nth cartesian power of A and is denoted by A®.
Thus

Ar={(ay, ay, ..., ay): @€ Afori=1,2,..,n}.

The subset .
D={(a,aq, .. a)ac A}

of Aris called the diagonal of Ar.

!. More generaHy let X = { A : € I} be a family of sets. The cartesian product of the
family X is the set of all functlons f I - U A, such that f(a)e A, for all a€ Iandis

denoted by )
©=1II A,

oel



(i)

N Verify the folldv&i,ng relations for arbitr;lry sets.

{xcZAme Z with x =6m} = {yeZ: 3 p, ge Z with y= 2pory=

Show that a set cons1stmg of n elements has exactly 20

'SECTION  EXERCISES 13
'1.5.1 Example
@

LetA {a, b, c}, B {1, 2} then

AxB={(a,1),(a,2),(,1),(b,2),(,1),(c, 2)}
and BxA={({,a),(,b), (1,0, 2, a), 2, b), (2, 0)}.
Note that the setsAxB and B X A are not equal.

‘Let R be the set of real numbers. The nth cartesian power Rr

of R is called the cartesian n-space.
When n = 2 one obtains the ordinary cartesian plane R2 Thus

R2={(x »); X, ye R}

'EXERCISES

(a) AUA=A=ANA
) ANBCACAUB
) - AUB\VA)=AUB-
@ (A\B)U(A\C)=A\(BNO)..

Using any property of integers that mﬁy be needed, show that
3q}-

subsets.
A board of five members reaches 1ts decision by a sxmple ‘ ’
majority vote. :
What ‘are the winning coa11t10ns‘7 (Hmt : Find- all subsets
consisting of 3 members or more). ' _ ‘
Let A, A,, ..., A, be a partition of aset X and B be any subset .
of X. Prove that: . :

{A,NB,A, NB, ... A, mB}
is a partition of B.
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Let X be asetand P a collection of certain subsets of X. For
A,B e P, put | | |
A®@B=(A\B)U(B\A)

- and A®B=AmB

Show that
(i) A®@B=(A uB)\(AmB)

(i) A®A=g

(i) A®B®C)=(A®B)®(AS8C)
Let A x B denote the cartesian product of A and B. Show
that, for any non-empty A, B, C, D,

() (AUB)XC= (AxC)u(BxC)

(i) (ANB)xC=(AxC)N(BXC)

(i) (AxB)A(CxD)=(ANC)x([BAND)

@iv) Ax(B\C) (AxB)\(AxC)
) ANnB= ¢1mp11es(AxB)m(BxA) @

‘(v1) AxXB= BxAlfandonlylfA B

For any two sets A and B, prove that A (A NBYU (A \ B)
is a partition of A. '

Let {A:ne Z+) be a family of subsets of a setA.

~ Define a new family {B,} as follows

By =ApB,=A4,\\J A, n> 1.

Prove that all the B,ne Z* are disjoint sets and that . -

Uz* A= gz* Ba:
Can you explain the following situations (paradoxes)?.
@) A barber in a certain town shaves everyone who do not
shave themselves, and only those. Who shaves the barber?

(i) A fisherman, having caught a fish, tells the fish that if it -
~cannot tell the fisherman what he is going to do with it then -

i
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he will eat it, otherwise, 'he will Jet it go. The fish answers

“you are going to eat me”. What can the fisherman do with
the fish?

(The situation described by the statements given above describe
~ what is known as the Russels’ Paradox, after the famous British .
Mathematician - Philosopher Bertrand Russel. This paradox only

mentions that a set cannot be an element of 1tself )
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Ch.apter‘-, I 7

The concept of relations is one of the basic ideas of Mathemaths

' Algebralsts constantly deal with the relation of equality and of
1som01ph1sm between various algebraic systems. Topologists use this
notion in homotopy and isotopy ‘theory. “The - functional relation is -
fundamental not only in Mathematics but.in other natural and social
 sciences. We.now describe it and discuss its various types. | -

2.1, DEFINITIONS

21.1. Blnary Rejatlons' |

Let A and B be sets and A x B be their cartesian product A subset
Rof A xBiis called a relation from A to B.

) , Ifapau(a,b)&R a€ Abe BthenalssaldtobeanR-relatzvé
of b and is written as a R b. If (a, b) ¢ R then we write a K b(rcadas a
is not an R-relative of b’). - '

_ A relative R from A to B is said to be empty or nullary if R = ¢ and
ﬁdl itR=AXB. . ‘

‘When R is a relation from A to B then the sets
- D= {a€ A: (a, b) € Rfo_r some b € B}
and . - N | '
Ry= {b‘e B: (a, 'b) € Rforsomea€ A}

" are subsets of A and B and are called the domain and range of the relation
R respectively. The relation R is clearly a subset of D; X Ry but, in
general, may not coincide with it.
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By a binary relation R on (or in) a set A we mean a subset of A X

A= A2. Ternary, quaternary and, in general, an n-ary relation on a set A
can similarly be defined as a subset of A%, A*respectively. §

: :One can easily see that the study of binary relatlons on A is simply
the study of subsets of A X A. ,

- One can also speak about inclusion of a binary relation R in a
binary relation R’ their intersection and union in the ordinary sense of
inclusion, intersection and union of sets. Also the complement of a binary
relation R is the subset.’

R= (AXA)\R

and, foranysa, b)e AxA, (a b)e leandonlyof(a, b)E R t

Let R and S be  » relations on A. " Then one can talk about the
product R.S of R and S i) e followmg sense :

Fora, b€ A, we say that (a, b) € RS ifand only if there exists ac
€ Asuchthat(a,c)e Rand(c, b) € S.

A binary relatlon Lis calied the vdentt!y relatton on A if
. I={(@a):ac A} '
Thus the diagonal of A x A defines the identity relation.
_ The inverse of binary relation R on A is the binary relation. -
R ={(b,a):(a,b) € R}. |
Clearly IR=RI=R.

22, TYPES OF RELATIONS

A réla‘tx_on on a set A may or may not satlsﬁy some specified
conditions. Relations which do have certain additional properties are of
relatively greater significance. A few of such relations are the following:

'2.2.1. Reflexive relations:

" A relation R on a set Ais reﬂexzve if R contams the 1dent1ty '
relatlon L

Thus R is I‘CﬂCXlVC if and only if (a, @) € R for all ac A

2 The fact that a relation R from AtoB is a pamcular caseof a relatnon on a set follows'
from the fact that R is a relation on A U B.
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2.2.2. Symmetric relations:

A relation R on A is _symmetric if and only if R = R, that is, R is
symmetric if, for all a, b e A, (a b) € R, 1mplxes (b, a) € R and
conversely

2.2.3. Transmve relations:

~ Arelation R on A is said to be transitive'if R.R cR.

Thus R is transmve if, for a, b, c € A, (a b) e R (b c) € R 4
implies (a, c)e R. . - .

2.24. Antl-symmetnc relatlons

An antz-symmetnc relatlon onAi is a relatlon R such that R N R' '
clL ‘ . . : ,
' I‘hus a relanon R is. antl-symmetnc lf for- a, b € A, (a. b) € R,
(b,a)< Rimpliesa=b : : ‘
, Among the various types of relatlons given above the relations
~ which have the properties 2.2.1, 2.2.2, 2.2.3 and 2.2.1, 2.2.3, 2.24 are
more important and are frequently used. Such relations are called
equivalence relations and order relations respcctlvely A brief descrlptlon
of these is given below: '

2.2.5. Equnvalence relations:
A relation R on a set A is called an equzvalence relation if and only
1f R is reflexive, symmetru. and transitive. - : , '
The 1dent1ty relation and the full relation on a set A are
-equivalence relations. :

, EQuivalence relations on a set A: are usually denoted by the symbol
‘~’ (pronounced as ‘tilde’), rather than by R, as a set of ordered pairs of
clcments of A. ‘ '

Thus if R is an equ1valence relation on A and (a, b) € R then we
shali write a ~b and read it as ‘g is related to b’. —

With - this notatlon the definition of an equ1valcnce relation
becomes: ,

A relation ‘~’ on a set A is an equivalence relation if and only if
for alla,b,ce A, '
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O aca .
(i) a~b impliesb~a
(i) a~b and b-~cimplies a~c.

"Let R bé an eqinvalence relation on a set A and a be one of the
members of A. Then a is related to some element of A, at least to a, by the
reflexive property of R :

The set of those elements of A which are related to (also called

equivalent to, in the case of an equivalence relation) a fixed element a of

A under the relation R is called an equivalence class determmed by ‘the

element g and is denoted by C,. Thus
C,= {be A,(a,b)e R}

" Foreachae A, the equivalence class C, is non-empty because, By
the reflexive property of R, at least (a, @) € R and a € C,. The element a
is called a representative element of C,. ‘
It is important to note that any pall' of elements in an eqmvalence

class are equivalent to each other.

The collection -of all equivalence classes of a set A under an
equivalence relation R is called the gquotient set or the factor set of A
determined by R. It is denoted by A/R.

We recall that a partition of a set A is a collection
Q={Ag: A A €]}

\

o

of subset of A such that ; -
0 A, nAﬁ_q) Ay Ap € Q,a;tﬂ,a,ﬂel
@ VA=A :

The following fundamental theorem establlshes a relationship
between the partitions of A and the equlvalence nelatlons Wthh can be
 defined on A ‘

22,6 Theorem Each equnva]ence relation on a set' A determines a -

_ partition of A and, conversely, every partmon of A deﬁnes an
equivalence relation on A.
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Proof: Suppose that R is an equivalence relation on A and Q the
collection of equivalence classes of A determined by R. Then

uQcA ' . : 2.2.6(l7)

because eacl'l member Of Q is subset of A. Also, as R is reﬂexive, the pair
(a,a) € Rfor all a € A. Hence every a.€ A is in an equivalence class C,,
the equivalence class determined by @, Thus 2 € U Q for all ae A. Hence
CAcuQ 226G

From (1) and (2) we have A=U Q- S 22660

Further let Cu Cys a, b € A, be distinct equxvalence classes in Q.
We show that C,nC,= ¢. Suppose otherwise and let x € Ca N C,. Then
x€ C,and x € C, ie., (a, x) € R and (b, x) € R. As R is symmetric,
(x, b) € R, By the transmwty of R, (a, x) € R, (x, b) € Rimply (a, b)e R.
- Thusbe C,.

» ~ Nowletye Cb. Then (b, y) € R. Once again, by the transitivity of
R, (a, b) € R, (b, y) € R imply (a, y) € R. Thus y € C,. Hence C, C C,.
Similarly C, < C,. Hence C, = C, which is a contradiction to our
supposition that C, and C,, are distinct; Therefore -

' C,NC,=¢foralla,be A,ab.” .  226()
Equation 2.2.6 (iii) and 2.2.6 (iv) show that € is a partition of A.
Hence every equivalence relation defines a partition of A.
Conversely, let the collection £ of subset of Abea pamtlon of A.
Define a relatlon R on A as follows: ~

, Far two elements a, b € A, (a, b) € R 1fand only zfa and b arein

- 'the same member of Q.

| ‘_ As Qisa partmon of A, everya €A is in some member of Q. So -

(a,a)€ Rforallae A. HenceRis. reﬂexwe

' Moreover if (¢, b) € Rie. aand b belong to the same member of

Q then band a belong to the same member. Hence (b a)e R. Thus R i 1s
symmetnc » e
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Next if (a b) € R and (b, ¢) € Rthena and b belong to the same

merber of Q and b, ¢ belong to the same member of Q. Hence a,c Delong

" to the same member of Q. Thus (a, ¢) € R and R is transitive.

~ Hence R is an equivalence relation on A.

~ So very partition of A defines an equivalence relation on A.

»-ll

2.2.7. Examples:

L1

@). The subséts ¢ and A x'A of A.x A are relations on A. These are
' called the nullary and the Jull relations on A, respecnvely The
latter is an equivalence relation. \=

(@) LetRXR={(xy :xyE€ R} be the Cartesian plane and

"  X=RxR\{0} :
where O = {(0, O)} Défine a relation P on X as follows:
For z, = (xl, Y1) 2 = (%, ¥) in X, (24, 2p) € P if and only if there
exists a non-zero real number A such that x, = A x;, y, = Ay,.

‘We show that P is an equivalence relation on X.

(@ Pis reﬂexwe because for any z = (x, y) € X, x=1.x y = Ly. ‘
Hence (z,z) € P, forallz€ X. |
(b) Let(z, z) € P. Thenx, = ).xl, ¥, = Ay,, for some A #0. Hence
- = (1/A) xp, y;= (1/A) y,. Thus(zz, z,)€ Pand P is symmetric B
(©) Let(z, 2) €P,(25,23) € P,z = (x5, y3) Then there exist non-zero
' - real numbers A, o such that
~ o xz:kxl,y2=ky1,x3fpxz,'y3=m2 -

Hence x3 = (0A) x,',' ¥3=(0\) y;, PA#0
80 that (z;, z3) € P.-Hence P is transitive.

The equ1valence classes determined by P are straight lmes passing .
through the origin. The corresponding factor set X/P is called the -one
dimensional projective space. -

(i) Let Z be ihe set of mtegers and R be a relation defined on Z as
follows:
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(v)

X0

i)

(vid)

"Fora,bes,(ab)e Elfandonlylfa—bwhere

For m,n € Z, (m, n) € Rif and only if m is less than or equal to n.
Then R is reflexive, 'anti-symmetric and tranisitive but is not
symmetric. Hence R is not an equivalence relation on Z.

Let S be a set. Define a relation Eon S as followé

ordinary sign of equality.

The E is an equivalence relation on S and Q the members of the
factor set are all the singleton subset of S.

A comparison of this relation with the definition of an equivalence

relation shows that an equivalence relation is a generahsatlon of

the concept of ordinary equality relation. : {

For a fixed integer n, defme a relation R on the set Z of 1ntegers as
follows:.

For a, b € Z, (a, b) € R, if and only if a — b is a multiple of (or,"

what is the same thing, is divisible by) n. Then R is reflexive

symmetric and transitive and therefore is an equivalence relation.-

This is the usual congruence relation ‘=" defined on integers. If a, b
€ Z are related under this relation then we write:'

a= b (mod n)
(read as “a is congruent to b modulo n”).

" The equivalénce,classes are the subsets Cy, C;, ..., C,; of zZ

consisting of integers leaving 0, 1, 2, .., n — 1 as remainders

respectively after division by n. The corresponding factor set is -

denoted by Z ..

The usual geometncal relatxons of ‘bemg congruerit to’ and of
‘being similar’ on the set T of all triangles in a plane- are
equivalence relations. s

Let M denote the set of the students in a class of Mathematlcs
Define a relatlon R on M as follows:

For a, b € M, (a, b) € R'if and only if a and b are of the same ,

height. ,
Then R is an equivalence relation on M.

is the
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Likewise the relations of ‘being of the same: age’, ‘sitting in the
same row’ and of ‘having the same father’ are equivalence

A 'relatlons on M

The adjacency matrix. There is another way to specify a relatlon R
on a set X. This is to represent R with a matrix called its adjacency
matrix. This representation matrix has rows and columns indexed
by the elements of X listed in some arbitrary but fixed order. Eact.
entry of the matrix is either 0 or 1. For two elements x, y of X the

~ intersection of the row indexed by x and the column indexed by y

is taken as 1 if (x, y) € R. Otherwise it is taken as 0.
As an illustration let o

o X=myy RN
Rﬂmm@nmmmn@m
Then the adjacency matrix of R is:

Xy z
x|1. 10
yl1. 10
zL0 0 1

~ Some properties of the relation R can be immediately verified from

its adjacency matrix. For instance R is reflexive if all entries in the main
diagonal are 1. R is symmetric if the matrix is symmetric which is the case |
"if the entries at the (x, y) and (y, x) positions are the same. To venfy the
transmve property needs more care.

, 2.2.8 Order Relations:

Let A be a set. A.relatmn R on A is called an order relation (or to .

be more explicit, a partial order relatzon) if R is reflexive, transitive andﬁ_;
anti-symmetric.

Thus a relation R, which is usually denoted by the symbol ‘<’, isa :

part!al order on A if and only if

(i) a<aforallaeA” _
(i) a<b b<cimpliesascforalla b, ce A
(i) a<%tandb< almphesa b for all, a,beA
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_ - If < is a partial order on A and a < b for some a, b € A, then we,
~ sometime, also say that ‘a precedes b’. ‘

) The set A together with the order relation < is called a pamally
ordered set. That 1is the parr (A, <) is called a partlally ordered set or a
poset..

" The elements a and b in a partrally ordered set A are called
omparable if and only if eithera<borb<a.

~ A partially ordered set A is said to be totally (szmply or lznearly)
ordered if any two elements in A are comparable.

- The correspondmg order relation is called a rotal (szmple lznear)
, order. A totally ordered set is also known as a chain.
2.2.9 The Hasse diagram"

, . An mterestmg way to describe an eorder relation is by using the
" Hasse diagram (pamed after Helmut Hassé, a 20th century German

number theorist). The Hasse diagram of a partial order R on X consists of

a number of points on a plane, Each of these points represents an element
of X. The points are placed in such a way that a line may be drawn going
in the upward direction from each element x of X to each of its immediate
successor missing the arrows implied by the transitive property We then
draw these lines. :

For example let
X= {1 2, 3 4,5,6}
and R be glven by
= {(x, y) € R & x divides y}.
Then the Hasse diagram of R is:

.4- ' .. ’

\‘2 \ -
2.2.10. Exampies of order relations:
18 The usual < relation on the set Z (respecuvely Q and R) of mtegers

(rational and real numbers) is a partia] order on Z (respectively
Q and R) :
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2. In the set Z of integers, define a relation R as follows:
‘Fora, b€ Z, (a,b) € Rif and only if ‘a divides b’.

Then Risa partial order on Z. (Here by ‘a divides b’ we mean that

there exists an integer ¢ € Z such that b = ca).

» R clearly is not a total order because, for instance, the 1ntegers 4
and 6 are not comparable.

.3 B Let P(A) be the power set of A. Each element of P(A)is a subset of
' A. The inclusion relation C i.e., for any two members S, T of P(A),
i.e., ST, is apartial order on P(A):

4. The family S of all real valued sequences {s;} can be p\miall{y
ordered in the following way: |

Given the sequences {s,} and {1,}, “we say that {s,} is less or
equal to {z,} if there exists an ifteger & cuch that s, <7, for alt n 2 k”. This
~ defines a partial order in S. ‘

Let A be a partially ordered set with < as an order relation. An
element @ € A is called the least element of A if a < x for all x € A.
Analogously an element b € A is called the greaiest eicment of A if x < b
forallxe A. - ’

A set A is said to be well-ordered if every non-empty subset of it
has a lcast element. An example of a set which is well ordered is the st N
-of all natural numbers under the usval ordering by magnitude, because it
‘has = least ciernent, namely-:. So every non- -empty subset K of N contains
an element m such that m <k forall ke K '

This fact is known as “The Weli Ov‘dering Principle’.

One of the w.ost important applications of this fact is to estabhsh;

the principle of ma*hcf 1iical induction. This principle provides a basis of
a method of proof calied the proof by mathematical induction.

2.2.1 1. Theorem:

(The principle of mathematical induction).

Let S be a subset of the set N of natural numbers: such that
() 1leSand ‘ |
(ii)  whenever the integerne S,n+1¢€ S.
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ThenS=N. ‘ ' |
Proof: Let U=N\S. We shall show that U = ¢. Suppose that U * &

Then, by the well ordermg of N, U has a least element, say, a. Snce le _
'S,a#1andsoa> 1. Consequently :

0O<a-1<a.

,Sincé a is supposed to be the smallest integer in U, a — 1 is not in U and so
- a-1isin'S. By (ii), a— 1+ 1 =a € S, which is a contradiction to our
supposmon thata e U. Hence U= ¢ as requ1red :

About the well ordering of a set 1t would, however, be worthwhﬂa
to remember the famous result of set theory that every set can be well
ordered. The proof of this theorem is beyond the scope of this book.

2. 3. MAPPINGS OR FUNCTIONS

Mathemat1c1ans in general and algebraists in pamcular constantly
deal with relation between sets satisfying certain additional properties. A
special and perhaps the most important type of relations from a set-A to a_
set B is the relation called a mapping or a function from A to B. In what
follows, we shall briefly discuss. the concept of mappings and a few of
their special types. We shall, however, avoid defining a function or a
mapping as a ‘rule of correspondence’. Instead we define a mapping in
terms of ordered pairs. Various results associated with the concept of
mappings shall also be proved by makmg use of the notion of ordered
pairs.

Let A and B be non-empty sets. A mapping (or function) ¢ from A

- .fo B, written as ¢ : A — B, is a subset of A X B such that

(i) D(p:{ae A:(a b)e @forsomebe B} =A
“and : ' . _
(). (ab)e ¢pand(a,b)e @forb, b e Bimplyb=l.
If ¢ is a mapping from A to-B and (a, b) € @ then b € B is called
the image of a in A under ¢ and is written as
b=¢(a)
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A mapping can also be defined by wii%: g down the images of ‘each _ '
element of A under 0. : *
Letg: ‘A —> B be a mapping from A to B. Then

‘ R,={be B; (a, b)E(pforsomeaeA}
isa subset of B and is called the range of 0. '

When B=A we then say ¢ isa mappmg from A to A.-

It is important to note the following facts about a mappmg ¢ from A to B.

@) For any element ae A there is precisely one beB such that
(a,b)EQ .

(ii)  Different elements of A may have only one b € B as their
@-relative, that is, for different @, a’ € A,  there may be just:
one b € B such that both (a b) and (a’ ,'b) are in ¢.

]

Two-mappings ¢ and z//from A to B are said to be equal if and
only if they are equal as subsets of A x B. We then write ¢ = . Since @
and yrare mappings from A to B, Ais the domain of both ¢ and . So-the
sole requirement for the equahty of mappings ¢ and i is-that whenever,
for any a € A, (a, b) € @ for some b € B-then (a; b) € yand conversely '
In other words ¢ is equal to yif and only if
. 0 @=vy (a) , 4

forallae A. . S .

Given any non-empty set A, the identity mapping iy : A — A'is
simply the identity relation on A : .

Recall that the identity relation is the diagonal of A X A. Thus a
mapping i, : A — A is the identity mapping if and only if

i,={(@a):ac A}

Le., iy=aforallae A.

2.3.1. Examples:
1. Let R be the set of real numbers. Then the subsets
@ @ ={(xe)xeR} B¢, ={(x,x) xe R}

(©) ;= {(x, mx +¢) ; x € R and m, c fixed elements in R},
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are mapping from R to R. These are usually written as:
9, (x) = ex, @, (x) =x%, Py(x) =mx + ¢
forallx€ R, respectively. ' \ 3
However the subset
= {(x,logx)}; x€ R, x>0}

of R X R is not a function from R to R because in this case D, # R. But if x
€ R*, the set of non-zero positive real numbers, then of course, @ is a
function from R* to R.

For fixed ¢ € R, the function (pc = {(x, c) x € R} is called the constant
mappmg Its usual representation is : : : ’

| ¢, (x)=cforallxe R. oo /

* When ¢ = 0 we obtain the zero function. | L

- 2. LetZ be the set of integers. Then the subset

f {{m,n),m+n):m,ne Z} ,

of (Z XZ) XZisa funct1on from Z*t0 Z. Thls functlon can be represented
by ‘
' 'ﬂm,n)=m+n;m,nEZ. IR
3. Let A and B be non-empty sets and A X B their cartesian product.’
' The subsets :

7, ={((a,b),a):a€ A, be B}
iz = {((a, b), b) : aeA-be B}
of (A xB) X A and (AxB)xBrespecnvely, deﬁne functlons
T, AxB—>Azmd1tB AxB—>Bg1venby ' »
n, (a, b) a, Tty (a; by =b.

These mappings are called projections of A x B onto A and B
~ respectively. : :

4, For non-empty sets A and 3, one may consider the collection BA
of all functions from A to B. BA is the set of those subsets of AXxB
which are functions from A to B
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5. . The function f: N — X, where N is the set of natural numbers and
X any non-empty set glven by .

f(n) x, € X
is called a sequence in X. If X = R, the set of real numbers, then f is
called a sequence of real numbers. The element x, which is the

image of € N is called the nth term of the sequence.

2.3.2. Types Of Mappmgs

" Mappings from a set A to a set B-assume greater si gmﬁcance from
the point of view of their application when some additional properties are
satisfied by them. A few such mappings are described below N \

2.3.2.1 Surjectlve or Onto Mappings:
A mapping ¢ from A to B is said to be subjecttve or onto 1f R,=B.

~ Thus @ is surjective if and only if, for every b € B, there is an
element ae A such that (a, b’ € 9, i. e., for everyb € Bandsomea€ A.

b= ()
‘Hence ¢ is surjective 11 every element of B is the image of some ,
element from A.

3.3.2 Examples: \
1. The identity mapping i, : A — A is surjective.

A\

2. The mapping 7, : AXB — A, andnB'AxB—}'B given by
mip (a, b) =a, ‘n:B(a,b) b,ae A be B

are SUI‘JCCthﬁ

3. The mapping ¢: R* — R given by
A L .

¢ (x)=logx ,
is surjective. However the mapping ¥:R — R given by
y=é

is not surjective because no negative real number is of the form €*.

4. Let Z, be the factor set of the set Z of integers detenmned by the
- relation of congruence modulo n. Elements of Z, are equivalence
classes Cy, C;, C,, ..., Cy.-
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Each class contains integers which leave the same remainder after
~ division by n. The mapping ¢ : Z — Z, given by:

X (m)‘= Cr(m) v
where 7 (im)is the remainder after division of m by », is surjective.

- 5. Let Q = {A, ; a € I}be a collection of non-empty disjoint subsets
‘of Xand X=UA,,. Let P be a subset of X x defined as follows:
e )ePifando‘nlyifx €A, )

Then P deﬁnes a sm]ectlve mapping from Xonto Q given also by:
P(xa) Ay x,eAjael >

2‘.3.‘4 Injective or One-One Mappings:’

Let o : A — B be a mapping. We call (p mjectzve or a one-one

-~ mapping if (a, b) € ¢, (&', b) € 9 1mp11es a=da.
Thus, for an injective mapping, ‘distinct elements ‘has distinct
images, that is if for «, &' in A, a#a implieso (@) # ¢ (a).

Or equivalently: fora,d € A, 0} (a) o (a') impliesa=4a'.

2.3.5. Exmaples: ,
(i) The mapping o : Z — Z given by: |
o (n)= = 211

is injective; Here a(m) = a(n) 1mpm—:s 2m = 2n-which, in
turn, gives m = n.

s § 11) The identity mappmg i, 1 A — A s injective.

(i) The mappings ¢ : R > R* and v:R+ - R given by \p(x) _

=, xeR, w (x) = logr, € R
are m}ecuve To see that @ 1s mjectlv let (p (x) = (y) x.yeR
Then e = ¢¥ so thate* 7 =1 =

v ' Since x, y are real numbers the last equd tion impiies that

x—y=01.e.,x=y
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| 2 3.6. One-One Correspondence (or Buectlve Mappmgs)
A mapping ¢ : A > B wh1ch is 1nJect1ve as well as sm]ectwe is
called a bijective mapping or a one-one correspondence.

The sets A and B havmg a one-one correspondence between them
are called equivalent (equipotent or, sometimes, equmumerous) sets.

- Thus two set A and B are said to be equivalent if there is a
bijection ¢ from A to B. We then also say that A and B have the same
cardinal number. '-

The cardinal number of a set A i is denoted by IAI or#A.

) For each n € N a subset of N con51st1ng of all natural number én '
is called the ordinal n.

A set A is said to be f nite if there isa bl_]ectlon between A and the
ordinal n for some n € N.

Otherwise A is said to be 1nﬁn1te : :

If A and B are sets such that |A] > |B|, then for any surjective
mapping ¢ : A => B, there are gy, a,, € A a, #a, such that ¢ (a,) = ¢ (a,).

Thus, in case A} > IB[ at least one pair of distinct elements of A
“must by associated with one and the same element of B under o.

- This simple fact is know as the ‘pigeonhole principle’. Because of
this principle, if there are more letters than the pigeonholes then at least
one pigeonhole must contain two letters. This pr1n01ple has many
applications in mathematics. ‘

2.3.7. Examples

1. The sets Z of 1ntegers and E of even mtegers under the mappmg ¢
given by: .
oM=2nnelZ
| are equivalent _
2. - The set R+ of non-zero posmve integers and R of real numbers
under the mappings glven by: ‘ :
¢ (x)=log x, xeR*
or- vx)=¢€, | xeR

. are equivalent
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'3, LetXbeasubset of R? given by:
X={x0):xecR}

The X and R are equlvalent sets under the mappmg Q- X - R
~ given by:

9(x,0=x<cR

2.3.8. Restriction And Extension Of a Mappmg
Leto:4—>B be a mapping and 4’ a non-empty subset of 4. Then
A’xBlsasubsetofoB :
The subset - , - :
g=onWxB)
of A' x B defines a mapping from A’ to B and is called the
~ restriction of p.to 4.

The restriction of ¢ : A —) Bto A’ < A is denoted by o/ A (read as
‘¢ restricted to A"). Itis given by the condltlon

Py @=9'@=0¢@
for allae A'.

If ¢' = @/, is the restriction of ¢ to A’ then (p is sa1d to be an
 extension of ¢', It is obvious that, for each function ¢ : A — B, there is
-just one restriction of ¢ to a subset A’ of A. However there can be more
than one extensions of a mappmg :
2. 3 9 - Example:

. Letf:R —>Rbea mapping and N c R be the set of natural
numbers. Then the function g : N — R such that :

- gm=r()

foralln e N is the restriction of f to N. The function g is the restnctlon of
fand defines a sequence of real, numbers

23. 10. Composmon of mappmgs Product Mappmg

Let¢: A > Band y: B > C be mappings. Let a be the subset of

A x C such that (@, ¢) € a if and only if there exists a b € B such that

(a, b) ¢ and (b, ¢) € w. Then a is called the composition of the mappings
- ¢ and y or the product mapping of ¢ and y and is denoted by y. @ or
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simply by ¥ ¢. Thus a mapping o = u/(p A—Cis the product mapping
of @ and wif and only if ,

| (@ =(ye) (@ =y (@)
forallae A. \
2.3.11. Examples:
1. ~ Letf:R— Rand€’: R*— R be the mappings given by:
€ (x) —_e"forallxe R
and |
€’ (x)=logx for all X € R

7 The product mapping (€’ €) and (€ € ) of e and €’, and of e\, and
€ respcctlvcly are glven by: '

(e’e)x)=€’(®)=loge¥=xloge=x= 1R(x) for all x € R,

(ee)x)=€(€’'(x) =€(log x) = e = x = ig + (%),

for all x € R*, respectively. _

These product mappings are from R — R and R* — R* and both
are equal to the identity mapping on R and R* respectively.

2. Letf:A —Bbea mapping and g= =f |a’, the restnctnon of ftoa

subset A" of A. If i : A’ — A denotes the inclusion map i.e., the
mapping such that i (a”) = a’ for all a" € A’, then the product of the
- mappings i and fis the mapping g because

) @)=f>@)=f ()= g(a)
foralla’g A’. Hence g=fi

- This situation is represented by the A
-accompanying diagram. In such a =~
case the diagram A’ AB is said to be

commutative.

3. For a fixed pair a, b of real numbgrs let £, R — R be given by:
ﬁ,b(x)=ax+b,xe R.
Thenf,, (x)=bx +a.

* The product fi,,. f, of f,, and f,, is a mapping from R — R given
by: ’ - : , : -
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(fia - fb)(x) f,,a(a.x+b) b(ax+b)+a - (@)
Similarly ;- f,, is given by '

oo foa )=y (bx + @)= albx +a) +b o @

- Comparing (1) and (2) it is important to notice that ‘
(Foa-fir) =by+ b2 +azabx+ @ +b=f, . f,, (%)
forallx€ R. ‘ |

Hence, in general, foa- fab # fa,, fba

4. Ilet A= {abc}B {xy}C—{123}and1etf A——)Band
‘ - g:B—>C :
‘be given by the subsets

f= 1@, %, .. y)} g=1{(1),(,2)}
A ‘of AXB of B xC, respect1ve1y Then the subset :

={(a, 1), (0, 2), (c, 2)} |
f A x C defines the product mappmg g .fof f and g.
2.3.12. Inverse of a Mappmg
Let@:A— B be a mapping and R, C B be the range of ®. For

any b € R, let A,, be the subset of A consisting of all those a € A for

which (a, b)‘ € @. Then A, is called the inverse image set of b under 0.
Suppose that is @ injective. Then A, = {a}. So the subset -V |
| o={t.a;@byee}
of (R, X A) © B X A defines a function from R,, to A given by ¢’ (b) =a.
Ifois surjeetiVe as well then R, =B and ¢"is a mapping from B te A In
this case we call ¢’ the inverse mapping of ®. {hus: '

The inverse of a bijective mapping @ : 'A—>Bisa mappmg
o : B——>Asuchthat(b a)e o’ 1fandon1y1f(a b)e ¢, a€ A, be B.

~ Itis usually denoted by (p‘1

If ¢! is the inverse mapping of ¢ then the product mapping
(¢ ¢): A— Aand (¢ ¢7): B — B are the identity mappings i, and ig of

A and B respect;vely
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‘Forifa € A, then (g, b) € ¢ and (b a) e (p“ 1mp11es (a,a) € ¢p7o.
Similarly if b € B, then (b, a) € ¢/, (a, b) € @ implies (b, b) € Q¢! so
- that ¢! ¢ and ¢ ? @~! are the identity relations on AandB respect1ve1y

- 2.3.13. Examples:
The mappmg €: :R—R*ande’ R+ — Rgiven by
e(x).= e" :
for all x € R, and
e = log x

for all x € R, are inverses of each other —

2.3. 14 Surjectlve Mappmgs and Factor Sets !

. Let¢g:A—>Bbea SUI]eCthC mapping. Then, for each b € B ’
: there is an a € A such that ¢ (a) = b. The set .

o (b) = {d'€ A:@ (a) =D}

" is then a subset of A and contains a. (p" (b) is called the ﬁber over the-'
element b of B. : -

Define a relatlon ~onA as follows
For a,,a, € A wesaythata,~a, if and only ifQ (al) =@ (ay).

~ Clearly ~ is reﬂex:ve, symmetric and transitive- and hence is an
equivalence relation. We denote the equivalence class containing an

.~ ‘element a of A of by a and the correspondmg factor set consrstmg of all
these equ1va1ence classes by A [~

o Note that, for each a € A, @ is a subset of A and eonsis;s of those
~_elements a’ of A for which @ (a’) = ¢ (a). Thus the équivalence class’

- determined by ain A 1s the ﬁber ¢! (b), b=¢(@@eB glven above. We
- write

¢! (b) = Z if and only if ¢ (a) = b
forsome a € A, b € B. we then have the followmg theorem:

~23.15. Theorem: Every surjective mapping @ : A'—B can be expressed '
as a product of a surjective and a bijective mapping.
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Proof: Let ~ be the equivalence relation determined by ¢. Let A/ ~ denote
the correspondi'ng factor set. Define a mapping v: A —> A/~ as follows

- Foreacha e A we wnte v (a) = a where q is the eqmvalence class
inA/~ determmed by a. :

N

o Clearly v is surjective. Consider the mapping ¢: A/ ~ —» B defined
by | | .
7’(5)-b—(p(a) ae Al~,ac A be B.

’Ihen @ is surjective because eachb=9¢ (a) ¢ (a) € B-is the image of

. someae A/~ Also, fora,a € A

(0(a_)=(0(a)

implies @ (a) = @ (a'). Thus @ = @ because a € @ and @’ € @. Hence Pis
bijective. Moreover '

| ®v) () = (P(V(a))-(/’(a) b= <P(a)
forallae A. Hence(p-,(o.v

r'B

Al

so that @ has been factored as a product ‘of a surjective and bijective
- mapping. :

2.4. THEOREMS ON MAPPINGS

In this section we discuss a few results connected with the
definitions of mappings given above. These theorems give necessary and
sufficient conditions for mappmg to be of a particular type.

Let¢o:A—>Bbea mappmg; A mapping ¢’ : B— A (fespectively
®” : B — A) is called a left (respectively right) inverse of @ if and only if
and only if ¢’¢ =i, (respectively ¢ ¢” = iy).
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We then have the following: Q

- 2.4.1. Theorem: |
| Let ¢ be a mapping from A to B. Then:

(i)  @is injective if and only if @ has a left inverse.

(ii) - ¢ issurjective if and only if ¢ has a right inverse.

(i) @ is bijective if and only if @ has both a left and a right

~ inverse.
Proof: ’ 4 ,

G - S'uppose that ¢ is injective and let S \

¢ ={k,9): @ b€ o} -
Then ¢’ is a mapping from R, to A because D, =R, and (b a) e ¢,
(b, a”’) € ¢ implies (a b)e o, (a”, b) € ¢ which, by the mject1v1ty 17 (a)
of ¢, implies @’ = a”. Moreover, for any a € A, (a, b) € o, (b, a) € .
1mp11es (@, a)e ¢. psothat@’. @ = :
, Conversely, let @’ be the left inverse of (p, ie., (p ¢ = iy. Suppose
(@, b)e ¢, (@, b)e 0. Then (b, a) € ¢ and (o, a”’) € ¢ because only
then (a”, a’) and (a” , a”’) will belong to ¢’ . @ = i,. Since ¢" is a functlon
(b,a)e ¢, (b,d’) € ¢ impliesa’ =a’ ’. Thus @ is injective.
_ (i)  Suppose that ¢ 1_ssurject1ve i. e., for each b € B, there is an
a € A'such that (a, b) € . Define ¢” : B — A as follows:

For any b € B, we take (b, a) € ¢”, where a'is one of the elements
of A, 1fandonly1f(a bye ¢ '

Then for each be Bthereisanae A such that (b, a) € ¢”,(a,b)e o.
This 1mp11es b, b)e o. (p Hence Q. 0" =ig. Thus ¢ has a right inverse.

Conversely, let (p A — B have aright inverse ¢” : B — A, that is,
0.0" =i Then, for any b € B, (b, b) € ¢ . ¢”. By definition of the
product of ¢” and ¢, there is an a € A such that (b, a) € (p and
(a, b) € @. Thus, for each b € B, there is an a € A such that (a, b)e 9.
Hence ¢ is sur_lectlve

The proof for (iii) follows from (i) and (ii).
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From the above theorem it follows that a bijective tnapping

@ : A — B has a left inverse @ as well as a right inverse ¢ and the two .
are equal because these were defined analogously. Put ¢” = ¢” = ¢~ Then
- ¢! is simply the inverse of (p and satisfies the equations ¢—1 . ¢ =1, and

@@ =i :
Henceforth we shall write Q. yasQ y.
- 24.2 Theorem: ,
“ Let@:A—>Band y; B — C be mappings. Then
@) w @ is injective if both @ and y are injective.
(i)  y@issurective if both @ and yare surjective.

Proof: | '

() Let¢:A—Band y:B — C be injective mappings. For some ¢
€ C, let (a, ¢), (@, ¢), € yw@ fora, a € A. Then by definition of
the product mapping, there exist b, " € B such that (a, b)e ¢,

(b,c)e wand (d@, b) € ¢, (b, c) € Y. As yis injective, (b,c) € =
W, (b, ©) € yimplies b = b'. Also, as ¢ is injective, (a, b) € @,
(@, b) € ¢ implies a = a’. Thus (a,c) € ¥ o, (d, c) e ¥ ¢ implies
- a=d’,Consequently ¥ @ is injective. |
(ii) © Let (p and i be surjective. Since | is surjective, for any ¢ € C
. there is a b € B such that (b, ¢) € y. Also, as @ is surjective, there
is an a € such that (a, b) € @. But from (a, b) € ¢, (b, c) € ywe -
- get (a, ¢) € w . Thus for any c € C, thereis ana € A such that
_(a c) € w¢. Hence i ¢ is surjective.
2.4.3. Corollary The product of two buectlve mappings is bijective. V
2.4.4. Theorem: (Associative law of product of mappmgs)
' For any three mappings
f:A—>B,g:B>C, h C——aD
h(gf) = (hg)f

Proof: It is clear that both (g f) and (hg)fare subset of A x D. For the

equation

;;h@ﬂ=m9f - ’ W
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“to hold, we must show that the two are equal as subset of A x D. Let
" (a,d)€ h(gf). Then there is a c € C'such that (a, ¢) € gf, (c, d) € h. Also
then there is a b € B such that (a, b) € f, (b,c) € g. So (@, d) € h(gf
‘implies there elements b € B and ¢ € C such that (a, b) € f, (b, c) € gand
(c, d) € h. This implies that (a, b)e fand (b, d)e (h g) so that (a, d)e (h.g)

Hence
| h@ﬁgmaﬁ‘
Likewise ,
Gofeher
’Thus (1) holds. : : -

Alternatively: Foreacha € A, , _
(h (g H)a) = h (g f(a)) , by definition of composition of mappings
=h(g (f(a)
= (hg) (f (a))
=((hg) ) (a)
Hence h (gf) = (hg) fe ¢
Remarks:

(a) -+ For the pamcular case when B = C = D A we have f; g, h as
mappmgs from A to A satisfying the associative law.

- (b) | Take h=g=f. Then FNfand f(F N represent the same functiens -
' -and are usually written as fff, For the sake of brevity we shall write
f? for fff and in general f" for ff ... f (n-txmes)

It is convenient and useful to take f° as the identity mapping on A.

On particular intercst among the mappings between sets are the
bijective mappings of a set A. Let us denote by S, the set of all such

~ mappings of A. Then we have the following important result about S,.

2.4.5. Theorem

The set S, of all bijective mappmgs on A has the followmg
characterxstlcs

()] For any two mappings fand g in S, their product g f€ S,.
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(i) | Associative law holds in S, that is, for any three'mappings
f,ghinS,,
(he)f=h(gh).
(iit) ~ The identity mappmgs 1, of Ais in SA and satisfies the
equation

fia=f, in.f=f
forall fe S,. / _
- (iv)  For each fe S,, thereis anf~' € S, such that
f s f=i,

Proof: The conditions (i) and (ii)“follow from Corollary 2.3. S 3 to
kTheorem 2.3.5.2 and theorem 2 354 respectlvely '

For (iii) we have already seen that the 1dent1ty mapping i, deﬁned by the
diagonal of A X A is bijective and so isin S,. Also any f€ S, consists of
elements of the form (@, @) € AXx A,a,a’ € A. As(a,a")e f,(d,a’) e
in80(a,d)€ i, f, s0fCi, f. Also, for (a, a’) € i,. f, thereisana’ € A
such that (a, @) € fand (a’, a') € i, so that (g, a’) € f. Hence

ae fgf Therefore f=1i,. f. Likewise f. i, =f.

For (iv) letfe S 5. Then the inverse f of fi is bljectlve

. Hence f e S, . The equation

[ f=ff"=i,
then follows by the definition of £~
2.4.5 (1) Hlustration: ' | | |
Let A = {a,, a,, a;}. The mappings @ : A —and y: A — A given
by: | , | S )
P@a)=ay9@)=a,0@)=a * W)
and ' A '

y/(a,) a,, ¥ (ay) = ay, ‘/’(‘13) a3, ) @

©are obv1ously bijective and hence are in S,. Also

" @¥(ay) = 9% (play)) = ¢? (az) =0 (@ (@) =0¢(a)=q




42 * ' RELATIONS ON SETS _ CHAPTER-iI

Smnlarly

9 (a) = a5, ¢ (aa) = a,. Thus (P3 = iy '
. Likewise - '
- =@ YP=iy

 Here the mapping ¢ i is the product of the mapping w and @ ie., @ w is
defined by: -

@ (a)=9(a)=a; (@Y (az) = <p(w (@) =9 (@)= a, and _

@9 @)= O
The mapping ¥ @ is given by | ' -
| GO@=a, D@0 GN@=a ’(43
From (3) and 4) we observe that ’
PY#yo

: One can show that the elements of S A are'pr_ecisely

iAr o, (p2, llf, (p ‘lf ’ (lel’
'EXERCISES

1.” * Eight articles are purchased The first two articles cost Rs.
100 each and the prices, because of quantity discount,
decrease 5 rupees with each additional article purchased
Show the relation of articles to prices.

2. Givean example in a set of
(i) . a relation which is reﬂexrve and symmetric but not
transitive, '
(i) a relation whrch is symmetnc and transitive but not
. reflexive, : , |
_(iii) a relation Wthh is transitive and reﬂexrve but not
symmetric,

(iv) arelation which is reﬂexrve and transrtlve but not antl- -
’ symmetnc '
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3.

Prove or disprove: Every transitive relation on a set X with "
more than 2 points is reflexive. - ’

~ Let R, be the relation “is a brother of’ and R, the relation ‘is a

sister of’ on the set U of students of a umver31ty Find R, U
R, and R, N R,.

LetR and S be equ1valence relatlons in a set. Show that Rn
S is an equivalence relation.
Which of the following are eqmvalence relations.

. (a) the relation of parallelism in the set of lines in a Euchdean

plane.

~ (b) the relation of havmg the “same number of elements in a

. collection of finite sets.

- (©) the relation of ‘living in the same hostel’ in the set B of all

the resident students of a un1vcrs1ty

| Let R be a reflexive relatlon in a set X Verify that R is an
~ equivalence relation if and only if R. R-1=R.

Which of the f‘ollow_mg are mappings and‘why? |

(a)  The subset {(x%,%);x€ R} of RXR

®)  The subsets [{(1, a), @ Al {1, a), (2, @)}, [{(1, a), (1 b),

(2,91
- of AxB where A = {1, 2}B {a,b ck

,Letf A — B be a function. Foreachbe Rﬁlet

} \-;J;"»A,-{aeA :f(@)=b} = f—l ®).

, ~ Show that {A,: b€ R,} is a partition of A. Hence deduce that{
. every fnncuon ona set A deﬁnes an eqmvalence relationon A.

10,
.+ of n elements. Show, by induction on m, that there are n=

“Let A be a set consisting of m elements and B a set conslsung'

* mappings from A to B. How many of these are surjective,

mjectwe and bijective?
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(i) f(x):x—-x2+l

RELATIONS ON SETS - ' CHAPTER-II

Dealing 13 cards from a 52-card deck to each of the four
bridge players is a surjective mapping of a set of 52 elements

~ toaset of 4 elements. How many such mappings are there?

Which of the following mappings from R to R are surjective?
()  f)=x2+2,()f(x)=xsinx -

A mapping ¢ : R — R is linear if ¢ (x) =ax + b, x € R and q,
b fixed elements of R. Find all linear mappings which are : (i)
surjective, (ii) injective, and (iii) bijective.

 Letfbea mapping from X to Y and A, B subset of X. Show t’hgt

fF(AUB)=f(A) Uf(B)
and  f(ANB)Cf(A)Nf(B).
Also if fis injective theﬁ ’
fAAB)=f(A)NfB) | .
Let fbe as in exercise 14 and be a bijection. Then show that
Fr@auB =" W us! ®) |
fTANB) =T (A NfT(®B).

Let X be a set. For an arbitrary subset A of X, define a

- mapping: X, : X — R by:

xs () =lifxe A
=0ifxe X\A

The function , so defined is called the characteristic function of
the subset A in X. Verify that

Xan~p &) =%a () X (X) o
Xaus (®) = Xa (1) + Xp (%) = Xa (). X &)
LetI={xe R:a<x<b,a,be Randfixed}. Define a mapping. '

f:I->R by: -
L _X—c¢ <
foO="", a<xs<c
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18

19.
20,

21

 x-c
“b-x

where ¢ denotes the arithmatic mean of a and b. Show that fis a

c<x<b

one-one correspondence between I and R.

For a function f: A — A, let f denote f. f. ... f (n-times). |

“Suppose that frn=1,. Show that fis bijective.

J ﬁstify /the following restatement of theOregn 2.2.6.
Let A be a sét.- '

There is a one-one correspondence between the equivalence
relations on A and the partitions ofA - A

Letfbe a bljectlve mapping of asetAandf’ = {(y x) (x, y) :
€ f,x,yin A} Show that f. f and f’ . f define equivalence
relations on A.

[Hint: Here f. f =f’ f i, is the identity relation on A]

Determme all the bijective mappings of a set cons1st1n° of ().
three elements (i1) four elements, and (111) a set consisting of
n elemerits. :
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ALGEBRAIC OPERATIONS ,

: In elementary Mathematics one constantly deals with the familiar

“notions of sum, difference; product and quotient of ordinary real numbers:
. These concepts have much wider meaning in the superstructure of Algebra
and are particular forms of an idea connected with a special type of
relation in a set These relat1ons are called algebraic operations.

3 1. ALGEBRAIC OPERATIONS

By an algebraic operation or, to be more exact, an n-ary algebrazc
operation in a set A we mean a mapping O. : A"S A

Thus an n-ary algebraic operatlon in A is a function o which

associates with each element (a;, .., ay) of A" a uniquely determined
element, say a, of A. The element of A associated with an ordered n-tuple
(a, .., a)) under a.is givenby :

o (ay, .., n)=a A
orby: o '
| ‘a,0a, .. 04a,=a.

The algebralc operations comespondmg ton= 1 2, 3,4, etc. are
respectively called unary, binary, ternary, quaternary etc. In our context,

- however, we shall be concerned with unary and binary algebraic.

operations only and refer to them' as unary and bmary operatlons
respecuvely ] .

Thus a bmary operation on set A isa functlon oAl A This
function associates with each ordered paxr (a,, a,) € A?, a unique element
of A and is denoted by : .

aoa -

47
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It should be kept in mind that the element of A associated with the -

pair (a,, a,) under o may be difterent from the one associated with the pair
(ay, ay). Thus the element g, & a, is, in general; not equal to @, & ;.
In practice, for the sake of convenience, we use the familiar

symbols of addition and multlphcatlon namely the symbols +, ., X etc,,
for o

If we denote a by the symbol ‘+* we shall call it addition, and if
" the symbols ‘" or ‘X’ are used, the corresponding algebraic operation will

be called multiplication. In the latter case, even the symbols . and X are
usually omitted. Thus the element corresponding to the pair (a;, a,) will be
~ denoted by a, + a, and by a, . a, or simply a, a, according as the alggbraic
operation is termed as addition or multiplication respectively. The
elements a, + a, and q, . a, are called the ‘sum’ and ‘product’ of a,, a,
respectively. L ' :
3.1.1. Examples:

1. Let Z be the set of 1ntegers and leta:Z xZ —Z be given by:
a(mn)=m+n;mne Z

Then « is an algebraic operation in Z. It is, in fact, the ordinary

addition in Z. Here we have associated, with each pair-m, n, a

uniquely determined element namely their usual sum m + n.

Similarly ordinary multiplication is an algebraic operation in Z. It
is defined by the function :

W:ZxZ — Z given by

nw(m,n)=m.n.
Likewise, ordinary addition and ordinary multiplication in the sets
Q@ and R of rationals and real numbers respectlvely, are algebraxc
operations.

2. Let V, (R) be the real 3- dlensmnal space. Elements of V, (R)

are ordered triples (x,, x5, x3), , € R, 1=1, 2, 3. '
The function which associates with each pair x = (xl, Xy, X3),
y 01>y y3) of V, (R) the element x + y given by the equatlon

X +y=(x +)’p Xy + Yy, X3 "‘)’3)
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REMARKS:

&y

“(ii)

defines an algebralc operatlon in V; (R). This operatlon is called
the usual addition of vectors in V; (R). ‘

.

Let A = {a, b, c}. A bmary algebraic opcrdtlon in A is a
certain subset of (A x A) x A. The followmg sub:ets ‘define
algebralc operations in A.

={((a, a), a), (a, b), b), (@, ), ©), (b, a), b) (5, ©), a),
(e, a), e), ((c. b), @), ((c, ©), D)}
= {((@. a), a), ((a, b), a), ((a, ), a), ((b, a), a), {2, b), b),
(®, ), e, (e, a), a), ((c, ), ¢), (< €), b))}

A sxmple way of describing the above algebraic operatxon on ‘A
will be given in 3.2.5.

If an algebraic operation a is defined in a set A then we say
that A is closed under the algebraic operation o or simply
closed under a. For instance the sets Z, Q and R are closed
under ordinary addition and multiplication. /-

Let a be an algebraic operation in A. For a subset A’ of A the
mappmg o, may not be an algebralc operation in A’'. If o,
is an algebraic operation in A’ then it is called the induced

algebraic operation of A in A'. For example, ordinary
addition is the induced algebraic operation in the set NV of

_natural numbers .considered as a subset of the set Z of

3.1.2.

integers. However urdmary subtractzon is not an algebraic -
operation in N.

Commutatlve algebraic operations:

Under an algebraic operation o in A, the element associated with

(a), a) € A x A under a may be different from the one associated with
- (ay, a;). If a is such that one and the same element is associated with the
pairs (a,, a,) and (a,, a;) under o for all a;, a, € A then o is called a
~ommutative algebraic operation. Thus o is commutative if and only if
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foralla;, a, € A.
3.1.3. Examples:

1. . The ordinary addition and multiplicatiori'_ in the sets Z of
' integers, @ of rational numbers, R of real numbers and C of
complex humbers are commutative operations.

Reeall that addition and multiplication in C are defined by:
z+Z =(xy)+ (@, y)=@x+x,y+))
z2x2 =(x,y). (&, ))= (' ~ ', %) +yx) -

for all 2,7 € C \ ' \

However ordinary subtractlon Is an algebraic operation in Z o, R
and C but is not commutative.

Similarly ordinary division- in these in the sets @, R, and C
excluding the number ‘0’ from each of them, is an algebralc
operation whlch is not commutatlve

| 2. Multlphcatlon of mappings in the set S, of all bijective
mappings of the set A = {a, b, c} is not commutatlve Here
- the mappings ¢, ¥ € S, given by: '
. e@=bo®B)=ce()=a
and :
D=4 v®)=c k(@) =b
do not satisfy the equation ‘
e v=yo.
-3, The vector product in the three dimensional Euclidean space
V, (R) is a binary operation m it and is not commutatlve _
: because ‘
axb;tbxafora beV3(R)

However the usual component-wzse addmon or multlphcatlon of
‘ vectors in V3 (R) are commutative operations.

4. The solutlon set S ={t 1, %1} of the equatlon x4 =1 has the
‘usual multiplication of complex numbers as a commutative
algebraic operation. :
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' 3.14. Assoclatlve algebralc operatlons
Let o, be an algebraic operation on a set A For a|, az, a3 € A, the

element in A taken for (a; o a;) @ a, may not be the same as that taken for
a, 0 (@ aa3). i o is such that '

(ay aa,) aa;= al o (azoza3)

for all al, a,, a; € A, then QL is called an associative algebrazc operation. |
Replacing o by the symbols for addition and multiplication, the
corresponding equations will be » _

(a; + ai) +a;= ay+ (a, + a)
and | . R
(@4 . a3=a.(a;.a)
‘respectively. '
Using induction on n one can easily verify the generahsed assoc1at1ve law:

ﬁ a = H 1 a.
i=l i=1 Cjmmel
With thc help of the above result the product
G L((ay az) as) a, .. )a ) of ap, G, s is usually written as
aa,..a

‘without using the parenthesis.

The following rules of exponenciation are easily verifiable -
Lam. a= a’"*",‘m, ne Z.

IL (@ =a™ mne Z.

3.1.5. EXamples: ,

(1) - The usual addition and multiplication in Z, 0, R and C are
associative operations but the usual subtraction in these sets is
not. ’ ' _ '

(i) LetP = {(a, b);a, b€ R}. Define an algebraic operation in P
by: o ) : o

u.v={(a, b) (¢, d) = (ac, bc + d), foru,ve P

Then °.’ is an associative operation in P.
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(iii) Let R* be the set of non-zero positive real numbers The

algebraic operation “.” in R*, defined by:
X.y=)p

for x, y € R* 1s not associative. -

(iv) LetQbean arbitrary collection of sets. For any A, B € - Q the
equcmon .

| A®B= (A\B)U(B\A)
; deﬁnes an algebralc operation @ in Q which is assoc1at1ve
\
3.2. ALGEBRAIC SYSTEMS

A non-empty set A with an algebraic eperation is called an

_algebralc system. Let a be an algebraic operatlon on a-set A If, for each

pa1r a,bmaA, the equatlons
- xaa=baay=b . S
have unique solutions in A then we say that an inverse algebraic operation

- is defined in A.

The solutions of the above equations are writte_n as:
x=baa-l,y=a-tab
respectlvely

Some examples of algebralc systems with an inverse algebralc operation
are given below:

A groupozd is a non-empty set G with a binary operation‘

A semi-group is a non—empty set G W1th an associative bmary
operation *’ :

Both these are algebraic systems.

-3.2.1." Examples:

1. Ordinary division is the inverse of the algebraic operation of

multiplication in the following sets.

(1) The set @' of all non-zero rational numbers and the set R’ -
' of all non-zero real numbers.

- (i1) The set R* of all non-zero positive real numbers.
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(i) ThesetC={27;n e Z}.

2. . Let M, be the set of all n x n matrices with entries from R.
~ The usual addition of matrices given by:
A+B=(q;+ by), A=(ay),B= by
is an algebraic operation in M, . The inverse of this operatlon 1s the
usual subtractlon of matrices. Thus the equations
X+A=B and A+Y=B
have the unlque solutlons ‘ ‘
X—B-—A—(b a,,),Y——A+B (—a i+ by

3. The set N of natural numbers docs not ‘admit the inverse
operation of the algebralc operation of dddltlon mMN.

3.2.2, Umt element and lnverse of an element in a set:

: Let Abea set with an algebralc operation . If there are elements
ey, e, in A such that

eoa=a,ace=

for all a € A, then e, e2 are called a Ieft and a nght unit (identity or
neutral) elements in A respectively. 7 )
An element e € A which is both a leﬁ and a right unit is 31mply.
called a unit element or an identity in A.
A sem1 group w1th an identity element is called a Monozd

A set with a certain algebraic operation may or may not have a umt .
element, For example, the set NV of natural numbers under addition does
not have a unite element. It certalnly has a unit element namely “1” under
multiplication. - : .

An element @' € A is called a Ieft inverse of an element ae Aif
adoaa=e ' '

A rightinverse is similarly deﬁned

The following theorem establlshes the uniqueness of the 1dentxty
and the inverse of each element in a set.
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"3, 2 3. Theorem

(i) 1In a set' A with an algebraic operation a, a left identity is the
same as a right identity. '

(1)  In a set A with an associative algebraic operation o and an
identity element e, a left-inverse of an element 1s equal to its
nght Imverse. :

Proof .

(i) - Lete be a left 1dent1ty and e'’ aright 1dent1ty of A Thet!

! " !

gae' =€, ¢ 1sanght 1dent1ty

=¢", " ¢ is aleft identity

Hence ¢' = ¢" = e (say). This e is the unique identity element of A.

(i) Foranya € A, leta', a" € A be the left and right inverses of
a respectlvely Then, usmg the associative property of a, we
have, . l

adaaoad =a a(aaa")
=ad ae (. a" is the right i 1nverse of a
and
daaaad =@ aa)aad’
~ezaa’ (. a'is the left inverse of @)
=q"

‘Hencea' =a".

‘ Mdking use of the above theorem we write a' =a'' = -1. Thena -1
is both the left and right i inverse of a and is called the inverse of a. It has
the property that ~

aoa-l=a-la a=e.

The inverse of the inverse of a is a itself as can be easily venﬁed L
Also we define a° and a - by: :
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| | a’=¢g | ‘
and
| a"=a-".a-! .. a-'(n-times). o
| The inverse of the product @, . @, . ..a, of a;, 2y, . . ., 2, € A s
a,!. a7t . .. a7l a7l This follows by actually muitiplying the two

expressions. In particular,
(aby'=bl1a"l

A groupo1d in-which the equauons ax=b and ya = b have uque
solutxons is called a quasi-group.

A qua51-group with an 1dent1ty is called a toop : \

3.2.4. Cayley s algebraic operation tables

“Itis often convenient to represent the elements assocxated with the
palrs (a, b) of a finite set A under an’ algebralc operatlon o by a table. Let

"{alvaz’- sa}

We prepare- a tablé consisting of n2 squares and write down the
elements of A above the horizontal and across the vertical lines emanating
from the upper left comer. The element associated with the pair a, g
under o is then written in the square which occurs at the intersection of the
ith Tow and jth column of squares. This table is called Cayley’s algebraic
operation tabie. When completed, such a table makes it easier to verify
certain statements about the elements of A and the algebraic operation a.
For example such a table makes it ‘simpler’ to verify the associative or
. commutative property of the operation, to fmd the 1dent1ty element and the
, mverse of a certain element.

3.2.5 Examples.

The algebraic operations defined on a set A consisting: of the -
-elements a, b, ¢, in example 3.1.2 (3), can be given by the following
“tables. The algebraic operations on A are written at left upper corners of
the table.
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L
o, a b c
[ 2 b c .
- b b c a
C‘ c . a ‘b

I -
a, a b c
a a
a Bl c
c a c b

are the Cayley’s table for A corresponding to the algébraié operations

Similarly the addition table for V = {0, a, b, a + b} having the

equatlons 2a =2b =2 (a + b) = 0 . and the multiplication tabke for

‘ and a,, or simply the ., @, - tables for A.

C={%l, i} are;

| m
+ 0 a b la+b
0| 0| a]| b [a+b
a a 0 ja+b]| b
b b |a+b] O a
a+bla+b| b 0

X 1 ] -1 i =i
| U S T
1| =1 ] v | -] i
i i | —-i{-1]1
-i | oA 1 | =1

Observe that in table IIl we have taken a + b equal to b + a. (Why)?

The followmg paragraphs descrxbe some partlcular types of

relations between sets. -

Let A, A’ be sets with *.” and ‘X’ as algebraJc operatlons

respectively:

)

Then: .
© A mapping @ : A’ — A’ is called a homomorphism if
9 (a.b)=0@xeb)

An injective homomorphism @: A—>A'is called a monomorphism
- or an embedding of A in A

- 3.3. RELATIONS BETWEEN ALGEBRAIC SYSTEMS

In what folloWs by a set we shall always mean a non-empty set
with some algebraic operation defined in it. The algebralc operation will
be denoted by any symbols ‘+* " X’ etc. :

hl
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(2) A sujective homomorphis_rri from A to A" is called an
- epimorphism or a monic. =
A bijictive homomorphlsm from A to A’ 1s called an isomorphism.
Thus:

A bijective mappmo ¢ A — A’ is called an zsomorphzsm if the
equation :

0@ =9@xo®)
holds foralla, b € A. ' '

The sets A and A’ are then called 1somorph1c and we write A A
(read as ‘A is isomorphic to A”).

The relation of isomorphism  is fundamental in the whole of
Mathematics. Its importance in algebra is too great to be emphasised. It is
easy to verify that the relation of ‘being isomorphic to’ between sets is an
equivalence relation and thercfore partitions the whole collection of sets
into mutually exclusive equivalence classes of isomorphic sets. In orderto
discuss various ‘structural propemes inherent in each member of an

“equivalence class it is enough to examine only a member of this class with
regard to these properties thereby making the study of these sets easier.

, To prove that two infinite sets are isomorphic we define a mapping
between. these, verify the bijective property for that mapping and then
examine equation (I). For finite sets, however, it is convenient to use

Cayley’s table to verify equation (I) after det"mmcy a bijective mapping

between these sets.

. 33.1. Examples:

1. - The sets R of real numbers under addition and R+ of non-zero
positive real numbers under multiplication are isomorphic.

The mapping € : R — R* given by:
€ (x)”= e~ ;
forall xin Ris an iso}norphism because:
(a) e is injec‘tive. Hére .
E(x)=€ (xZ) S el= 2o X, = X, for all

xp, X, R,
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< 1s surjective because every y in R* is the image -of an
x=jogyinR under €.
Hence € is bijective.
()  foralix, x,inR, | -
e tx)=entu=cter=€ (x). € (x)
The mépping @ from the set Z of integers under addition to

the set E of even in’tegers under addition, given by:
¢ (n) =2n, ne Z

is an 1somorphlsm | : \

Let A be a set with multlphcat]on as an a]gebraJc operatlon
~andlet :

P={(adY.adecA).
~ Define an al gébraic operation ‘%’ in P as follows: -
For (a, a'), (a,, a,") in P, we put
(a,a’) x (a{, a)=(a.a,a .a)
Then the diagonal D = {(a, a) “a € A} is isomorphic to A.

The sets A = {a, b, ¢, d} and C = {1, -1, i, —i}, with the
- following Cayley’s tables, are isomorphic:

| @t ) - ©
+ | a | b c | d "X 1 | -1 1 —
a | a b | ¢ | d 1 L -1 i | -
b | b | c|d]|a S B S T I U I
c c d a | b 1 i | -]-1] 1
d | ad|a|b]|c - AP 1 -

The mapping @ : A > C givéri by:

9@=L0®)=i,pO=-10@=-
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»

is an 1somorph1sm To check equation (I) we have to verlfy it for .
every pair of elements in"A. For instance

o (b+0)=9(d)=-i
and | |

pB)x@c)=ix-1=~i
-and similarly for other pairs'.

EXERCISES

1. Let A= - {a, b, c} and P (A), the power set of A. List all the -
" elements of P. (A). Show that the usual intersection, 0, and |
union, U, of sets in P (A) are algebraic operations. What are  *
the Cayley’s tables for these operations? Find the identity
elements, if any, with respect to these operations.. :

2. How many algebraic operations are there for a set consisting
~ of three elements? List two algebraic operation which are (i) )
non-commutative but associatives (ii) non-associative, (iii)

nelther commutatlve nor associative. .

3. Let A be a set, P (A) its power set. Define an aié cbraic ; “

operatlon @inP (A) as follows:

ForX,Y € P(A), weput

| XY= (X\Y)U(Y\X)
Show that- ‘
(i) @ is an associative bmary operation, i.e.,

(XGBY)@Z X@(Y@Z)forallX Y,Z e P(A)

(i) @ iscommutativeie, X®@ Y=Y ® X forall X, Y-e p A
(iii)  the empty set ¢ is the identity element with respect to ‘EB’ '
(iv) thei 1nverse of X € P (A)is X itself.” "

4. In the set R of real numbers, define an algebraic operation o
“by: E
a(x,y)=x-y.

Show(, by examples, that
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(a) o is not associative,

' (b) o 1S not commutative.

Define an algebraic operation W in the set R’ of all non-zero
real numbers by:

 Show, by \examples, that

(i) u is not associative '

' (11) u is not commutative

Let R+ denote the sct of non-zero posmvc real nuni:bers
Define an algebralc operation *.” on R+ by:

x.y= y"xyeR+

Show that
(i) ~ ¢ is not commutatlve
(1) .” 1s not associative,

(iii) = 1 e R*is a left identity but not a right identity.

Deﬁne an algebralc operation “*> on the set N of natural

numbers by:
m*n=m+n+mn,m, neN
Show that ‘*’ is an associative binary operation.

Find the identity element, if any, with respect to *

On the set Q of rational numbers defme a bmary operation ‘*
by:
a*b=a+b+ab

" Show that '

i) (@*B)*c=a*(b*c)
(i) 0 is the identity element in Q under *’

(in) eacha € @, a# -1, has an inverse

‘ a
al=—
1+a
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Let X = {(a, b); a, b € R, a # 0}. Define an algebraic
operation ‘®’ in X by:
(a, b)®(c d) (ac, be — d)
Examine whether ®is assocnatlve
Show that (1, 0) is a right identity but not a left 1dent1ty

Is there also a left identity?
In a non-empty set A, define an algebraic opcratlon by:
a(a,b)=a, abeA.

Prove that o is associative and evcry clement of A 15 a rig fht
1dent1ty under a. [s there a left 1dent1ty7 _ . \




o
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By a mathematical system or an algebraic system we shall mean a
non-émpty set ‘with one or more binary operations. In this chapter, we.
shall examine one of the basic and fundamental mathematical systems.
namely groups. This concept forms an intrinsic as well as an cssential part
of algebra. Group theory originatcd mainly from the study of theory of a
particular geometry invariant. Groups have found applications in various °
branches of pure and applied sciences.*For example in theoretical physics
one comes across the groups of linear operators, different types of
orthogonal groups, the symmetry groups and various rotation groups.
Similarly in chemistry one has to deal with crystaltooraphlc groups. We
now dcscnbe this concept m detail.

'4.1. DEFINITION AND CONSEQUENCES
4.1.1. Def:mtlonl : IR

_ A pair (G, .) where G is a non- empty set and ‘.’ an algebraxc
operation in G is a group if and only if:

(i)  -the algebraic operation ‘.’ is associative, ie.,
(@.b).c=a.(b.c)
foralla, b,ce G.

(ii) - with respect to ‘.’ there is an identity element in G, that i‘s,.
an element e € G satlsfymo the equatlons

1

a.e=e.a=a
foralla e G.

(ﬁi) for each a € Gthere is an a’ € G such that
a.d=d.a=e.

a’ is called the inverse of a in G and is denoted by a™!..

63
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The conditions glven in deﬁmtlon I for a group can be weakened to
the followmg '

Definition II;

» A group is an ordered pair (G, .) where Gis a non-empty set and <

an algebraic operation in G satisfying the following properties, called the
group axioms. :

(1) *1is an assoc1at1ve operation.

(i) . There is a [cft ldentlty in G. That is, an element e in G
exists such that

e.a=a | o 7 : \

forallae G.

(1) - Each a € G has a lefi inverse o' in Gie., for each aeG -

there i 1sa € Gsuch that
!.a=e -

Let us show that the two definitions are equivalent.
.Obviously definition I1 is a part of definition /.

Converscly, to prove the equlvalence of (1) (i1") and (i1i') with (1)
(n) and (iii) respectively we have to show, using (i'), that e 1s also a right
identity in G and that a’ is a right inverse of a.

Since a- € G has a left inverse a’ in G, there is a left i inverse a’ of
a' in G satisfying a'd=e. But then .

aa' =e(aa’ )
=(a" a’) (aa’)
=a'(d" a)a',by (')
=" (ea"), by (iii")
=a"a', by (it)
_, A
Hence a' is a right inverse as wel!l and (111) 1s satisfied.
Also | |

. gr=q '(_a" a) by (i1i"}
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=(aa)a,by (@)
= ea, as-shown above,

= a by (ii").

" Hence e is also a right identity and (ii) is satlsﬁed '"herefore the

two definitions are equivalent. - . X

If, in addition to the above requirements, thealgebraic operation £’
' is commutative then (G, .) s called a commutative or abclian group. Thus
an abelian group is a group (G, .) in which the equation

a.b=bh.
is satisfied for all a, b € G.

Henceforth a group shall be denoted 51mply by a set G, it being
always understood that there is an aigebraic operation in G.' G will be
called a group under addition or u group under multiplication according
as the algebraic operation in G is termed as ‘addition’ or ‘multiplication’

respectively. If no mention of the algebraic operation is made then G will.

- be understood to be a group under multiplication. The product of any two
elements a4, b in G will then be denoted by a . b-or simply by ab.

An element x of a set G W1th a binary operation is qald to be-

idempotent if x2 = x: _
The only'zdempotent element in a group is its identity.
- Forifx is an idempotent element in a group G, then
xt=x ' ' '
implies
xlx2=x-lx, .
that is,
x=e _ .
The number of elements in a group is called the order of that
group. : '
A group is finite if and only if its order is finite; otherwise it is
called an infinite group. (See the examples given below.) oo

. Let a be an element of a group G. A non-zero positive‘integer nis
called the order of a if a» = e and » is the least such integer.
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An element a 1s of finite or mf' nite order according as an mteoer n
with the above property exists or does not exist.

The ord‘er of the 1.dent1ty element eina group G is taken as 1.

If the order of ais n, that is a = e, then the clements
e=ao al, ..., avl.
are all distinct.’ .
Also then a*=¢ if and yonly if k is divisible by n. .
For if a* = e then, since k can be written as
k=nq+r; OLSr<,:n, ‘ \,
we have o ' | '
| e =gk = qra+r
= (a")‘l. a
=e.ar
= - ,

But, since a has order n and r < n, we must have r = 0 otherwise a will
have order a number smaller than'n. Hence k = ng. :

Conversely, if k = nq then a* = an = @y =el= e.
A group- all of whosé elements are of finite order is called a

periodic group. A finite grcup is obviously periodic. There are infinite
periodic groups as well {e.g., see example 4.1.2 (4) below)..

A group v which every element except the identity e has infinite
orde; is known as a torsion free (a-periodic or locally infinite).

" A group having elements both of finite as well as of infinite order

' .1s called a mixed group.

- 4.1.2: Theorem: . A non-empty set G with an- associative 'bimiry

operation is a group if and only if the left and right cancellation laws hold
in G, that is,

ab:ac,'ba=ca=>b=c'
foralla, b,c, € G.
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~ Proof: Suppose that G is a group, fm1te or 1nfm1te Then each element aof -
G has an mverse a-1in G. So
ab=ac =>ra -1 (ab) = a“‘ (ac)
- =@'a)b=(a'a) -c, by associative law.
= eb=ec ' o
, | =b=c
* similarly |
ba=ca= b=c

- Conversely, suppose that G is. a finite non-empty set with an
associative binary operation and, in G, the left and right cancellation$ laws
are satisfied. We have only to show that G has the identify element and an
inverse for each of its elements. So suppose that ‘

ab=ac=>b=c
Consxder the mapping o : G — G given by ‘
L o (b) = ab for all be G,ae Gis arbltrary but fixed 4.1. 2(1)
Then « is injective because; for b, c € G, ) -
0L(b)=0t\c)=>ab=ac=>b.=c - by4.12(1)

We show that a is surjective as well. For this let @ € G We show that
there is an element be G such that : * ’

o) =a. ‘ 4120
Let us write 02 for a . o and so on ok for o. . av(k-times).
“Then, applying o successwely ona, the elements ' T
a (@), o2 (a) = Ot(a(a)) - 0k (a), .

cannot all be distinct because G is fmlte Hence for some natural numbers
m and n,m>n, :

om(@=o"(@. - 41203
Also note that if (@) = a’, 02 (a) = a”, then, by (1), we have: '
o? (@)=a” =Vab‘b-0t(a')=a'b=oc2v(q) v

~ implies v
| a(a)=ab=d =0 (a)
- So, from 4.1.2 (2) we can cancel ¢ stxccessively n-times. That is
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ant(a)=a

That is -
- a(arri(ay=a

But o

ot ()= b
for some b € G. Hence

ady=a - _
for some b€ G. So i.s surjective and thcfef‘orc bijective.

Since, for each x € G o (=axe G, ther_é is a unique b € G such that

cax=b . St _ 412(3)
So the equation 4.1.2 (3) has a unique solutlon Similarly, by symmetry,
xa=b : - 412@)

has a unique solution. The unique solution of the equdtiohs

ax=aandxa=a

is the identity element e of G and, for b=ein4.1.2 (3) and 4 1.2 (4) the

unique solution of
a.x-eand‘xa=e S

is the inverse of a foreacha € G.

‘Hence G is a group.

4.1.3. Examples:

1. The sets Z, Q, R and C of integers, rationals, reals and of

complex numbers respectively are groups under ordinary
addition. These groups are all torsion free.

2. The sets @', R’, R+, C’ of non-zero ratlo_nals, reals, positive
reals and complex numbers respectively form groups under
- ordinary multiplication. All these except R* are not torsion -
free. (In @, R’, C’, the element — 1 is of order 2.)

3. The set C, of all nth roots of unity for a fixed positivé integer .

n is a group under the usual mulnphcatlon of complex_
nuribers.

Its elements are of the form
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Cp=enii k=0,1,2,..,n- 1.

It is a finite group of order n. .

- The set P of all the nth roots of unity forn =1, 2, ..., 1s &
group under complex multiplication. it is an infinite periodic
group. '

The set S, of all bijec: 'e¢ :appings of a non-empty set A

under the usual multiplication o: mappings 1s.a group. In
particular the set : ' '

Ta @, 0% 4, 04, 07 ¢

of bijective mappings of the set A = {a, b, ¢} is a group. Here ¢
and i are as given m example 3.2.1 Q). : '

‘The mappings @ and ¢ sati-fy 'he equations

(p_-, =l ((;)g;/);f = ]\ -

This group is non-abelian. fa fact 1t s the smailest non abeia

group. That is, every group 'whqse osderis 75 i3 abehan. -

For any non-zero positive integer n. the collection M, oi all.

n x n matrices form a group under matrix addition. The zero

matrix is the identity under addition and each A = (@) e M, |

has — A = (-q;) as its additive inverse.

A matrix A is non-singylar if its determinant is not zero. The
collection M’ of all » x n non-singular matrices form a group
under matrix multiplication. Here the unity matrix I, with all the
main diagonal elements as ‘1’ and zero elsewhere, is the identity

| A1J 1s the cofactor of g;; in the determinant det (A).of A.

For any non-zero pos_itive integer n let
Z.=1{0,1,2,..,n~ 1}.
Define addition in Z, as follows:
Fora,b e Z,, we put

atb=r

~and each A € M has A’ = (A/det A) as its multiplicative inverse.
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where 7 is the remainder obtained after dividihg the ordiﬁary sum

~of a and b by n. It is easy to verlfy that Z isa group. under this

‘addition’.

The ‘quaternions’ * I, + i, * j, * k. satisfying the equations:

R=p=kR=-lij=kijk=iki=j,ji=-kk=—iik=-]

form a group Q called the group of quaternions. This is a -
non-abelian group of order 8, The elements of Q are special
cases of the so called quaternions al + bi + ¢j + dk, where 1, i,
J» k follow the multiplication rules given above, discovered by
W.R. Hamilton (1805-65). Hamilton discovered these
quaternions in his efforts to represent 3- d1mens1onal fordgs by

some suitable elements. : '

The matrices

e

satisfy the equations
a*=1,a= b bab-! = q’!
and fdrr_n a group Q* consisting of the elements Sy
{i, a, az; ad, b, ab, a2b, a’b}. '
The groups Q and Q* are isomorphic.
The set V,(R) of all vectors in the three diamensional
‘Euclidean space is a group under the * vector add1t1on defined
by:
xty= (x1+y1,x2+y2,x3 +J’3) .
for x = (x;, x5, %), y = (1, Yo, ¥3) I V3 in V; (R). The zero vector
0=(0,0,0)is the 1dent1ty and each x = (x,,x,, x3) has x= (—-xl,
' xz, —-x3) as its add1t1ve inverse.

Group of Mobius T ransformatzons. Let. C W {o} be the
extended complex plane. Consider the set M of all blllnear .
transformations, '

L:CU {0} = CU {} defined by
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. + b * .
p(z)=g§+d,ad—bc¢0,z e Cu {0}
and a, b, ¢, d are themselves c0mplex numbers. Multiplication of
~ mappings in M is thelr successive application. The mappmg
I:Cvu {00} - CU {=} given by
I(z) zforallz e CuU {0}

is the identity element of M Also for each p in M, its inverse is the .

mapping
BT CU {oo}—->CU {oo}ngenby'
, s
W @=4 cz+a

7 Hence M is a group, called the group of Mobzus transformatzons

Of partlcular intereset are those mappings p in M

az+b -
r@=7,

w.'i;h/ ad — bc = 1. Such mappings also form a greup. Both these

groups are closely related respectively to the groups

M——{C Z) dbcdeCandaa’ bc;&O}

and | | | |
a by
M* = c 4 abcdeCandad be=1.

- .under matﬁx_multiplication

4.2. SUBGROUPS

A subset H of a group G is called a subgroup of G 1f and only if H

is itself a group under the same algebraic operation as defined in.G.-

A According to this definition, an arbitrary subset of a group need not
necessarily be a subgroup of that group. The algebraic operation in G
induces in a subgroup H an algebraic operation and it is with regard to this
operation that H has to satisfy all the axioms of a group.
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Thus a subset H of a group G may itself be a group under an
operatlon different from that in G but may. not be regarded as a subgroup
of G. ~

For instance the set _ -
C={1,=xi} _ .

- is a subset of the group C of compiex numbers under addition, it is itseif a

group under the cornplex multiplication but is not a subgroup of C.

Every group G has at least two subgroups namely the subset E,
consisting of the identity element e alone, of G and the whole of G itself.
E 1s called the unit (identity or trivial) subgroup of G. '

A subgroup of G different from E and G is called a p(oper :
subgroup of G.

It is easy to see that the relation of * bemg a subgroup ofa group is

~ a transitive relation. Thus if H is a subgroup of a group K and K is a

subgroup of group (G then H is a subgroup of the group G.

The concept of subgroup is unportant in the whole of group theory.
Most of the problems in group theory are concemed with the
determunation of subgroups G having certain specified properties.

4.2.1. Examples:
1 " The set R* of all non-zero positive real nuinbers under

- multiplication is a subgroup of the group R’ of all non-zero
real numbers under multiplication.

2. The set Z of integers under ad'ditlion'_is a subgroup of the

group @ of rational under addition, Q is a subgroup of the
- group R of real numbers under addition and R is a subgroup
of the group C of complex numbers under addition.

3. Thesubset {i,, ¢, ¢p?} of the group

| Sa = {in @, 92 ¥, O, @2y} with @3 = Y2 = (@¥)* =1,
is a subgroup of Sa-. ' :

B 4,  The set {+1} is a subgroup of the group> Q' of non-zero

rationals under ordinary multiplication. It also is a subgroup
of the group {+ 1, £ i} under complex multiplication.
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The following theorem gives a necessary and sufficient conditi'orj
fora subset of a group to be a subgroup. , : : o
4.2. 2. Theorem: A non empty subset H of a group Gis a subgroup of G
if and only if, for any pair q, beHab'e Hiazezb o

- Proof: Suppose that H is a subgroup of a group G..;Theln H is itself a
group under the same algebraic operation as defined in G. The element
ab™!, being the product of two elements a and 7! of H, is inH

Conversely, if, for each pair a, b € H, ab! € H, then, puttmg b=

. a, wehave ab! = acr1 = ¢ € H. The element ¢ is the identity element of G
‘and, since the equatlon a.e = a is satisfied for all @ € G, it is satlsﬁed in
the subset H of G so that e is the identity element H. Taking a = €, we .
have, for any b € H, e.b~! = b1 € H. Hence every element of H has an

inverse in H. Moreover, for any two elements a, b € H, a, b-! H. Hence
ab =a(b~')! € H. Thus H is closed under the induced algebraic operaticn.

“The associativity of the induced operation in H follows from that _
of the algebraic operation in G. ”

Therefore His a subgroup.

One can easily establish the equ1valence of the following condmo
for a subset H of a group G to be subgroup with that given in Theorem
422 '

4.2.3. Theorem: A non-empty subset H of a group G is a subgroup ¢r G

if and'o_n'ly if, for any pair, a, b < H, ab € H and foreacha e H,a: e H

‘ -Analogous to the intersection of sets one h_as the intersecrion of
subgroups of a group'G. Thus by the intersection N  of a collectior. & of -

subgroups of a group G we mean a subset of G all of w hosg ..len rents are

common to each member of the collection.

4.2.4. Theurem. Let Q be a collectlon of subgroups of a orOUp G Then
the intersection M £ of the members of Q is a subgroup of G. F
Proof: Let H = A Q and a, b € H. Then a, b € A for each member
subgroup A € Q. Hence ab! € A for each A € Q. Therefore
~ab-'e N Q =H. Thus H is a subgroup ofG

The intersection of a collection of subgroups of a group G is
obvicusly the largest subgroup of G that is contained in every member of
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the collection. The intersection of all the subgroup of G is, of course, the

* identity subgroup of G.. B 4 .
- 4.2.5. Theorem Let A be an abehan group and F the set of all elements

of finite order in A. Then F is a subgroup of A.
Proof: Let a, beF. Then there exist integers m and z such that
a™=1, b"=1, 1 being the identity in F.

So  (abym=ab.ab..ab  (mntimes)

‘.=amn_bmn 7 o
={(amy. (b1
=1.1

=1.

Hence ab has ﬁmte order and SO belongs to F. Moreover ifaeF

_and am =1, then

(a@)yn=g-1.a-1...q-! (m—times)
= a»-m . . .
:(am)—l .

=1

-Soa-! € F. Hence F isa sub“gr_oup of A.

4.2.6. Theorem: The union H, U H, of two subgroups H,, H, of a group
G is a subgroup of G if and only of either H,cH,orH,cH,.

Proof: Clearly if H, ¢ H, or H2 c Hl, then Hl v H2 H, or H, and so is
a subgroup of G. . :
~ On the other hand, suppose that Hl v H2 isa subgroup of G, and -

H,zH, H, zH,. _
Let a € H\H,, b € H,\H,. Smce a, be H1UH2 and Hlqu is-a

~ subgroup, ab € H,UH,. That is abe H,or abeH2 Suppose that ab € H,.
- Then _

‘b=a-!(ab) € H,," Hl is a subgroup,
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-a contradiction. Slmllarly ab € H, implies that a'= (ab) b~ e H,, a
commdlcu'&r Hence H\\H, = ¢ or Hy\ H, = ¢ so that H, CH, or H, CHy.

An element x of order 2 in a group G is called an involution.

27, Theorem: Every group of even order has at least one involution.
Proof: Let G be a group of order 2n. Let

A= {xe G: xz—e} B={ye G yz;&e}
' Then of course, -
| AUB=GandAnB=¢.
If B = ¢then G A.So A and therefore G also contains an 1nvolutlon
SoletB # ¢and let y € B. Then, asyz;ée y#y’l But then (y 1)2 # ¢ so

that y -l€ B. So, for each y € B, y ! also belongs to B. Thus the number

- of elements in B is even. Since the ordér of Gis even and -
Gl =1A| +[B],
|Gl being the order of G, so the number of elements in A also i is even.

Since e2=¢, e € A, A # ¢. Hence |A] > 2. Thus A and so also G contains

an 1nvo]ut10n . ' | ‘ 7
4.3. SUBGROUP LATTICES

k By a Lattice we mean a partially ordered set (L, <) in which any

two elements a and b have the greatest lower bound and the least upper

bound in L. Here the greatest lower bound and least upper bound of a and
~ b are denoted by - ' :

anbandavb

resp.ectively. For'example the collection P(A) of all subsets of a non-' :

empty set A is a lattice under a partial order which is the set inclusion.

Let G be a group and H, K be subgroups of G. Then, only here, we
. take HUK as the subgroup of G which is the intersection of all subgroups

S of G which contain ﬁth H and K. HUK in this case is not the set-

theoretic umon We take -
HnKandHuy K

e ——— e o
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as the greatest lower bound and the least upper bound of the subgroups H ‘
and K respectively. That is, H U K is the smallest suboroup of G which

‘contains both Hand K.

For example, let
 Q=({tltitj,tk)

 be the group of quaternions. Its subgroups are:

H ={I}, H={t1}, Hy={£ [ £},
Hy=(£1 %)), Hy= (L £}, H,=Q.
"“he Jattice oflts bhb roups is: ,

L= (H,H, H, H, H, H} . R .

and is shown by the following diagrém.i

, ,,’HG:Q _
PN
.Hs-'/ .y'ﬂs

&

.H )
Here, if A and B are, 3ubgroups of G and A C B, then A appears‘ '

bzlow B and 2 line segment connects the points representing A and B
iikewise, as another example, let
' D,=<a,b: a—bz—(ab)2“1>
be the dlhedral group of order 8. Its subgroups are
Hy= {1}, H1—<a a=1> Hy=<a*=1>, Hy=<b: b2=1>
H,=<abjaby = 1>, Hs=<da’b:(a?b)=1>, Hy=<abh (a3b)2 =1>,
Hy=<a’ bia*=0=(@bP=1> Hy=<ab a*=p=(@bf=1>=D,

The lattice diagram of the subgroups of D, is as follows.
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4 4. RELATIONS BETWEEN GROUPS

Various relations exist between groups The most fundamental of
_these are the relations of homomorphism and isomorphism of groups.
These and a few related concepts are described below..

Let (G, .) and (G’, x) be groups, A mapping ¢ : G- G is called a

homomorphzsm of G to G’ if, for any paira, b € G,

@(a.b)=9@x¢®)

A homomorphism ¢ of G to G is called an eplmorphlsm Or an epic
if @ is surjective and a monomorphism or a monic if @ is injective.

A homomorphism ¢ : G — G’ is an iSOmorph_isni if ¢ is bijective.

Thus a mapping ¢ from G to G is an isomorphism if and only'if -

() ¢ is bijective ,

(i) ¢ satisfies the homomorphism property, i.e.,

¢la B =gia <¢b)foralia,be G.

Under isomorphic mizppings the propertics of groups such as

commutativity of elements, finiteness of their orders “etc., which are

consequences of the algebraic operations defined in them and which are

independent of the characteristics of it:dividual elements, are preserved.
The relation of isomorphism between groups is an equivalence

relation and therefore partitions the collection of all groups into

equivalence classes of isomorphic groups. The structural results which are
true for a representative of am equivalence class also hold’ for all the
members of that equivalence class.

An embedding of a group G into a group G’ (or more generally, a
set G’ with an algebraic operation) is simply a monomorphlsm of G into
G

It G is embedded in a group G’ hen G’ contains a subgroups H,
~ say, isomorphic to G.

It shall be shown that any group G can be embedded in a group of

bijective mappings of a certain set. In general, there can be more than one
embeddings of a group in a given group. This simply means that a group
can have more than one subgroups isomorphic to a given subgroup.

- As an example we have the group S, of example 4.1.2 (5) which
has three subgroups of order 2 namely the subgroups {i,, ¥}, {ix, ¥}
and {i,, ¢? v The group {1} under muitiplication is 1somorph1c to each
of these suboroups

et —— A —— e ——L - -+ e
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For the sake of simplicity, anc{ without any loss of geherality, the

algebraic operations in the two groups G and G’, having an isomorphism
between them, will usually be taken as the same.

4.4.1. Examples:

1.

The groups Z of integers and E of even integers, both under.
addition, are isomorphic under the mapping o : Z — E given

‘by:

a(n)=2n,ne Z :
Here o, is surjective because each even integer 2n, n € Z is the

1mage of the integer n under o Also o is injective because:

2.4

am=am A
implies ' S ,
’ . 2m=2n, thatis m =n.

‘Also _ -
a(m+n)=2(m+n)
=2m+2n
=o(m+on).

Hence o is a homomorphism and- consequently an isomorphism
between Zand E. :

The groups R* of non-zero positive real number under
multiplication and R of real numbers under addition are
isomorphic under the isomorphic mapping € : R* — R given
by - ‘ '

e(x) log x, xin R*, :
since any real number r is the image of some positive real number
e’ in R* under € (ie, € (&) = log ¢ = r) and the equation
€ (x) = € (y) implies log x=logy, yleldmg x =y. So ¢ is bijective.
Moreover - . R

€ (xy) =log (xy)

=log x + log y.
=g +e(y)

Hence g : R* — R is an isomorphism.

Let A and B be groups with identities e and e respect1ver
The set |
P={(a,b):ae A, be B}
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~with the algebralc operatlon glven by
(a,b).(d,b)=(aa’, bd")
1S a group. The mappings T, : P> A and nB P B g1ven by:
i, (a, b)=a, ‘g (@, b)=b-
are epimorphisms and are called projection maps of P to Aand B
respectively. The mapping 5:A—P glven by:
o (a) (a,e) :
is an embeddmg of AinP.

4.  The group A = {a, b, ¢, d} and C, = {#l, Hi} havmg the

- following group tables are 1somorph1c _ ,
: x | 1 -1 ] i} H

+ a b | c | d

2| a |5 ]|c]|d 1 |1 a1
b | b | c|d]a -1 | -1 1 |-} i
¢ | c | d}|al|b O -i { -1 1
d}| d| a b | ¢ - | - i 1 | -1

An isomorphic mapping @ : A — C, is given by:
P@=100)=i,9)=-10(d=-i.
Let @ be a homomorphism of a group G into a set G’ with an

algebraic operation. The collection of those elements of G’ which are’
images of elements of G under ¢ is called the homomorphzc zmage of G

under ¢ and is denoted by ¢ (G)

4.4.2. Theorem The homomorphlc image ¢ (G) of a group G 1s 1tself a .

group.
. Proof:  LetGbe a group and @ (G) the homomorphic 1mage of G in a set
G’ with an algeraic operation. To show that ¢ (G) is a group, we verify the
axioms for a group. o

F1rstly to see that ¢ (G) is closed under the induced operation of G
Cleto (gl) 0 (g;) € ¢ (G), g, g, € G. Then, since ¢ is a homomorphlc

0@ -0@E)=0( -8 ;
so that @ (g,) . ¢ (g,) is the i 1mage ofg, .8 € G

Hence 0(g).-0()eo (G) and @ (G) is closed.

~ Secondly, for the associative law in n @ (G), let (p (gl) wégz) ¢ (83)
€EQ (G) Then

A e e Crp——. . - — " ep—" | — . .-y
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(¢ (g)- 0(g)) 0 (g) = ? (81 - 82) - ¢ (g3), ‘¢ is 2 homomorphism
=0 ((g -8)-8)
=@ ((g;- (85 85)), ‘assofiative law holds inG.

=0 (g). 0(gg)
=@ (s)-(0(g).0(g 3))

Henre the induced operation in ¢ (G) i is associative.

Thirdly if e is the identity .in G, ¢ (e) is the identity in 0} (G)-
because for any @ (g) € ¢ (G) we have: :

9@ .0)=¢(ge)=0(®. \
Lastly foreach ¢ (g) € ¢ (G), ¢ (g™) € ¢ (G) and b
P (®.-0@E)=0@E"N=0(@. , . |
Hence @ (g7!) is the inverse of @ ( g) in @ (G). Therefore ¢ (G) is a group.

From the proof of the above theorem we have the following:

4. 4 3. Corollary: Let ¢ : G = G be a homomorphism of G into G/,
where G and G’ are groups. Then:

(i)  The image of the identity of G is the 1dent1ty element m'
¢ (G).

'(ii)  The image of the inverse g-! of g € G is the inverse of the

- imageie., @ & H=lo @) e
'Next we prove an important result concerning the embeddmgs

4.4.4. Theorem (Cayley’s theorem) Any group G can be embedded in
a group of bijective mappings of ‘a certain set. :

Proof: Let G be a group. For each g € G, define a'mapping P, : G -G

@, (x) = gx
for all x € ‘G. Then Pyisa bnectwe mapping because

0, () =0, () = gx=gy = x=y

and any element, say, y € G is the image of g'! y € G. Put

) \ $,.=1¢,: g€ G} |
Let ¢, @y € g Then, foranyxe G,



SECTION ~4.4. RELATIONS BETWEEN GROUPS - 81

(@ 0p) () = 9 (8" %) = g (8" x) = (88") X = Py ().
Hence ‘ o o ;
| 95 9y = Py SR 4.4.4(1)
is an element of @g.. -

It is easy to see that Pg is a subgroup of the group of all bijective
mappings of the set G, has @,, e the identity in G, as the identity element
and for each g€ G, 1 as the mverse of g, € 5.

We show that G is 1somorphrc to ®g. For this, defme a mappmg

' G — g as follows: . : o e
Letge G. Put,. : K
(g =¢ T o :
Then yis a bijective mapping: ¥ is surrectrve because cach @, € CDp 1S the
1muge of age G and wis injecti~ < hecause

vig)=w(g) = (P_gl =@,

_ !
= '(p_g] ((P (gz)) :(pe
.==> (P‘ (ps::l = Q. |
= Q= 0,
“sothat g,. g,”! = e, yielding g, = g,.
Moreover if g, g, € G, we have
(g g = (pglgz,- by definition of ¥
= (pgl . (pgzi by4'44(1)
=y (g). ¥(g)
- sothat yis a homomorphism of Gto P

. Hence G is isomorphic to P. Therefore Gi is embedded in a group of all
leectrve mappmgs of a set namely G.

In the case of finite group of order n the abovc theorem assumes
the following form.

"4.4.5. Corollary: Every finite group of order n can be embedded in a
- group of bijective mappings of a set consisting of n elements. -

!
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Cayley’s embedding theorem reduces the study of all finite or
infinite groups to that of the groups of bijective mappings of certain sets.
The structure of these subgroups give us almost all the information that we
need for a particular group. However this does not make life for the

students of group theory any easier. ) ‘

In the following theorem we discuss a spec1a1 type of embedding

of the group Z of integers under the addition into the group R of all

non-zero real number-under multiplication.

- 4.4.6. Theorem: =~ Let R’ be the group of non-zero real number
multiplication and Z the group of integers under addition. For each r € R/,
- there is one and only one embedding f,;: Z->R suchthat f,(1)= r L
Proof: ’ '
For each r € R’, define a mapping f, : Z — R’ by:

f(m=r ‘ s 446D
forall n € Z. Then f, (1) = r and | |

f.(m+n)= 7"'*"-7’" r=f (m).f, (n).
Sof,isa homomorphlsm For f, to be an embeddmg we need only verily
that f, is injective. But this is so because if '

£, (m) = f, ()
for some m, n € Z, then

7=y, thatis, Pi=n=1 =2,

J giving m — n = 0. The only point that remains to be proved is the
uniqueness of f,. Suppose that there is another embedding gr : Z — R’
such that ;

v g ()=r.
Then ‘ ‘

gm=g (l+1+..+ 1) n-times ‘ v

=g (D.g (1) ..g A g, isa homomorphlsm )
=" :

= £, (n)

" for all n€ Z. Hence g, = f, as required.
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4.5. SYSTEMS OF GENERATORS AND
~ RELATIONS IN A GROUP

Let Gbea group and X an arbitrafy non-empty subset of G. Such a subset, -

is called a complex in G. The intersection K of all the. subgroups of G
which contain the set X is a subgroup of G called the subgroup generated

by X and is denoted by:
: K=<X>
(read as ‘K is the group generated by X’)

-

~ Since K contains, together with every element of X, the inverse of each

‘- element in X and also, by closure law, the product of any 'two\ and

therefore of finitely many elements in X and their inverses, an arbltraxy
' element k of K can be written as:

k=x ! €2 S 4.5 (1)
=X X WX : : .
where x, € Xande;=%1,i= 1,2,..,m

The expression on the right hand side of equation 4.5 (1) is called a
~ wordin
s Koo wees X

If the subgroup K coincides with the group G, then X is called a
system of generators for G and G is said to be generated by X. X is an

irreducible system of generators for G if no proper subset of X can

: generated G.

A group G is ﬁnztely generated if and only if a generating set X of

G is finite. Otherwise it is infinitely generated.

Finitely generated groups form a very imﬁortant class of groups

- and have been the subject of study by various group theorists.
Let X be an arbitrary set of generators for a group G. If, for x, € X
ande; =t 1,i=1,2, ..., m,the equation
€, €, €,

“wix X
(o, oy 0 m’ oy T oy

Y=x._ .x_ ..Xx_ =e 4.5 (2) ’

e —— i i e - e e A o .
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w here e is the identity of G, holds, then 4.5 (2) is called a relatzon in G.
The werdwinx, , ..., x, iscalled a relator. .

Um

It is often convement to represent a group in terms of gen: ralors
and rels fJoris If a group G has a set X as a system of gcncld ors and the
words 1w, ..., wy as relators then we w rite

G=<X:w=w=.. =w=e> 45 (3)

- and read as ‘Gisa group gencrated by a set X W1th

W= E=w e
as relations. .
A collection of equations w .= .. = w, = e, which'hold in'a group
G, is called a system of defining relatiors if every relation in G is
derivable from these. Equation 4.5 (3)1s then called a presentation of G
A group is fimtely presenied (f and only if it has a finite system nf
generators and can be dcfined by a finite number of defining relations.

- Not every group is finitely generated. For example the group of
ratlonals under addition is not finitely gencraled

It may be mentioned that the descrlptlon of concepts like relations
and pr=sentations of groups given here is not very rigorous. A full account
of these notions can be found in standard books on group theory.

The usefulness of a presentation of a group, that is, its description
in terms of generators and relations, lies in the fact that, with their help,
various types of calculations in the group become ‘easier’. Given a group
in terms of generators and relations it is, for example, ‘less difficult’ to
show whether or not the given group reduces to the trivial group. Similarly -
the nature of generators and relations of two given groups: helps us to
de*ermine the existence of a homomorphism between the groups.

4.5.1. Theorem Leta group G have the presentatlon
. G= <aba“'b2a B, bl atb= @3>
Then G is the identity group.
Proof: Ffom @ b2 a = b* we have: »
a-' b8 a=(a! b2 ayt = b1 45.1(1)
so that o oo
a?bal=gi b2a=(a'bra)S=h"%. 4.5.1(2)
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Thﬁs f. om4.5.1 (2) and the equation b— a’b=a3, wehave

| @B =batb. B b=bY, |
-,uSihg hblalb=a3. . , .
Buta3 bt =at(a2bta?)a=at b a=(a! b2 a)? = (b3)? = b27.
Thatis, o -

‘ b‘si=. a’htad=bt

choo b)=1. Conseqx,lcni?y 451 (2) becomes, "
, Catha=1 ‘ ' |
which is the sanic a§ b = 1. This together with % =1 glvos b=1. but then

b-! a2 b = a* becomes a> = a* wh:ch implies @ = 1.

Hence G = {1}, as required.
Let w (s -y X4 ) be @ word in the v'a.nables Xy woor X Il the
equation
w - 8a) =¢ R 4.5.1-(4)

holds for any ch01ce of elements LA ca/‘ € G

replacing . Xap ++os then w = e is called an 1dentz"a1 relatton oraluwin. -

G.

A class of groups defined byka set of law is called a variety. The subject of
varieties of groups has become an important and interesting part of thc

theory of groups. Its main contributors are B.H. Neumann, Hanna
Neumann and their collaborators. There are inany unsoived problems in

this- subject. (see Varieties of groups. by Hanna Neumann Sprmgcr"

: Verlag, 1967, for more details).

455. 2. Exanples

1. The group C4 of complex numbers 1, el,;i, .—'i has a
presentation: :
_ C =<x:xt=1>

‘ W1th xasa generator and x*=1lasa c.oﬁmng relation. x* =1 1s also
_ an identical relation in C,. : ' '

e
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Consider the collectlon Vv, of real valued functlon f (x) X, - V
fz (x) = —=x, f3 (x) = 1/x, fi(x)= —1/x, under the multlphcatlon_

(@)@ =g FE).
V,isa grotlp having f,, f; as generaters and .
RP=r=0CAr=h
as defining relations".
Here
R O=hG (x» = ()=~ Ux =, .
Put fi=e f2 =a, f;=b. Then fi= ab anda presentatlon for V, is:

V,=<a,b: a2~b2—(ab)2—e>

| V,is called Klem s four-group

A presentatxon for the group S of all buectwe mappmgs of - |
‘the set A = {x, y,z} is’ S

Sa=<O. Y@= =(@Y) =i, >
Here ¢ and Az//_ are given by the equations
=y 0M=z0@=x
Y@ =x90)=2 ¢ @)=y,
while i, denotes the 1dentity mappmg of A:

: The group D havmg a presentatton

D ,=<a,b: a"-bz—(ab)2—1>

- is called the dihedral group of order 2n.

Forn=2, D, is simply the Klein’s four—g"totlp A

The group Q of quatemlons +1,+i, %,k has a presentatlon '
"Q= <a b:at=1, az—bz-(ab)2>

Here we have taken a=1,b=j

Another presentatlon of the group Q of quatemlons is

0 -1y . (i 0.
Q=<X,Y:Xé_(l_ O),Y:(O -i)’l=\/———l>,

—
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| Wthh represents Q in the matrix form. One can venfy that :
IL-1X X, Y, Y X Y,-Xy ‘
are the only eight elements of Q. Note that
' XZ—YZ—(XY)?——I R
is another presentdtlon of Q.
6. - LetQbea class of groups defined by the law k
ytg=e SO
Ll:forallxyeAmQ : S \
Then Q is called the variety of abelzan groups
- If we add another law namely
m=e, .
~we get the variety Q,, of all abelian groups of exponent m. o
= (A group G is said to have exponent m lf and only if the equatton
_ x"'—etssattsfedforallxthe x’"—ezsalame) ' :

1. fConsxder the group generated by ag, @y, @y, ... With deﬁmncy
~ relations _ : L ~ . o
. _ L

Pl -
a,= Apyy = Ay

where p is a prime integer and n = O l 2,.

' 'This group has an infinite . number of generators and an mfm1te |
number of defining relatlons It is known as Prufer s p group A

(after its drscoverer H. Prufer) and is denoted by Cyee-
Thus |
’ Cp;£<a a,,vaz,... a —I,asﬂ—a n=0,1,2,.

- C,= is an abelian Oroup and has been used extenswely to construct -

counter examples to various conjectural questions in group theory.

e e e
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4 6 CYCLIC GROUPS

In the descnptlon of generators in 4.4.5, 1t was mentloned that for
any non-empty subset X of a group G, the intersection H of all the

" subgroups of G that contain X is called the subgroup generated by X.

If X consists of a single element a, say, then H is called a cyclic :

. subgroup of G and the element a is called its generator. Thus:

A group G is cyclic if and only if it coincides with one of its eyclic _
subgroups Le., if and only if it is generated by a single element. ‘
Thus a cychc group is one all of whose elements are powe{s of one

and the same element.

“If G is a‘cyclic group generated by a then for any x € G there.
exists an integer £ such that

x=ak. -

G is a finite or mﬁmte cychc group accordlng as the order of a is
finite or infinite.

I Gis ﬁ_mte cyclic of order » then its elements are: .
ad=e,al,a?, ..., av!
and a presentation of G is
G=<ag:a"=e>.
Also a"’t ein Gifand only if £ is d1v151b1e by n.

If G is an infinite cyclic group with a as 1ts generator then no two

 distinct powers of a can be equal.

For suppose that a” = a for some integers m, n. We can suppose
that m > n. Then am- = ¢, the identity element in G. Hence, by the remark
.mentioned above, a has finite order, a contradlctlon

~Every cyclic group is abelian:

For if G is a cyclic group generated by a and X, y, € G there exist:
1ntegers k, I such that x =gkt y=aand :

xy=ak.a =qai- ~a1+k—a’.a"=yx.o

Examples of eyclic groups are the group Z of - int%gers with 1
(or ~1) as a generator and the group C, of all the nth roots of _unity.
Elements of C, are of the form ’
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eknim k=0,1,2,...n -1,

: {1 1
,G=<a‘-a=(0 1)>

under matrix multiplication, is an infinite cyclic group Here by induction -

on n, one can easﬂy deduce that

n—'l n
a—Ol'.

The followmg theorem gwes a complete charactenzatlon of the
cyclic groups e

4.6.1. Theorem: “Any two cycIic;_ groups of thea samelpordé;r are

isomorphic.

Proof: We shall estabhsh this result by showing that a-finite cyclic group -

of order n is isomorphic to the group C, of all.nth roots of unity and an.

infinite cyclic group to the group Z of integers under addmon and use the

transitive property of the relation of 1somoxph1sm

Let G be a finite cycllc group: of 01der n-and generated by a. we

define a mappmg ¢:G— C, by:
() (ak) e2k ni/n,
Then ¢ is obvrously surjective. It is mjectlve because (p(a‘) o(a’) implies
‘ eka/n = e211t1/n

One can safely suppose that k > I. Then e2-hmim = | so that k— =0 or k-1

" is divisible byn. Ask<n,l<n k-Il<n, the latter case does not occur.
‘Hencek 1=0ie, k-lwhenceak—a’ :

Also for at, @' € G

() (a" a)=¢ (a"*’)
= e2(k+[) n in

= gPkmil g2
=@ (av) . @ (a)).

Hence ¢ is an isomorphism and G =C,

If G 1s an mf1mte cyclic group generated by a then we define a

mapping @ : G — Zby:
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o (p (a¥) = k ke Z.
' Then ¢ is obvrous]y a bl_]CCthC mapping and as
@ (ak.a)=¢(a)

=kt

=9 @)+o (a’) :
@ isan 1somorphlsm between G and Z. Thls completes the proof of the
‘ theorem o :

That the property in a group ‘of belng cychc is preserved under |
takmg subgroups and homomorphlc images is shown in the following
theorems : _

‘ 4 6 2. Theorem Every subgroup of a cyclic group is 1tself cychc \= '

Proof., Suppose that G is a cychc group with a as its generator and Hone
~ of the subgroups. Let & be the least positive integer for which a* € H. If &’
_is an arbitrary element of H, then there exist integers q and r such that
‘Hence o ' '

al = akar
=(a%y . a". .

As @' and a* are in H,a'. (a")'q =a"e H By the mmlmahty of k,r=0and
| =kq so that &’ = (a")‘l Hence every element in H is a power of a* and H is
cyclic. ‘ . : S

4. 63 Theorem A homomorphlc 1ma<re of a cyclic group is. 1tse1f
cychc :

Preof: Lét G be"s cyclic group generated by a and @ (G) the
/ -homomorphlc image of G under ¢. Let ¢ (a) = b €0 (G) We show that -
every element of ¢ (G) is a power. of b.

- Letx € ¢ (G). Then there is an a* € G such that cp(a") x :
However

x=(p(ak)'#(p(a‘a...a):
' =b.b..b
| =p
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- Hence ¢ (G)is cyclic with b as 1t generator.

! 4.6.4. Theorem: Let G be a cyclic group of order n. Then G contains

one and only one suboroup of order d if and only ifd | a.

| Proof:. Suppose that G is generated by a so that a" =e. Suppose that d>0 -
divides n. Then n = kd, for some integer k. So

H-’-<'ak-k——-“ ) \

d

To see that H is the unique subgroup of order d in G let K be
another subgroup of orderd in G and generated by as, s > 0. Then

(@y¥=ad=e =

1s a subgr‘eup of order d is G

So n divides sd. Thus sd = rn for some non-zero integer r. But' n=kd

So sd = rkd. Therefore s = rk. Hence

a=a*e H.

Therefore K c; H. Smce H and K are subgroups of G havmg the same

order, H = K.

_ Conversely, suppose that a cychc group G generated by a and of
- order n has a subgroup H of order d. Then d, bemg the order of a subgroup
of G, d1v1des n, as required.

1. For each prime p there is only one 1somorph1c class of cyclic
groups. That is there is (upto isomorphism) only one cyclic
-group of order p.

L
L

2. - A group of order 1,000,000,007 is cyclic.
- Here the given number is a prime.
| ‘There are only two group of order 6,

4. There are only two groups of order
1000000014000000049

The two groups® are ) cychc groﬁp of order equal to- the R

“ given number and

(u)thegroupA <a,b:a*= b"—lab ba k—1000000007>>
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A cyclic group can be generated by more than one element. It has

already been mentioned that the group Z of integers can be generated by
‘1’ as well as ‘“~1”. Can there be other generators. for Z? The following
theorem gives information about the Oenerators of ‘a finite and infinite
cyclic group.

. 4.6.5.

6y

@) -

Proof:

(1)

_ Theorem:'

Let G be a cyclic group generated bya, G=<a>. -

If G is of finite order n then an element a* in G is a generator
of G if and only if k and n are relatively prime.

If G has infinite order, then a and a~' are the only ,ge'ne\rators_
of G. : v : ' '

- Suppose that G = < a > has finite order n. ‘Then a" = ¢

_ Suppose that k and n are relatively prime. Then there exist

mtegers D, q such that

7 pk+qgn=1. _
Let H be the subgroup of G generated by a*. We prove that H=G.
For thlS it is enough to show that a € H. Now . '

a=a'=d** "= (@4p. (@) = (a*).

" As(a*p € H, gi € H. Thus H= G and a* is a generator for G.

(ii)

Con'versely, if a* is a.generator for G, then for some integer P
’ (@ =a
That is,

akr-l=¢

"Hence n divides kp —1, that is, gn = kp —1 whence kp — gn = 1.

Thus k and n are relatively prime.

Here _
ak k> 1 is a oenerator of G (ak)P a for some mteoer p

& atrl=e.



SECTION

4.6. CYCLIC GROUPS = 93

~ Soeither kp ~1 =0 or kp.— 1 # 0. In the sccond case a has a {inite

" order, which is a diviser of kp —.1, a contradiction because a has

- infinite order: In the first case, kp = I sothatk=1=pork=~1=
p. Hence both a and a™! are the generators of G. - ’

-4.6.6. Theorem: Let G.be ac s/chc group g generated by a. o

L

Proof: Suppose that G is gencrated by a. Then, for each subgroup H oif G

If the order of a is infinite then’ thue is a one-one
correspondence between the set of all subgroups of G and
the set of natural numbc1s

If the order of a is 1 then there is a one-one correspondence

between the subgroups of G 'and the set of all divisors of n.

there is a least natural number & such that af e H and H is generated by « 3

L.

If the order of a i$ infinite then, for each subgroup Hof G,

we have a natural number & as stated above.

Converselv, if & is a natural number then the set
{a™* :m=0,£1, +2 .}

is a subgroup of G. Hence, in th1s.case, there is a one-one

correspondence between the set of all subgroups of G and
_the set of natural numbers.

.~ If the order of a is n then again, for each subgroup H of G,

there is a smallest natural number k such that a* € H and

- generates H. Let q be the order of H. Then, using the fact
' that k<n,q<n,e=a*=a"=n= qk so that £ divides n.

Conversely, if k divides n so that n= qk the elements

form a subgroup H of G of order q. Thus, for each d1v1sor kofn,

at, a*, ... aa Dk gtk = gn = e

there is a subgroup of G. Hence the theorem. -

Let- G be a group. Recall that the least posmve integer m “

(1f it exists) such that

for all g € G is called the exponent of G and G is sard to have
exponent m.

anr=e

- For cxample the group Qof quatemnons has exponcnt 4 because

T g o 1
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x“ e .
for allxe Q and 4 is the least such positive 1nteger ‘
It is easy to see that every cyclic group of order n, which is also the
~order of its generator, has exponent n. In terms of this concept, we have -
the followin0 characterization of a cyclic group.

4.6.7. Theorem An abellan group C of order n is cyclic if and only 1f its
exponent isn. : : : '

Proof: If C is cyclic of order 1, then the foregoing remark shows that c -
-has exponentn. - _ . ; . o

Conversely, suppose that C is an abelian group of order n and its..
exponent also is n. We show that C is cycl:c : '

. Fxrst we show that, for any two elements a and b of order P 4
respectively, in C, with (p g) =1, ab has order pq :

Here if the order of ab is k, we have
_ e=(ab)=at »b"_ N
- sothat ' , ‘ ‘ |
; o a"*-b"‘=c say.
Let m be the order of ¢. Then m divides the orders of a and b.
Soml(p,q) Smce(p q)-l m= 1 Hencec esothat :
. - ak=bk=e.
| But then plk qlk. Hence pq|k Also
' (ab)pa = (aP)d . (b“)p =e= (ab)“
"Hence k| pq. Thus k = pq.
Next let x be an element of maximal order i in C so that
xm=e, , '
We show that for eachye C, y"' e. _
) For thls since C is finite, let k be the order of y. Let

o o b A pH B
k=p) PP, m= p1 Py = Pr Pryp =Py

wherea,>0 ,8>0 1<1<_]<S Ifym:tethenkdoesnotdmdem So,
forsomel,




o> ,6 _
- Wlthout any loss of generality we can suppose that i=1s0 that oc, > B

' Take

ﬂ a, Ay

o= I iy 2
x—_xptif,yr-—ypz N o

Then |
(x )Pf’ psPs lxm‘_—_' e
and
. r(y,)p,(x‘lk=yp|al pl2a2 .o ﬁra' =yk=e

Since IR '

| PRI N S

- Yps __ S) 1

oy | al.~ ﬂ2 Bs .. T

X'y has order p; -~ p, ..py > m. This contradicts our choice of x.

Hence ym = g, so that m is the exponent of C. But then m = n. Thus x has ‘
order n in C which also has order n. Hence Cisa cychc group generated

byx. .

4.6.8. Theorem: Let G,, Gz, ... be subgroups ofa group G If G c G,ﬂ,
G;# Gy, fori 1,2, then u G, is not a cyclic group. .

~ Proof: Put K u G Flrst we show that K is.a subgroup of G

Ifa,bek, then there exist 1ntegers m, n such thata € G and b e

G, Wecansupposethatn>m Then G,, € G, and so q, beG AsG,is’

a subgroup, a, b, € G, 1mp11es ab! G, cK, proving- that Kisa subgroup
of G.
| Now suppose that K=<a>isa cyelic group generated by a. Then

. ae G,, for some, 1nteger m. As G isa group, every power ofa belongs to

G,, so that
<d>=K=© G,cG,,
ButG ck. HenceG K So |
G ch,,pcK Gm,p_l
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Hence K = u1 G, is not cyclic.
= .
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Hence G =G_, forallp>1,a contrudietjon to the fact that G, # G,y

m+p

!

4.6.9. Theorem: Let O be the group of rationals under addition. Then
any two generator subgroup of Q is infinite cyclic.

Proof: ~ Let p ’

ny ni,

ny’ o

‘be a two generator subgroup of Q. If d= (m. m,), the greatest common

divisor of m,, m,, then there exists integers q,, g, such that

\

m 41d ”‘2 g4

-~ Let a= —é— Now

mn,

m_ood_ o d
| n g Th My, T
Similarly
. m

w =

So both Land ;— are in the cychc group generated by a. Hence
m 2

Hc:<a> -

As the subgroups of a cycllc group are cychc H is cyclic. Of

course, H is infinite.

4.6.10. Corollary: Any finitely generated subgroup of the group O of
rationals under addition is cychc ,

MMy My fini rod s *
Proof' LetH=< 2 1 np--'> be a finitely generated subgroup of Q.
', FEE _
Letd be the greatest common divisor of my, m,, ..., my,, and put . '
d

a=T"—""—.
s ny’
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vThen each m / 1 €. <a>, 1< i< P HenCe Hc<an>. Th*us'fH, as.a "
. subgioup of a cyclic’ group, is'cyclic. o

Let P be a property of groups | like fm1teness cychcxty, dbelrannes>
etc. '

A group G is said to be locally P if every nmtely generated
‘subgroup of G has the property P. Thus a group G is said to be localiy
finite if every finitely generated subgroup of G is finite. Similarly a group
G is said to be locally cyclic if every finitely generated subgroup of G is:
cyclic.” : :

- The Corollary 4.6.10 shows th:t the mtlouals under addition form a
- locally cyclic group. Thxs 1s locally mhmfe as well. : L

“An example of.a locally.hn!te grcfup ;.sbzne‘f‘riiferfspm-group Cp
described in example 4.5.2 (7).’C oo is aiso locall_v cyclic {proved!).

'4.7. GROUPS AND SYMMETRs ES

By a symmetry of a geometncal figure we mean an orthogonal
affine transformation of the plane (or 3-dimensional) which leaves the q
- figure invariant. In easier connotation, symmetry of a geometric figure is a
-rigid motion of it which leaves it in a.shape or appearance similar to that it
was before the movement was made. Many groups arise in the form of
_ groups- of symmetries of geometric figures. In general, for any set of
“points S in a plane, the set of all distance preserving injective mappings of ,
- a plane which leave the points of S invariant are called symmetries of S \
under the binary operation as composmon of mappings and form a group
G, called the symmetry group of S.. ;

Symmetry groups of geometnc ﬁoures prov1de us with an
excellent source of examples. :

For more complicated than plane symmetnes are the symmetues of
objects in space. Modern day crystallography and crystal physics are
mainly concerned with the properties of groups of symmetnes of threc—
dimensional shapes. ,

Groups of symmetnes find their main use in the theory of electron ‘

structure and of molecular vibrations. In elementary particle physics such i
groups have been .used to predict the existence of certain elementary 4
particles before they were found experimentally. '

One comes across with symmetries and their group everywhere in
nature: in quantum mechanics, flower petals, cell division, the work habits |
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of bees in the hlVC snowﬂakes music and .floral paintings and tlles

structures in mosques and-other religious and-historical buildings: _
" The groups "of symmetries of some geometrical ﬁgures are

. described in the next paragraphs.

4.7.1 Symmetrles ofa Rectangle

Let R be a rectangle with vertices denoted by the numerals L 2, 3

and 4 as shown in figure 1.1. The rigid motion s of a rectangle with

- vertices 1,2,3,4 and centre 0 are the rotations about its centre throughA
“and angle of 180° and reflections about its horlzontal and vertical axes KL,

MN respectively. : : : : \
. Consider. the following right motlons of R: T
: M
e:- No motlon at all. This is equlvalent < 2
to a rotation of the rectangle about its B Q L
centre O through an angle of 360°, |
~This motion does not brmg any. 4 —& 3
change in the vertices. ‘ “Fig 14
. . . : . . ) : ) N
a: The rotation of the rectangle about 3 ——4
‘ its centre O through an angle of 180°, .
The resulting rectangle is shown in L % K
figure 1.2. R : ]
: TR = 1
Fig. 1.2
’ . E -V ) .. '. . N g .
B: The reflexion in the horizontal axis 4 3
‘ through O. Under this motion = ‘
- resulting rectangle is shown in ﬁgure K _ L
1.3. . _ ).
Fig. 1.3
: . _ . M ’
T The reflexion in the vertical axis ] T
through O. Under -this motion the LI 2~ K
resulting rectangle is shown in figure
1.4. ' : g 4
- N

Fig. 1.4
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Iti lS easy to see that each rigid motron of the rectanole is one of teh
motions e, o, B and ¥. Moreover each of the three motions a, B, v, when

repeated, gives us the original flgure Also note that the motions o and B
undertaken sueceSSiVely result is .the motion y. So if we .denote - this
- “product’ of o and B by of, (here we perform o frrst and then B), then this
results in the motron ¥. So

oB=y
Likewise Bo = Y
- One can easrly verify that _
az*ﬁz—(aﬁ)z-e .
‘The motions ¢, o, B and o thus form a -group called the Klem s
. Four-group and is the smallest non-cycllc group.
A’ pennuratxo_n rep_rese_ntatxon of this group is:

(1234 (1234, (1234
e={123 4341 2)P=43 2

123 4)
oB={y 1 4 3

. We shall learn more about permutatrons in a later chapter.

4.7..2. Symmetrles of a Square

Recall that rigid motion of a oeometnc object preserves drstance

between any two of its points. In the case of a square, as shown in figure
also, rigid motions are either the rotations, anticlockwise, of the square
through the angles 0°, 90°, 180° and 270° or the reflexions-of the square in
its diagonals and horizontal and vertical axes-as described below. Each of
these motions is charactenzed by its effect on the vertices 1, 2 3 and 4.

Here
o, =e= The ldentlty rotation or ¢’ 1
~ totation of the square through an - INE
angel of 3600 about its centre.O. o pl N0 |
3 4

—— SRR
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o, =a=_ The rotation of the square
through an angle of 90° about its
~centre O.

os=a?=  Rowaton of thz souare

through an angle of 180° about O.

r,=od= - Rotation of the: squerc’
through an angle of 270° about O

t=e= Rotation of the square though
- an angle of 360° about O.:
(Here we get the original position of
the square fig2.1) | o

94

oi=e

os=p= ‘Rotation of the square in its
horizontal axis through O.

ag=0P = Reflection of the square in its

diagonal v.

This motion is the same as first the
rotation o (figure 2.2) and then

g .

ag:

followed by reflection B in the "

horizonal axis cd (fig 2.2)

CHAPTER-IV -
a ,
1 74
.yo
b= d -
v
3.
b
Fig. 2.2 -
oo d
415 - 3
a b
o B
¥} \Y
4. -4 N2
c
Fig. 2.3 \
b
"3 , 2
v
ﬁ [
OV | -
3 1
a ~
~ Fig.24
e
LN
&
b} . a.
3 4
‘ d _
Fig. 2.1
d
4
) a
VLU i
.
Fig. 2.5
3
d
O o
RUYAN],
——
Fig. 2.6
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a,=a’B=  Reflection of the square inits =~ - c
‘ vertical (cd of fig 2.2) axis through - ! ¥ ulvy
0. : Gzt 10N
This motion is the same as first '
applying o® (fig 2.3)and then
reflection in its vertical axis (fig 2:3) Fig. 2.7

B
w

oz =o’p=  Reflection of the square in its - og = o A

' diagonalu.. g _- d——X—c
This motion is the same as first 4
applying o (fig 2.4) and  then A b
applying reflection in the diagonal u -
(fig 2.4)

One can easily see that all the rigid motions of square only are
o, Oy, Oy, Oy, OLs, Og, Oy, and oL, ' %
Weput | R -
o, =e,a,=o and o = . .
Then one can verify that the elements o, 1 <i'< 8, can be written as:
e,0,07 o, B, af, a’p, @’ R o
when aff means first o and then f5.. _
These elements form a group called the optic group or the dzhedral

group ‘of order 8.
' Its permutation representation is as follows:

B C 2 3 ﬂ _ C 2 3 ﬂ , C 23‘ﬂ
e~ 234 * 034 1)% 7" B331 2

%

L (123 ﬂ
74123
1234 (123
p=( 13 3): ®=[3 3 |
,_(1 23 4 3_C 2
&B'Q 1 4 Q’ “B={1 4




~ oy Rotation of the triangle (original

o,  Rotation of the _triangle thfough an
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- as can be seen from the figures give above.

Note that in this group
Bo. = B

as can be seen by actually performing the motions B, a and o, f.

- 4.7.3. Grdup of Symmetries of an Equilateral Triangle:

Let the vertices of an equilateral triangle be denoted by the
numerals 1, 2, 3. The rigid motions of the equilateral consists of rotations

_ of the triangle about its centre through angles of 0°, 120°, 240° and its

reflections in its medians. .
These r1g1d motlons are shown in the followmg firgures. A

e: '~ The identity {notlon. -This is the
rotation of the triangle about its.
- centre O through an angle of 360°.

position) through an angle of 120° .. |
about O. L

angle of 240° about O.

o, Reflection in the vertical median a.
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@, Reflection in the median b.

O Reflection in the median c.

Fig. 3.6

~ So the group of symmetries of an equllateral triangle cons1sts of the
elements

e, 0Ly, Oy, Oy, Oy and as. -

If we write o for o, and p for o, then one cai easily verify that
" a, = o, a; =B, = otB o, = aZB
" So this group consists of :
| e, o, a?, B, of and 2B with o = B2 = (af)*=e
- Note that here the effect of a?p and B o is shown below:

A

>3

B

A

3
So

— T
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Po=a?p. -

* Thus the group G of symmetnes of an equ11ateral triangle is not an abelian
group. - ,
. Gisthe smallest finite non-abelian group.

_4 7.4. Group of Symmetrles of an n-Polygon.

A regular n-gon or n-polygon is a
geometrical figure all of whose sides and
angles are equal. Each internal angle of an
ngon1s9“‘7t(n—2k)/n—7t—2k7t/n
radians. ‘

ay a

The group of symmetries of an n-gon consists of
rotations. . ty=e,ry,r,, .., I,_ about its centre O through an angle of
2k /n radians, .k =0, 1,2, ..., n—1, all clockwise or all anti-clockwise. = ~
The ‘product’ of two rotatiens r, and r; is their successive application and
is equivalent to a rotation through an angle of 2n(i + j)/n radians.

“This rotation is the same as the rotation r (i + J), where (i +j) is the least -
positive residue of i + j modulo n.

Reflections. Here we must distinguish two cases namely when n is even
or odd. In the case when n is even, there are two, types of reflections.-

Type I: This type consists of reﬂectlons in a line j Jommg the mid
points of the opposite sides. :

Type II:  This type consists of reflections in a line joining two
opposite vertices.

If n = 6, these reflections are in the bold
lines and dotted lines in figure 4.1.

If n is odd then we cannot talk about the
opposite sides and opposite vertices. In this
case we consider reflections. through those
lines which join a vertex with the mid pomt

_of the opposite side.
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The classes of symmetries described above exhaust all poss_ible'

situations. The group of symmetries of an n-gon consists of 2n elements,

that is, n rotations and n reflections. This group is denoted by D,andis -

called the dihedral group of order 2n. . . |
We write r, =o. Thenr,=ai, 1 <i<n-1 andr=0=e. -

Also if n is even and S denotes the reflection in any line j JOlmng the

mid points of the opposite sides, the elements of D, are
“'eaa2 anl ,BOLBOLZ,B nlﬁ
w=pr=@ff=e .

Ifn is odd and A is the reflection in any line j Jmmng the mid point

of a side to the point opposite to it then the group D,, agam consists of ,
e, al ..o Baf .., at LA

Thus when n =2, we get the dihedral group of order 4 w}uch 1s simply the

“Klein’s four-group. For n =3, 4, 5 and 6, we get the groups of symmetries
of an equilateral tnangle a square, a pentagon and an hexagon,
respectively. .

EXERCISES

1. Wthh of the followmg sets are groups and why?
‘ ‘(a)  Theset C= - {27 n € Z} under multlphcat1on

®) The set of non-zero positive irrational numbers under
multiplication. -

(c) The set U of all complex numbers of umte modulus under
complex multiplication. . :

(d)  Theset Z ofi 1ntegers under the usual subtraction.

(¢) The set X = {0, 1, 2 3} under the algebraic operat1on
defined by:

xxy=r, x,yeX

_ where 7 is the remainder obtained after d1v1d1ng the usual

productxyof xand y by 4.
® The set A = {1, 2, 3, 4} under ‘multiplication’ deﬁned by

xXXy=r, x,y€eA




|
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b ]
where r 1s the remainder obtamed after dividing the usual-
product ofx,yby5.

1+2n

' 1 +2m) -
(g). The set A = {( ' 2m);m, ne Z} under - ordinary

“%.1 multiplication.

- (h) . The set G of non-zero real numbers under the binary

‘ operatlon

*b—zb‘,a beG

Let G be a group and H = G. For a fixed element a of G,
define a binary operation x 1n Hby: R

xxy=xay _
forallx,y € H. Show that H is a group w1th alasits 1dent1ty and,
foreachx € G, a1 x! a-1 as its inverse.

Justify the followmg deﬁmtlon of a group.

. An ordered pair (G, .) where G is a non-empty set and ‘.’ an

algebraic operation in G, is a group if and only if
(a) ’ is associative ’
(b). The equatlons ,

ax=b ~and - ya=b

* have unique solutions in G for all a, beG.

Let B” be a subset of R" such that, for each x = (xl, X3 wes Xp)
inBr, x;=0or 1. Show that (B, + ) is a group.

(A subset of B" is called a code a,nd the elements of the subset are
called code words).

Ina group G, Tet a, b ¢ € G. Show that there is a unique x €

l Gsuchthataxb c.

[Hint: Hereax b=¢=>x=a"! cb~! whichis in G. Umqueness"]

Let n be a fixed integer and Z, = {U, 1,7, .., 5°1) be all the

distinct “congruence classes in Z modulo n. Define an
algebraic operation ‘+’ in Z, by: '
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7.

(i) a+b=a+b ,a,beZ,

where @ +b is the class containing a + b. Show that the

class a+b is the same as the class 7, where r is the

e remainder obtained after dividing a + b by n: Show that

(Z,, +) is a group.

¥

Define another algebraic eperation X in Z, by
(i) . axb=axb,a,beZ,. | N |
~ Show that the class @ X b is the same as the class 7 , where
© r is the remainder obtained after dividing the usual product
a x b of a, b by n. Prove that the set Z', of all non-zero
congruence classes médulo n under the binary operation X
is a group if and only if n is a prime. :

- Write down the addition tables for Z,, Z7 and the

‘multiplication table for Z,.

Show that the set F of the six complex valued functions:
1

-fl(z) Z fz(z)" f3(z)

f4(z)=; L@=1-7, f5(z)=_f—-

isa group under the usual multiplication of mappings. K

Let G be the set of all rotations about origih in a cartesian plane.

An element of G is a rotation R, : R — R2 such that:

RB (x’ y) = (x,’ y I)

where x’ = x cosB y sin@, y’ = x sinf+ y cos@

- Show that Gis a group under the usual composition: of rotations Ra

(as mapping).

- (a) For any integer n, let o, : Z — Z be such that

o, (my=m+n,meZ

Let A = {0, ; n € Z}. Show that A is a 'group under the
usual composition of mappings.

(b)  For a real number r define a mapping t, :R—>R by:
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t_,(x)=x+r,xeR

Show that T = {t, : r € R} is a group under the usual .

composition of mappings. (T is, in fact, the set of all
translations on the real line).

(©) For real numbers a, b, define a mappmg Ko p: R— Rby:
Ko (X)= ax+b, xeR.

Prove that the set M = {u, , : q, b €R, a+ O} isa group :

under the Qrdmary composltlon of mappings. Is this group
abelian? Show that T of (b) above is a subgroup of M.

~ For any real numbers 7, 5,-define a mapping 8, , : R? - R? by&

8,5 (5, y)=(x+r,y+s),(x;y) € R?

LetD={8, ,;rs e “R}. Show that D is a group under ordinary
composition of a mappmgs (D is the set of all dlstance preserving

mappings in plane).

" Let (X, d), (Y, d ') be metric spaces. A mappmg o: X - Y is sald

to be an isometry if @ is bijective and
d (o(x), e (x))=d (x,x") forallx, x’ € X.

| Show that the set M of all isometries defined from X, d)to 1tself 1s

a group under the usual composition of mappings. (Propertles of M
for different metric spaces still need investigation).

[To see that ¢-! is an isometry note that, for y = ¢ (x), y" =),
a’',y)= d '(A0), 167) = d’(¢ (9710), @ (¢ 4))
- =d ), o1 O]

Show that the groups G and H of exercise 2 are isomorphic under

~the mapping o. : G > H given by a (x) alx for all xe Ganda,

a fixed element of G.

-Show that the followmg matrices form a group 1somorph1c to the
‘ group of quatemions.

i-(} ?)5_1=(—()1, _01),‘;=(_°1 040
0. 4-( Paels Doaelf Yo
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For -any group G prove that the followmg conditions are
equivalent.
(@) G is abelian.

®) (ab)y'=a1b foralla, b € G.
(c) - (abp=a?b? for all a, b € G.

Show that a group in which’ every element is of order 2 is
necessarily abelian.

~ For a finite group G show that there is a ﬁmte integer n such
that ' : :

a“=eforallae G.

. Verify the following statements. -

(i)' - The additive group Z of integers is generated by 2, 3. -

(ii) ~ The additive group @ of rational numbers is generated by

the set {1/p: p a prime}.
Show that the additive group Q of ratlonals is not finitely

generated:

o
[Hint : Suppose that Q is finitely generated and {—n-ll y see 'n-nlk‘}

1
is a system of generators for Q Consider now 5— 2n, . Then

m m
2n, S—isnotin <-I;", sy n—k >]
If H is a non-empty subset of a group G, venfy that the
following conditions are equivalent. ,
(@) His asubgroup of G
(b) HH-gH
(c) H2cHand H-1 c H.

@ hH'Hfor'all'heH.

Let G be a group.

(@) = For any two elements a, b of G, show that the elements ab
and ba have the same order.
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- (b) | For a, b € G, if ba = a' bs-for some integers r and s, then

. the elements ar'2 bs, a' bs2, ab-! and ba-l have the same

order. .
(c) Fora,b e G, let there be an x € G such that
b=xax'.
Show that a and b have the same order.
(d)  Ifba=d*b fora, b € G and some integer k, then

b* as = aks" br.

(e) l_ IfGisabelianand a, b € G have orders m and n where-m

and n are relatively prime, then ab has order mn. Ifm, n are

. not relatively prime then ab has order k where k is
common multiple of m and n.

Determine all the subgroups of:
() the four-group {e, a, b, ab} with a? = b2 = (ab)? =
(i1) - the cyclic groups of order 4 and 5. ‘
(iii)' ’ the'group G consisting of the elements

- ea,a%b,ab,a’b with a3 = b? = (ab)* =e.
(iv)  the group Q of all quatermons '

Leta, bbe elements ofa group: G and a2 =1,a! b2 a= b3

Prove that 55 = 1.
[Hint: Here
(@' B2 a)b = b8, that is, a~! b12a = b3

o So,asa2—1

23,

bl2=g2 pl2 g2 = a—l b18 a= a—l b2 )9 = b27,

'Hence b5 = 1. Also.

(a1 b2a)s =a-1 bi0 g =b!5 =1
which yields bl0=1,
This, together with b15 =1 implies b =1]

e least

Show that the groups Z and R can be embedded i in the group

A of exercise 9 (a) and the group T of exercise 9 (b) respectively.

Can R be embedded in the group M given in exermse 9 (c) ?

Justify your answer.
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24.

25.

26.

27.

28.

| Let G be a cyclic group generated by a. Show that an element |

b of G is a generator of G if and only if there is a bijective
homomorphism of G to G mapping a to b.

Let (G, .), (G', x) and (G", +) be groups. Let
9:G>G,9 :G—>G"

b

be group homomorphisms. Show ‘that ¢ ¢:G—>G"isalsoa
group homomorphism.

~Let A and B be abelian groups under éddition and Hom (A,

B) denote the set of all homomorphisms of A to B. Define an
algebraic operation ® in Hom (A, B) as follows:

A For(p ¥ € Hom (A, B) the ‘suni’ (pEBtp A—)Blsglvenby

0®N@=0@+y(aacA

Show that Hom : A B) is a group under ® with mapping 0, which.
sends each a € A into the zero of B, as_the identity and — ¢ given .

by:

- (P)@=-9(@,acA
as the inverse ef(p

Letaa : G = G be a suljectlve homomorphlsm Deﬁne a
relation R on G as follows: ‘

"Forx,ye G, (x,y) € R1fandon1y1fa(xy1)~e theldentltyk

element in G'.

Show that R is an- equlvalence relation on G. Determine the factor
set G/R.

. [Hint: The G/R conslsts of all

aK,aeGK Kera= {xeG @)= e}]

- Describe the symmetry group of

(i) afive pointed star.

(i)  anon-circular ellipse.

(i)  aregular tetrahedron.
(iv) acube.

o L
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30.
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Find the group of symmetnes of an 1sosceles triangle. (It is of
order.2).

There are 'only five lregular solids: the tetrahedron, the
octahedron, the dodecahedron and the icosahedron. Their
groups of Wmnietn’_es are a lot complicated. Try to find these.

Write the group of symme_tn'es of a parallelogram which is "

‘Tegular and which is not rectangular.

~



| Chapter V
COMPLEXES IN GROUPS

Some results about subgroups of a group were proved in the
preceding chapter. This. chapter contains a discussion on complexes in
groups, coset decomposition of a group, the order of a finite group and the
orders of its subgroups. One of the most important theorems of the theory
of finite groups namely the Largrange’s theorem is proved here. This
theorem gives a connection between order of afinite group and the orders
of its subgroups. The relation of conjugacy between elements and between
~ subgroups-of a group is given in § 5.4. As shall be seen, this relation turns
- out to be an equivalence relation. The concepts of normaliser and
centrahser of a subset and of conjugacy classes are also mtroduced

" 5.1. COMPLEXES AND COSET
DECOMPOSITION OF A GROUP |

An arbitrary subset X of a group G is a called a complex in G. For -
two complexes X and Y in G we define their product as a complex XY

given by: ,
| XY={xy:xe X,y€ ¥}

 The complexes X and Y are said to be permutable, i.e., XY = YX, if
and only of, for any x €-X and y € Y, there exist ¥’ € X, y* € Y such that

Cxy=yx ' ,
Two arbitrary complexes in a group need not be permutabié '
For instance the complexes X ={a, b}, Y = {a?, ab} of the group
<ab: a3—b2-(ab)2— 1 >

are such that XY # YX.

Here - XY= {a3, a?b, ba?, bab}
_ = {1, a®b, ab, a?}
and . YX = {a3, a?b, aba, ab?}

113
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o ={1,a%,b,a} |
so that XY # YX.

However, for any three complexes X, Y, Z of a. group'G, since
(xy)z=x(yz)foranyxe X,ye Y, z€ Z, we have

AXNZ=X(YZ).
. Also for a complex X in G, we deﬁne Cw
X '={x1:xe X} |
Then, for complexes X and Y, since (xy)~! = y‘1 x! for all xe X,ye Y,
(XY)*l =Y! X— ) ' \
We now have the following restatement of theorem 42.2. .

5.1.1. Theorem: A non-empty complex Hof a group G is a subgroup of
Gifand only if HH-! ¢ H.

"Proof: Suppose that H is a subgroup. Then _
‘ 'HH-!={ab-':a,be H} cH,
because of the closure law in H.
Cc‘mversel')l, if HH = {ab1: a, bé H} (; H then, 'tn'vially, for any
a,be H, ab' € H. So, by Theorem 4.2.2, H is a subgroup.

If the complexes H, K in a .group G are subgrollps of G then the
_ product HK of H and K need not be a subgroup of G.

For example the complexes.
7 H={1,b5},andK = {1, ab}

are subgroups, each of order 2, of the group

<a,b: @ = b2—(ab)2—1>
However

HK = {1, b, ab, bab} = {1, b, ab, a?}
it not a subgroup of G. Here
@ .a?=ag¢ HK.

 The folloWing theorem gives a necessary and sufficient condition for the
product HK of the subgroups Hand K to be a subgroup. -
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5.1 2. Theorem: Let, H, K be subgroups of a group G. The product HK
of H and K is a subgroup of G if and only if H and K are permutable.

 Proof: Let H and K be permutable Then for any h € Hand k € K, there
exist i’ € H, ¥’ € K such that

hk= k’h
. To see that HK is a subgroup, let x = hk and y h, k, be in HK
Then xy'=hk. (hk)
= hkk Ry | | |
=hk Y, kk,™! = k; € K because K is a subgroup -,
wl=hi'k/, - HK=KH | -
=h k), W =l € Hbeca_use» His a snbgroup.

Hence xyte HK and HK is a subgrdup

_Conversely, . suppose that HK is a subgroup. We show that
HK = KH.

Let hk € HK, he H k € K. Then (hk)‘l € HK because HK is a
subgroup. However : :

(k) =k = KH, v, k‘le K, K = e H,

is an element of KH. Hence for each (hk)! € HK, (hk)! € KH. Thus .

HK c KH, Also any kh € KH, being the product of two elements ek and
_ he of the subgroup HK, is in HK, so that KH ¢ HK.

- Combining the two 1nclu51on relations we have
HK =KH
as requxred

For the subgloup H K of a group G let < H, K > (read as ‘the
group generated by H and K’) denote the smallest subgroup of G that
contains both H and K as subgroups. This subgroup, of course, contains

the set HK but, in general, may be different from HK. In fact

< H, K>=HK if and only 1f H and Kare permutable

If K = H then H C HH because any h € H can written as h.e. Also -
any hi’ in HH, as a product of two elements k, b’ of H, is an element of H,

by virtue of H being a subgroup. Hence
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HH=H

- for any subgroup H. This fact will often be used in the sequel.

If K = {a} for some a € G, then

H{a}={ha:heH} s .
is called a right coset modulo H (or of H) determined by an element a of G
and is denoted by Ha. As H contains the identity e, ea = a € Ha.

The element ha of Ha is called a representative element of the
coset Ha. The ri ght coset of H determined by the identity e of G is H itself.

A nght coset Ha is equal to Hif and onlyif a € H.

For if a € H, then Ha = {ha: h-€ H} is just the collection of
elements of H multiplied by an element of H and so must coincide with H,
because of closure law . C :

Conversely, if Ha =H then for some h € H there isanh’ € H
such that : ,

ha=h.
Butthena=h"th’ € H.

In the collection {Ha:a € G} of all right cosest of H in G, the setR
consisting of the distinct elements a of G is called a right transversal of H.

We smnlarly deﬁne a left transversal.

The collection of all distinct right cosets of H is called a right coset
decomposition of G modulo H (or relative to H). One can similarly deﬁne

a leﬁ coset decomposition of G modulo H.

Letus deﬁne (Ha)1by:
_ (Ha)*l ={(ha)l:he H} ={a'h!:he H}
Then (Ha)‘l =gl H ‘
The mapping
Ha— (Ha)'=al1H,ae G,

“* which is a one-one correspondence between the collection of right and left

cosets, shows that the right and left cosets of H in a group G are equal in
mynber
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_5.1.3; Exanjples:

(a)

(b)

©

@

‘decomposition of Q relative to the subgroup H = {£1, + z} is

-

LetG <Q, Y@= z,trz—((p w)2—1> Then

-H= <Q: e=1> -

_is a subgroup of G. Its nght cosets are H and H . These are the |

only two distinct right cosets of H in G.

In the dihedral group A
D,=<a,b:a*=b2=(aby?=1> ,

of order 8, the left cosets of the subgroup H =<a?: gt = 1>, |

consisting of 1, a? only, are: . o

1.H=H, aH, bH, abH.

Other cosets are equal to'some one of these.

Here a left transversal L of H is given by: R |
L={l,abab}. "

When the algebraic operatlon in a group G is termed as

addition, then, for any a € G, we write a + H for the left coset
of a subgroup H of a group G determined by an element a.

T W L

~ Thus for the subgroup E of even integers in the group Z of

integers, the left cosets are:
0+E=E,1+E.

In general, for a fixed integer n, the set Z = {0. £ n, £ 2n, ...} of all ( |

multiples of n in Z is a subgroup of Z. If we put nZ = H, then the. %\
left coset decomposition of Z relative toH=nZis _ oy

0+H,1+H, w@m=1)+H
Heren+H“-{O tn, +2n .} =H.

In the group Q of quatermons +1, + i, £ j, * k, the left coset

{H, jH} ' o
Here, for example, the coset kH = {* k, + ki} is equal to
JH={j, £ji}.
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5.2. LAGRANGE’S THEOREM

Let Hbe a subgroup of a group G. By the index of H in G, denoted
by (G : H) and read as the index of H in G, we mean the number of distinct
right (or left) cosets of H in G. If the number of right cosets of Hin G is
finite then H is called a subgroup of ﬁnlte index. Otherw1se H is said to
have infinite index in G.

For instance, the subgroup H of example 5.1.3, (c) above has ﬁmte

index in Z. Here H has’ only » distinct left (or nght) cosets in G.

For a subgroup H in a group G, define a relatlon ‘=’ in G as.

'follows : , Y

Fog x, y € G, we put
x=ymod H A
ifand only if xy-le H. ‘ |
» This relation is an equivalence relation because: S
(@) as xr' =e€ I-{? x=xmod H for all x € G and ‘=’ is reflexive.

(b)  ifx=ymodH,y=zmodH, then xy' € H, yz! € H. Since H
1s a subgroup, xy~! . yz7! = xz-1 € H. Hence x = z mod H and
= is trans1t1ve

© ifx=y mod H, then xy-' € H. Smce H is a subgroup, (xy-’)—1
- =yx!e H. Thus y =xmod H and ‘=" is symmetric. ‘
The relation ‘=’ defined above is called congruence relation in G

-modulo H. Being an equivalence relation the congruence relation
* partitions G into equivalence classes. Since xy-! € H implies x € Hy and,

conversely, two elements x, y € G are in the same-an equivalence class if
and only if they are in the same right coset of H. There is, thus, a one-one
correspondence between the equivalence classes determined. by the
congruence relation modulo H and the right cosets of H. But the number
of right cosets of H is called the index of H. Thus the number of
equivalence classes determined by the congruence modulo H is equal to
the mdex of HinG.

¢+ Itis easy to see that if C denotes an equ1valence class determined

"~ by an element x € G under this congrugnce relation, then
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={ye G:xy!'e H} _
={ye G'x)fi—hforSOmehe H}

{ye G y h'leorsornehe H}
-Hx

If G happens to be a finite. group of order, say, n then the'number r

 of equivalence classes determmed by the above relat1on is finite. Th1s
is the index of H inG. ;

" The .equation'Cx = Hx shows that the numbelr' of elements in an

~ “equivalence class determined by an element x € G is equal to the number
of elements in the right coset Hx. However this number is the same as the
number of elements in the coset He determined by the identity element,
because the one-one correspondence h— hx, he H. between H and Hx.

~Thus if H has order in, then each rioht coset Hx and hence each

equivalence class . contains exactly i elements. Now there are r
equivalence classes each containing m elements Hence the total number

of elements in all the equivalence classes is m.r. Since these classes

part1t1on G and G contains n elements we have
‘ n=mr.

_ Hence the order m and index r of a subgroup H in a group G are “divisors
of the order nof G.

~ We therefore have the followmg theorem wh1ch is one of the bas1c
and most important results in the theory of finite group and is named after

the French mathematician Joseph L. Lagrange (1736 - 1813). Lagrange
prove only a special case of this theorem. The general idea of a group did
not emerge until the middle of nineteenth century. A second special case
was_proved by Cauchy. The genetal result was established by Jordan who
: attnbuted it to Lagrange and Cauchy ' :

5.2.1." Theorem: (Lagrange) The order and mdex of a subgroup of a

- finite group divide the order of that group.

In view of the significance of the above result, we give another -

proof of this theorem.

Proof: 'Let G be a group of order nand Ha subgroup of crder m in G. Let
Q be the collection of all right cosets of H in G. We first show that Q is »
partition of G. .

e O —
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- Each element a of G belongs to a right coset Ha of H Hence G C
U Q. Also U £, being the union of certain sshsets of G, is contained in G.
Hence '

G=uQ. o - 52,11

Moreover if Ha, Hb are drstmct nght cosets of H, then
HanHb = ¢ ‘
For if x € Ha N Hp, then :
 x=ha=nb, h K eH .
Hence S : r 7 |
a=hVh b= h”b h”-—h“h’eH S

S0 that ae Hb But then, for any element y € Ha
y=ha=hh"b= hzbe Hb

Hence Ha ¢ Hb. By reasoning similarly, Hb ¢ Ha. Consequently

Ha = Hb, contradicting our supposition that Ha, Hb are distinct right
cosets. Thus Ha N Hb = ¢. This proves that Q is a partition of G.-

As G has finite order namely n, Q, whrch simply consists of the
right cosets of Hin G, is finite. Let r be the number of cosets in Q.

Since every coset Haof H contains exactly m elements, because of
the one-one correspondence # — ha, and there are r distinct right cosets,
the number of elements in U &, and therefore in G also is . m. But this
must be equal to n-by 5.2.1 (1) Hence .
n=m.r.
- So both m and r are divisors of the order n of G

From the second proof of Lagrange s theorem we have:

5.2.1.(i). Corollary
Two right (or left) cosets of a subgroup H in a group G are
either identical or disjoint.. : R
5.2.1.(1i). Corollary: j
, Every element of G belong to one and only one nght (or
left) coset of H. - :

A few other nnportant consequences of the theorem of |
Lagrange are: r T "r

i
]
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5.2.1.(ii). Corollary
The order of an element of a finite group divides the order of the
group. Also, if G| denotes the order of G then x1%/ = ¢ for all x € G.
Proof: The order of an element a € G is equal to the order of the '
- cyclic group A generated by a and must therefore be a factor of the order
of G, by Lagrange’s theorem.
Also, if G has finite order n and a € ‘G has order m then asm. -
d1v1des mn=mgq for some mteger q. Hence '
ar=gm=(ami=ei=e.

|Gl

So, if G denotes the order of a finite group G, thenx ' = e for all x

e G.
5.2.1.Gv). Corollary

, Every group whose order is a- pnme number is necessanly
- cyclic. '

" Proof: Let C be a group of order p where pisaprime anda #e be
an element of C. Then the order m of the cyclic group C’
generated by a is a factor of p. As a # ¢, m # 1 and so
m = p. Thus C’ coincides with C. Therefore C is cyclic.

5 2.1.(v). Corollary: (Fermat’s Theorem) _ ,
Let a be any mteger and p a prime number. Then
a? = a mod p-

Proof The non-zero integers
L2,..p-1,

- where p is a prime, form a group G of order p ~ 1 under the mult1p11cat1on
defined by:

a.b=r,0<r<p-1,

where r is the remainder obtained after dividing the ordinary product a.b
by p. Hence the order of an element rin G divides the order of ‘G so that :

= 1 modp. k
Multiplying the above congruence relation by r e G we have:
nv;rmodp . 5.2.1 ()
- Nowletae Z.Ifa#np,ne Z, then a‘: kp+r,0<r<p—1.S0"
a = rmodp. _ 521G
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aP=(r+kp)P= P+xp,x€ Z,

we ha\re_ | ,

R @ = rPmodp. R 5.2.1 (iii)

But then, by using the symmetnc and transitive properties of the
congruence relat1on we have, from equations 5.2.1 (1) 5.2.1 (11) and
's. 2 1 (iii),

@#=amodp -
as requrred

Fora= np, ne Z the equat1on d=a mod p is tnvrally sansﬁed

© 5.2.1.4vi). Corollary (Euler)

Let n be a natural number and @ (n) denote the number of 1ntegers
less than n and prime to n. Then, for any mteger a prlme ton,

a*® = 1 mod n.

Proof: The set of all natural numbers less than n and prrme to n form a
subgroup H of the group G of non-zero residues mod n. The order of this

subgroup is naturally equal to @ (n). By Corollary 5.2. 1 (iii),
_" a® = lmodn
for all a € G, as required. _ o A
7 Note: The'function @, which, for a natural number-n determines- the

number of integers less than n and pnme to n, is called the Eliler’s 9 -
function.

The theorem given below is the converse of Corollary 5.2.1.(iv).

5.2.1.(vii). Corollary Let Gbe a non~cycl1c group of order p? where p is -
aprime. Theneache#a€e G satlsﬁes the equation a’ = e.

Proof: Let ¢ # a € G and m be the order of the cyclic subgroup C
generated by a in G. Since G has order p% by Lagrange’s theorem, m
'd1V1des p%. Som = 1, p or p2. Since a # ¢, m # 1. Now suppose that m = p2
" Then a .and so also C has order p2. Since C is a subgroup of G, C = G.
Hence G is cyclic, a contradiction. So m # p2. So m = p Thus, for each e #
ae G,
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ar=e.

5.2.2. Theorem: Let H, K be subgroups of order m, n respect1ve1y ofa’

- group G and (m, n) 1. Then the complex .

HK = {hk: here K}

has~exactly mn elements.

Proof: Here the ordert of H ~ K divides the order m of H and order nof

K. Since (m, n) = 1, r = ‘1. Hence HN K = {e} Also, if, for some 4,
WeH k KeK, hk= KK then it W =Sk K¥'e HNK = {e} Hence
hih =e= kk" That is

hh'kk

Thus the elements of HK are all drstmct Coun’tmg the pos51b111t1es for‘

.h € H, ke K. we see that the number of elements in HK ismn.

5.2.3. Theorem: If a group G has composrte order then it has proper |

‘subgroups.

Proof Suppose that the ordern of a group G is a composite number i ie,
n=pq p,qmteoers,p;th;&l '

Then we have the followmg two cases:

@) G is cyclic with an element a as 1ts generator The order of a
is n.

- Hence @ # 1 and the cycllc group generated by ar is a proper
: subgroup of G of order ¢.

- (i1) G is not cyclic so-that an irreducible 'system of generators for

G contains at least two elements. Then again, the cyclic group

generated by any one of theR' ‘generators is a proper subgroup _

of G.
Hence, in both cases, G has a proper subgroup'.
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5.2.3.1. Corollat‘y If a nonmvral finite group G has. only the mvral
subgroups then its order is a prime number 3 :

Proof: Here for any ac€ G, a#te, <a> is a cyclic subgroup of G and is
equal to G. So < a > has no proper subgroup T'hus the order of a must be
a pnme by theorem 5.2.3. -

For a subgroup H of a group G, let G= 2 xH be a left. coset

" decomposition of G relative to H.

If X’ = xh, h € H then the cosets xH and x’ H are the same. So we
can assume that, in the decomposmon of G, no cosets are written km the
form H as well as xi H. That is, xH=x"H= t=x".

* The “collection of all such left coset representatives in the
- decomposition” of G is called a "left transversal of H and is uniquely
determined. We call such a transversal as the reduced transversal of H in
' 'We now prove the following theorem:
5.2.4. Theorem: Let H and K be suhgroups of a group G such that

KcHIf \
G— L xHandH- ~h »K
are the left coset decompositions of G relatlve to H and of H relative to K-
then :
G= nyK X E G ye H
. is a left coset decomposmon of G relative to K.
Moreover, if K has finite index in G then
G:K)=(G:H)H:K)

Proof: For subgroups H and K of G with K c H, let

G= UxH H= y yK
yeH

“be left coset decomposition of G relative to H and of H relative to K with

- reduced transversals. By the remarks preceding the theorem, we can

assume that the cosets representatives x of H and y of K are not of thé
form x = x’h, y = y’k for h € H and k € K. Consider now ’

uxyK;xe G,ye H.
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We show that thrs union defines a left coset decomposmon of G relatrve to
K. Obviously, forx €G,ye G,

_ uxngG.

Also, foraﬁyge G,ge foorsomexe G:So
g=xh he H. |

Alsoh= yk for some k € K. Henceg xvke xyK Thus
Gc:uxyK xeGyeH

sothat . _

G uxyK; xeGyeH o 524(1)

isa left coset decomposition of G. Hete the left cosets xy H, x € G, y € H
are all distinct. Forif g € G, then

g=xh,he Handh=yk'ke K
sothat ~  g=xyk. S '
Now, 1fge xyKandx'y Kboth then .

g-xyk-—x’yk’,k’e K.

But R _
xka—xH—x’y'H-x’H=>x-x'
and - K=y KK=yk=y k=>y= y '
because the coset representrves are taken as such. Hence
oK=xyK | |
If (G : K) is finite, then it follcws, from 5.2.4 (1), that
- G:K=G:BHH:K) S \

- The following formula determines the number of elements in the
: product AB of two finite subgroups A and B'of a-group G. '

' - 5.2.5. Theorem: Let A and B be finite subgroups of a group G. Then

. 1A]l. B
|AB| = f;lr_;ll_BJI- |X| denotes the number of elements of X

Proof: Let H= A N B. Then His a subgroup of both A and B. Consrder
the left coset decompositions

A=gaH | S 525()

i
X
"




A

- 2

' subgroup K of G,
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B= k_)leH T - 5252)
of AandB, w1th reduced transversais, respectlvely Then
AB = UaHB S . 52503)

Since HC B, I-IB-{hb heHbeB} BHénce _
AB=0g,B= UabH,_lSsz,lS;Sn; 5.2.6 (4)

i=1

Now the cosets a,H;i=1,2,.., mare ali distinct and disjoint.

" Forletxe @B M a;B. Then

. x=aiyb=aj7b_'_,b,b'€—:B; . ‘ I

so that ‘
gla=Kble AnB=H.

Thus a€a;H. Butthen q, H=q; H, acontradlctnon Hencea BnagB=¢.

- Counting the number of elements on both sides of 5. 2 5 (4) we ﬁnd

that, as. - , ,
'IX%LEI - by 5_.2.5‘ 1),
Al.IBl - . .
IABI- “*%KHE%’ by 5.2.5(2)
as required. ’ R

For still another proof see Theorem 5.2.8.

5. 2 6. Theorem (Poincare’s Theorem). Let H and K be subgroups of _
finite index i in a group G. Then HnN K also has finite mdcx in G '

Proof: Let
'G*GxH

be a finite left coset decomposmon of G relative. to H. Then, for any

K=GnK=0( »{mK) , - 52.6(1).
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" where some of the sets on the nght hand s1de of (1) may be empty and
may be ignored.

- Suppose x; H NK# . Then there is ake K such that x h k for ,

some h € H. So
xhH=kH
Thatlsx H=KH. Hence
xHr\K thK thkK k(HﬁK)

“So every non-empty x, HN K in 5. 2 6 (1) is a left coset of HNK 1 m K.

' " Therefore

(&Hth@ﬁD?
and o R »
| (G:K)K:HNK)<(G:H)(G:K).
But’ o T ,

' (G:‘K-‘)(K:HnK):'(GanK).
- Hence
e (GHnm<@IMGK)
asreqmred

5.2. 7. Theorem: Let G be a group and H K be its subgroups of finite
: 'mdex Then

- (H: HﬁK) (G:H)
if, andonlylf
~ G=HK=KH.

Proof: We know, from Theorem 5.2. 6, that, for subgroups H and K, of
finite index in G, H N K is of finite index in G. Also, from the proof. of

theorem 5.2.6,
H:HNK)< (G : H)
Nowxf R (H HnK) (G:H)
then none of the intersections xH N K in 5.2.6 (1) Theorem 5.2. 6 XE€ G

is empty. Let k€ xHN K. ThenxHNK= k(HnK)c;kH Soxh=kh

for some h, h’ € H
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‘SmceG oA xH, for each g € G,g=xh for some h € H So g = xh = ki

€ KH. Hence G=KH.
But then G =KH = HK, by Theorem 5.1.2.
~ Conversely suppose that G = KH 'HK. Then, for every, coset xH

-~ ofH,x= kherorsomekeKheHSoxH khH = kH.

Hence all the Cosets of Hin G are given by the cosets of H_
determined by elements of K. So none of the intersections xH N K in

. Theorem 5.2.6 is empty. Thus

(H:HhK):(G:H); ‘

'5.2.8. Theorem: Let G, and G, be finite subgroups of a groqu Tl&e'n

|G1 Gyl = lGl} G} /1G; NGy 7
where |G| denotes the number of elements in G,.-

We need the followmg lemma in the proof

‘5.2.8.1. Lemma Let A and B be sets and ot : A — B be a

surjective mapping. Then o defines an equivalence relation ~ on A given
by: | - S B '
a-~ a@a(a) a(a)foralla,a eA
The equ1valence classes are the subsets
a=ol(@)={de A:a()= a(a)},aeA

" of A. The factor set A / ~ and the set B are equivalent under the bijectien :

a:A/~—Bgivenby: A
 G@=0(a),ac A

- Proof:

The relation ~ on A given by

a~ad o oa(@=a0,(d)a deA,

is reflexive, syrﬁmetn'e and transitive. For any a € A, the equivalence

: elass 7 consists of all @’ € A such th at & (a) = & (a'). Thus ‘

F={d e A:o(a)=a(@)}=al(a)
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The mappmg a: A/ —B g1ven by
7 0(a)= b a(a)aeAbeB
isa bljectlon Here fora;,a, € A,
(@) =0 (az) =X/ (a,) (04 (az)
@aze a anda, € a
sa=5
Pr(z)of‘of’ theei'em:
_ Consider the s‘urAjective'm?pping ¢: G, xG,— G| G, given bv
¢ (81.8) =818 8 € Gp.g€ G, |
- Then ¢ defines an equivalence relation on C, x G, gi ven by: .
| @8~ &) 818=8 8
A The factor set (G, x'G,) / ~ is equivalent to' G, G,. However, an
equivalence class containing (g,, gz) in the factor set (G; X G,) / ~ consists

of the elements
(g,k k! gz) ke Gl mGz

Hence this equivalence class contains exactly |G; N G, elements Smce :

Gy x G, consists of |G1| X |Gy} elements, by the above lemma (G{xG,/~
consists of ;

B <N <Y
o IGi NG| '
elements. But this” number is eq‘uai to the number of elements in G, G,
which is |G, G2|'Heﬁce )

! llllzl
mepn%
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5.3. NORMALIZ’ERS AND ’CENTRALIZERS"
Let X be an ‘arbitrar'y subsét of a group G. The set of those

~elements of G which permute with X is called the normatizer of X in G

and is denoted by N(X), read as ‘the normalizer of X in G’. Symbollcally

. NG(X) {ae G aX= Xa}
Since eX = Xe at least the 1dent1ty element e of Gisin NG ). So

Ng (X) is a non-empty subset of G. If X = {a} then we speak of the
Normalizer of a in G and denote-it by Ng(a). Since a*a = aa* for ahy

integer &, N (a)'contains, together with'a, all powers of a. Y
531. Example: T
letG=<a,b: a3-b2—(ab)2 1> and H= {1, b}.
Then aH = {a, ab} , Ha {a, ba}. -
 Asab=ba?# ba, aH #Haso that a e NG (H) ,
- HoweverbH {b,b?= 1} Hb Hencebe NG (H)
‘One can verify that
e Ng (H) =H. ,
. If H= (1, a,a?}, then Ng H) =G.

'53.2. Theorem: Let H C K be subgroups of a group G. If Hk KH for

all k€ K, then K ¢ N;; (H).

Proof: Suppose that H, K with H < K ‘are subg'roupskof a group G and

Hk = kH for all k € K. Then, by definition, for each ke K, ke NG (H)

5.3.3. Theorem Let a group G contain elements a and b of ordér m and

n respectively where (m, n)=1 and ab ba. Then G contams an element

of order mn.
Proof letH=<ag:an=e>K=<b:b=¢e > Smce(m,n)—l
HN K = {e} by Lagrange’s Theorem.
< Now suppose that ab = ba and ¢ = ab Then
cmn = (gb)m = (gmyn (b")m =e.

Also if, for some integer £,
E .
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_ ck=e
then e =ck=ak bk
so that

ak=b*ke HmK {e}. Henceak—e—bk Thusmandn :
both divide k. That is mn | k. So ¢ has order mn.
Let Hbea suboroup of G. Since 7
hH=Hh '

- forall he H Hc NG (H). Thus the normalizer of a subaroup H of G
contains H. .

‘The followi’ng theorem show:that the normaiizer of a subéé.t, and,
~in panicular, of a subgroup in a group is a subgroup of that group.

5.34. Theorem. The normalizer N (X) of a subset X of a group G isa -
subgroup of G. _

Proof: Let a, be Ng (X)
Then aX=Xaand bX Xb
Now bX = Xb 1mp11es
b1 bXb! = b} Xbb ., Xb 1= p-l X
so that b-1 € Ng (X) Hence L
@) X = a (b~1X) =.a(Xb-1) = (@X)b~* = X(ab-").
Therefore ab~! € Ng (X). So NG X isa sﬁbgroup; |
Now we come to the¢ definition Qf the centralizer.
-The céntraliier of a subset X'in a grbup G is the set of those

elements of G which are permutable with every element of X. It is denoted
by C; (X) (read as ‘the centralizer of Xin G). Symbolically ' '

CoX)={aeG:ax= xaforallxeX}

The centralizer of a subset like its normalizer is non-empty If X
. consists of a single element x then the normalizer of X and centralizer of X
are identical. In general, however, the centralizer of X contammg more
than one element may be different from its normalizer.



'132 < COMPLEXES IN GRCUPS ~ CHAPTERV
' 53: Example: | o

Let G= <a, b:at=b2= (ab)2 = 1> be the dihedral group of order
8. Its elements are {1, a, a?, a3, b, ab, a®b, a®b}. Also ,

(ab)r =1 = ab = (ab)™! 1
' = b—la—l ' ;‘
-ba3 from b2= 1, a4 1.
Moreover - .
@b =a. ab = aba® = b. &>. a3 = ba’.

Now ]etX- {1, a, a%, a®}. Then

, bX" {b, ba, ba?, ba*} =Xb. | r = \
Sobe NG(X) Slmrlarly ab, a?b, abe NG X). Hence
NG(X) G

But Cg(X) =X #G = Ng(X). |
However if X={l, az} then CG(X) G = Ng(X)
ere the normalizer of a subset we show that the centrahzer of a-

subset is also a subgroup.

5.3.6. Theorem: The. centralrzer Co (X) of a subset X ina group Gisa
subgroup of G.

A Proof Leta be CG (X). Then

ax=xaand bx= xb

_ for all x € X. Hence_

(ab“) x=axb™!=x (ab™)

for all x€ X Thus ab~! € Cg (Xanditisa suboroup

The centralizer as well as the normalizer of an element a, of
course, contains that element and so also the cyclic subgroup generated by
a. In fact, in this case, these basic concepts coincide. That is.

‘ Cg (a) Ng (@)

However the centralrzeg of a subgroup need not contain that subgroup
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 5.3.7. Example:
Consider the group

_ G=<ab,c: aJ—lﬂ—(ab)z—u—(bc)Z-lac—ca> Gisa -
. group of order 12 and in it k

- H=<a,b: a3— -(ab)2=1> ,
s a sungoup and b = cb The centralizer of Hin G is the subgroup
K=<c:c2=1>

because 1 and ¢ are the only elements which are permutable thh every:
-element of H. Obvxously K =C; (H) does not contam H.

For a oroup G, the centralizer of the whole Oroup G is called the_ E
centre of G. : S : ’

_ Thus the centre of G is the set of those elements of G whxch
c.ommute with every element of G. It is. denoted by £ (G). ‘That i is:

£@)= {aeG ag = gaforallgeG}

If § (G) = {e} then G is called a group without centre ot w1th trivial »
- centre. ~

The centre of a c’roup Gisits suboroup

It is, in fact, the abelian part of G. The centre of a crroup G
coincides with G if and only if G is abell an. S

- 5.3. 8 Examples

(i) In"the group Q of ail quaternions * I, + i, *'j, * k, the
“quaternions + 1 form the centre of Q. ' ‘ :

- (i) | jThe group S=<a,b:a*=b= (ab)2 =1> has triviai centre.

' (ii) The centres of the groups Z Q, R and C of mteoers ranonals
' * reals, and of complex numbers, under their usua} addition, are
" the- correspondm groups themselves. ~

(iv)  The center of a subgroup of a group G may contain the centre
of G as a subgroup .

;_For ifG:{(a Z) ad bc;tO a,b, 2 de R is the gener'é]-

linear group of degree 2
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(a 0y
ﬁ(G) ( a);ae R)‘ :
consists of all scalar-matnces. The set
Ol R . ) ,
H ={(g 'd)’ ad#0,a,de R} is a subgroup of G and is
commutative. So then £(G) is a (proper) Subgr_oup of EH)=H. ,.

5.4. CONJUGACY RELATION IN GROUPS -

Let G be a group. For any a € G, the element gag'l . 8 € Gis ,

called the: conjugate or transform of abyg.

" Two elements a,b e G are said to be conjugate 1f and on]y if there

exists an element g € G such that
b=gag!. _ A
' Conjugate élements in a group are of the same‘orderr 8
This follows from the equation b™ = ga"'g'l anda = (g‘l) b (g")"

. ‘because then a™ = ¢ if and only if pm = e

For a, b, € G, the element ab a—‘b"l is called the commutator of a,
b and is written as [a, b]

Now we have:

5.4.1.. Theorem: The relatxon of conjugacy between elements of a group
1s an equivalence relatlon

“ Proof: Let us denote the relation of conjugacy between elements of a
- group by R. Then '

(1) R is reflexwe ie., aRa because the 1dent1ty element €€ G
and
‘ eae™! = a.
- (i1) ' R is symmetnc because if aRb for a, b e G, then there
exists a g € G such that
| b=gag!,
but then’ "
a=(g") b (g ‘)‘

K



- SECTION 54. CONJUGACY RELATION IN GROUF‘" : 135

" S0 that bRa.
- (1) R is transitive. For this, let aRb and bRc Then there exist
B g g€ G such that _ :
b=gag!, c=gbg"!
Hence | R
_ c= gbg"-g gag"g“—(g g)a(g g)*
Thus aRc
Hence R is an equivalence relation in G '

In any group G the relat1on of conjugacy between e}ements of G,
being an equivalence relation, partitions G into equivalence classes. Each
equivalence class consists of elements which are conjugate to one-another.

An equivalence class determined by the -conjugacy relation
;between elements in G is called a class of conjugate elements or s1mply a
conjugacy class. - '

- A conjugacy class consisting of elements conjugate to an element a
of G-will be denoted by C,.

In an abelian group, no two distinct elements are conjugate. Hence
in this case there are as many conjugacy classes as the number of elements
1in that group. - _

- In an arbitrary’ group G a conjugacy class C, consists of the -
" element a alone if and only if ais permutable with every element of G,
that is, if and onlyif a € £ (G). -

Such elements are calledself-conjugate (invariant or central)-'

The followmc theorem g1ves a relationship between the number of
clements in a conjugacy class determined by an element and the index of
. the normalizer of that element. _ '
5.4.2. Theorem: The number of eclements in a conjugacy class C, of an
~ element a in a group G is equal to the index of.its normallzer inG.

Thus |C|=[G:N, @) .
Proof: Let Q be the collectlon'of right cosets of the normalizer Ng (@) =N

of @ € G. We have to show that the number of elements in Q, being the
index of N in G is equal to the number of elements in C,.
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" Define a mapping, ¢ : Q — C, as follows | |

Wrth each right coset Ng, g € G, we assocrate the conjugate
‘la(g'l)l—glagec under ¢ i.e., weput ‘

| oMNp=glag S saw

_"The mappmg @ given by (1) is well deflned because if Ng = Ng then
gg"ENze g—-ngforsomeneNHence _

glag'=(ng) alng) =g (n an) g =g ag. That lscp(Ng) <p(Ng)
‘ We show that ¢ is bijective : Firstly, @ is surjective because each :
k g~1 ag € C is the i image of a coset Ng. Secondly, ‘
(p(Ng) (p(Ng’) = g‘l ag =g’ lag that is
= gg'agg"“. | AR
~Thusg'g™' e e, g e Ng. Butg € Ng also Hence Ng =N¢'.

“Sogis mju.uve and therefore 4 bijective mappmg Consequently the sets h
Q and C, have the same number of elements. Therefore the number of .

. elementinC, is equal to the index of the normalizer of a.

54 3. Corollary: LetG be a finite group and @ € G. Then the number off.:
elements in the conjugacy class of a divides the order of G. .

Proof: Since N; (@) is a subgroup of G, its - order ‘and index divide the
order of G, by Larange’s theorem. However the index of Ng; (a) is equal to
the number of elements in C which therefore d1v1des the order of G. '

'5.44. Corollary The number of elements in a conjugacy class of an
element'in a group is finite if and only if the mdex of the normalizer of .
that element is finite.

Proof: This corollary follows drrectly from the above theorem
It was.shown in Theorem 5. 4 1. that the relatron of conjugacy
_ between elements of a group G is an equivalence relation and partitions G °
- 1mto equivalence classes of conjugate elements. If G 1s a finite group of
order n then the number r of conjugacy classes in Gis also f1n1te Let
Ci, Cpp s G |
be the conjugacy classes in G each contamxno '

m,;, m,, ooy Ty
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" elements respeetively.-' Then, as .Ql C, =G, one has )
Con=mp+m,+...+m, o ' o (c)

. where each m, divi'des n,i =-l 2 , 1. The equation (e) is called the class
quatzon of G and plays a very s1gmf1cant role in the theory of f1mte
groups = — '

The positive integer r, in (c) above, is called the class number of G The
_equation (c) can also be wr1tten as :

1= 26 Co@l
* when CG (a) is the centrahser ofa,i= 1 2,. r‘i_n G. . |
Here Cs(a) = NG.(ai) and ris the number of conugacy classesin G 1

‘One of the many uses of the class equation of-a group is illustrated
in the following theorem concerning finite p-groups i.e., groups all of
-whosé elements have orders powers of p for.some fixed prime p.- The
order of a finite p-group is of the form p™,.for some positive integer m.
‘There are also, of course, infinite p-groups, as we shall see later. - -

5.4.5. Theoreni:- The'centre of a finite p-éroup is non-trivial.

Proof: Let P be ap- group of order p™and
pr=m, £ ..+m, ST 545

- be its class equatlon. Then each-m, divides pm and hence must be of the
~ form p% ; i = 1. As the identity element ¢ of P commutes with every
“element of P, the conjugacy class C, consists of ¢ alone. Thus there is at

'~ least one m;, m, say, which is equal to 1. Also the conjugacy class of a

self-conjugate element consists of only that element. Let there be k such
classes. Without any loss of generality we can suppose that these are the
first k classes so that, for these classes, m; = =m,y = ... =M = L. Thus

S pm=k+ pak+1 + .+ p%,
thatis _
k=mpr-— (pak+l +. .+ p%). o 5. 4 5@2)

The right hand side of 5.4.5 (2) is divisible by p. So should also be the left '
‘hand side. Thus k is a multiple of p Ask# 0 and is divisible by p, there
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are more than one self-conjugate, that is, central elements inP. Hence P
has a non-trivial centre. :

Similar to the relation of- conjugacy between elements of a group -~

- we have the conjugacy relatzon between subgroups of a group.

Let G be a group and Ha subgroup of G. Then, for each g e G the

set _

K = gHg1 = (ghg"! : h € H] | )
~ is a subgroup of G because for k,, k, in K where ky = ghlj‘; k= ghzg‘lf,r
we have : R
| 1/<2 : “‘gng‘ (8hg” *)‘ L

= ghlg—l gh2 g’
= ghlhz g ,
Since His a subgroup, h hz € Hso that k k2 e K.
' The subgroup Ki is called a subgroup conjugate to H detenmned by
g€ G. .

One can easily ver’xfy' that the relation of con_uigac'y' between
subgroups of a group is an equivalence relation in G. This relation
' partltlons G mto conjugacy classes of subgroups '

A conjugacy class of a subgroup H 1s the collectlon of - all
subgroups of G which are conJugate toH.

- Conjugate subgroups are connected by the followmg theorem.

5.4.6. Theorem: Any two conjugate subgroups of a group are . .

isomorphic.
Proof: ILet Hand K be conjugate subgroups of a group G Then for some

ge G, -~
‘ , K =gHg.

-The mappingy: H—> K gi\/en‘by:
Y(h)=ghg'e K,
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is obv1ously b11ect1ve That yis a homomorphlsm follows from the
equat1on :

Y (h by = gh, hzg'-gh;g ghzg"’
~—Y(h) Y(hz)

E for all'hy, h, € H. Hence H and K are 1somorph1c

5.4.7. Corollary Two conjugate subgroups of a group have the same

- order

~ One'can workout the proof of the theorem given below on l1nes
similar to-those given in theorem 5.4.2. ~

- 54.8. Theorem: The number of conjugate. su~bgroups of a subgrou‘p' Hin

a group G is equal to the index of the normalizér Ng (H).

5.4.9. Remarks: | |

1.  If afinite group G has precisely two conjugacy classes then G
has order 2. ~ ~

2. If a group G contains an element a ‘having exactly two
“ conjugates then G contains a normal subgroup N # E. ‘

{

,Groups with a ﬁn1te number of con_]ugate classes of elements and

of subgroups have been discussed by B.H. Neumann (cf B.H. Neumann
(1955). Math. Z. pp. 76-96). - .

5.5. DOUBLE COSETS

. The concept of double cosets in a crroup is a generalization of that

of cosets. This notion is helpful in proving some very 1mportant results in
~ the theory of finite groups.

LetH, K be subgroups of a group G and a an arb1trary element of

G. Then the set HaK consisting of elements of the form hak, h € H, ke K .

is called a double coset in G modulo (H, K) determined by a.

Just as the left (or right) cosets of a suboroup in a group. detenmne :

its partition, similarly the collection Q of double cosets in a group is a
- partition of that group. This is shown in the following theorem.
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5.5.1. Theorem: Let H, K be subgroups of a group G. Then. the
collection .Q*of all the double cosets HaK, a € G is a pattition of G.

Proof To see that the collection of all double cosets in G modulo (H K) ,
‘isa pamtlon we have to prove that

'(i) G =uU Q where u Q is the union of double cosets HeK,

a€e Gand

: (ii) : any two dlStlnCt double cosets are disjoint.

It is obvious that U Q. bemo the umon of certain subsets of G, is

.-contained in G.

“ Conversely each a € G is in a double coset name]y the d(t\iuble'

coset HaK because ais expre531b1e asa= -e.a.e. Hence G U Q.
Consequently, : '
G=uQ

and we have @).

For (ii) let HaK, HbK be distinct double cosets in G and suppose
thatx e HaK ~ HbK. Then : N

_ x=hak = h’bk’hherk’eK
But thlS equatlon gives
a=h'h bk k-l
= h" bk’

‘where B = bl %’ € Hand ¥’ = k’ k' e K Now let y be an arbltrary-

element of HaK. Then :
y= h1 ak, = h, h” bk” ks h B el Kk ek
is 10 HaK so that ™ '
" HaK ¢ Hbk.
“Likewise
" HbK ¢ HaK, |
: COmbining the two inequalities' given above we have -
HaK = HbK. |

contradiction. Hence HaK and HAHX. arc - disjoint and we have (ii)
vefore the double cosets of G modulo (H, K) define a partition of G.
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All the right cosets of H of the form Hak, k e K are contained in _

- the double coset HaK. Similarly all the left cosets of K-of the form haK,
h € H are contained in HaK. We now investigate the number of elements

- in a double coset HaK where H and X are finite subgroups of a group. For

this, however, we need the followmo result which isthe same as Th eorem
5.2.8 but with a different proof :

'5.5.1. Lemma: Let A, B be finite subgroups of a group G. Then the

complex AB contains exactly mn/q elements where m, n and q are

respectively the orders of A, B and the mtersectlon Q=An B

Proof Since Q i is the mtersectlon of the subgroups A and B of a group C

it-is a subgroup .of both A and B. Also, as A and B are finite groups the

order q of Q and its index r = n/q in B is finite. Let

B= qu e R : _5.5.1(1)

be-'a right coset decomposit;'on of B. Then only one of the b,’s ‘say.'bl =e
and b; ¢ Q for anyi > 1 so that the coset Qb; is not equal 10 Q. Also

AB = uAQb R 55.1Q2)

“ SinceQis a subgrc_up of A the coset'Ax is equal to,A for 511 x € Q. Hence
| AQ={ix;xe Q}=A. I

As a consequence we hatc o e T

o . AB= R o 5510)

~ Ash,e Band b, eQ 3 Afor1>1 thecosetsAb,,l—l 2, ..r, are all

drstmct Each of these cosets contains axa~tly y m elements and there are r

such- cosets. Hence  the total numbecr or elements in u Ab
- m.r=m. n/q But this i is the number of ele ents in AB, by 5. 5 1 (2)
h He_r:ce the lemma. '
We are now in' ép’ositioh {0 prove:
5.5.2. Theorem Let H K be finite suboroups of a group G. Then each

- double coset HaK contains mn/q elements where m, n and q are the orders
of the subgroups H, K and Q -HN aKa"‘ respectrvelv
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Proof: Since H, K are finite subgroups of G, the double coset HaK B

- consists of only a finite number-of elements of G. Let

' Xps X veey Xy
be all the elements of HaK.
,v ‘Then | o |
‘HaK>= k=r) {xi} |
and |

r

v HoKal=y {xa'}

" where, of course, the elements x; a‘ i=1, 2, r are all dis'xct, for
‘otherwise x,a! = x,a! , i # j would imply x, = - X+ Put aKa! =K’
being a subgroup conjugate to X, also has order n. Now, since HaKa! = -

ien K’,

HK’, the number of elements in HK by lemma 5.5.1, is mn/q where q is

. the order of

Q:.HnK’ HnaKa*‘

. Hence the theorem.

| 5.5. 3 Theorem. Let a group G of order n have subgroups H, K of order

l and m respectively. Then

n—-LIP‘+L«nl+ +£_rr_1
_‘h G G

whereqlrstheorderon HnagKagli=1,2,.

Proof: Since the collechon Q of the double cosets HaK, a € G is a
decomposmorv of G, ’ ~ o

G=uQ,

- where U Q is the union of all the double cosets HaK in G, i = ‘1,’ 2, .t

_ : /m o '
Now each double coset, . say, HaK contams a elements, /, m and g;

respectwely being the orders of H, K and the intersection
Qi = H n agKag;l. As there are r such double cosets, the order nof G

satisfies the equatlon
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5.5.4. Theorem: Let HaK be a double coset modulo the subgroups H, K
of a group G and Q = H N aKa-!. Then there is a one-one correspondence

- between the left cosets of K that are contained in HaK and the left cosets
of the intersection Q of H and aKa! in H. '

Proof: Let Q be the collection of the left cosets haK of K that are -

contained in HaK and Q' the collection -of all the left cosets of the
intersection Q = I-Ir\aKa:'1 in H. '

Define a mapping ¢ : & — Q' as follows:

With each haK € Q we associate the left coset hQ of Qin H that

is, we put
Y (haK) = Q. . e 554(1)\
‘Then ¢ is well deﬁned for if haK = h’aK there exist elements k,¥ e K A
such that ) :
B hak=Wak
‘Hence ' | ,

B W-th=ak k'al : ~ :
_1smHn Ka‘l—Qsothatheh’Q AshehQaswell ‘we have
hQ=HQ. |

| Alsoif
¥ (haK) = § (aK)
Le., - |
) hQ=HQ , o o
_ then h"~' h € Q. Thus there exists a k € K such that /*~1h = aka ! i.e.,
ha = Wak. o - -

SO that ha e HhaK. But ha hae € haK Hence haK and h aK are not

disjoint. Thus, -
haK = h’aK

Therefore ¥ is injective. Since ¥ is obvrous}y sur]ectrve ‘it is a one-one
- correspondence between  and Q.

Hence the theorem.

The following corollary is now a stralght forward consequence of
. Theorem 5.5.4. ,
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5.5.5. Cerollary If the index of Q = H N aKa™! in H is finite, then the
number of left cosets of K that are contained in the double coset HaK is '
also finite and converseiv. . Moreover these numbers are’ equal.

A subset H of a group G is caIIed normal if xH Hx for all |
elements x of G. : . :

 While answering a question of LD. Macdonald in Mathematical
Cazette (Volume 62 (1978) p. 29 - 35) about certain subset H of group G
satisfying xH = HxH for all x in G, B.H. Neumann (Math. Gaz 62(19'78)p :
298 - 299) proved the following theorem :

~ 5.5.6, Theorem: Let H be a non empty subset of a- oroup G such that
xH = HxH forallxin G. Then H is normal in G. ‘

| AProef For. x,ye G we write y* xvx-l and snmllarly If xHx‘1 Now -
suppose that o :

M=HH 55.6.1)

i for all xe G. Multrplymo both sides of (1) by x"!on the ncvht we obtmn
CH =HE ~f-‘ ey o 5.56(2)

Since'x; and 50 also x~ ranoe over the’ whole of G we can replace x‘l by

x in the above equatlon md obtain o
- H=HH L 5560)
From 55.6 (2) we see that an arbltrar\( element of Hx can be- wntten as
Pt .z € H. But ' ‘
Cgyr= zxyr‘z~ z= =y 2

. Wthh is an e}ement of H'H, and Thus by 5.5.6 (3) w1th x replaced for x,

~ is an element of H. It follows that H* is a subset of H. But H* < H is

equivalent to H < x! Hx.- Again, since x ranges over the whole of G SO
does x~! and replacing x"! by x we have, HC H*.

AThus H~ = H and the theorem follows.
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EXERC!SES :

Let G be a finite group and x an arbrtrary clement of G. Show

that thére exists an integer n such that x = e.
 If G.is an arbitrary group and there exists an integer n such that

x" = ¢ for some x € G, show that there is an integer m such that -

xl=xm

‘ In the group having the presentation _
G=<ab: a(’ bz—(ab)2~1>

show that \

B aibi 0<i<5,0<j<1

are all the dlstmct elements of G. Hence show that thc order of G is l”

| S—how that every group of order < 5 is abelian

is .
(1) a prrme number, (11) 12.

Let A and B be cyclic groups of order n. Show that the set.

 Hom (A B) of all homomorphlsms from A to B is a cychc .

.~ group. , o
Show that if @, b € G are conjugate then b = ca for some

. commutator cinG.

' Let Abean add1t1ve abelian group of exponent n, that is

na=0

foralla € A. Let n = pg; where p, q are relatlvely pnme and put -
={x€A: px 0} '

={yeA:qgy= 0}

Show that A, and A, are subaroups and have 1o, common. element
.except 0.

Find the number of generators of a cyc‘xc group whose order -
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Let H be a subgroup of a group G Fora,be G, leta E.b mod

H .
if and only if ab~! € H. Show that.
a = b mod H implies ag = bg mod H ‘

' forallge G.Is

ga=gbmod H
for all g € G? Justify. ’

Let a be an element of order n m a group Show that
d=d _ - \

if and only if o

~k=Imodn.

In a group G, let G" denote the set of nth powers of all the
elements of G. Venfy that, in each of the followmg groups,

G?is a subgroup. ,
(i) G=<ab:a*= b2~(ab)2~]>oforder8 o
' (Dihedral group). -
Ggi) G= <a,b a4—-1 a"-—bz—(ab)2>oforder8
~(Quatem10n group) '

‘_»_(iii} G=<ab:a*=b?=1,ab= ba>ofordcr8

1.

12.

(Abehan)

' Let H and K be subgroups of a group G.Forg,,8,€ G let

=Kg,. Show that H = K _
[Hmt : Hg, = Kg,. = for each he H, thereisake K such that

hg, = kg,.-Let h; € H. Then hikg, = hhg, = hgl k’gz. So

=K €K, ..

Let Gbe a group and ac G. Let Cg(a) be the centrahser of a

in G. Then show that, for any g € G,

8Cc (@) g7' =Cq (gag")

" Also, for any subgroup H and an element gof G |
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gNo (H)g 1= NG (gHg™). .

: Let Q be the group of quatermons * I titjxk and H= {+
Lti} :
- a subgroup of Q. Find the suboroups of Q (if any) COﬂ_]U"atC to H.

Let G, G” be groups and (p : G - G’ be a homomorph1sm |
Show that :

" (i)  if@(G)has n elements then x“ € Ker @ for all xe G.

(i) if, for a natural numberm (m, o (G)'|)—1 then 7
xm g Kcr(p=>xe Ker(p o ,
(ii) if a € G has order n and (n, m=1ms= |(p (G) |, then
- aeKero o -

Find all the subgroups of:

(i)  G=<ab a'-‘-b2 (ab)2

‘conjugate to

H=<b:b2=1>

(i) G=<a,b:a3=bzic?:(bc)2=,l,ab=ea,ae=bca> .

conjugate to
H= <a: a3—1> ,

Fmd the subgroup lattice of the- d1hedral group
D,={a,b:a*=b=(abR=1} '

Let H be frnite subgroup of order k in a group G. For an

‘element g of G with gH = Hg, let m be the least posmve

integer such that gm € H Show that

(@) g has finite order.

(b)  mdivides the order of g
(c) - the order of < H, g >is mk.

[Hint (c) If n is the order of g, then nnk = e Suppose that m
does not divide n. If r denote the greatest common d1v1sor g
of m,n then there exist mtegers p. q such that- '
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| pm+qn0<r<msothatgf—(gm)keH(a
contmdlctlon)] '

[Hint: (¢) Since gH = Hg, every element of the group <H,
g >1s of the form gih, h-€ H for some integer i. As g™ € H,

. every element of the group is inone and only one of the left
cosets. o

cH gH L& IH
“and conversely each of these cosets is a subset of <H, g >,

Hence - N
‘<H g>*-ugH] - o \

18. If H K are subgroups of a group G such that H NK={e }
. andif -
hKlz 1=K, LHk" HfurallheH LEK

show that H and K commute clementw1se
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- NORMAL SUBGROUPS
FACTOR GROU PS

In grohp theory we usually have to examine the structure of a

group, its subgroups and its relationship with other groups. Among the
~ subgroups of a group there is a special class namely the class of nonnal’
subgroups of a group. :

"E. Galois was the first famous mathematician who directed his

attention to the study of normal subgroups and their important properties.

Normal subgroups play a key role in the theory of groups One of the main
and fundamental properties of normal subgroups is that they give rise to
quotient groups. Groups which have no proper normal subgroups are

known as simple groups. Finite simple groups .have now been all -

classified. All finite simple groups-are now known and their determination
was completed in 1980’s. This classification is one of the greatest
. achievements in mathematics.

The ‘classification ‘of finite. simple groups has two aspects. One is
‘the listing of all such groups and the other is the venflcatlon that every
_finite simple group 1s included in the list.

Apart from certain infinite families of ﬁmte simple groups relatmg
to permutations and muatrices there are 26 sporadic simple groups
including the largest and the one found last of all. This is called the
Monster (or the friendly giant). This is a group of order :

246><32°>< 59% 7T6% 112x 133 % 17 X 19%23 x29 x31 x41x47><59><71

It is estimated that-more than 200 mathematicians have contributed
to this classification. Not much is known about infinite simple groups
although a few classes of infinite simple groups have been found by Ruth
Camn, P. Hall etc.

Normal subgroups are closely related -to homomorphisms of

... groups. In fact there is a one-one correspondence between the class of all

normal subgroups of a group and the possible homorphisms which this

149
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group can have A brief account of these concepts is given in the followmg
paragraphs ,

6. 1 NORMAL SUBGROUPS

Let H be a subgraup of G. H is sa1d to be a normal (self conjugate
or invariant) subgroup. of G if it coincides with all its conjugate subgroups
in G. :

Thus His normal in G if and only if
- gHg'=Hforall ge G
. The relatlon of ‘being a normal subgroup 1S not a trans1t1ve
relation. Thus if H is a normal subgroup of a group K and K is a. nd‘rmalv

subgroup of G then H may not be a normal subgroup of G (see example
6. 1 1 (b) below).. :

. Every group G has at least two normal subgroups namely the
identity subgroup E = {e} and the group G itself. Normal subgroup of G
which are different from these two are.called proper normal subgroups.
Groups having no proper normal subgroups are called simple. ~

, All the subgroups of an abelian group are normal. However there
- are non-abelian groups all of whose subgroups are normal Such groups'
are called Hamzltonzan groups.

6. 1 1. Examples: o
(@)  The subgroup H = < (o P=e > is a normal subgroup of
the group
- G=<o,y: P=y=(py)=e>.
(b) Let f ' o
G =‘<l_a, b, ¢ : a-"_’r-v R=c =) =1, ab=ca
_ ac = beca >. : ‘
The subgroup
K=<b,c: b2—c2—(bc)2—1>

is normal in G. Also the subgroup H=<b: M=1> is normal in
K. However H is not a normal subgroup of G because

aHal={1,abal=c} #H.
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(c) The group Q of quaternions £ I, + i, £ j, £ k is such that it is -

non-abelian but every subgroup of Q is normal in Q.
(why?).

(d) The centre of any group is a normal subgroup For if ¢ (G)
’ - denotes the centre of G then

gC(G)sf'-{gzg"=z z€ C(G)}~C(G)_

forallge G.

(e) A cyclic group C whose order is a prime number is simple. -

In this case C, by Lagrange’s theorem, has no proper

subgroups and therefore no proper normal subgroups. The
~ class of cyclic groups of prime order is the only class of

abelian s1mp1e groups. - '

- To check that a subgroup H of a group G is normal in G it
is enough to verify that gHg~'C H forallge G.

Forif gHg™' c Hforall g€ G then

'_ H= g‘lgHg lg ¢ g-'Hg by multlplymg left and nght by g1 and g
' respectlvely) ' -

So. ‘ _
HCngg' o . :

for all g e G. Replacing g‘l by gagam we haveHchg-l So ,
H= gHg‘l

However a subgroup H of a group G may be such that, fora g €G,

gHg! C H but H may not be normal in G. The fol]owmg counter
example, in this case, g1ven by L. N. Herstein [27] substantlates this
c]alm

Examp]e, Let ‘ 7
e B\ .
G={( d):ad—bc#O,a,j),_c,de Q}

H= {(O 1), k (S Z}
It is possible that, fora g € G,
gHg' cH

and
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| - but _ R ' .
. gHg™' #H, for some other g eG
- For example, if FERE | L

(o
e e

Then R '
‘ A 1 3k
g‘(o 1']8‘_1:(0 1)EH
‘sothat - - ‘ /

k
l)g“ >=gHg'cH

[«

<
- But,fbrg:(; (1))5 G,
1K (1-3k k° B
(o 1)3‘1 (—9k 1+‘3k)-EH-
gHg"‘;t'H

_6 1.2. Theorem: The following statements about a subgroup H of a
- group G are equlvalent :

"So

" (a) ~His anormal subgroup of G. , ;
(b)  The normaliser of Hin G is the whole of G i.e. NG(H) G.

(c) | Any left coset gH of H is equal to its right cos;t Hg for all
' g€ G,ie.gH=Hgforall g€ G.

(d) ~ For each.» € H and any g € G, ghg! = H; that is, H

- contains the whole class of conjugates of each of its
elements. : x

Proof: We show that (a) 1mphes (b), (b) implies (c) (c) 1mphes (d) and !
(d) in turn implies (a). l

(a) implies (b). Assume that (a) holds that is, H is a normal
subgroup of G. Then

gHg"-H‘
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'. for all g € G. Hence gH =Hg forall g € G so that every g € Gisinthe °

normaliser NG(H) Therefore G © Ng(H). But Ng(H) € G and (b) is true.

‘(b) implies - (c). Suppose that' (b)  holds, that is

Ng@) = {g € G: gH = Hg} = G. Then gH = Hg for all g & G. Thus ()
holds ; ) '

" (0) 1mp11es (d). Suppose that (c) holds, that is, gH = Hg for all
g € G. Then, given any h € H, there exists an h’e H such that gh =hYg

for all g € G. Hence ghg -! = h”e H. Thus G contains, _together withh e

H, ,all its conjugates namely the elements ghg -1 g € G. Therefore (d) is

. true.
(d) 1mphes (a). Suppose that (d) is true. Then, for each he H and-

anyg€ G, ghg-'=h" € H.

heH, o
=g he)g ' € gHg -1

because g1 hg = g-lh(g -)-le H. 7
| Thus H ¢ gHg ! . Therefore gHg =H.

" forallge G.Hence Hisa normal subgroup and we have (a) ;.

From the above theorem it follows that each one of the statement -

), (c) and (d) also can be taken as a definition of a normal subgroup.‘

6.1.3. Thereon: The intersection of any co]lectlon of normal subgroups
of a group is a normal subgroup. g

Proof: Let Q, be a collection of normal subgroups in a group G and

D = NQ the intersection of the members of L. Then D is a subgroup as
.proved in Theorem 4.2.3. To see that D is normal in G, let d € D. Then

d € H for each H € Q. Therefore ga’g—1 € NQ =D for all g€ G.HenceD .

is a normal subgroup.

- In cases where a group and a subgroup of it are given in terms of
generators and relations it is often convenient to make use of the folIowmg
“theorem to show that the given subgroup is normal.

6.1.4. Theorem: A subgroup H of a group G is normal in G if and only .

if every generator of G transforms each generator of H into an element of

-

Hence gHg -1 = {ghg 1 : h,e'H} cH for'all\g € G. Also for ahy‘ -
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Proof: Let H be a normal subgroup of G. Then every element of H and, in
particular, a generator of H is transformed into an element of H by each
element of G especially a generator of G. '

t Conversely, let G be a group generated by 8» @€ L and H a
subgroup of G generated by hg, B e I” Let the generators of G transform

each generator of H into an element of H. Then every g€ Gand h € Hare
of the form. : :

g=gl1g7 LSk (g;=%1,15i%K)

(!k ’ ] .
5 .5, .8 - ) :
h=h1'h2 .. h! . ; o =+1,1L21<5/
B, B, B (,,.J' J _ ) R

As ‘ , :
X0y yp)x = (xy, x ) (xyzx;’) Loy lx )= (x}’i -1yle H,
“we have. ghg™! as an element of H. Hence His a normal subgroup | .

6.1.5. Theorem' A subgroup of index 2 i in a group G is normal.

Proof: Let H be a subgroup of index 2 in G. Then G has the followmg left
and nght cost decompositions relative to H.-

‘ {H, gH} G {H,Hg}, g€ G\H.
So gH Hgforall ge G\ H Howeverif g e H then obviously
gH=Hg.
Hence His normal inG.

BN

6.1.6. Theorem Leta be an element of order 2 in a group G Then
H=<a:a2=1> . *
| is normal in G if and only if a € £ (G).
Proof: Here, for any g € G, |
His normal inGe gH Hg
o gle,a) ={e, alg
< {8, ga} = {g, ag}
_ o : <ag=ga |
Soae §(G). ) 2
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6 1.7. Theorem: Let A be a normal subgroup and Ba subgroup of a-

groqu Then
<A, B> AB
Proof: Each element of <A B>1s of the form _ _ ,
al b a, bz waby, 6.1.7(1)
a€ A b e l3, €, 5=0orl. Since A is normal in G | |
| _ ga=ayg
forge G and a, a’ € A. In particular
| v - ba=ab

for all b € B. Applylng repeatedly ‘the above equat1on to 6.1.7 (1) we
have

a; blazb2 akbk a ajy.. a’kblbz...b:
=ab € AB,
aeA beB. Hence<A B>CAB But, obv1ously,ABc<A B>.
< Hence ’ '
' <A B>—'AB'

- 6.1.8. Corollary Let H, K be normal subgroups of a group G. Then HK

is a normal subgroup of G.

Proof:- By theorem 6.1. 7 HK i is a subgroup of G. Also for any 4 € H,
keKandge G, -

ghkg -1'=ghg ! gkg-'="h 'k’e HK,

where h’= =ghg-1e H, k'=gkg-! e K, because both H and K are nonnal
~ in G. Hence HK is norrnal in G. :

 6.1.9. Theorem: Let H be a subgroup ofa group G.ThenHis a normal

subgroup of N;(H). -

Proof: By deﬁnl_tlon
| NyH)={ge G:gH=Hg}

and is a subgroup. Since #H = H = Hh, H c N;(H). Also for each
xe NG(H), xH = Hx. Hence H is a normal subgroup N(H).

&Y
LY
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6.1.10. Theorem: The centraliser C;(H) of a normal éu_bgroﬁp Hof Gis
normal in G. ’ :
Proof: Here

CG(H) {xe G:hx=xhforall h € H}.

Since H i is normal in G for each h € H, g € G, there is an h eH
such that '

hg=gh’ie. g-l h=hjg7 .
So, for each x € CG(H) and g € G, _
 h(ge) = (hg)xg = gh'xg! = gxh g = (gxg D ,_
So gxg~! e Cg(H). Hence Cg(H) is normal in G : ' \

6 2, QUOTIENT OR FACTOR GROUPS

Let H be a normal subgroup of a group G and consider the
collection Q of all left cosets aHof H,a € G. Define a ' multlphcatlon in
Q as follows: .

ForaH, bH € Q we put , - -
- aH . bH = abH L - 62(1)

We show that this multlpllcatlon is well defined. For this we have to prove
that equatlon (1) is independent of the ch01ce of representatives in gH and
bH '

Let ah, bh’be a-r_-bit‘rary representatives in aH and bH respectively. :
~ Then :
| (ah)H. (bh Y =ahbh'H. -
As His normal in G, ahbh’— abhh’ for some h- € H. Since h h’e H we
have h,h “H = H so that
_ ahbh’H = abH. : ‘
* Hence 6.2 (1) is independent of the choice of representatives in the cosets..

: It is easy to verify that, under the multiplication defined by 6.2 (1),

Q is a group with eH = H as the identity and a -'H as the inverse of aH in
Q. This group is called the quotzent (or factor) group. of G by H and is
denoted by G/H.
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6.2.1. Examples

(2

o

L ©

Forif

Consider the additive group Z of mtegers Por a ﬁxed
integer n, the set

<n>={kn.ke Z}
is a normal subgroup of Z. The cosets :

(’)—’0+<’N> i—1+<'n>,'i=2'+_<‘n>,

',fj—n—1+<n>

forma group under the addition defined by
p+<n>+q+<n>—r+<n>

where r is the remainder obtained after d1v1d1ng the usual. ,
o sump+qofpandqbyn

This group is the factor group of Z by < n> and is denoted
by Z ,

"Let (4] be the group of rationals under addition. The additive _
group Z of intergers is a normal subgroup of Q. The factor -

group Q/Z of Q by Z is called the group of rationals

- modulo 1.

Every element of 0/Z has finite order.

‘a=plg+Ze QIZ,q*0,

P, q relatively prime, then ’

qa=qplq+Z)=p+Z=2Z
is the identity element of Q/Z. Hence a has ﬁmte order q.
Thus Q/Z is a periodic abelian group.

‘This group is, in fact, locally finite.

Let Q be the group of quatermons + I i), % k
The subset
" H= {(£1, :t l}

is a normal subgroup of Q. The factor group Q/H cons1sts

of
Hand /H (=kH)

-

» s
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and so is cychc of order 2 The order of jH is 2 because
J2=-Iand :
(GHR =/ H =-/H=H
It will be appropriate to recall, at this juncture, that a

- homomorphism of a group G to a group G’ is a mapping

- 62.2.

p :G->G0G satisfying the equation ¢ (ab) = ¢ (a) ¢ (b). (The .
algebralc operation in the two groups has been ta.ken as the same
just for the sake of convemence) ' :

A suqectlve homomorph1sm 1s caIled an epzmorj)hzsm The set of
those elements of G which are mapped onto the identity e’ of G’ is
called the kernel of ¢ and is denoted by Ker ¢. Thus \

Ker p={keG: (o(k) e’}.

Connected with the aboVe concepts is the followmg unportant
theorem.

Theorem: (Fundamental theorem of homomorphism).

Let.¢ : G = G’ be an epimorphism from G to G'. Then:
(a) the kernel K =ker ¢ of @ is a normal subgroup of G

(b))  the factor group G/K is 1somorph1c to G'.

'(c") a subgroup H' of G' is riormal i in G if and only 1f 1ts inverse

. \\_

: _unage H=¢-! (H')is normal in G.

(d)  there'is one-one correspondence between the subgroups of ;
G’ and those subgroups of G which contain the kernel K. -

@ IfKisthekemeJ of p and k,,]&'e K then
| f/’(k1)=¢(k2)=e’and¢(k2—1.):(¢(k‘2))_1;e,'
" Hence o |
ok k)= 0(k). 9™
BT ORCIS
=e’.e’

=g’
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Sok k-1 € K and K is a subgroup.
Also for each ke Kandg eG
¢(gkg“) =o@ e o™
Sweelo@
o =e’ {0
' Thus gkg-l e K for any keKandge G Hence K is anormal
subgroup. : ,
(b) . Define a mapping \E GK — G as follows ,
' ForgK e G/K, we put

v (EK) = p (g)

One can verify that y is well-defined. Also y is sux]ectlve because o

each 8= ¢(g)isthei 1mage ofgK e G/K under V.

Moreoverif
o v (gK)=v (g,K)
then”  ¢(g)=9(g)
Hence
o) ! o) =e’
e pgTg)=¢.

Thusglg, e K1e g €gK.Butg e glK HencegK giK. 7'
Therefore  is injective. .
| To see that y is 2 homomorphism, let gK, g(K € G/K. Then
v (EKgK) =y 2K) = 0 (e2) = 9(2) - 9 (g)
e Y@K o
Hence y is an isomorphism between G/K and G'.
(¢)  SupposethatH'isa normal subgroup of G’ and
| H=g ()= the G: p()=h"c H}.

Then K, Bemg' the inverse image of e/, is contained in H. To show that H is
- normal in G, let h € H and g € G. Consider the element ghg -1, This
belongs toH 1f and only if ¢ (ghg") eH.
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0(ghg™)=0(@. (). &™)
=) .M. 0"

which is an element of H’ because H’ is normal in G’. Hence ghg! € H

and H also is normal. .
Conversely, suppose that H is normal in G where H = ¢~ 1(H’) For
h’e H, g’e G consider the element, g2z *“". Let g be one of the pre-
images in G of g’e G’ and h € H that of &< Then _
g'h'g =@ e 9@
=p(ghe™- , "\
As H is nomal in G, ghg! c H. Hence (0 (ghg“l) EQ (H) H’

- Therefore H' is normal in G’.

(d)  Let arbe a mapping from the collection Q of- all subgroups b
of G containing K to the collection &' of all subgroups of G’ gwen by:

a() = H’ pH) -

He Q H=pH) e Q. IfH,, Hz, € Qand a(H,) a(Hz) H’ (say)
then we show that Hl H, to prove that als injective .

LetH, = ¢! (). Then certainly I‘-I1 C H. Next let h € H. Then
) =h’= @), '

- fromoa(H) =H =@ (H,), forh’e H,h, € H,. Hence b,  he Kie. he
- KCH, Thus H g H,. So we have H = H1 Sumlarly H = H,. Hence o
1is injective.

Also, each H’ € Q' is the image of an H = (a-‘ H). Hence aris ~
surjective and - therefore Dbijective. Consequently o is a one-one
correspondence between the subgroups of G’ and those subgroups of G
which contain K.

This proves the fundamental theorem completely

. This theorem is also called the ﬁrst lsomorphlsm theorem.

; We have seen that the factor group .. . . by the kemel K under
an epimorphic mapping ¢ : G — G'is 1somorph1c to G’. Define a mapping

u:G— G, by
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1@)=gK,ge G
Then M is an epimorphism of G to G/K and is called the natural
or canonical homomorphzsm of G onto G/K. Moreover the mapping
y : G/K — G” defined by ¢ gK)=0(g) e G, g € G is a homomorphism.

Since the product of two homomorphism is a homomorphism, we have ¢

= ’;"y ThlS fact is illustrated by the following diagram:

T . . G—f—‘P——-—)G'

In such a situation we say that the above triangle is.commutative.
In view of the equality ¢ = yu, we sometimes also say that the mapping ¢
can be factored by the natural canonical map .

Lét K be a normal subgroup of a group G. The subgroups of G/K

are all of the form H/K for any subgroup H of G such that K ¢ H  G. B
Moreover a subgroup H, contdining a normal subgroup K, is normal inG

zf and only if H/K is normal in G/K.

For any subgroups H, and H, of G containing a normal subgroup
K, H, and H, are conjugate subgroups of G if and only if H/K, Hy/K are
con]ugate subgroups of G/K. N

Since, corresponding to each homomorphism of a group, we have a
normal subgroup of that group namely the kemel of that homomorphism
and conversely, each normal subgroup of a group determines a

homomorphism of that grouo there is’a one-one correspondence between .

the number of normal subgroups of a group and the number of
homomorphisms of that group. :

Further it is important to observe the following points:

In the above theorem suppose that K= { e}. Then @ is injective
because if

¢.(g|)= ¢(gz): 81,8 € G, ‘

i

I
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‘then = _
P8 g)=¢’ ‘ , |
~.where e”is the identity of G’. Hence g,~! g, € K = {e}, thatis, g, g, = ¢
so that g, = g,. @ is already surjectxve Hence @ is an -isomorphism
between G and G’. : '

Conversely, if G is 1somorph1c to G’ with @ as an 1somorphlsm ‘
between them then K = {e}, for if a g belonging to G is in K, then

p@=e’=ple.
- As @ is injective, g = e. Thus ,
An eplmorphlsm from Gto G is an zsomorphlsm if and only if the
kernel K of @ consists of the identity-element of G alone
- 6.2.3. Theorem: (Second xsomorphxsm theorem). |

" - LetHbe a normal 'Subgréup and K a subgroup of a group G. Then
HK is a subgroup of G, HN K is normalrin K and HK/H = K/(H n K).

Proof: The fact that HK is a subgroup of G was proved in Theorem 4.1.5.
- Toseethat HN K is normal inK,letxe Hn Kandke K. Then

kxkle K (" Kis a subgroup and x, k € K)

EH(. xe H ¢ G and H is normal in G)

Hence kek-! € H A K. Thus H A K is normal in K.PutHNK=D.Every
element of HK/H is of the form hkH = kh’H = kH, k € K, h,h’e H, using
 the fact that H is normal in G. Define a mappmg ¢: HK — K/D by:
| @ (hk)=kD. @
Then g@is surjetive because each kD € K/D is the i 1mage of an hk € HK.

‘Moreover, , ,
’ | @ (hkhfk’) = @(hh ”kk’)
‘ ~ =kkD ‘
; =kD k’D.
Hence ¢is a homomorphlsm By Theorem 6.2.2,
HK/Ker Q= K/D

| We show that Ker @=H. Certainly Ker 2 H by (1)
Conversely, hk € Ker wlmphes
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o o (k) =D = kD. ‘
Hence ke D HNKcH. Thushke H so that H 2 Ker 0. Therefore
Ker ¢=H.

Hence
| KH/H = K/(H N K).
Alternatlvely Every element of HK/H is of the form hkH = kH
Let HN K =D. define y : I—IK/H—>K/Dby '
v (kH) = kD.’ o
| Obv1ously xis well defined and surjective. w is also injective because 1f
- o W (H) =y KH), kK€ K, |
| then kD =k‘Die. ke k'Dc k'H. As k€ KH, we have

kH k’H

Finally : '
- W (KH. k“H) = x (kk“H) .

= k&'D R

=kD .k’D. . o o

=y (kH). ¥ (k’H) j

’ Hence Yyisa leeCthC homomorphism, and so an 1somorphlsm between ﬂ
HK/H and K/D. Thus : | : ﬁ

~ 6.2.4. Theorem: (Thrrd 1somorphlsm theorem) Let H, K be normal o
subgroups of G and H ¢ K. Then :

G/ KM=GK. S
Proof: The subgroup H, being a normal subgroup of G, is- norma] in any |
subgroup of G containing H. In pamcular H is normal in K Deﬁne a .

mappmg ¢:G/H— G/K by
pEH)=gK, g€ G | 0)

Certainly pis surjective. The homomorphlsm property of ¢ follows from.
- the equations . . :

p(gH.2/H)=¢ (gg’H) |
. =gk
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. | =gK.g’K. |
: By‘Theorem 622 e
-  (G/H)K' = G/K,
where K’ =Ker ¢. We show that
) | K’ = K/H.
Obviously KD K/H.
- Conversely if gH € K’, then |
P (gH) - gK, by deﬁmtlon of ¢.
=K, by the assumption that gHe K’

Thus g € K. Hence gH e K/H and therefore K’ < K/H. Combmlhg the
two inequalities, we have K’ = K/H and consequently

GHy/ ®H) = G/K.

- A group G is abelian if and only 1f G coincides w1th its centre
C(G). The theorem that follows gives another necessary and sufficient
- condition for a group to be abehan ’

| 6.2.5. Theorem: A group G is abellan if and only’ 1f the factor group '
G/L(G) is cyclic.

~ Proof: As remarked above if G is abelian then G= C(G) the centre of G.
SoG/L (G)is the trivial group and hence cyclic. (The tnvml or the 1dent1ty
group is assumed to be generated by the empty set)

Conversely, suppose that G/{(G) is a cyclic group' and Ma'C_,(G),
a € G, is its generator. We show that G is abelian. For this let x, y € G.
Then xC(G) y8(G) belong to G/L(G). So there exist integers m, n such that

x(G) = am §(G), 5(G) = a* {(G).

Thus x = amz, y = anz” for some z, z’€ &(G). Using the fact that (&) is
abelian, we have, _

xXy=a"z.az’=a™.a".z.72’=a". a2z =a"z’. avz = yx.

“Consequently G is abelian.
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6.2.6." Theorem Every group of order p2 where pisa pr1me number, is
abelian.

Proof Suppose that G is a group of order p2 p a prime. By Theorem
- 5.4.3., G has non-trivial centre £(G). By Largange’s theorem, the order of
&(G), being a divisor of p2, must be p or p2. Suppose that the order of {(G)
is p. Then G/¢(G) has order p and so must be cyclic, by corollary 5.2.1 (d).
By Theorem 6.2.5. given above G is abelian. Thus G = ¢(G) so that the
order of £(GY is not equal to p, contradicting our supposition. Hence the
order of &(G) is p2. But then {(G) considered as a subgroup of G of the
- same finite order as the order of G, must coincide with G, that is, G =
&(G). Hence G is abelian.

If £(G) has order p? then &(G)= G and is abelian.

6.3. AUTOMORPHISM GROUP OF A GROUP

Given a group G there are many ways to form new groups. Cre of

these is to form the group of automorphisms of G. A detailed descrxpnon
of this concept is given in this section.

For a group G, a homomorphism '@ from G into G is c'aﬂc‘ an

endomorphism of G. In the case where « is bijective, it 1s said 1o be an
“automorphism of G.

Thus a mapping @ :G — G is an automorphism if and only if =

(i)  aisbijective, | : ‘ o |

(i) a(gg)=alg)a(g) forallg,g eG. - -
6.3.1. Theorem° The set A(G) of ali automorphism of G is a group.

Proof: Let ¢, § € A(G). Then the product f§ of the bljectlve mapping «
and fis buectlve .

: Moreover.
(Bo) (g1 8)=B(a(g &)
=p (é (g1) a(gy), . ais an automorphism
- =p(a(g) . f(a(gy), " Pis an automorphism
= (Ba) (21) - (o) (g2) o

g e s e
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for all g;, g, € G. Hence Ba is an automorphism. Thus A(G) is closed

under the usual multiplication of mappings. The associative law in AG)

- follows form the associativity of mappings of a set. Also, the identity
mapplngI G-G glven by o

I(g) g for al] g €G
is bijecti_ve and.-
‘ (g1 8) =8, 8= I(gl) I(gz) for all 8182 € G.
Hence Ie AG) and satisfies the equatlon .
, a.l=1.a= o
forallx e A(G) Thus IlS the 1dent1ty in A(G)

Next for each o € A(G), the inverse mapping ot G — G is
bijective. The automorphism property of or‘ follows from the equations

ol (81 g) =g &)
=l ((g), ig)
=o' (ax! (g,). oo (g,)
Czor (et (g) . o' (g)
C=(at o) (o' (g) . o' (8))
. = ot (81) at(gy)
for all g,, g, € G. Thus each @ € A(G) has an inverse o1 in A(G).
- Therefore A(G) is a group. :

6.3.2. Inner Automorphism of a group:

given by:

L) = aga g€ G. * 632(A)

Then I,is SUI‘_]CCthC because each g € G is the image of an element al ga'

under 1.1, is injective because, for all g, 8, € G,
L) =L
implies -
| ag,a-! = ag,a’!

Let a be a fixed element of G and consider the mappmg L,:G— G :
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Le. » 7
&1 = &2
Also ;
1(g:8) = a(g g, o
= (ag,a™!) (ag.a™)
=1,(8) - Lig)-

Hence I, is an automorphism of G.

The mapping I, given in (A) above is called an inner automorphzsm of G.

Also fora,b ¢ G, .
| I. 1) =1 [(bab"‘ ']
=a(bgh ") a”!
= (ﬁb)g (ab)y '
= 1.s(8)

for all g € G. Hence A ‘ .
' L=, o 6.3.2 (B)

. An automorphisn; of G which is not an inner automorphism is
called an outer automorphisr. :

Every automorphism of an abeliza group except the 1dent1ty
automorphism is outer. However it mayv be mentioned that there exist non-
abelian groups all of whose automorph:sms are outer. :

Slmllarly therf exists groups all of whose automorphlsm are inner
(see example 6.3.4 (c)).

- The structural properties of the group of automorphism of a Oroup
vary, sometimes, to a very large degree from those of the group.

For instance the automorphiém group of an abelian group may be
non-abelian (see example. 6.3.4 (b)). The automorphism group of an
infinite group may turn out to be finite. ‘ .

Similarly some other group- theoretlcal propertles of a group may‘
not be inherited by its group of automorphlsm




W
‘”’q;x,.

Mrop

‘ Also

168 NORMAL SUBGROUPS, FACTOR GROUPS ~ CHAPTER-VI

finite. , ‘
A group G is said to be complete if:

(@  The center £(G) of G is trivial, and (b) Every
automorphlsm of G is inner. :

o

"6.3.3. Theorem: Let G bea group. The mapping ¢ : G — G defined by:

p@®=g'.g€G
is an automorphlsm if, and only'if G is abelian.

Proof Suppose that G ig abelian. Then, for g g2 eG
@ (gl) g9 (2) = g,
So
P &)= &)= g—zl g—,l‘
=g ' g, "~ Gisabelian
=0(g). p(g)

So ¢, being bijective, is an automorphism.

Conversely, if =G — G given by
- o@@=g'.geG
is art automorphism then, for any g, , g, € G,
- ¢(218) =(8,8)" , by definition of p
=glg 6.3.3 (i)

P2 2)=9(g) 9(g) ‘
=g g‘z‘ | o 6.3.3 (ii)
From (i) and (ii) we lave:

g, g —g g Or(glgz)' (g2g1)“?'

However the group of automorphism'of a finite group is always
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That is
_ , 81828281
Hence G is abelian. *

' 6.34. Theorem: Lét G be a groupb which has an element of‘ order > 2.
Then G has an automorphism different form the identity automorphism

Proof: Here if G is abelian and has an element g of order > 2 then
Q: G—)Gdeﬁnedby 7
p@=g'#g,

is an automorphism different from-the 1dent1ty automorphism, by Théorem
6.3.2. , _

- IfGis non- abehan and contams an element a of order m> 2 then

there isage G such that
' gag‘l #a

so that I, :G — G given by I, (x) = grg ! for allx e G is an automorphlsm
dlfferent from the identity automorphlsm

6.3.5. Examples

(@)  The mapping @ : Z — Z of the group of mtegers deﬁned ﬂ

- by:
. on)=-nneZ |
is an_automorphism. This is the “only noh-identity
. automorphism of Z. - -
Thus A(Z) is of order 2.

(b)  The mappingso.: V— Vand 8: V =V of the four-group

'V=<a,b:a?=b?=(ab)?=1>given by:
. ofa) = b, oAb) = (ab), Aab) = a, (1) = 1
and
Bay=b, Bb)=qa, ,B(ab) ab, A1 =1
.are automorphisms and '
AV)=<af:dd=F=(afP=1>
(©)  The group of automorphisms of the group.
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' G=<a,b;a} = b2 = (ab)? = >is isomorphic to G.
‘The only automorphlsms of G are the inner automorphlsms
L L, 121, 1 1y
' (This fact will follow from theorem 6. 3.6).

An automorphism of a cyclic group C, is a mappmg o: C - C,
- which maps the . generator of C, into an element a™, ‘where

(m, n) =1 The set Z' consisting of the non Zéro elements m of Z
has an mverse 1f andonlyif (m,ny=1, Such elements of Z are
~ called units on Lo e - A

 Thus Aut (C,,) = the group of units of Z'

 6.3.6. Theorem: The set I(G) of all i inner automorphlsms of a group Gis

a normal subgroup of A(G).

Proof: Let1,, 1, € I(G). Then |

: B R I | -1,
I(&)=bgb .1, (g)=b gb

and _
I,. 11 (@) =1, ('gb).
o —b(b'gb)b'
‘ =g
| -L@,
forallge G. -
Hence
P
I'=0,) .
- Now

LI (8) =1L, 'gb)
= a(b gb)a-l

= (ab g (ab~ )
= Iab"l (g)

-1
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for allge G.Hencel I« = I;,b-l- € I(G)and I(G)is a subgroup; '
Next let o € A(G). Then, for any I, € I(G), we have,
(aL o) (g =al(a @)

=aa(a’ (g)al)
- =a@).(a.al(g). oa?)
| =a@(ea ) @) (@@)', " aisan
automorphism. ' D

A -1

=a(@) g (aa)
- = Iy (&) |
forall ge G. Hence |
o ala'=1,,€ IG).
Therefore I(G) is a normal subgroup.

The theorem that follows gives a relationship between the group of

inner automorphrsms of a group and the factor group of that group by its
centre. _

6.3.7. Theorem: Let G be a‘groupwith € (G) as its centre and I(G) the
group of its inner automorphisms. Then G/ € (G) is isomorphic to {G).

" Proof: Consider the mapping ¢: G — I(G) givenby
, ¢(g) =1, forallge G.
- Then @is surjective. Also .
9 (8:2) =.Iglgz
S =L by632()

’ - =@ 1)\ ¢ (g)
Hence @is a homomorphism
By the fundamental theorem of homomorphlsm
- GK=zKG). '
where K = Ker @. We show that K ={(G).

A BAND2ISRT A
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Let z € {(G), then 7
9 (_z) =1,

L) =28 =g =1L(g). |
Sol,=1, forall z€ {(G). Hence z € K, that is, C(G) C K
Conversely, if k € K then '
(ov(k) =L, by deﬁnitien ofp
=1, by assumptlon that k € K.

.

However L=1 1mp11es _

- L@@=kgk'=g=1() - |
for all g € G. Therefore k € {(G) so that K < {(G). Hence

| - K={@G). '
Therefore '
| GI(G) = (G). |
Aiternatively: Define a mapping v G/C(G) — KG) as follows:
For each g { (G) € G/t (G) we put
v LQ) =1,

Then v is obviously surjective. Also let

V(& 4G =1, =1, =¥ (5 {G))

Then, forany x € G, |
' L ®=1,&
That is,'
818~ = gxg;™!
- or 827 (gixg ™) g2 =x

) (32 8) 0 @t g =

for all x € G. Hence g,' g € {(G) ie. g € gL0). BUt 81 € & 0.

' Hence £4(G) = g,4(G) which shows that y is mjectlve
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Also, for g, {G) , &, {(G) € G/ (G)
V(g ;(G) - 82 C(G)) =V (818, 4(G))
=188,
=g, .Ig, k
| =y (g; 8(G) .- v (g, &G))
" Hence y is an isorhorphiSm Thus ‘ IR

G/{(G) = I(G)
6. 3 8 Example:

Let Q =<a, b:at =1, a® = b2, bab—a‘1>bethegroupof.

quaternion. Then Q= Q/§(Q) ZC,xC,
It was remarked in example 6.3.4(c) above that all the

| automorphisms of G = < a, b : a® = b2 = (ab)2 = ¢ > are inner. As the ‘

centre of G in trivial, the above theorem Justlﬁes that remark

Also 1f the only inner automorphism of a group G is the 1dent1ty
mapping, then G is abelian.

This is so because, for each z € G, the mappings I, and I, are
idential and so, for any g € G,
L&) = 287! = g =1(g).
So, gz =zg . Hence z € {(G), for allze G Thus G is abehan

6.4 COMMUTATOR OR DERIVED SUBGROUPS

The term commutator subgroup is due to Dedekind but the
fundamental and basic properties of these subgroups were first given by

~ G.A. Miller. Their usefulness was quickly, recoguized and they have . ‘

become an important and significant part of the recent literature on group

“theory. The theory of .commutators helps determining the mherent :

~ structure of groups. :
" LetGbeagroupanda,be G. Then the element
aba1 b1

is called the commutator of a and b and is denoted by (a, b].
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A few of the properties of commutators are given below:

" 6.4.1. Theorem: The following commutator inden_tities' hold in a group =

G

@ [bal=[ab]"

(i)  [ab,c]=1[b, c] [a, c]
(i)  [a, be] =[a, b] [a, c]’
(V) [a,b]=[b,a]”" and
N X

foralla,b,ce G.

(Here xa denotes the conjugate axa-l of x)
Proof: (i) - Since [b, a] bab‘l al,[b, a] [a b] =1,s0

- [b,a]=1a, 7 o _ _.6.4._1 ¢))

(i) Fora,b ceG,

[ab c] =abc(ab)! c1
. =abchlalc!
= a(bcb-! cVa ! aca! ¢!
=b,c’ lac] 6412
(iif) [a be] = a(bc) a! (be)™! o
" =agbca’l ¢ b}

= eba-! bV baca-! ¢ b

o =[a, b] [a, ]’ T 64103)
i) f{a,b'1=ab'a'b=b"bab'a'b e |
o —a” | 6.4.1(4)

‘and similarly ‘ ‘ . o
| b =[b,aj" o 64109

The relations 6 4.1 (1) t0 6.4.1 (5) are called commutator zdentmes
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Obviouslja group G is abelian if and only if. for any two el_emehts
a,be G, a bl= e. Thus the commutators, in a way, measure the extent to
which a group can be farther from being abelian. :

For any group G, let G’, denote the subgroup of G generated by all
the commutators [a, b}, a, b € G. G’ is called the first derived group or

commutator subgroup of G. G’ is also written as [G, G]. Second, third and,

m general an nth derived group (n > 1) of G are similarly defined as
=[G, G], G =[G”, G”] and G® = [Ge-1) G(“'l)]’respectively

The theorem that follows gives a relation between a group and its -

derived group.

'64.2. Theorem: Let Gbea group Then ’
‘ @ " the derived group G’ is a normal subgroup of G.
(b) the factor group G/ G’ is abelian. :
© I K is a normal subgroup of G such that G/K is abelian
‘thenK 2 G". ,

Proof: (a) Here we make use of theorem 6.1.4. Since G’ is geuerated
by the commutators [a, b], a, b € G, it is enough to show that
gla blgte G’forallge G. Now
gla,blg' =gabal bl gt
| =gag . gbg! . ga! g1 gb! g“

= ashe (ax)fl (bg) 1"
= [as, be]

" is an element of G’ for all g € G. Hence G is normal

Or equlvalent_ly, let q¢€ G,ge G. Then gag ' ql e G 50 that
8q8' € G'q=G".

(b) Let aG' bG’ e G/G’,then
[aG’ , bG] = aG’ bG’ (aG')! (bG')!
=aG'bG @G b1 G
= (aba! b-1)G" |
- G’
which is the identity in G/G’. Hence G/G’ is abelian
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(¢) LetKbea normal subgroup of G such that G/K is abel1an
Then for all a, b in G,

aKbK (aK)-! (bK) ' K =aba-! b-' K =K.
Hence ab alpt e K. Thus G c K

A group G is called solvable 1f and -only if the sequence of - |
subgroups. . ‘

G2G'2..2GWo.. . 642(D)

‘where GO is the derived group of G(-1), terminates at some integer k in the

- identity subgroup i.e. for some integer k, ,

GO= e}, \

“A group which is not solvable is naturally called an unsolvable group.
Solvable groups play an important role in the theory of equations. In fact,
with any polynormal equation of degree n in some variable x, one can
associate a group in a certain way. An' equation of degree n is solvable by
algebraic procedures like addition, subtraction, multiplication, division .
and extraction of roots if and only if the corresponding group associated
with that equation is solvable. This was proved by E. Galois (1811-1831)
who associated, with each polynomial, a certain group (group of "
permutations of roots of the ploynormal) Galo1s was killed in a duel at the

. age of 20. :

- 6.4. 3 Examples

(a) A group is belian if and only if its derived group is the
identity subgroup. Hence every abelian group is solvable.

b LetG =< a, b : a® = b2 =(ab)? = 1>. The derived group G’

-~ is the group generated by a. &/, being of index 2, is normal '

in G. G/G', being of order 2, is cyclic and hence abelian.

" The second derived group G” of G which is also the

derived group of G’ is the 1dent1ty subgroup
Hence G is a solvable group. .

A group G is said to be metabelian if the derived group G’
of G is abelian.

The group of example 6.4.3(b) is metabelian. So also are
the group of quaternions and the dihedral groups.
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6. 5. CHARACTERISTIC AND FULLY INVARIANT
SUBGROUPS

Let Q be a set of symbols ¢, S, yetc. and Gbe a gfoup. Qis said to
be a domain of operators for G if ‘

L. foreachaeQandgeG a(g)eG and
2. foreach a € Qand g, g, € G. a(g,g,) = a{g,)- a(g,).

“For example, let E(G) be the set of all endomorphisms of G. Then, for
each p € E(G) and g € G, ¢ (8) & G and ¢ (g,8,) = ¢ (g))9 (g,) for all 81
&, € G. Hence E(G) is a domain of operaters for G. R

(((((

If Q is a domain of operators for a group G and His a subgroup G
then H is said to be an Q-admissible subgroup of Gif :

a(M)cH
foral]aeQ o '

1t is easy to see that the intersection - of any collection of Q-admxss1ble
- subgroups of a group is an Q—adnus51ble subgroup.

A subgroup Hofa group G is said to be a characteristic subgroup
1f and only if H is mapped onto itself under every automorphism of G.

G,
| 2 () -H )
Using the language of - domain of operator, we may deﬁne a

characteristic subgroup of a group G as a subgroup of G which is A (G)-
admissible, where A(G) is the group of automorphims of G.

"A subgroup F of a group G is said to be ﬁdly‘invariant if Fis -

mapped into itself under every endomorphism of G.

Thus F ¢ G is fully invariani 1f, for each endomorphlsm @ of G,
@ (F) c F or, if FisE (G)-admissible.

It is easy to see that a subgroup F of G is fully invariant if and only -
if each generator of F is mapped mto an eiement of G by every

endomorphlsm of G.

&

‘Thus Hg G is characterlstlc in G if, for each. automorphlsm a of
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6.5.1. Examples:

(@)

(b)

()

(d)

(e)

The commutator subgroup of a group is fully invariant.
For if G’ = [G, G] is the commutator subgroup of G then,

for any endomorphism ¢ of G and any generator [x, y} of

G,

plxyl=e@xly)=0x). o0 . o) 9 0)!
, =lp@, 0]

is an clement of G '

The centre of a group G is chiaracteristic.

For let £(G) be the centre of Gand & any automorphism of
G. We show that, for any z € ¢(G), a (2) € C(G)

Letxe G Then there i isaye Gsuchthatx=a y)

Hence

a@.x= @) @)= a@)=an)=a0). a(é)

=x.a().

Soa(z)e Q(G) Therefore C;(G) is characteristic.

Let A be an abelian group and Ap the set of all those

elements of A whose orders are powers of a fixed prime p.
Then A, is a fully invariant subgroup of A.

“This follows from the fact that an element whose order is a

power of a prime is mapped onto a similar element or the
identity under a group homomorphism. -

In general, ina group G, if H={x e G:x»=1}isa
subgroup then H is fully invariant. :

" For a group G let Gr = < xv : x € G >, that is, G® is the

group generated by the nth powers of all elements of G.
Then G is fully invariant (verify!). ‘

" Every group G has two characteristic subgroups namely the

identity subgroup and the group G. A group which has no
characteristic subgroup other than these two.is called a
characteristically simple group. Such groups have been
investigated by P. Hall. [26].

*®
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(e) . If a subgroup H is the only subgroup of order m of a group
G then H is characteristic. For any automorphism a, a. (H)
is a subgroup of G of order m and so coincides with H:

'6.5.2. Theorem: Every fully invariant subgroup is characteristic.

. Proof: Let F be a fully invariant subgroup of G and & any automorphism

" of G. Since every automorphism of G is an endomorphism, a(F) < F.

* Since ol is also an automorphism, o' (F) < F, that is, for each a € F,

ol (@) =b € F so that a = afb) e ofF). Hence Fc a(F) Consequently '

a(F) F. So F is characteristic.

5.3. Theorem: Intersectlon of any class of characteristic subgroup“ is

a characteristic group. ,

‘ Proof: Let Q be'a class of characteristic subgroups of a group G. Put -

H=nK,K € Q. For any automorphism a ofG andK € Q.
(1( (K) =K.
Now a(H)ca{K)=KforallK € 3. Hence
ca)cna®)enK=HKeQ
So @ (H) = H. Therefore H is charactenstlc ‘

6.5.4. Theorem: Every charactenstlc subgroup is normal.

Proof: Let H be a characteristic subgroup of G. Then a (H) = H for every
‘automorphism @ of G. In particular I, (H) = gHg™! = H, for every inner
~automorphism I, g € G. Thus H is normal in G, as required.

6.5.5. Corollary: Every fully invariant subgroup is normal.

Proof:.Since every fully invariant subgroup is characteristic o.nd'every :

characteristic subgroup is normal we have the above corollary.

‘Remark: In example 6.5.1 (a) we showed that the: commutator subgroup

“of a group G is fully invariant. Corollary 6.5.5 shows that every fully
invariant subgroup is normal in G. Hence the commutator subgroup is
normal. This provides yet another proof for the normality of the
commutator subgroup. The first proof was given in Theorem 6.4.1.

We have seen in example 6.1.1 (b) that a normal subgroup H of a
rormal subgroup K in a group G many not be normal in G. The theorem

B Pk o S ERE A
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that follows gives a condition which ensures the normality of a subgroup
of a normal subgroup in the parent group.

6.5.6. Theorem: Let H be a characteristic subgroup of a normal

- subgroup K of a group G. Then H is normal i in G.
‘Proof: Since K is a normal subgroup of G, K is mapped onto itself under

every inner automorphism I, g € G. The restriction (also to be denoted by
L)toKofl,ge G, is an. autombrphisrn of K. as H is characteristic in K,

‘His mapped onto itself under L. So, for each g € G, gHg! = H Hence H
“is normal in G. :

EXERCISES |

1. Let C' be the group of non-zero complex numbers under -

" multiplication and R* the group of non-zero positive real

" numbers under multlpllcatlon Show that the mapping i : C”

: —)R* given by:
Hz) =]

isan homomorphism from Cto R*.

2. LetRbesetofall real numbers and

G={(a,b):a,b € R,a=0}.
Define a binary relation in G by:
~ (a, b)(c,d)=(ac, ad + b).
Show that
' Q) Gisa g_roﬁp under this binary operation.
(ii) K= {d,b):be R}‘is normal in G. _
(iii) G/K is isomorphic to the group of non-zero real
numbers under multiplication. :

- _3. ~ Let C’and R+ be as glven in Exercise 1 and U be the group,

under multiplication, of all complex numbers of unit

‘modulus. Define a mapping v : C ‘= Uby:
’ Wz) = lzl '

TR T3 ST et 1 e
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Show that v is an epimorphism with R* as its kernel and hence

-C’IR* is isomorphic to U.

Show that if (R, +) is the group of reals, the mapping f: R -
U define by fix) = cos-x + i sin x, x € R, is a surjective
homomorphism with Kerf= {2n% : n € Z}. '

~Consider the additive group Z of integers as a subgroup of the

group R of -all real numbers under addition. If U is the group

of all complex numbers of unit modulus under multiplication,

then prove that the mapping ¢ : R — U define by:
@(x) = e2 7ix = cos 27x + i sin 27x, x€R

is an eplmorphlsm with Z as its kemel showmg thereby that R/Z is

isomorphic to U.

Let G = {(? Z)} ad - bc#0,a,b,c,de R} be the group

“under multiplication. Show that ¢ : G — (R, . ) given by:

co(g Z) det (“ Z) ad~bc#0
is a homomorphism. '

Leta group%i have the following presentation:
G=<a,b:a?2=b2=1>.

G is called the mﬁnzte dihedral group. Show that the cyclic group

generated by ab is a normi~.i subgroup of G. Also show that every

finite dihedral group is a i‘xomomorphic-image of G and therefore

isomorphic to a factor of G.

 Describe the cosets of H= {(x,y) : x=y, x,y € R)} inR xR.

A group G has the following presentation.
G=<ab,c:@=pP=c2=(bc)*=1,b"=c, = bc>.

'Find all the normal subgroups of G, the normal subgroups of these
normal subgroups and so.on.

Let A be a subgroup of G For any subgroup B of G,

containing A, show that if A is normal in B then B € N; (A).

B~ W

y TR R &
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1. Let C4(H) and Ng(H) respectively be the centraliser and
~ normaliser of a subgroup H in G. Show that CG(H) is normaI '
in Ng(H). -
Also show that every subgroup of the centre C,(G) of a group G is
normal in G.

" 12. LetHbea subgroup of a group G. Suppose that all the left
- cosets of H in G form a group under multiplication defined
by: .

“aH. bH = ab H.
Show that H is normal in G. \ :

13. LetKbea normal subgroup of G. Then &(K) is normal in G.
- [Hint: Knormalin G = forg € Gand k € X, kg = gk, and
glk=kg!,fork €K

 So,forze {(K),g € Gandk, € K
2  kgagt =gk zg! = grkg! =gz gk

Sogzgt e ¢(K) forallz e C,(K) g€ G.]

14.  Let G be a group and H be a normal subgroup of G. Show
that G/H is cyclic if and only if there is an element a in G

with the property that, for every x € G, there is some 1nteger
n such that x a» € H.

1T Ry

15, If every element of a normal subgroup H and factor group :
- G/H of a group G has finite order then show that every
™ S .element of G has finite order. e

16. Let a group G have a normal subgroup H of index p,a prlme
Show that G has at least one element of order p.

17. 4 subgroup H of a group G is called maximal if and only if
Jor any subgroup K of G such that
HcKcG,
ceitici K=HorK =G.
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18.

19.

20.

22.

" 23,

24.

Show that a normal subgroup H ef G is maximal in G if and only if
G/H is simple. ‘ '

Let K be a normal subgroup of G and H a subgroup of G
containing K. Then show that H/K is a subgroup of G/K. Also

show that H/K is normal in G if and only if H is normal in G.

-Leta, b € G and z = ab. IfzeC(G) showthafab—ba |

[Hint: z € {(G) > abg=gab = bgb‘1 =algaforallg e G. So,
~with g replaced by b-lg,

" gasbeig b

ie, a ‘5! ga= gb‘

or gab=bag Butgab=abg= bag

~ Now use cancellation law].

LetGbea group, H a maximal subgroup of G and N a normal
subgroup of G distinct from H. Show that

Gpy=HHAN

" [Hint: Here G=HN.]

Let a be an element of order 2 in a group G. Show that < a >
is normal in G if and only if a € {(G).
LetHbe a subgroup of a group G and
K=<ghg':geG heH> | L
Show that K is a normal subgroup of G.

Letp:2Z -7, Z4 under addmon be deﬁned by:

(n) 0ifniseven
=2ifnis odd. 4
Show that ¢ is a homomorphlsm which is neither 1n]ect1ve nor
surjective.

If the index of a normal subgroup H of a group G is a prime
number, then prove that G/H is cyclic.

o

v wy=me, A

-~
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. 26.

27.
28,
29.

- 30.

31.

32

33. _. For any group G, the mappmg @:G— Ggiven by

' NORMAL SUBGROUPS FACTOR GROUPS . CHAPTER-VI

. Let ©:G —> Hbea homomorphlsm of groups Show, by
induction on n, that

@ (@) = (¢ (@) for_ allne ‘Z,.a € G.

- Determine the group of automorphisms of: -
(@  acyclic group of order p where p is prime.

- () acyclic group of order n.

(©)  aninfinite cyclic group.

Show that the dihedral group of order 8 is 1somorph1c to its

group of automorphlsms ‘ \
Determine all the inner autorﬁefphisms of:

()  The dihedral group of order 8,

(i) - The group Q of all quaternions,

and hence verify Theorem 6 3. 4 e

Give an example ofa normal subgroup of a group whlch is

not characteristic.

Find the derived. group of: .

(1) G=<a,b,: a4—b2—(ab)l—-1>,-

(i) G=<a,b:a?=b=(abp>

and hence venfy that the corresponding factor groups are abellan
Show that the derived group of a non- bellan s1mple group
comc1des with that group. ‘ _ :
LetGbea group and a be an automorphlsm of G. Let :
H={geG:g"=g}. |

Show that H is a subgroup of G.

[H is called the fixed poini subgroup of G under a.l

o{x)=x

is a'homomorphlsmif and only if G is abelian. v«
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34.

35. -

- 36.

‘37,

- 38.

39.

40.

Find two non-isomorphic groups whose automorphism
~ groups are of order 2 and hence 1somorph1c o

Let Hbe a subgroup of a group G which contams the denved

- group G” of G. Show that H is normal in G.
 Show that, for any ae G1,:G-G givén by .

L(x)= a.xa' xeG

" is the 1dent1ty automorphxsm if and only 1f ae C(G)

Show that the mappmg XX, x€ G is an automorphism of
G if G is abelian and of odd order. { ‘

Let A and B be subgroups of a group Gand -
[A,Bl=<][a,b]:a€e A,be B>

- then prove that:

(1) A, B are permutable element-w1se if and only if
[A,B]= {e}
(i) [A,B]=[B, Al

) (iii) If A, B are normal subgroups of G, then [A, B] is normal in

G and is contained in A N B.

Let p: G- H be an eplmorphlsm with K as its kernel. For+
any veHlet. :

K,={ge G:p@=v}
Show that’

Lo foreach g€ K,, gk =K, = Kg

2. . For gl-, g € G,

(g = ¢(82)<=>31K g.K. |

[Here, for (1) use the equatlons (p k) =@ =V for all
ge Kv,ke KsothathCKvetc]

Lef (R, +) and (C’, .) be the groups of real and nbn-zero
comples numbers. Let ¢ : R — C’ be defined by

@(x)=(cos x,sinx),x€ R.
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- 41.

42.

43.
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Show that ¢ is a homomorphism which is neither injective nor
surjective. :

Let H be a subgroup of a group G. Let -
K =U Ha, a € N;(H).

‘Show that K is a subgfoup_of G i:n which H is normal. ,
" [Hint: Here a € N(H) <> ah = 'a for each h € H and some
" h’e H. Also for each k € K, k= h,a for someh1 e H. |

Sokhi\c‘1 hlalrlak 1=h,h'hy=h, € H.]

Let o be an automorphlsm of G which ﬁxes only the 1d&nt1ty

element of G. Show that the mappmg :G->G ‘glven by

p@)=c@).g'.8€G
is injective. Hence show that, if G is finite then each elemernt f G
is of the form oz(g)g’l '

Let H,, H, be normal subgroups of G such that

- GH, = G/H
Are H, and H, necessarily isomorphic?

Conversely if H, = H,, are G/H,, G/H,, ’alse isomorphic?



Chapter VII
PRODUCTS OF GROUPS "

Given two or more groups we can comstruct new groups in a
variety of ways. Two much constructions are the direct product of groups
and semi-direct product of groups. These, together with their properties,
-~ will be dlscussed in this chapter. :

7.1. DIRECT PRODUCT OF GRGUPS

In this section we d1scuss a group theorztic construction known as
the direct product of groups. There are two kinds of direct products of
groups namely the internal and external direct products. We ﬁrst explain

_the concept of external direct product of groups.

Let A and B be group with identities e and e respectlvely The set
| P={(@b):aec AbeB}
under the multiplication defined by: :
. (@b@b)=(aa’bb) m

is a group with (e, ) as the identity and (a‘l b1 as thc inverse of
{(a,b) € P. -

P is called the external direct product of the groups A and B and is
denoted by A X B. '

A and B are called th‘e direct factors of A x B.

7.1.1. Theorem: Iet A x B be the d1rect product of the groups A and B.
Then the sets '

A={(a,e)ac A}, ]_3={(e,b);,be B}
are normal subgroups-of A X B isomorphic to A and B respectively and

ANB=1{(e,e)).

187
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Proof:

A x B. Hence the theorem.

188 ~ PRODUCTSOF GROUPS -  CHAPTER-VII

Let7=(a, ), a,=(a,e)e A. Then:
ada'=(a,e)(a ) e)= (aalrl, e’) |
belongs to A SoAisa subgroup of AX B
Also for any X = (a,, b;) € AXB"
XaF1=(a,, by) (a ¢) (@, b))
=(ajaa; L e) -
=(a’e),

where a’= a,aa,"! € A. Soxax“eAforallxe AxBand%eA‘

Therefore A is a normal subgroup.

Next, to establish an 1somorph1sm between A and A we deﬁne a
mapping 9: A—>Aby.: : ,

(a) (a, e‘) ae A -
Then @is obviously a bljectlve mappmg Moreover for all a, ae A
(0(aa3 (aa’ e) '
=(a, e) @’ e)
=¢(a). ¢(a)
Hence (ols an 1somorph1sm between A and A
Smularly 1t can be shown that B is a normal subgroup of A X B

isomorphic to B.

Finally, to see that A N B = {(e, €)}, let (a, b) e \An ﬁ. Then
(a, b) € A and (a, b) € B which implies b = e¢”and a = e respectively.
Hence (a, b) = (e, ). Thus A N'B = {(e, e’)}, the identity subgroup of .

s

/By the above theorem, A,Aand B, B are respectlvely isomorphic
“and therefore structurally the same. Identifying A with A and B with B,
‘'we can write a for (a, ¢’) and b for (e, b). With this convention, every -

element of P can be expressed as ab, a € A, b € B because then

(@, b)=(a, ) (e, b) = ab. <
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.. The multiplication rule in A x B then becomes |
ab.ab’=aa’. bb’ ' @
Using the above theorem we can now deﬁne the direct product as follows:
A group G is called the (intemal) direct product of its subgroups A
and B if and only if
(i) G is generated by A, B,
(ii) A, B are normal subgroups of G,
(i) AN B = {e} where e is the identity in G
- In general, a group G is the d1rect product of its subgroups
H,, H,, ..., H; if and only if
1. Gis generated by H, H,, ... H,, -
2. every H; is normal in G,

3.  H,; intersects the group generated by a]l H] j=12,. k

_ j# 1, in the 1dent1ty subgroup. '

~ If G is the direct product of its subgroups H,, Hy, ..., Hk, then each
H,i=1,2,..,k,iscalleda direct factor of G. Also we write G as. '

G= H,tzx . X H;.

7.1. 2 Remarks
~-“1. - Forany two groups A and B the dlrect products A xB and
‘B XA are 1somorph1c ’

» v2;» The process of forming direct products is associative. That
is, for groups A, B and C, the direct products :
- (AXB)xCand Ax (B xC)
- are isomorphlc.
7.1.3. Example: oo T

The four group V=< a, b : a> = b2 = (ab)2 =1>is the dlrect

product of its subgroups..
A=<a:a’= 1>B <b:b2=

- We now give another characterization of direct product. |
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7.1 4 Theorem: A group G is the dlrect product of its suboroups A and

B if and only if

(1 Each element of A is permutable with every element of B,
(ii)’  every element of G is uniquely expresmble as
o g=ab, |

ac€ A,be B.

Proof: Suppose that G is the direct prbduct of its subgroups A and B.

o Leta€ A, be B and consider the commutétor aba! b1, Then

aba b1 =‘(dba—l) ble B (’E is normal in G .Y
=a (ba'b') € A ("Ais normal in G).
Soaba'b'e ANB= {e}. Hence abcyz"b‘l = e. Thus
. abs= ba - o
for all a€ A,be B.and () is satisfied.

‘Next, as G is generated by its subgroups A and B, each g€ G is of
the form

g=a\bab, ... akbi
where €, d are 0 or 1. Using (i) we have
g=aja,...aqb b, b

=ab

aEAbEB

- To see that the expression (ii)’ is unique, let
_ g=ab=ab’ -
a,a’e A, b, b’e B. Then
a“la=bb'e AnB={e}.
Hencea=a’, b’ b and the expression (ii)’ is unique.

Conversely, suppose that the subgroups A and B of. G satisfy the

- conditions (i)” and (ii)". Then the requirement (i) is a part of (ii)".

To prove (ii)detae Aand g = a,b, € G,a,€ A,b;€ B.Then
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. gagl=(a;b) alab)t

=aaa'bbl - byGY

= g aa,™! ' '
is an element of A. Hence A is normal in G. Similarly B is normal in G.
Therefore (ii) is satisfied.
For (iii),letx€ AN B. Thenxe A andx € B so that

xX=a.e, a€ A :
=e.b, beB

has two distinct expressions. One, therefore must have a = e, b= e by
(i) Hence AnB= {e} and (jii) is satisfied. ' : : '

The above theorem grves an alternatrve definition of the direct
product.

More generally, a group G is the direct product of its subgroups
Ay Ay, - Ak if and only if
()" A,is permutable with cach A, element-wise, i #j,1,j = 1,
2,. kThatlsa,aJ—aaforallaeA G € A i#] ' :
' (ii)” every element of G has a unique expression as o : 3
ay }12 a4 € A, 1<i<k .

It was shown by' example 4.1.2 that the relation of being a normal
subgroup is, in general, not transitive.-For certain subgroups of a direct
- product the situation is different as is shown by the following theorem:

7.L 5. Theorem: Every normal subgroup A’ of a d1rect factor A of a
- “group Gis normal in G. .

Proof: Since A is a direct factor of G, there exists a subgroup B of G such
" that

"G=AXB.
Letge G. Theng ab,ae A,be B. So, foreacha’e A’
ga’g™! = (ab)a’ (ab)'
=¢.1ba"b~‘1’a"1 o 4

=aa’a’l,




tRYHAL

ist

. Hence

192 PRODUCTS OF GROUPS CHAPTER-VH

As A’ is normal in A, gag“l =aa’ale A’ for all a’e A, ge G. Hence

A’is normal in G.

7.1.6. Theorem: If G = A x B and {(G), {(A), C(B) are the centres of G,
Aand B respectlvely, then

G)=LA)x {®).

Proof: Since A and B . are permutable element-wise, CA) x {B) is

- permutable with A and B and therefore with G element-wise. -

L) x {(B) € L(G). s
Conversely ifze {(G), then forall g € G, zg = gz. '

“In particular, za = azforallae A andzb= bz forall be_ B.As

z=d' b,ae A,b'e B
we have o S
za=d b a=a’ab’andaz=aa’b’

'so that za az implies aa= aa’forall a € A. thus a’e {(A). Similarly,

b’e {(B). Thereforez a’b’e {(A)x {(B). Consequently
C(G)QC(A)XC(B) L 116(QR)

- Combining 7.1.6 1) and 7.1.6 (2), we obtain -

4G) = LA x {(®).

' 7.17. Theorem: Let G = A x B. Then G = A’ x B” where G/, A’, B are’
‘the commutator s’ubgroups of G, A and B respectively.

’ 'Proof Clearly each generato,r [g, gl] of G’ is such that

L, g;]—[ab\a,b]-[a a|]lb, b ]e A’'x B
Hence G’ C A’ xB’.

-Conversely, both A", B are subgroups of G’. So A’ xB’ G

Hence
G =A"xB".
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7.1.8. Theorem: Let G = B x A. Then the factor 'group G/A i‘s-

isomorphic to B.

Proof:;Elenﬁents of G/A are of the form
' gA =baA =bA, b€ B.
Define a ihapping ¢:G/A —B by:
” P (bA)Y=b.

" Then ¢ is well defined because for g = ba, g’= ba’and gA g’A 1mp11es
bA=bAsothatb*lbe A.Butb“lbe B.AsANB={e},blb=eso0
that b= 5" Hence ¢ (bA) = ¢ (b"A). ¢ is obviously bijective.

- Next,
(0 (bA . bA)= @ (bb ’A)
- =bb’
= p(bA). p(bA)
Hence @is an isomox-phiSfri between G/A and B, as required.

LetG=AxBand Hbea subgroup of G. Then elements of H are :

-of the formab,a€ A, b€ B. Let

A={aeA:abe Hfor/s‘omebe B},b#e
B,={beB:abe Hforsomeac A}.a#e

" Then, it is.easy to see that H C IA, X B;. »

In general H is a proper subngup of A; xB,.

To prove this, ltA={a:a*=1>B=<b : bt =1>and
G=AxB. Let H=<ab: (ab)* = 1 > Then H C G. But in this case
A= ABI BbutH;tA]XBl:GbecauseaeGaEH

A group which is expressible as the direct product .of its proper
subgroups is called decomposable (or decomposable into direct product).
Thus a group G is decomposable into direct product if and only if there are
proper subgroups AandBinGsuchthat G=AXB.

A group which is not decomposable is called indecothosable.
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Among the indecomposable groups are cyclrc groups whose order

isa pnme number and the group ,
G=<ab: a3—b2—(ab)2— 1>

The folloWing theorem gives a class of decomposable groups.

7.1.6. Theorem Every cyclic group whose order is a composrte number
is decomposable: :

Prdof: Let G be a cyclic group of order n where

Il=pllZl p2 p:k k22,‘

and let a be its gerrerator. Put ' | o \

g=p™ p2 ..pTt pliti p%

* The group B, generated by b, = a” is of order i

B; intersects the group B’; generated by all b, j =1, 2, ., k, j#1iin the
identity subgroup because the orders of B; and B;" are co-prime. The group
G’ génerated by all b, i = 1,‘2, ., kisa subgroup of G-and has the same
order as that of G. Hence G’ = G. However, in G’ every B; is normal
because it is a subgroup of an abelian group. Also B; N B’; = {e}. Hence
G’ and therefore G is the direct -product of the groups B, Of course

- B, # {e} ThusGls decomposable

7.1.7. Example: , : »
Let G = <a; a% = 1 >. We can write 60 as 60 = 22 . 3.5.

Let
Bj=<b=al:b =13,
B,=<b,=a: bj_1~>,
B,=<b,=al?: bj—1>.

Then G=B ><B2><B3

7.1.8. Theorem: Let C ‘and C, be cychc groups of order m and n
respectively, wHere m, n are relatively prime. Then C x C, is a cyclic
group of order mn.
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Proof: LetC,=<a:a"=1>B=<b=b=1.LetG=C,xC, Then

ab isan element of C,, x C,. Also .~
(ab)k = akbk = ¢

if and only if m [k, n|k Since (m, n) = 1, mn]k Moreover
(ab)”"‘ a™ b"'” =e.

Hence ab has order mn. Smce C, x C, has mn elements

<ab a” -b =1, ab= ba>

exhaust all of G. Hence Gis cycllc of order mn.

7.2, NORMAL (OR SEMI-DIRECT) PRODUCTS

Closely related with the concept of direct product of groups is the
notion of normal products or semi-direct products. This construction has
' been usefully employed in order to construct counter-examples to answer

various questions in group theory. -

A group G is called an extension of a group A by agroup Bif G

has a normal subgroup A” isomorphic to A such that G/A” is 1somorph1c to
B. For example, the group :

G=<a,b: a3—b2-(ab)2—l>

1s an extension of a cyclic group A =<a: a3 =1 > of order 3 by a cyclic
group B = <b : b2 = 1> of order 2. Also, as Theorem 7.1.8 shows, a direct
product A x B is an extension of A by B.

It will be seen that a normal product also is an extension of a group
by another group.

- Let A and B be groups with identities e ‘and e respectlvely
Suppose that each b € B induces an automorphism ¢, in A. Then, for each
a € A, the image ¢;(a) is denoted ‘;y conjugatzon ab for all € A and
a',,(a) abi is an element of A.

For b, b,e B,
| Oy b, (@) = a1
= (@)

b
=b,a b}
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=0, (a™) .
= o, (a, (@)
o = (03, &) (@
for allae A. Hence |
Oy= @y mdd= @y 721
~ Also, as @, is an -automorphiSm. o |
, EACTAETACHLACHN ’ ,
Thus ' R ' " U
C (@ay b=a] a;. ) . 72(2) |

2°

Consider the set G of all ordered panrs (a b),a € A, b € B. Define
an algebraic operation in G as follows '

~ * For(a, b)), (ay by) € G, we put
YR g S |
. (@b . (@ b)=(aa) by 72Q)
_,' | Since, foreacha € A, b € B,abe A, the mulnpllcatlon gwen by 7 2 (3) is’ '
7 Wwell-defined. .
T 4
Y Now e o |
g (i = The algebraic operation defined by7.2(3)inGis associative.
For this, let (a,, b,), (a,, b,), (a3, b;) € G. Then A
X [[(a, b )(a29 bz)](a3: b3)] (alazb" b,b))(as, 3) by 72 (3)
R .= ((alazb‘) a, AN bz)ba) by 7.2 (3)

= (a, - @) @21%2),b,(bby))-

= (@ (@@, b(b,by),  by7.2(1)
= (@), bt biby), - by12(3)
= (ay, by) (@ b)(a5, by)), by 7.2(3).

So the algebraic operation given by 7.2 (3) is associative.
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(i) The element (e, ¢’) is the identity in G. For, let(a, b) g G.
- Then - IR |

(e, €)a; b) = ((ea), e'b), - _by 7.2(3)

' - ={q, b) ‘ .

where a¢’=a,as obfamcd from 7 2(1) by taking b2 byt

‘ (iii)_ For each (a be G, ((a"')b b ).is‘ its in_ve'r,s‘e. This i;iso‘_
o ‘because . ) ' :
(@Y Y @ b)“((a“)b_

i—l

b by, by7 203)

= ((a—‘a)" Le), B - L by7 2 (2.
- =(e, &, ' ' | ’
using et = ¢, because thc identity clcment is mapxd nnty sl

under every automorphism.

»'Hc nce G isa group.

The qroup G obtamed in this wav jrom the grnupv A and Bis’

o called a normal product ()fA by B. Heme we /zaw

7.2.1: Theorem: If A and B are groups and'e, e are their respective . -
identities and if eachb e B induces an automorphlsm a” inA,a€ A, then
the set - '

. _ —{(a b); aeAbeB}
isa group under the algebrarc operatlon defined by
(al, b)) (ay, by = (qa8, b bz)‘ _ ,
7. 2 2. Theorem . Let G be the normal product of A and B. Then -
i .(i)_ : r—({(a e‘)aeA} = {(e,b);be B}
o aré subgroups of G 1somorph1c toAand B .rcs;;,«:é;.ia.«c‘: 8
(i) _V A’is a normal subgroup of G. | "
(ni) - the factor group G/A” is 1somorphm toB. ,
A'Proof (i) Let (a, ¢), (a,, &) € A’. Then (( ”‘) -_ _'(al'r-r,p;/) is _t.frl;
' mverqe of(a,,e’)m and , - "

¥

(a ea,t, e)—ua, ¢y L
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s agam an element of A’. Hence A’ i is a subgroup of G. Smularly B isa
-subgroup of G. To see that Alis 1somorph1c to A define a mappmg

o: A'—)Aby
- a(a,e) a ,
for all (a, e)€ A’. Then ois obv1ous1y bl_]eCthe
Also, for (a, ¢9), (a,,e’)e A’
' a((a. e')(a,,e'))'-:'a»(alaz",e’)
| A=_.a(a‘a2,e’) | B .
aw
o= a(a, e') a(a,, e')

'Hence o is an 1somorph1sm between A’ and A
A .leewnse the mapping : B’ — B deﬁned by

Bleb)=b

- isan 1somorph1sm between B' and B

This proves ().
For (#) let (a,,e) € A’ Then for each (a b G.
(@ b)ay, e)a, ) = (aapt, b) @, 5

=(aq,® ((a“)”_ )& e)

-(aalba-l e’),

is an element of A’ Hence A’ is normal in G.

Lastly, to establish an 1somorph1sm between G/A’ and B, deﬁne a

mappmg #:G—-B by

p@b)= b

' ‘for all (a b) € G. Clearly M is sujective. Also for (a b) (al, l) € G.

- H((a b)(al, b)) =u (aalb’ bb )
B ’ = bb

=p(a b). play, by).

Hence u is au epxmorphxsm of GtoB. If K is the keme] of H then, by the )
: fundamental theorem of homomorphism. :
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;

e G/K B. v _
We show that K=A" _Clearly K DA Conversely, let (a, b) € K Then
' H (a by=b . by deﬁnrtron of u

- : : =e” . . by assumptlon that (a b)e K
 Hence (a,b) = (a, e)e A and K c A”. Thus K = A

Therefore G/A’ is isomorphic to B. ' '

 This completes the proof of the theorern.

Since: A is- 1somorph1c to A and B is xsomorphxc to. B 1t is often
¢ convenient to 1dent1fy the elements of A’ and B’ with those of A, and B
' 'respectwely So we put (a, e') aand(e b) b. L

. Then . v B
g @b =@ Neb) o

- = (ae”, b) . ' S e

. =ab _., SRR 120 ,A -

~and the rule of composmon inG becomes | -
o ~ab.ab, =aa,b. bb,.
: Hence every element of G can be expressed as ab ae A be Bso that we
can write G = AB. Now.A’n B’ = {(e e’} and accordmg to the rule of -

~ identification (¢, ¢) = e = e “so that A r‘\ B = {e} The express1on 7. 2 (4) is
then unique; for if . R

A ab= av’ |
'aeAbeBthen )
a’! a’—b’b‘ :

“is an element of AN B {e}. Therefore a=a’ b b’ Also, as before A
is a normal subgroup of G with G/A rsomorphlc to B. These remarks give .
us: ’ . = R ' -

7 2.3. Theorem A group Gisa normal product of its subgroup A by a'
' subgroup B 1f and only if _ '
_ (a) oAl is normal in G
(b) AnB={e}.
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(@  GlAisisomorphic toB. - | | |

In the definition. of a normal product, it was .assu'med that each
élement of B induces an automorphtsm in A. The mappmg Q. which

 associates with each b € B an automorphism o of A given by o¥a) = ab,’

aé€ Aisa hamomorphtsm of Binto the autamorphzsm group of A.

For lfb b’ € B then by (1) a’bb/— abab4 SO :
o (bb) = Gyr= a,,ab ' |

Hence we obtain;

" 7.2.4. “Theorem: If a group G is.a normal product of a group\A by a
. group B then there is a homomorphlsm of B into the automorphnsm group
'of A. t

The precetiing discussion includes the proof of the'

725 Theorem. Let G be a group with a normal subgroup Aand a-

- subgroup B of G. Then the followmg statements about G A and B are
; eqmvalent :

i) Gisa semidirect product ofA by B.
(i) .G=ABandAnB={e}. |
- (iii)  Each element g of G can be uniquely written as g = ab.

- _Notation:  If a group G is a normal product of a group A by a group B |

correspondmg to the automorphlsm @ of B induced by elements of Bin A

. then we write

GAD(B

. 726 Examples

__ ‘l.- : 'The dihedral group D is a normal product of a cychc group

C, of order n by a cyclic group C, of order 2.

~ 'Here if C; =<a:a"=1>and C2 = (b b2 1) the mappmg N
' qa C, -—)C deﬁnedby

() =xt, forallxe C,

is an automorphism of .C, induced byb ki‘n C,. Hence
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 D=C%,Cr | R
2. c ’COIlSldel‘ the cychc groups C;=<a: a3 1> C4 —<b b= 1>,
Then C, induces an automorphlsm inC; gi ven by a-> (a)
=a’!. So the group havmg the presentatlon :
- G= <aba—b—lbab =a'>

- is the semidirect product of C3 by C4. G has order 12 but is not
. 1somorph1c toA,. ‘

- :If the homomorphlm from C, to Aut (C5) is taken as a — a
then the semidirect product of C; by C4 degenerates into the drrect_'
product of C; and C, and also has order 12. '

o ' ‘These are the only semldlrect products of C3 by C4 '
3. Both the symmetnc group S, and the cychc group C, are
~ semidirect products of .C; by C, and correspond to the i
automorphis msa->a 'and a = a respectlvely o o

" Two homomorphi-m ¢, ¢7’from B to Aut (4) are said to be conjugate . “
if there is some « Aut(A) such that g (b) _(d by

'forallbeB - : S D . : e
For the next paragraph, mstead of denoting the image of @ under a i
homomorphism ¢ : B — Aut (A) by a”, be B and the product . |,

(@), b)@y by) = (a, a3, byby), of two elements (a;, b) and i
(a,, by) let us write these as @ (b) a,a € Aandas L ¢

| «a‘l.bsxaz;'bz>'=(a.<e(boaz-,b.bz> B A
‘respectively. o _ . ' I

" The following theorem relates 1somorph1c semldrrect products of L
thegroupAbyagroupB o . i
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7.2.7. Theorem . For' two 'g‘roups A and B and conjugate

- homomorphisms ¢, ¢’ from B to Aut (A), the semidirect products -

‘of A by B determined -by ¢ and of A by B detenmned by o,
respectlvely, are 1somorph1c

g Pr f: Let (@, 1), (az, bz) € A X, B = G Detme a mappmg
Cp G—->G’ AKX ,Bby ' '

| v, b)= © @, ®). (@, be G.
Then  ° ' - ~ : _ }
o w«a,,b)(az, by)= w(a,mb)az,b,bz» o
= (@ (a) & (9 (b,) a), b;by)
= (@ (@) (@9) (B) @), biby)
= (e (P (b) 071 @ @), biby) .
= (@@ (9 ) o) (@ @), biby)
=(ala) ¢'(B) o (a.bip)
=y(ap &) aybb)
o o =venb) vianb).
i}’hus l//is a horriomorph'i’sm' with ankinvers_e rmapping. l//-% given by:
v @by=@" @5 | |

and 5o is an 1somorph1sm

A normal product of a group A by a group B 1s, m general o

- different from the normal product of B by A. However if every element of =

B induces the 1dent1ty automorphlsm in A, that is, for any b. € B,

. b N
=a’

- for all ac A, then the normal product of A by B comcldes thh thelr'v-.
. direct product and is the same as the dxrect product of B and A. -

Some authors use the words spht extens1on” to- descnbe» the

~ notion of normal products :
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Thus if G is a normal product of A by B then we also say that G is
a split extension of A by B. G is then said to split over A.
 The group B is called the complement of A.

_ Suppose that a group G contains subgroups A and B such that -
G=ABandANB={e}. R

‘One may, qu1te naturally, ask as to what kmd of group G can be if
- the normahty condition is dropped. -

Such a group is called the general product ‘of A and B. It is
- ~generally an interesting but very difficult problem to characterise one of
* the groups G, A or B satisfying the equatlon in (*) when the nature ' of the
other two of these is known. : , . ;

7 3. HOLOMORPH OF A GROUP

As stated earher the concepts ‘of direct products and normal _
products-are used to form new groups from old. In what follows, for any.
group G, we find a new group as a’ normal product of two groups:

' Let G be a group and A(G) its group of automorphrsms Then the
- normal product of G by A(G) is called the holomorph of G. L :

 Thus the holomorph H(G) of a group G is a group con51stmg of all
~ordered pairs -

_ (20 | : ,
8 € G, ae A(G) under the multlpllcatlon defined by
| (2 A’ @)= (gg", aa).

" Here g denotes the image of g’in G under the automorph;sm a.

By the rernarks precedmg theorem 6.6. 3 every element of H(G) canbe
umquely expressed as: ‘ .

{1 . ; |
where g Qis, in a certain sense, the product of g€ G and a in A(G) with
the product rule as: - -

g.a.gl.a’= gg’a_a'd’ '
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| 7. 31 _Examples:

Let V, be the four g,roup havmg the presentatron ‘
A : jV—<ab az—bz—(ab)z"l)
The group of automorvhrsms of V,is the group
' G=< a ﬂ af3 == (cz,B’)2
where Q, ,B are auto.norphlsms of V,.given by
a(a) = b, o(b),- ab, a(ab) = a ah=1
a‘ndv : S

ﬁ(a) b ,B(b) a, ,H(ab) ab ,6'(1)-1 AU

" Hence the holcmorph of \/’4 is the group consrstmg of elements of the form

5
x e V and g€ G wrth the multrpheanon rule deﬁned as under

xg 48y -xx 88 wherex is the i xmage ofxl €V, underg € G

| The order of the holomouph of V 1s 24

7. 4 GENERALIZED DIHEDRAL GROUP
‘et A be an abelian. group. The generalised. dxhcdral group is a

b‘ group Gdrh (A) whrch is semldrrect product of A by a cychc group C2 of

order 2.

In the case when A is 1tse1f cycllc then Gdrh(A) 1S the ordmary'
drhedral group, ﬁmte or mflmte

The structure of Gdrh(A) can be drfferent from the structure of A.

~ Thus if A is an elementary abelian 2-group, G drh(A) me j or may»'b
not be an elementary abehan 2-group.” :

This is evident from example 7.3,1. '
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EXERCISES

'1_".  LetH, H2 be riormal subgroups of G ind H=H, NH, Show_-

that G/H is 1somorph1c toa subgroup of G/H x G/H,. .
[Hmt Consxder the mapping ¢ G — G/H xGy/H, dcfmed by

0(@)= (gH;, sHy)

' wh;cn isa homo*n*rphmm with H as its kemcl 1

2. Show that fhe group G H X K and G = K X H are t

xsomorphlc

3  LetG Gy, G, be gvoupo and H, be normal subgroups of G;, i = 1 '

2. Show that the function f G, X G2 — G/H, x G,/H,
: 'de,‘med by e :
) ﬂx{ )’)_— (XH.,,}’HQ)
isahom'omo_rphism and | , 4
(G X Gy / (H x H)) = Gy/E, X G/H,.
4 Find all tos subgroups of
Lz xZ3, Z,xZ, 7% Zy

5. © Show tmx* for dlwnct prlmes P q, Z x Z, is cyclic. What
can you £nv about (Z X Z,) for natural n_umbers mand n

such that {m, n) = 1‘7

6. Let Z e the set of mtegral pomts on the =a1 lme as mdlcated '

in ﬁg Dt“}“v SRR .. o
: (¢ Qs Ao S o SN o 2N o 2NN 0 4 . o A
o /‘N/\,;/N/\/N/'N/N ; e TN
-44-2—1'0 1 2 3 non

Let o Zna»?fand/f Z——)Zbesuchthat

a‘n) -’n+l)
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- Let {A i= 1 2,. n}be a collectlon of groups and-

paooucrs OF GROUPS CHAPTER-VH

whrle ,B rotates a pomt n clockwrse about 1tself through an angle of
'180 .. Show that & has infinite order while £ has order 2. Also

show ‘that aﬂ = P and the group generated by o Bis € X C,_. :

~ProVe that if G x H is cyclic then both G and H are Cyclrc |
However the converse is not true. Give an example

- LetG= A X B be a f1n1te group. Show that (ab) =1,ae A A
b € Bif and only ifkisa multrple of the orders of a and b. -

_GIIA

"Let ; (A ) be the centre ofA ‘ i=1, 2.y n. Show that

E(G) H E(A)

10.(a) Let Q be a group all of whose subgroups are normal and E,» L

)

1,

be the d1rect product of n cyclic groups of crder p Let
- G=Qx Ep,. o _
Show that every subgroup of Gin normal

- Let Qg = {+ Lti ), +k} be the group of quatermons under |
" multiplication and let'A = {a: a* = 1}. s there a subgroup of
' Qs whrch is 1somorph1c to Aandi is also a du'ect factor of Q8

Let {4, :i = 1 2, ..., k} be groups and B, bea normal_'l'.

- subgroup of A,, i =1, 2, ..., k. Let

G=.I]1A,.andG’=’_I'_IlB,.. 3
. = C - i=

' Show that G’ is normul' inG.

12.

Let A, B be groups and A X B, A X B be the normal and drrect

products of A, B respectlvely
Show that the 1dent1ty mappmg it AKX B — A X B is a group

. homomorphlsm if and only if Bis normal inAXB.



CSECTION EXERCISES 207 .

13.

14,

15.

16,

, Show that the infinite dihedral group D.is a normal product' |
" ofan 1nﬁn1te cychc group by a cyclic group of order 2.

One can define the direct product of two groups one under.

-addition and the other under multiplications as follows.

Let . G, =Z, the group of integers under addition modulo 6 and

' G,= {(Y . g) :ad - Py # »0} under mul_tiplicatiOn. '

“Then the direct product of G, ‘and G, consists of elements of' the

u:‘ Yoo

“with the-algebraic operation in P defined by:

‘o B o B + (ool +By of’ +BSY)
@ \y Wy & “a yo'+87 yp +88’
where a + @ is sum of a, a modulo 6 and the matrices are

multiplied as usual. :

. (Note: However in such a case there is no harm in denotmo the
~ algebraic operation in the groups by the same symbol but keeping
. their mherent meaning.) . '

Give an example of an 1nﬁmte group in which every element

is of order 1 or 2. Show that this group is the direct product of
an 1nﬁmte number of certain groups. - L

Let H, K be normal subgroups of a group G such that HnN K '
= {1}. Show that the subgroup generated by H and K in, G is

l' _ their d1rect product
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ROUPSOFPE RM UTATIONS‘ .

_ The theory of gi‘oups has gradually developed out of the groups of
~ permutations (or symmetric- groups) of some degree. It was shown in

chapter IV. (Cayley’s theorem 4.3.3) that every group is isomorphic to a - |

- group of bijective mappings (also called permutations) of a set. So the -
~ study of groups is the study of permutation groups of certain sets, In the

subsequent paragraphs we briefly describe. the nature - of pem\utatxon

~ groups.:

8. svaE’Tmc OR'-PERMUTATION"GROUPS'

~ Let A be a finite or infinite set and let-S be the collection of all
bijective mappings of A. Using the fact that the product of two bijective
mappings is bijective we find ‘that'S is closed under multiplication.

- Associative law in S follows from the usual associative law for

multiplication for mappings. The identity mapping, that is the mapping

.~ which leaves every member of A fixed, is the identity element in S. Also

the. inverse on a bijective mapping is itself bijective and hence is a
member of S. Thus S is a group. This group is called the group of

permutations or .s'ymmetrzc group on A The elements of S are called ‘
‘permutations of A : :

A permutatlon @in S is said to be finitary if and only if it moves
only a finite number of elements of A. If A is a finite set then every

permutation of A is finitary. If A is infinite then the collection S’ of all
- finitary permutations of A is a subgroup of S, because the product. of two
. finitary permutations is finitary and the inverse of finitary. permutatlon is.

fi initary. In fact S’ is a normal subgmur of S. .

~ The group S of all permutations of an infinite set is called the

unrestricted symmetric'group and the group S’ of all fxmtary permutatlons

209
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_ When A is a finite ‘set consmmg of n elements then the: two '
concepts glven above coincide and we have s1mply the symmetnc group

n -

" The nufnber n is called the dégreé of s | , |
: Thus the symmetric: group of degree n is  the collechon of a}l

" bijective mappings of a set consisting of n-elements together with the: S

usual multiplication of mappmgs as an aigebralc operatlon in S,.

. Here we shall be .concerned W1th pennutatmn groups of ﬁmte :

vdeszree only

LetA {xl,xz, X }and ae S Then als glven bythe equatlons
JORERE ORI \81(1)

. wherei= 1 2,..,n and (1)a1s one of the 1ntegers in {1, 2, 5 n} Equatlon
* {1} shows that each a € S, is uniquely determined by its action on the
- integers 1, 2,..., n which occur as suffices of elements in A. Thus, without

any loss of generality, we can suppress the x’s and consider only the

~ - suffices. That i is, we take A {1,2,.,n] and aa mappmg from A to A.

Here we denote the image of i- €A under a by (i) a. This is a -

deviation (only for the present chapter) from our earlier practice of writing

" the mapping to the left of an element 6f the domain and is hoped to make

many a calculation not only more convenient but simpler as well. >

With this convention the mapping a : A —)A will now be written

1 2 3'. | i S o
((l)a @a G . (n)a) ((l)a) B
‘ and every element of S, will be taken in the form -as glven in equatlon_
8. 1(2) .

letBe s, and," o ,

A =((1-)ﬂ @B .. _(n)ﬂ) o 8O

Since (i) @ =j'e A and every element of A is uniquely determined by its

*effect on the elements of A, some (j) 8 occurs as the image of (i} & under

B. We can write (j)Bas (i) (@ f). Then fcan be written as:
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Ma @Qa @a .. (n)d S
ﬂ ((1)(0@ )(ap) B)(ap) - (n)(a@) 8.1(4)

. Using the representatlons 8.1(2) and 8.1 (4), it is easy to write down the ;

product of’ permutatlons aand fas -

2 3 ... 1n) 12 .. n
“/? ((l)a @a G)a .. ;»(n)a)- (,(1)_/3 @8 - (n)/?)‘_

o =(1 2 )((l)a @) ,(n)a) _
: e @a .. e (e ah - @Nah)

( 1 2 L n )_(.(1), ) S

o B ap) - @ep) \Den) Y ®
‘ The above remarks glve a practlcal and useful techmque for ﬁndlhg the
product of two' permutatlons '

“Thus, to obtain the product of two permutatlons a and ,B glven by

i _,"8 1 (2) and 8.1 (3) we re-arrange the elements in the upper row of 8.1(3)
so that this row becomes the lower row of 8:1 (2) and write down the .
~ corresponding images (i) (@ p) of each () under S in the second row. of .

' 8.1 (3), thereby getting. Bin the form given by 8.1 (4).

- The product of aand fis then obtained simply by takmg the upper |

- row of ¢ and the lower row of Bin the new form as the upper and lower
TOWs of a f3, as shown above. :

__ The assoclatlve law for any tnplet of permutatxons _

= ((l)a) ’- 'B=((i p) ”-"7‘(0)7)

L follows from the equatlon

L @prmaBy
(@py= ﬂ(i)‘a) ((i;ﬂ)) ((ii)r)

| (((ua) (@‘SL“@D k(ltr) |

' (1)(aﬂ))((l)7) | .
(l)(aﬂ)y) ((l)a(ﬂ;’)) “‘ﬂY)

T e e e



g,

AT IO Y .

L

| 212 | GROUPS OF PERMUTATIONS ~ ~ CHAPTER-VIll

C b The 1de'mty permutanon of ‘Ais

(12 ), (e Qe . @y »
L= (1 2 .. ) ((na @a - (n)a) 8o

‘ ;he inverse of a pennutanon a given by (2) is Y

((l)a @a .. (n)aJ 818

1 -2 . n )

Thus the collection of all. permutations of a set A satisfies the axioms of a_
group- and is-therefore a group. This is the oroup which we have: denotcd
by S, Its order is n!. : '

8.1.1. Examples: (i) Let A :,{1, 2,‘3}.. -Theﬁ“the'.el.ements. of ‘the

- '_permutatxon group S, of A are -

P12 3, (123 '2"‘1/21 N
12 3)e=lz 3 1)@ 312
; 123 (1 23y ., (123
- P= (,) 1 3) op= (1 3 7) a’zﬂ"(3 2 J
_Hence(l)a 2, @a=3;®a=1;1)f=2, 2)f=1, (3)f3=3.
‘To verify that_the'p_roduc‘pof the permutation aand ﬁ is actuaily

123}
132

‘we compute it by the method given above.
‘(1 2-3\(1 2 3)
(L2323
=23y 3 2
(123 -
Al 2

- Simitarly for 8.

'ux\q W W

(11) * The permutations

Lt 234 (12
12349214

(1234 (12
b(3412)b(4--3

| _ forma group.
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It is the so-called regular representation of Klein's four-oroup,
generated by a and b and has the relations. : s

at=b2=(abyr=1
This is a subgroup of S,.

Similarly, if Zs, is the additive group of residues mod 3, then -

{012y (012 (012y
%=012)%=1 20520 1) -

define a regular representation of Z;. Here G = {ag, ¢, o} and Z; are
isomorphic under the mapping f: Z; — G given by '

fO = f)=a, /@)= oA

‘The permutation group S, is non-abelian for n 2 3. In example
8.1.1 (i) above, one can verify that, for the permutations

{1 2 3y (1 23
“*(2 3 1) and ﬂ=(2 1 3)
123\ (123
_ﬂ“=(1 3 2)**(3- 2 1)=ﬁ“

~Also for n > 3, S, contains the symmetric group S, _; of degree
- n— 1 as-a subgroup so that, for n 2 4, S, contains S; and so is non-abelian.

8.2. PERMUTABILITY OF PERMUTATIONS'

We have seen that two given -permutations in S, may or may not

‘commute. A permutation is said to act non-trivially (or, more simply, act)

on a set A if it changes at least two elements of A. Otherwise it is said to
~ act trivially on A. The folowing theorem gives a sufficient, condmon for
the permutability of two permutations.

8.2.1. Theorem: Two permutatxons acting on mutually d1slomt sets are
_permutable. e

Proof: Let a and S be permutations of a set A which act on mutually
disjoint subsets A, and A, of A respectively. Then the permutations af3
and Ba act only on the subset X = A; U A2 of A and do not move any
element of A\X.
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, Letxe X. Thenx g Ajorxe A2 If x € Al then x is mapped onto
X’ € A, under aff. But x goes to x’ under £ c as well. Similarly, if x € A,

the action of @ and 8 o on x is the same. Hence a B and B & have the
same effect on any element of X. So a f=f .

8.2.2. Illustration: o .
(1 2 3 4 (1 2 3 4
e a=(2, 1 3.4)””(1 2 4 3)‘
Then a acts only on {1, 2} while b acts only on {3, 4} and these sets are

mutually disjoint. Hence ab = ba. This fact can also be venﬂcd by dlrect
multiplication. Here =~ = - :
\

1234
“”=(2“1 3 4)?”.“;

Similarly the permutations .

(123456}, (123456)
“=2314569 123564
which act on mutually disjoint sets {1, 2, 3} and {4, 5, 6} alone, are
;permutable , ‘

-8.3. CYCLIC PERMUTATIONS AND ORBI'I:S

“Let A be a set and X;y X3 -+ » % € A. A permutation ¢ on A is
- called a cyclic permutation or simply a cycle if and only if ¢ takes x; to x,,
" x, t0.x3, and so on, x; to x;, while it keeps other members of A fixed. Itis
denoted by (x;, x,, ..., x,). The cycles '

(xla Xy ey Xp), (xz, X35 oo xl) ( xp Xy, , -f,-—l) !

are all one and the same permutations. The subset
: {x,,rxz, o X}
of A is called the g-orbit of any of the elements of A”.

For example

123

is a cyclic permutatlon and the set {1, 2, 3} is the @-orbit of 1. [1, 2, 3] is
the @-orbit of 2 and 3 as well. ,
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If = (x(, x5,..., X,;) is 2 cycllc permutation then the number r is saxd
to be the length of that cycle. For example, the permutations

1234(56789)
2341)67895)

are cycles cf length 4 and 5, respectively.

The fact that the cyclic permutations are 1mportant in the -

discussion on permutation_groups of finite degree is apparent from the
. following fundamental theorem for pexmutatnons

v

8.3.1. Theorem: Every pexmutatlon of degree n is decomposable in a
unique way into a product of cyclic permutations acting on mutually
disjoint sets, apart from the ‘order in which these cycles are taken. -

Proof: Let o be a permutation of degree n and x, be one of the elements

on which « acts. Suppose o sends x; to x,, x, to x; and so on. As n is
‘finite, there is an integer p, 1 < p < n such (x p) &= x. Thus a part of the
effect of «is equal to the cyclic permutation :

’ a1=(x1,x2, e X) )
If p n then @@= ¢, is acycle of length n-and we are through.

However, if p <'n there is some y, different from x,, x,, ... -y X, ON
which o acts. Arguing as before, let @ take y, 0 y,, ¥, to ¥, and so on.
Again there is some integer q such that (y,) @ =y,. The y’s so obtained
must be different from x’s for otherwise o will have two images for one
and the same element. Thus the sets

{xp X9 s %} 5 V0 Y25 s Yo}

are disjoint. ‘Moreover, a part of the effect of ¢ will be the product ¢ ¢, of
the cycles o and o, where ' :

az (yl’yZ’ ’yq)

fp+q= n we have & as the product of cyclic pexmutatlons But if
P + q < n, we continue the process of extracting, each time, a cychc
permutation from «

As the degree n of « is finite, this process must end after a finite
_ number of such steps so that we finally obtain & as a product of cyclic
permutations. :
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Let a decomposition of abe
= (@ Xy e IO Y oY) e @ 2y ) 831G),

: where p +qg+ .. +r=nand the cycles act on mutually disjoint sets. Since

two cycles actmg on mutually disjoint sets are permutable, the expression

in (i) is unique apart from the order in which these cycles are taken. Hence

the theorem., _ .
8.3.2. Example: . Consider the ennutation

(123456789 10
=2451673910 8

‘Then -

p
6
7

a=(1 2 43 56 7Y 9 10) 832(i)

Similarly the'permutation

(12345678
< B=la 1356478

 has decomposition as

B= 1 2) (3) @ 5 6)(7)(8) T - 8.3.2 (i)
which we also write as ,B a1 2@ 5 6), 1gnormg cycles of length one

“which are just the identity permutations.

Suppose that a permutation ¢ of degree n is decomposable into
" disjoint cycles of lengths (including cycles of length 1). ’

S15 Sp5 eey Sk
We may assume that
$158, ... S5

It is easy to see that

S 45+ b5 =0, o | 83.2(1)

The ordered k-tuple (515 83, .o Sk) is called the fype of the

permutation .

For example if

(123456789 1011 12
“={1 25348671012 9 11
=(1) 2) 354 687 9 10 12 11)
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~ then aris of type
(1 1, 3, 3, 4).
Suppose that in the decomposition of a permutation & of degree n

into disjoint cycles there are g, cycles of length s (s = 1, 2, ...) where we

assume q; = 0 if ¢ contains no ) cycles of length i. Then, since a cycle of
length s contams exactly s elements, we have the equatlon

* q1+2q2+3q3 A....=n. o o 832(2)

Thus the number of disjoint' types among the‘pennutations of degree nis

equal to the number of non-negative integral solutions of (2).

8.3.3. Theorem: Two permutatlons aand fin S, are conjugate if and
only if they are of the same type.

| Proof Suppose that @, fe S, are of the same type Then

a= (X, Xg5 ueey Xp) (yl, Yas cees yq) (zl, zz, A

B= (xl',fxz'., vs xp’) O Y5 s s yq') (z!’, 2 ?)) ‘
Consider the permutation _ B

y= (xl’x2’ Xy Yy Vi 20 2 e zr’)

(KX Xy Vi Y2e Vg Ul

Then

_ yay'=f
so that crand S are conjugate. Here, under yoy !,

x—x; =X, DX

Conversely, suppose that a and ,B are conjugate Then there is a
pennutatxonye S, such that

p=yax'.
Suppose that

(54

—(xl’x2" ’x)()’p)’m- v)’q) 2 2y e T
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()
=Gy

=' (ui, uz, ...:,

uy) (v!, Vay ey

() oo (o)
((l()x)ya) (x)v ] !

)
T Da JU@y)

()

)

{‘(i)y'-l )(J ) .
WGy e ) a

" where j = (i) Y ~1. Here we have used the equation that

o
) ~\(G) 8)

Thus

B =

Gy ¥ -

(Z1Y-1, er )

) forall 5 ¢ S,

wZY" 1)

AR

&

XoY 'l) oy L Yy,

Hence arand B are of the samc type. -

'Exa~mp.le: Suppose that

and

Then

1234
2137

=12 O
(1234
3215

)

=1 3) (2

5
8
@
5
8

“4

6
5
7.
6
7
5

7 8
6 4
6 5
78
4 6
8 6

9 10 11
11 9 10)7

8) (© 11 10)

9 10 11)

10 11 9

(Wl,' W2, ...,'Wu)

. Y A =1 .
‘Then, as Y can also be written like y= ((l)iy ), we have

- qu -y

1

()

7 O 10 11)

?)

. CHAPTER-VIIl
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= (Y DYDY HE@Y N7y 6y (5Y“)
Gy ALy Aoy
=3 1) @.(7 6 8 4 5) (11 10 9)
=1 3@ @576 H o1 10)

which is of the same type as of a.

Smce the number of d1st1nct types. among the permutations of -

degree n is equal to the number of non-negative integral solutions of
equation q; +2q, + 3q; ... = n and two permutations-of different types

cannot be conjugate, the number of conjugacy classes in S, is equal to the
number of non-negative integral solutions of the above equation 8.3.2 (2).

8.4. ORDER OF A PERMUTATION

| By the order of a pennutatron @ we.mean the least posrtrve integer |
m such that « ~ : ‘

_ - om=],
the identity permutation.
- 84.1. ‘TheOrem' The order of a cyclic pennutation of length'm is m.

Proof Let ¢ = (xl, Xy n Xy) be @ cyclic permutation of length m. The

: ,element Xy 18 mapped onto X, X3 ..., ' Xm ,- X; respectively under

9, P2, ... (om—l @™ Similarly x, is mapped onto x, under @™, and so on,.
x,, is mapped onto X under g™ Hence (om 38 ' '

Of course m is the least such mteger Hence the result

. Now cons1der an arbltrary permutation aof degree n. By Theorem
- 83.1, a is expressible as a product of dlSJOlnt cyclic permutations
o, @, ..., 04 (say) of lengths (and hence also of order) my, m,, ..., my
~ respectively. These disjoint cycles are permutable with one another.
 Hence, if m is the least common mult1p1e of m, i=1, 2 k, then

m = myg; so that
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o= gm o am .. g™
L
(because &™ = (™)' = 1). Obviously mi is the least positive integer
 satisfying am = 1. '
We therefore have:

8.4.2. Theorem: The order of a permutatlon is the least common
“multiple of the orders of the dlS_]Olnt cyclic permutations into whose-
product it is decomposed ' : '

5. TRANSPOSITIONS, |\
'EVEN AND ODD PERMUTATIONS

A cycle of length 2, that is -a cycle of the form (x ¥), 1s called a.
transposztzon Clearly :

(xy2=1 -
50 that N | » o
xN=aN=0x . :
- 8 5.1. Theorem: Every cycllc permutatlon can be expressed as a product
-of transposmons -

Ptoof: Let
9= (x;, Xy, s %) ' ,
- be a cyclic permutation. Consider the permutati(_m
(%, %) (6, %5) e (g %) - 851
which is such that under this permutation ' o
xl ~> Xy, Xy —> X —> X3, that is x, —x;
and so on . _
Y - x; = X, that is x,_, *> k, and x, = x,.
’lu s the eifect of @ and the permutation in (1) on the set {x;, x5, .0, X } S
‘he same. Hence these are equal and so '

0= (x, x,) (x; %3) ... (%, %)
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8.5.2. Corollary: Every permutation can be expressed umquely as a
: ,product of transposmons

Proof: Smce each permutation, by Theorem 8.3.1, is the product of cyclic
permutatlons and each cyclic permutation is a product of transpositions, so

every permutation is expressible as a product -of transposrtlons taken in

that pamcular order.

8.5.3. Corollary A cychc permutatlon of length m is a product of

(m — 1) transpositions.

 Proof: This is obvious. Just count the number of transposrtrons in
expressron (1) of Theorem 8.5. 1

Wrth each permutatron aone can associate a fixed positive integer
m, as follows.

Let o be expressed as a product of k cycles a;, each of length m;,

respectively, i = 1, 2, ..., k. Everya is a product of (m; — 1) transposmons L

Thus ais a product of
‘ .("—1)+(m2—1)+ +(mk-l) m, 853(2)

transpositions.
Here m,, is a positive integer.
A permutation @ is said to be even or odd according as m, is even
or odd. ‘ -
Since each cycle of length m is a product of (m — 1)-transpositions,
the number m,, given by 8.5.3 (2), is the number of transpositions in o.

Thus a permutation « is even or odd accordmg asitisa product of an
even or an odd number of transpositions. -

In particular, a cycle of length m is even or odd according as m is
odd or even respectively.

If @=1then m, =0. Hence I is an even permutation.

For any permutations & and ﬁ the product af contains m,+ m g2k

transpositions, where k is an mteger Thus if @ and B are even
'per_mutatlons then off i is an evén permutation. Also the inverse of an even

permutation is an even permutation. Since the inverse of a cyclic

o
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permutation of length m is a cycle of length m so the integer m,, associated

with a per'mutation’-aremains unchanged if a~! replaces .

Let A, denote the set of all even permutatlons in S,. Then, because '

of the remarks given above, ‘we have .

- 854 Theorem The set A, of all even permutatlons inS, is a subgroup

of S,.

The subgroup An of S, which consists of all even permutations in

- S, 1s called the alternating group of degree n.

Since a permutatlon 1s either even or odd and a transpos%tlon is an
odd permutation, so if we multlply elements of A, by a transposmon we

- get odd permutations in S, and vice-versa. Hence there is an equal number

of even and of odd permutations in S,- As the order of S, is n!, the grder_of
A, is ('lz)n' Thus A, has index 2in S, ‘and hence i is nonnal in S,.

This yields us Theorem 8.5.5. given below.
The following rules for the product of two permutatlons are easﬂy

_ verifiable:

. 8.5.5. Theorem: The alternating group A, of degree n is a normal.

(a) The produet of two even permutations is even. '
© (b) . The product of an even and an odd permutation is odd.

(c) The product of two odd permutations is even.

We then have another proof of the nonnality of A,.

subgroup of S and has order (/,)n!

~ Proof: We shall prove this theorem by showmg that A, has index 2 in S

Define a mappmg f:S, — {1 -1}, which is a group under
multlphcatlon as follows: . ‘ o

- Foreach are S, we put

f(@=1ifaiseven
 =-1if ais odd.

Then fis surjective. We show that fis a homomorphism.
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Let @, B S,. Then we examine the following possibilities.
(i)  aand Bboth are even. ‘
(i) - «aiseven and Bis odd and vice versa.
(i) aand ,Bboth are odd.
For case (i), & ﬂ is even. So
f@P=1=11=f().f(B-
In case (i), a,B isodd. So =
| - fl@Pp=-1=1(-1) -f@. f(ﬂ)
' . Fore case (iii), & Bis even.So o \
flap=1=~1.-1= f(a) f By

Thus fisa homomorphlsm of S, onto {1, —1} with A, as its kernel.
By the fundamental theorem bf homomorphism,

Sa/ A= {1,-1}.
So A, has index 2. Thus the order of A, is (/,)n!

_ Another proof of Theorem 8.5. 5, which is, in fact a detanled
explanation of the remarks preceding it, is given below

It has already been shown that A is a subgroup of S,. To show that A is
normal in S, we prove that A, has index 2 in S,: .

Let (x1 x,)bea transposmon in S and con51der the set

S=A, u(x,xz)A o : 8.55(1)
'where (x; x;) A isa left coset of An deterrmned by (x; xz) 0bv1ous1y
S¢S, . | © BSS (2)

Conversely, let € N then als either even or odd. If & is even o€ A, and
hence to S. If @is odd then (xl, x;)ais even and therefore inA,. '

Now - a= (x; x,)((x, xz)a).
Hence &€ (x; x,) A, and again @€ S. So - o
S,CS. - 8.5.5(3)
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| From 8.5.5 (2) and 8.5.5 (3) we have S = §,. Hence A, has mdex 2 in S

So A, is normal in S, and has order (MYnl.

8.5.6. Examples

(i) ~ The alternating group A;of S, censists of the permutations
L@ 2 37 3 2). '
(i) S, has the following 24 elements

(a) L 23 4,01 3@ 4,1 4 (2 3) 1 2 3)
(13 21 2 4,010 4 2,0 3 4, (1 4 3) »
2 34,2 4 3) : ) '

b @ 2,0 3,04, 23,2 9, (3 4),

(1234, 243703240 3 4 2)
(1423)(1432) T -

All permutations in (a) are even while those in (b) are all odd. So

K A, consists of the elements listed in (a).

‘The elements

LA 2@ 49, d 3 (2 4), a 4) (2 3)
form a normal subgroup of A, ‘
" Thisis the only proper normal subgroup of A4. )
It sbbuld be interesting to note tbat A, has no subgroup of order 6,

 for such a subgroup, being of index 2 in A,, is normal in A,. But, as in (a),

no subset consisting of any six elements in (a) forms a subgroup So A,

*has no normal subgroup of order 6.

This example also shows that the converse of the Lagrange’s
theorem for finite groups does not hold.

Thus if the order of a. ﬁmte group is drvxsrble by some mteger k,

the group may not necessarily have a subgroup of order k.
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' 8.6. GENERATORS OF THE SYMMETRIC AND
ALTERNATING GROUP |

Let S, be the symmetric group on n symbols 1, 2, ..., n. We have
seen that every element of S, can be expressed as a product of

transpositions. Hence a subset of these transposmons must be a system of-
generators for S

The followihg theorem gives one SUc_h set of generators.
8.6.1. Theorem:  The symmetric group S, is ‘generéted ‘by. the
transpositions ' SRR C

(12), (13), ..., (1 n).
Proof: It is obvious that all the transpositions

| 12, (13),..dm 8.6.1 ()
are elements of S,. Since every element of S, is a product of

transpositions, by corollary 7.5.2 of Theorem 751 and an arbitrary
transposmon (ab) can be expressed as

(@ab)=(1la)y(1b)(1a),
so every element of S can be expres_sed as a product of iranspositions |
from (i). So (i) is a system of generators for S,. '

8.6.2. Corollary: S, can be generated by the transpositions
(12,2 3),...n—1Ln).
Proof: LetH =< a1 2), 2 3),..,m-1,n>ThenHC S To see that
S, € H we have only to check the eqhanons
1 3)=0 2)@2 3) (1 2)
1 4H=0 336 9Ha 3)
and so on '

(1 n) (1 n-1)(n-1, n)(l n—1)

These equations are easﬂy verifiable by actual computatlon Hence
-S, € H. Thus
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S,=H=<( 2),(2 3),..,(n—1,n)>.
8.6.3. Corollary: S, is-generated by the pcrmutations'
( 2.(1 2 3..n)

Proof: LetH=<(1 2),(1 2 3..n)>ThenHCS,.

Conversely, to show that S c H, we prove that the generators of

S, given in corollary 8.6.2, are expressible as products of generators for -

H. This follows from the followmg equations which can be verified by
actual computatron . {

@2 3= 2 3.0 2) 12 3.0

3 4)=(1 2 3.0 3 2 3..n)

and so on S

. @-Lm= (1 2 3.0 @-2n-1( 2 3..n)

Hence S, c H. So ; ' o \ '
S,=H=<(1 2),(1 2 3..n)>

8.6.4. Theorem: Fornz3, A, is gcnerated by cycles of length 3. |

Proof: Whenn =3, A3— {1, (1 2 3), (1 3 2)} SO that A, is generated
by(1 2 3), thatis, by a 3-cycle. ,

Suppose that n > 4. Then every element of A, being an even

permutation, is the product of an even number of transpositions. We show
that the product of any pair of transpositions is either a cycle of length 3 or

else is the product of two cycles of length 3.

Now an arbitrary pair of transpositions is either of the form (a b),

(b c)or of (a b), (cd), a, b, c, d all different. In the first case

(a b) bo)= (a b c)
and in the sef‘ond case

@ b)(c d=(a b d)(a c d).

" So every element of A is a product of cycles of length 3. Hence A, is

generated by cycles of length 3.
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The followmg ‘theorem shows that the number of 3- cycles

-

8.6.5. Theorem A, is generated by (n 2) 3- cycles
< (123),(124),.. »(12n).

Proof: Ith=<(123),(124) (12n)> ClearlyHCA

.Conversely, as A_ is generated by the 3-cycles, to prove that A c -

| H, it is enough to show that each cycle of length disinH.

But an arb1trary 3-cycles can be wntten as
@ b o)=( b)(a c)
and (@ b)y=(1 a)(1 b)(1 a)
: (@ 9=1 a1 o0 @. -
So @b o= a b o a)
=(1.a b c a).

Hence we show that each of (1. @ b) and (1 ¢ a)isin H. If a orb= 2
then (1 a b) € H: So we assume that 2 #'a # b. But -

(1 a H=01 2 b2 a( 2 b
whrch is in H. Slnularly(l c a)eH. Hence (a b c)eHso thatA CH

A, =H= < 23,0 2 4),. (1'2 n-)>.‘

The theorems  which follow now are basically concerned with the .

group is one which has no proper normal subgroup. It has already been
shown that A is a normal subgroup of S,. Forn =1, S; = {I}. For n =2,
S, has order 2 and A, = {I}. For n= 3, S; has order 6 and A;is a cyclic
group of order 3. So A3 is simple. Whenn =4. S, has 24 elements while

A, has order 12. A, has the umque normal group

_ {L, (1 23 4,01 3)(2 4),(1 42 3)
of order 4 50 that A, is not simple. :

Does A have a normal subgroup for any n>5?

“structure of the alternating group A,, n 2 3. As definéd earlier, a simple.
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“ The answer to this questron is in the rkgatrve That is, we will
show that, forn =5, A, is simple. . & :

We have already shown that for n 23, A, is generated by cycles of
leng 3. However, to prove our main theorem, we need andther aux1llary
result. -

- Before stating that result we make the followin g observation.

i
o= ((i) a)

if not already even, can be made an even permutat1on by mtercbangmg

A permutation

-

Forexample |
(12345 6) o
(2 3456 1)=(1 AU HA HU HA 6 ¢

is an odd permutation. Interchange of any two the symbols, 3, 5, say, glves
us the new permutation

123456 ‘
(2 5436 1):(1 2)(1 5 6) (3 4)

‘which is an even permutation.

8.6.6. Lemma: Letn>5.If a normal subgroup N of A contains a 'cYcle
of length 3 then N= A . '

Proof: Suppose that N is a normal subgroup of A, and contains a cycle
(@ b ¢) of length 3. Let (¢’ b’ ¢’) be any other cycle of length 3 in
A, We show that (¢’ b’ ¢) is in N and thus conclude that N = A,,
using Theorem 8.6.4.

Since n > 5, there exist symbols d, e different from a, b ¢ and
symbols d ’, ¢’ different from o', b ¢ respecnvely Consider now the
permutation.

- fed W d
=lla b e .d.e.

of degree n which, by interchanging d, e, if required, is supposed to be an

even permutation and so in A,. Then
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a@ b oa =@ ¥ &)

is an element of N. Hence N= A,.
8.6.7. Theorem: A,, is simple for alln 2 5.

‘Proof: Suppose that A, has a proper normal subgroup H. Then H has an -
element either of order 2 or order 3 or of order > 4. By discussing these
cases separately we show that if H has an element of order 2 or 3 then H
has also an element of order > 4. '

Case I: Let H have anelement Y of order 2. Since Yy is an even‘_
permutation, it is a product of 2m transpositions, m2 1. If m = 1, then

=(a b)(a b').-
Since n 2 5, there is a symbol ¢ d.lfferent from a, b, a’, b" such that
.a=(a b c)eA,. Since His normal in A
Y=ayal=(@ b ¢)(a b) (@ b)(a ¢ b)

=(a ¢)(d b)

~ is an element of H But then
Yy=(a c b)

“isalso in H. By lemma 8.6.6, H= A,,. So we can suppose thatm > 1.
. Then . ’ .
Y= b)(@ b)(@ ¥ b).. . 867(1)
where dots denote othef' pairs' of transpusitions. Since = (@ b) . a o ‘
€A, Halso contains the element B - . ' g

Y=ayal=@ ay® a’) @ b") @ b”’) - 867 '(”2) }
‘where dots i in 2) denote the same tranSposrtlons as in (1). -
Hence ,
YY=( a” b)) 4 V')
‘belongs to H. So H contams an element of order 3.

Next we proceed to show that if H cént‘alns an element of order 3
then H also contains an element of order 2 4t

Suppose that H has an element y of order 3. Then either ¥ is a
3-cycle : ‘
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Y=(@ b o R
in which case, H= A , by lemma 8.6.6,70“r yisa preduct of 3-eycles$ o
| Y=(a b o) b ) ...

where dots denote other cyc]es of ]ength 3 As H is normai in A, for

a=(c a b)inA,

Y =aya'!l= (c a c)(b’ a b)

CisinH. Hence H also contains

YY=(@@ b ¢ b d)..

which has order > 5. So we, in the flrst instance, could have suppbsed that
H has an element of order > 4. -

Case II: Suppose that H has an _ele_ment of order > 4. Such an element
does not have order 2q or 3q, (2,.q) = 1, (3, @) = 1, for otherwise qth power

~of such an element has order 2 or 3 respectively and we are back in case I..

Now if H has an element v of order > 4, then Y, when expressed
as a product of dls_]omt cycles, must contam a cycle of length >4 only

_ Thus

=@ b c d...)... _ 867(3)‘

where. dots. outs1de the parenthes1s denote - other cyc]es Tal(e
a= (¢ ‘a b)e A, Then H also contains -

v=ayal=(c a b d.).. 8.6.7 (4)
where dots outside the parenthesis denote the same cycles as in 8.6.7 (3).
Thus | o . '
YW= ¢ d

‘belongs to H. By lemma 8.6.6, H = A Thus A, has no _proper normal
_ subgroups Therefore A, is simple. ‘ '

A system of subgroups

H, H,, ... H, ...

of a group Gis said to form an ascending sequence of subgrbups if

H,cH,,, ,n=123..
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We know that, for every integer n, the alternating Vgroup A, of degree n has
the alternating group A, _, of dégree n — I as a subgroup. If A, is the
alternating group on {1, 2, 3, .., n} then A, can be taken as the
alternating group on {1, 2,3, ..,n—~ 1} fixing n. Thus, if N = {1, 2,3, ...,},
~the system {A, : n € N} of altematmg groups is an ascendmg sequence of
the restricted alternating  group Ay. Ay consists of those even
penn_utatlons on N whlch act-on only finite subsets of N. As seen before,
A, is simple for n > 5. Is Ay simple? We now answer this question.

Before answering the above question we prove: '
'8.6.8. Theorem: Let: ¥

~ HcHc. canf

be an ascendmg sequence of simple subgroups of a group G.
Then '

H= B
is a simple subgroup of G.
_Proof: First we show that H is a subgroup Let ¢, ,B € H Then there ex1st
indices m, n such that € H,, ﬁ eH,. WlthOUt any loss of generality, we
~ can suppase that n > m. Then Q, ,B eH,.AsH isa subgroup, afle Hrl
Hence a 1€ H. :

Now we prove the simplicitv of H. Suppose that H has a proper

normal subgroup K. Then there is an integer n such that K " H is a -
proper normal subgroup of H,. This contradicts the s1mp11c1ty of Hn

Hence H is simple. ,
Consider now Ay. Of course A, is a subgroup of Ay for every
neN.If | | |

A*= U An; . V ‘ -
. neN - -

then A* C Ay. Now let '€ Ay. Then o acts on a finite subset

4 ' k
{x;, x5 ... x,} of N. Letm = mallx x;
. - =

Then € A,, and so e A*. Hence Ay C A*. Thus Ay = A*.
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From these remarks and the above theocrem, we have:

8.6.9. Theorem: The restmcted alternating group AyonN = {1 2,3,..}
is simple.

Note that Ay is infinite..

8.7. ORBITS, STABILIZER SUBGROUP
| AND TRANSITIVE GROUPS

A subgroup'c')f"the symmetric group S,, ‘n > 1, is called a
permutation group. In theorem 4.3.3., it was shown that every group is
isomorphic to a group of bijective mappings of a set. Since we have
defined a permutation to be a bijective mapping of aset, we can restate the
above result as follows. - :

Every group is zsomorphtc toa permutatton group on a suitable

Recall that in 4.3.3., for each g € G we had defmed a bljectlve

mapping ¢, : G— G by

¢, (x) = gxforall xeG. | . 8.7 (1)

Using the notation of this chapter we rewrite {og ‘G- Gas

() g,=xg,%€G.

s that we can represent ¢, , g € G as a permutation

of G, considered as a set. Then the set of all permutations

' q’c‘——'{%:gecﬂ'

is a grOUp with (oe (x) e, the 1dent1ty of G, as the 1dent1ty element

of .
The mapping @: G — & given by :
a(®)=g, i 270
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1is then an 1somorphlsm between G and CI)G The homomorphlsm property
of afollows from the equatlon

x )
.a.(.gl. gz) = (ag[ g (xg 82)

M(' e
kxgl/ (xgy) gz

{a
X*81 ng)_
=0 Py

| =ag) alg)
~ forallg,,g,eG. "

‘Let G be an arbitrary group. A homomorphism @ of G into S,,
n 21, is called a permutational representation of G. The representation is
said to be faithful if ais a monomorphlsm that is, if kernel of a is the
identity subgroup of G.

8.7.1. Example The mappmg a:G— P, defined by 8.7(3) above isa
permutatlonal representatlon of G. :

It is easy to see that this representatlon is faithful. So we can regard
every group as a permutatlon £roup on some su1table set.

8.7.2. Example. Let G=<a:a"=e>bea cychc group of order n. The
mapping ¢: G — S, defined by:

oa=>0 2 3..n).
is a faithful represéntation of G. ,
8.7.3. Example LetG=<a,b: @=p= (ab)z—e>
Con31der the mappmg ¢: G — S, defined by:
p@=Lp@=(0 2) G 4
pBY=(1 3)(2 4),p@)=1 HE 3.

Then it is easy to check that ¢ is a monomorphism of G into S, and so is a
faithful representation of G. :
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~

But then yar~! = x so that y ~ x. Hence ‘~’ is symmetric.

The use of representation of a group by a permutatlon group lies in
the fact that calculations and computations become ‘easier’ m permutation
groups. :

Let G be a permutation group on a set A. Two elements x and y of
A are said to be connected if there exists an & € G such that x @ = y. We
then write x ~ y, We show that ‘~’ is an equxvalence relation on A

Letx € A. Then for the identity pem)utatlon Iin G, xI = x for all

x € A sothat x ~ x. Hence ~" is reflexive..

Next suppose that x ~ y. Then there is an @ € G such that xa=y.
Lastly letx ~ -y and y ~ z. Then there are o, fe G such that \
xa=y and yB=1 ”

“sothatx afi=z AsafeG, ‘x~7. =

Thus ~’ is transitive and so is an equivalence relation.

[ %4

- Thus, for any permutatlon group G on a set A, the re]atlon ~
defines a partition of A into equivalence classes. :

‘These equivalence classes, which are subsets of A, are called orbzts
of G and A is the union of these orbits. :

Foreach x € A, the set
| xO={xa: aeG}
is an orbit called the orbits of x. o
The number of elements in an orbit is called the length of the erbit.
Also, for each x € A, consider the set '
={aeG: xa= x}
Then I € G, and for ¢, ,68 G withx & =¥, x f=x, we have:«:o.f,B'1 =x.So .
o3~ € G,. Thus G, is a subgroup of G.

G, is called the stabilizer (or stabilityysubgroup of x
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8. 7 4. l‘heorem If x and y both belong to one and the same orblt of G
then G, and G, are conjugate, that is, :

G, =G, y-l forsome.yeG.

Proof For if x and y are in the same orb1t of Gthereisaye G such that
xy =Y. Now

G,={BeG: y B= v}

| Let aeG and conSIdery -1 ay. We have,
Mt ap=xay=xy=y.

de_lay=ﬁsG that is, a=yﬂ?‘1§YGyY"‘.Hence
G,cvG, v ’

Conversely let € G,. Then

| xﬂﬁ*-yﬂv*=yv4=i-

SoyBy'l € G,. Thus

| YG, ¥ ' <G,

" Therefore, :

G, =yG,y 1.

The natural question about the number of elements in an orbit of G
- is answered by the following theorem.

8.7.5. Theorem: Let O be an orbit of G. The ﬁu'mbér of elements in O is
- equal to the index of the stabilizer subgroup . G in G of any arbitrary

- element x of O.

Proof: Let Q be the collection of all right cosets G, B, B € G, of the
stabilizer subgroup G, of x in G. Let O be the orbit of x in G. Define a
mapping ¢: O — Q as follows: -

i “Let y € O. Then there is a y € G such that

y=xY.
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Se we put
¢ 0)=G,Y.
We show that gis a bxjectxon between O and Q.
To see that (ols injective, let, for yl, ¥,€0, 0 (yl) =@ (yz) Then.
GxYl G x Y2 _
where y,, Y, satisfy the .equation.s Vi = X, Y2 = XY, Thzi_t is(,'
Y1V lSG , 80 that : S
x 'Yl Yz t=x.
So, , 0
x Yl =y =X Yz | ' N

Hence ¢is mJectlve

NextletG, fe Q for some ,B £G. Con51der y=x 3. Then y £ O and

@ () =G, B So ¢is surjective. Thus

0] =k} =1G: G -

_ Hence the number of elements in O XS is equal to the index of
the stabilizer G in G. ‘ S

8.7.6. Corollary: The order of a finite permutation group is divisible by

~ the least common multiple of the number of elements in the orblts of G.

A permutation group on a set A is said to be transitive if G has
only one orbit namely A, that is, for any two elements x, y of A there is a
permutation ¢ such that, : :

y=xa
AG is said to be intransitive if G has at least two orbits.

G is said to be 5 — transitive if all orbits of G have the same

‘number of elements.

If G is a finite permutation group and if G is transitive then the
order of G is divisible by its degree, by corollary 8.7.6.
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' Here degree of permutations in G is equal to the number of
~ elements in the only orbit of G.

8.7.7. Examples:
(1)  The symmetric group Sn of degree n,n 2 2.is transitive.
(it)  The alternating group A, of degree n, n > 2 is transitive.
(iii) - The group G consisting of | | '
| L 2@ 4.0 32 4.1 ple 3)
is transitive on {1, 2, 3, 4}.

A permutation group G on a set A is said to be regular if
G.=E
for eéch xEA. Her'e(E is the identity subgroup of G.
8.7.8. Theorem: A transitive permutation group G on a set A is regular

‘if and only if, for any two symbols x, y of A, there is one and only one
element of G which takes x to . - :

 Proof: Suppose that G is regular on A. Then, for each x € A, G, = E. Let
x, y € A. Since G is transitive on A, there is an @ € G such that y = x a.
Suppose that for some S € G also y = x - Then x =°x oo -1 so that
af1eG,=E.Hence a=f. _
Conversely suppose that for any pair x, y € A, there is one and
only one & of G such that y = xa&. Then G is transitive.
Also let y € G, for some x € A. Then x = xy. But x = x I as well. So
v=1 by hypothesis. Hence G, =E for all x € A. Thus G is regular on A;

8.7. 9 Corollary: A transitive permutatlon group is regular if and only if
~its order is equal to its degree.

Proof: Let a permutatlon group G be transitive on A. Then G is regular if
and only if G, = E for all x € A. Since G is transitive, G has only one orbit
namely A. So, from Corollary 8.7.5, we have

Gl =G, el = 1. 9| =|A},

as required.



238 ~ GROUPS OF PERMUTATIONS CHAPTER-VIl

8.7.10. Theorem: Let G be a transitive abelian group. Then G is regular.

Proof: Let G be transitive on A and abelian. Let x € A be a fixed element.
" Letye A. Since G is transitive, there is an @€ G such that y = x a. Now

k G,=G,,=a1G, o, by Theorem 8.7.4.
| | =G, |
because G is abelian. So G, fixes y. Since G is transitive, G, fixes every _
element of A. But then G, = E. Hence G is regular.

A permutation group or a set A is said to be k-transitive if, for any pair of
k-tuples , _ ‘ .
(-.x], x2a weey xk)a ()’1, '}’2, reosy yk) . - ‘ \ :
~ there isan @€ G such that V=X, 1<i<k.

If k 2 2, then k-transitive obvjeusly implies (k-— 1) transitive.

'8.7.11. Theorem: S, is n-transitive. A, is (n — 2) transitive but not
“(n - 1)-transitive. ' ' '

Proof: If S, is the symmetnc group on A= {x,, Xyy e x,A,},b then, for any

n-tuples. : B -

(x]a xz, ---rxn) ’ (y]a y2a -.--a yn) )
the permutation v, is in S, and changes x; to y. Hence S, is
1 . . )
n-transitive. ' '
Next let
S C T I 0% Y25 ++» Yn-2)

be any two (n — 2)-tuples of distinct elemems of A. Then precisely one of
the permutations. e _ > R

X X% .. 'n'—2 R and X x2 e X2 Xyl X )
i Y2 » Yn2 Yn1 In Y1 Y2+« Va2 Yo -
is even. Hence A is (n — 2) transitive is not (n—1) transitive.

Here x,_,, X, ¥,-1» ¥, are the remaining elements So A, is (n — 2) transitive
but not (n — 1)-transitive.




sECTION 8.7. ORBITS STABILlZER SUBGROUP AND TRANSITIVE GROUPS 239

Let G be a permutation group ona set A. A non-empty subset B of

" A is said to be a block (or a set of impirimitivity) for G if, for each ¢ € G,
-either Ba= {yx:y€ B} and B are equal orBanB= ¢

All singleton subsets of A and the set A itself are blocks called the
tnvzal blocks. : :

This is so because, for each'xke' A and e G, either X # ;éa or'r k
x = xaso that, if B = {x}, then either BoL = {ya; y € B} and B are equal or

BNBa=¢.
' Similarly for A.

A group G is ‘said to be przmztzve if it has no non-trivial blocks
- Otherwise G is sald to be zmprzmmve

It is easy to see that the symmetrlc group Sn, n2 1 is primitive.

8.7.12. Theorem Let G be a transitive permutatlon group of pnme
degree Then, G is pr1m1t1ve

Proof: Suppose that G is imprimitive on A co'nsisting of p elements; pa

- prime. Lét B be a non-trivial block containing m elements. Then, for each “

ae G,BanB=¢so that
| A s Ba

isa d1s10mt union. As B and B consist of the same number of elements, -

mlp. Since p is a prime, m = 1 so that B is a singleton subset a
contradiction. Hence G is primitive..

8.7.13. Theorem: Let G be a transitive permutation group on a set A. Gis
primitive on A if and if the stabilizer subgroup . is a maximal subgroup

of G for every x € A.

Proof: Suppose that G is primitive on A. Suppose that for some-G, there
is a subgroup H of G such that : :

G c:Hc:G

Put B = xH. Since G, is a proper subgroup of Hthere isay € H \ G, such

that x # x ¥ and x, x y both belong to'B. So B is not a singleton subset. Also
if B = A then H is transmve on A. Hence, by corollary 8 7.6, with
xH=A=x0, : .
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Al=(G : G)=(H:G)
sothat H=G, a contradiction. So B#A.

Next suppose that B N Ba % @, for some @ € G and let
yE - BN Ba. Then S

y=xy=xya

so that -

T x=xyayl-
Thus yay-l € G, C H. Since ye H we have ac H. Hence H = G, agam a
contradiction. Hence G, is maximal. -

~ Conversely, suppose that-every G,, x€ A, is ma,ximal\in G and
further suppose that G is not primitive. Let B.be a non-trivial block. Put

H= {‘aEG:Bd;B}

~ Then H is a subgroup of G. Let x& B. If Y€ G,, that is, x y = x then

x € BN B Y. Since B is a block; B =B v. Thus Ye H. So
G,cHcG. R
Since G is transitive on A and B # A, we have H # G. Now B, being a

- block, contains at least two elements. Let y¢ B and y # x. Since G is

transitive on A, there is a Y€ G such that y = x y so that y € G, Now

yeBN B‘y‘because x€ B. So B =B v. Hence Y€ H. Thus G, # H. That is

G, is not maximal in G, a contradiction. Hence G is a primitive.

8.7.14. Theorem: Let G be a transitive permutation group on A and Ha

subgroup of G which also 1s transmve on A. Then

G=G, H= HGx,xEA

Proof: Lety#x be an element of A. Smce G is transitive on A, there is

~an @€ G such that y = xa. Also since H is transitive on A, there is a ye H

such that y = x y. Thus x = x& y ! so that & y -le G,. That is,
o€ G,y c G, H. But trivially GGHC G. 'Hence G=GH.

Also since (G H)-! =H-1G,' = HG,H. we have
G=G, H HG,.
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EXERCISES
1. Show that the order of the symmetric group S, is n!.

2. Find theproduct of the permutations'

) (1234 5)(2 5 4 3 l)and(l 5324 .

3. - Find the order of each of the following permutatlons: ‘
123456y (123456 \
24516 3)° 4 561 23 o
abcdefgh) (12345678910,
hafcdebyg) 24531867109

4 Leta=(2 156 3,8=(1 376 uy=2 3 5.
- Express each of the following as a product of disjoint cycles. -
B, fo,y B, oM, B3 @2, a e

5. Letabea cyclic permutation of length k. Show that ¢? is a \:
cyclic permutation if and only if k is odd. . ,

i
6. For any two disjoint cycles &, §, show that - ;1
i  (aP)k= ok Bk for every natural number k. - )
'(ii) affi= Tif and only if a—i B= L , .
(i?i) " Fora=(a, a,. .G, f=(b; by..b) finda transposition y‘
- _such that vy S o is a cyclic permutation. Are then @ fyand

ay Balso cyci1c‘7
7. Wnte down all elements of order 2, 3 and 4 in the syrnmetnc
group of degree 4. '
8. Find the commutator of the permutaﬂons

x=(aay..a, ,a, ), y=(a,a,...a,_,a,).

9.  Show that the permutations (1 2 3.4 5),(6 7 8 9),
(10 11 12) generate a cyclic group of order 60. Fmd one of
1ts generators
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10.

1.

12

13.

14,
15.

- 16.

and
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If S is the symmetnc group ona set X and Y is a subset of X,
then prove that the set of those elements of S which change

~elements of Y into elements of Y is a subgroup S.

Show that the pennutauons _
a=(1 2 3 HG 6 7 8)

b=(1 6 3 8)2 7 4 5)
generate an abelian group of order 8.
Show that the permutations

LA 2,3 49,1 23 4) a3y .4), (1" i) (2 ‘3),4.
(1423)(1324) :

" are the only permutations. on {1, 2 3, 4} under Wthh the

expression
X XX X

remains unaltered.

| Determme the largest permutatlon group on x,, X,, x3, x, under

which the expression
(g +x,) (x5 +x4)

remains unaltered.

Find all the subgroups of S, which are isomorphic to S,

‘Show: that the permutations

9= X Xyn) O Y2 Vo)
and - ' | _ o »
W= (X1 Yan Xa 41 Ya) @2 Yan <1 %a 42 Yo 1) €3 Yan -2 %a 43 Yo -2)
e (g Y+l ¥ oo ’ '
satisfy the relations ﬁ
Q2= gr w2-¢w¢trl-

Show that the commutator subgroup of S, is the alternatmg
group A,. .
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17.

Show that the centre of S,, n > 3 is trivial.

[Hint: Let I # ac ¢(G). Then, for some symbols
Xy # X,, (x;) 0 = x,. Also there is an x; # x; or x,. Take a fe S, such
that ‘ '

.(3“1).3= xlv’ (x)) B= *3) (x3) B=x,
Then (x,) aff = x; # x, = (x,) fe. So aff# o Thus ¢ (S,) = {I}1.






' Chapter - IX

SYLOW THEOREMS

The theorem of Lagrange about subgroups of a finite group states

that the order and index of a subgroup of a finite group is a divisor of the .
- order of the group. The converse of this theorem is not true. That is, if Gis

a finite group of order n and m is a divisor of n then it is not necessary that

G should have a subgroup H' of order m. A counter-example ' is the -

-alternating group A, of degree 4 which has no subgroup of order 6.

To prove this, let K be a subgroup of order 6 in A,. Then, being of
index 2, K is normal in A,. Also then, for each x€ A,, x?¢ K. Now let

x=(123). Thenx2 = (132)¢ K. So x¥* = I 1mp11es that x = x*¢ K. So K

contam the permutations
I, (123), (132).
Similarly K contains ,
(124) (142), (134), (143), (234) (243),
(12)(34) = (132)(243), (13)(24) = (123)(234),
(14)(23) = (123)(124) '
But then K is a subgroup of A, 2nd has order 12. So K A4

. Thus A, has no subgroup of order 6.

- It is thus natural to ask the followmg questlon

For which dzvzsor of the order n of a group G, has Ga subgroup of
that divisor?

A partral answer to this question was given by AL. Cauchy who
proved that corresponding to each prime divisor of the order of a group
there is a subgroup of that order. Cauchy’s results were later generalised

- by L. Sylow, a Norwegian Mathematician. He proved that if G is a group
of order n and p%, a2 1, is the highest power of a prime p dlvrdmg n, then
" Ghasa subgroup of order p@.

245
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- Because of the usefulness and furldarnental riature of this res.ult, 1t '
has rightly called the second most important theorem of classical group

‘theory, preceded only by the theorem of Lagrange. It is one of those

results about finite groups which derive deep properties of such groups.

- Various generahsatlons of Sylow s theorems have ‘been’ given by

 reknowned group theorists. Sylow theorems and their generalisation have
engendered an expansion of knowledge of such cosmic proportion that

these might well be compared to the Big Bang for group theory. In this.
chapter, however, we shall not go into the details of these and restrict
ourselves to the discussion of Sylow’s theorems and a few of their -

‘ 1mmed1ate and easy apphcatxons

 Inthis chapter by a group G we shall always mean a ﬁmtq group.

- 9.1. CAUCHY S THEOREM FOR ABELIAN AND
‘ NON ABELIAN GROUPS

Let p be a prime number. A finite p-group is a group of order

- p% a2 1. The order of each element of a p-group bemg a divisor of its
. order p% is a power of p. Infinite p-groups are groups.in which every

element has order a-power of p. Structural properties of finite p-groups

‘substantially differ from those of infinite p-groups. We shall mentron one.

such property in the last section of this chapter.
Let G be a finite group of order n and p a prime divisor of n. A '

) ) subgroup H of G is called a p- subgroup if His a p- group the sense of

given above, _
‘We now prove Cauchy s theorem for abelian groups. This wrll be

‘ needed in the proof of Cauchy’s theorem for arbitrary finite groups.

9.1.1. Theorem: If A is a finite abelian group and p‘ a prime divisor of

~ the order of A then A contains an element of order p.

Proof: Let A be an abelian group of order n and p a prime divisor of n..
For proof we use induction on the order of A. If n =p, then A is a cyclic

- group of order p and a generator of A will be an element of order p. So we
" have a basis for induction. ' '

Suppose now. that the theorem is true for all abelian groups of

: 'order less than n and divisible by p. Consider now the group A. Let a # 1
- be an element of A and H the cyclic group generated by a. There are then

the followmg two possibilities.



SECTION 9.1. CAUCHY'S THEOREM FOR ABELIAN AND NON-ABELIAN GROUP‘S' 247

@)  The orderk of H s divisible by p.
) kis not divisible by p.

In case (i) k pPq, q 2 1. Since ak = (aQ)P =1, a9i1s an element of order
- pinH and hence in A. In case (ii) H is normal in A since A is abelian. So

~ A/H has order less than n but divisible by p. By induction hypothes1s AH

has an element xH, x€A, of order p, that is,

(xH) =XH=H

“But then x*€ H. As (p, k) = 1, x¢ has order k so that (xP)k = (k)P = 1 and xk'

has order p. Hence the theorem

Next we prove Cauchy S theorem for f1n1te non-abehan groups B

9 1.2 Theorem If a prime p d1v1des the order of a .group G then G

contams an element of order p-

Proof: Let G be a group of order nandp a pnme divisor of n. Again we

prove the theorem by usmg induction on the order of G. If n=p then Gis

acyclic group of order p and hence contains an element of order p. So we

have a basis for induction. Thus we suppose that the theorem is true for all
groups of order less than n and divisible by p. Now consider the group G

of order n. We examine the following two cases: _
(i); G contains a proper subgroup H whose 1ndex is’ pnme to p
(i)  Every proper subgroup of G has index divisible by p.

In case (i) the order of the proper subgroup H is divisible by p and H has,

by induction hypothesis, an element of order p which is also an element of
orderpin G. : : :

In case (11) let the class equat1on of G be:

. where n, is the number of elements in a conjugacy class in G. Now each n;, -

being the index of the normaliser (a subgroup) of a representative element
- in the ith conjugacy class, is divisible by p, by (ii), or else is equal to 1.
Since the identity element is its own conjugacy class, one of the n;’s say

n,, is-1. The left hand side of 9.1.2 (1) is divisible by p so should also be -

~ the right hand ride. But then, since n, = l,,the number of n,’s which are
- equal to 1 must be a multiple of p. The cotresponding. conjugacy classes.
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that is, classes for which n; = 1 are such that each consists of a central

element. Hence the order of the centre ¢ (G) of G is a muitiple of p. Since

‘ ¢ (G) is abelian, g(G) contains an element of order P wmch is also an
- element of order pin G.. ~

' 9.2. SYLOW THEOREMS

, Let G be group of order n and p a prime divisor of n. A
subgroup H of G is said to be a'Sylow p-subgroup of G tf H has order p*

- where p® divides n but p*+! does not divided n.

A Sylow p- subgroup of a group can also be defined as follows

A subgroup H of a finite group G is a Sylow p- subgrouia if and
only if the order of H is a power of p and the Index of H is prime to p.

The first of the three remarkable theorems of Sylow is concerned
with the ex1stence of such subgroups ‘ c

- 9.2.1. Theorems: (Sylow S flrst theorem) A f1mte group whose order is
~ divisible by a prime p contains a Sylow p-subgroup

"Proof: Let G be a group of order n and p” the hlghest power of the prime

p dividing n. We apply induction on the order of Gto prove the existence
of Sylow p- subgroups ~ ‘

If n = p then G itself is a p-group and the theorem is true.
Suppose now that the theorem is true for all groups of order less than n
and divisible by p. Let G be a group of order n where n is d1v1s1ble by o
There are now the following two possibilities:

(i)  ‘There‘is a subgroup H of G with index pr1me to p, _
(ii) Every subgroup of G has index divisible p-

- . In Case (i) the order of H is less than that of G and, by induction
hypothes1s H has a Sylow p-subgroup. As the index of Hin G is pnme to
P, a Sylow p-subgroup of H is also a Sylow p-subgroup of G.

In case (ii) G has a non-trivial centre  (G) as shown in the proof of

- ‘Theorem 9.1.2. The order of ¢(G) is a multiple of p. ¢(G) contains an
‘element z of order p by Theorem 9.1.1. Let | ,

C=<z: zP—1>

Then C, being a subgroup of the centre is normal in G. Consider now the-
factor group G/C. The order of G/C is less than the order of G and is
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divisible by p#-! and by no higher power‘.of p. By induction hypothesis,
G/C contains a subgroup H/C of order p2-!, where H is subgroup of G.
The order of H is then pﬂt Lp=paSoHisa Sylow p-subgroup of G

- Second theorem: of Sylow gives a relatlonshlp between Sylow o
p- subgroups of a group correspondmg to the same prime p. ‘ :

9.2.2. Theorem (Sylow s second theorem) Any two Sylow -
p- subgroups of a group are conjugate. : ‘

A Proof Let G be a group of order n and H, K be any two Syiow

p- subgroups each of order p® in G. Then n = p®m and (p, m) =1 Cons1der :
the double coset representation of G modulo (H K) )

G_=.U Hag, K,_a-i-e G.
i=1

~ Then, by Theorem 5.5.3:

apa’ D : o . :
n:f‘,p-—'R-- S 922(1)
izl G ’ .
where q; is the orderof HN g, K a ; Upoﬁ division of both sides of (1) by
p%, weobtain : : L
m= % % - . ' T 9220

Now g;, being the order of the intersection of two p-groups, is a
power of p. So each term on the right hand side of 9.2.2 (2) is either a
multiple of p or else is equal to 1. Since the left hand side of 9.2.2 (2) is
not divisible by p, p%q; = 1 for a least onei, i=1,2,..r Without any -

loss of generality one can suppose that p¥q, = 1. Then q; = pa so that the.
order o

- of HN a,Ka, is pe. But HnaKa1is subgroup of H of the same order
as that of H. So H=H N ¢Ka,”!. Hence H C a Kal -1, As the order of H
s equal to that of a Kal’l, we have :

H=a/Ka;1,a,G. -

Hence H and K are conjug'ate.
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- 9.2. 3. “Corollary: A flmte group G has a umque Sylow p- subgroup Hif

and only if Hi is normal in G

" Proof: For if His a Sylow p- subgroup and ae G then a Hcrl is also a
ASylow p—subgroup of G By the umqueness of H, :

H= czHa'l ae G.

Hence H is normal i m G

Conversely if H is normal in G the then aHa' =H for all ae G.

Since all Sylow: p-subgroup of G are of form aHa, a€ G, and all these
‘coincide w1th H, H is the unique Sylow p -subgroup of G. - L

l, 9 24 Corollary A Sylow p- subgroup of a finite group is the only |
Sylow p-subgroup of its normaliser. '

~ Proof: For if H is a Sylow p-subgroup of a group G and N is the

normaliser of H in G then H is a Sylow p- subgroup of N. As His normal‘

- in N, H s the unique Sylow p-subgroup of N. | '
- 9.2.5. Corollary Let H be the umque Sylow P- subgroup of a group G

Then His charactenstlc

Proof: For each automporhplsm o of G a(H) is.a Sylow p—subgroup of -

G. By the uniqueness of H,

o(H) = H.

Hence H is characterlstlc

9.2.6. Theorem. (Sylow S th1rd theorem)

The number k of Sylow p-subgroups of a finite group is congruent
to 1 mod p and is a factor of the order of the group. ,

Proof Let Hbe a Sylow p- subgroups of G.Letn be the order of G. Smce.
any two Sylow p-subgroups of G are conjugate, by Theorem 9.2.2, the
number of Sylow p-subgroups of G is equal to the number of subgroups in

- a cojugacy class of H and this is the same as the index of the normaliser

Ng (H) = N of H in G. If the order of H is p%, that of N be n-and its index
in G be k, we have to show that k = I mod p. :

Consrder the double coset decomposrtro_n modulo (N ,H) of G: |
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G uNaHaEG

926 (1)

. o ’ T
_Then o on= Y -

where q, is the order of N N a; Ha,”! and so is a power of p because it is
the order of a subgroup of a p- group aHa,! Hence

T i= 1 q;
: where k is the 1ndex of Nin G.

T 9.26(2)

. Each term on the right hand s1de of 9.2.6 (2) is a mult1p]e pf por '
else is unity. However one of the terms among the double cosets NaH, -

NaH say, is such that for it a,=e, the 1dent1ty of G.AsHCN,

Na H= NH = N
and
'NnH=H.
-So q, = p* The correspondrng term in 9 2 6 (2) is then p°‘/q1 = 1 Hence
f'926(2)becomes _ . . ,
k=14 iﬂ o 9260

i=2¢;°

We show that no other term in_9.2;6 (3)is unity. Suppose, on the contrary,
that for some j > 1, p%/g; = 1 in 9.2.6 (3), that is, g; = p® Then the

intersection N N aHa;!, being a subgroup of gHa;~! and having order

- equal to the order of .deaj“l must coincide with g;Ha;™1. Thus -
so that .
- a; Ha -1 C N

Since a Sylow p- subgroup H of G is a Sylow p- subgroup of any subgroup .

containing H, H is a Sylow p-subgroup of N. But-H is normal in its
normaliser N. So Hi is the unique Sylow p- subgroup of N. So

H= aHa -1
Thus g;€ N. Consequently, )



252 SYLOW THEOREMS | 'CHAPTER-IX
NaH NH=NeH, "

giving _] = 1, a contradiction. Hence no other term on the r1ght hand 51de of

9.2.6 (3) except the first, is umty So Z p“/q, is a multiple of p Thus

S k=l+xp
~ for some mtegerx that is,
~ k=1modp.

~ Since k is the index of a subgroup of G k is a factor of the order of G
Hence the theorem. -

9.2.7. Theorem: If P is a p-subgroup of a f1mte group G then{ P is
contained in a Sylow p-subgroup of G- : _

- Proof: Let Gbe a group of ordern and P a p-subgroup of G of order pl‘
Let H be a Sylow p-subgroup of order p® in G. Then, if n = mp%,
(m, p) ='1. Consider the double coset decomposition of G modulo (P, H):

L o r
';t . G ='ik=JlPai H, g€ G. |
Y Then . n= )i: P = . | 9.2.7 (1)

where ql is the order of P N agHa . Both P and a H al‘1 are p—subgroups
Hence G = pl‘z Dividing 9.2.7 (1) by p* we get :

. ms= E p"/pﬂn S 927
H;' Each of the terms on the nght hand side of 9. 27 (2) isa multlple of por

eise is unity. -

'Aroumg as before, at least one of the terms on the right hand side of
9.2.7 (2) is unity. Without any loss of generallty we can suppose that

- pAp* -1 that is, 4= 4.

Then the order of P M a,Ha,~! is p#. This intersection, bemg a subgroup of
P of the same order as that of P, coincides with P, so that -

P= PnalHal. _ .

Hence P C q, Ha1 -1, But alHal-1 is a Sylow p- subgroup of G. Hence the
" theorem:
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'9.3. MISCELLANEOUS THEOREMS

9.3.1. Theorem: Let H be a Sy1ow p- subgroup of a group G and N a

normal subgroup of G. Then N N His a Sylow p-subgroup of N and :

HN/N is a.Sylow p- subgroup of G/N.

Proof: IfHis a Sylow_p-subgroup of G and N a normal subgfoup of G -

“then H is a Sylow p-subgroup of HN sa that the index of H in HN is prime

-to p. Let (G : H) denote the index of H in G. Now H N N is a subgroup of -

ap-group Handsoisa. p-subgroup of N. Also, from the isomorphism
| HN/N=HHANN,

weﬁndthat(HN Hy=©N: NmH)sothatmdexomeNlespnme-

~top.ThusHN Nij isa Sylow.p-subgroup of N. Next, HN/N (= H/H " N) i is
a p-subgroup of G/N and index of HN/N in G/N is given by:

' (G/N:HN/N)=(G/N: HHNN)
=(G:HYN:HNN)

Since (G : H) and (N Hn N) are prime to p, (G/N : HN/N) is prune to p.
Hence HN/N is a Sylow p-subgroup of G/N.

- 93.2. Theorem. If a subgroup K contams the normaliser of a Sylowp o

p-subgroup of a group G then K is its own nonnahser

Proof Suppose His a Sylow p-subgroup of G and N = Ng(H) with -

' Nc K a subgroup of G. We show that K = Ng(K). ClearlyK C NG(K)
Conversely letxe NG(K) Then Hc K implies
xHx ' cx K x‘l K.

- Thus H and H = xHx are Sylow p- subgroups of K and so are conjugate
in K. That is, there is aye K such that
, yH y'=H
or ‘
wx Hx! yi=H
" SoyxeN. Hencexey‘lNCK Thus Ng(K) c K.

Consequently
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| K = Ng(K),’ | |
as require'd ‘ -

- 9.3.3. Corollary The nermaliser of a Sylow p—subgroup of a fm1te.
. group Gisits own normahser '

Proof: Just take K NG(H) N H a Sylow p-subgroup of G SO that ," :
K=N= NG(K) :

"9 34. Theorem HPisa p~subgroup of G and is contamed in exactly'
one sylow p-subgroup H of G then Ng (P) C Ng (H). '

Proof If P is a subgroup of G and H is the only Sylow p—subgr\oup of G
- containing P, then, for any x& NG(P) xHxlisa Sylow: P- subgroup of G.

However xe Ng(P) implies _
P=xPx!cxHrl

| Since P is contained in only one Sylow p-subgroup H; x H x5 P must
~coincide with H. So, for any x € Ng(P), :

;\:Hx-1 =H. - .
Hence x& Ng(H). Therefore Ng(P) < Ng(H).

: _9.‘3.5.; Tlloorem: Let Gbe a group‘ of order pq, p, q primes and p>q.
Letae G be'oforder P and H=<a:a?=1> Then His normal in G. S

Proof To show that H is normal, it is cnough to show that H is the
unique subgroup of G of orderp.

Suppose K i is anothcr subgroup of order p in G and H # K. Then
H N K = {e}. Otherwise, if x6¢ H N K, x # ¢, the order of the_cychc
subgroup generated by x being a subgroup of both and of order p #.1
~ coincides with H and K so that H = K, a contradiction. Also
HK = {hk: he H, k € K}

has p2 elements because, if hk = KK, then h“lh=Kkle HNK = {e} So
"~ h =K, k = K. But then G has at least p2 elements. Since p > g,
p2 > pq; a contradiction. Hence G has a unique subgroup H of order p.
~ - Since, for each ge G, gHg"! also is a subgroup of order p in G "

gHg1=H.
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Hence His normal inG.

9.3.6. Corollary Let G be a group of order Pq. p > q and a be element |

of order p in G. Then, for each ge G,
_ gag'l = ak

forsomek 0<k<p

o Proof Here H=<a:a”1>is norma] in G so that, for each g€ G,
, gag"‘(:‘ H. Now -

| gag~l #zad=

for otherwxse a=e. Smce gag"‘(:‘ H, gag™! = a¥, 0 <k<p.

9.3.7. Corollary Let G be a group of order pq, p, q d1st1nct primes and -

P>q. pr;lmodqthenGlscychc

Proof: By Cauchy ] theorem, G contains elements a and b of orders Pq

 respectively. Let H = =1 K=< b : bq 1> Then, by
LagrangestheoremHnK {e} :
By corollary 9.3. 6

‘babl=dk

- for some integer k, 0 < k < p. Since bq_ = ¢, and, by indUction,-
' ‘a=bqab‘q-’-qu :
p divides k!, That is
. ki=1 mod p
 Also, by Fermat s theorem
ke-l=1 mod p. | N
‘Smce q does not divide p - 1 (p # 1 mod q), and isa pnme number,
k=1modp. '

.Sopd1v1desk—1But0<k<pHencek—1Sobab‘ a and
. ab = ba. But then<c=ab > contams H and K and has order pq. Hence

G=<c:c —1>1scyc11c
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9, 38, Theorem. IfKisa nonna‘ subgroup of a f1mte group G and H a

Sylow p-subgroup of K then
~ G=KN
where N is the normaliser of HinG.

" Proof: Smce Kis normal in G, KNisa subgroup of G.

u Conversely let g be an arbltrary element of G. Then H ¢ K implies
g Hg ! C K, because K is normal. So both H and H' = g Hg"! C K are

- Sylow p-subgroups of K. Hence there exists an x& K such that '

xH =H.

t"That.,i's' T - \;

xgHsr‘x"’

so that xge Ng@H) = N. Thls means that ge x1 N c KN. So G is af

subgroup of KN. Hence
G= KN

. . ™
RecalI that 2 subgroup Mofa group G is said to be maxlmal if G
has no subgroup K such that , .
McKcG.

Every finite group has a maximal subgroup. A group mayvha\v/e more than
one maximal subgroups. An example is the group S3 which has three

maximal subgroups of order 2. . ,
An infinite group, however, may not have a maxlmal subgroup

- For instance Prufer’s group C,= has no max1ma1 subgroup.

The theorem that follows gives a relationship between the
normality of Sylow p-subgroups and of maximal subgroups of a group.

9.3.9. Theorem: Let G be a finite group. If every maximal subgroup of
G is normal in G then every Sylow p-subgroup of G is normal in G.

Proof: Suppose that every maximal subgroup of G is normal in G and let
H be a Sylow p-subgroup of G. Let N = NG(H) We show that N G.

Clearly NcG.

Conversely let g be an arbltrary element-of G. Since G is ﬁmte, N
is contained in a maximal subgroup M of G-and so Ng(H) < M. Hence
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NG(M) M o e
by Theorem 9.3.2. But M is normal in G by hypothes1s So
' M= NG(’vI) G.

Hence N is not contairied in ariy max1mal subgroup of G.

Thus N is itself maximal in G and so is a norma! subgroup of G. Therefore

gNg' =N. In partxcular gHg! ¢ N. As H is normal in N, H and gHg!"

both are Sylow p- subgroups of N, H = gHg‘1 So ge N. Hence G C N.
. Thus

-G‘=N=NG(H) -

and H is normal inG..

 9.3.10. Theoreme If every Sy]ow p-subgroup of a finite group G is

normal i in G then G is the direct product of its Sylow. p-subgroups

Proof: Suppose that every-Sylow p-subgroup is normal inG.
Letn be the order of G. Then :

oy 0

h =Py P> - lpk

and G has Sylow p,—subgroups I-L 1<i<k Obv1ous1y G is generated by - |

~ its Sylow p- subgroups. Moreover the subgroups-
. Hiand <H;: 1<i, j<kj#i>
have orders - | '
o .,piai andn/ps |
"which are relatively prime to each other. Hence
}Ln<H'1<j<kj¢i>—E
SoGis the direct product of its Sylow n—"Jbgroups

9.3.11. Theorem If the commutator of each pair a, b i in a ﬁmte group G-

commutes with both a and b then G is the direct product of its-Sylow
p-subgroups. .

Proof: First we show that, under the hypothesis, for any positive integer
m, ' : :

~ [a, b]™ = [a™, b] = [a, b™] | 9.3.11 (1)
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. for a, be G. The proof is by induction on m. Equatlon 9.3.11 (1) is

tr1av1a11y true form = 1. Suppose that (1) i is. true for m=k, k > 1, that is,
a, b]k = [ak, b] [a b

and consider [a, b]k+1. Then

[a, b]"+l [a, b]¥ [a, b] o o
=[a*, b] [a, b] by 9311
= ak ba % b1 [a, D] | '

= ak [a, b] ba-kB_l . (bythe hypothes1s)
- =akaba! b ba‘k bt
=[ak*,8), R

after combmg ak with g and a1 with a%, cancellmg the b’s.

So the result is true for m = k + 1. Hence
[a, b}m = [a™, b)
for all positive integers m. Similarly
| [a, b} = [a, bm).
Hence we have 9.3.11 ).
Next we see that if a , and b have order m and n respectwely and

- d=(m;n) is the greatest common d1v1sor of m and n, we have

[a, b} = 1. e 9.3.‘11(2)5
For then we have am = bv = 1 so that ' .

[a bm = [am bl=1
and ’_ S
'mw=mm=n.

~d=mA+np -

for some integers A, U, we have

[a, b)¢ = [a, b +os
= [a, b} [a, b
=1.. :
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B Consequently if m and n are relat1ve1y pnme mtegers we: have
a, bl=1 that is ab = ba.
Now let n be the order of G,

s B

n= plpz-'pk

Let H;, H,, ... H, be the correspondmg Sylow pi- subgroups 1<i<k
Since the orders of H,, H; are relatively prime, H; and H; are permutable

~ element-wise. Smce G is generated by 1ts Sylow p- subgroups every g€ G
,'canbewnttenas o :

&= h h, .. hk’hEHi,,ISiSk, -
'So,foranyxEH L
gxg1 hxh1

_is an element of H;. Thus H, is normal in G. By theorem 9.3.10, G is the
“direct product of its Sylow p-subgroups '

Let 7 be a non-empty set of primie numbers finite or mﬁnlte Let G

be a ‘periodic group, that is, a group in which every element has finite

order. G is said to be m-group if the prime divisors of the order of every . :

~ element of G belong to 7. If 7 consists of a single prime then we have the
usual concept of a p-group as deﬁned earlier. :

A subgroup H of a group G is sa1d to be a ﬂ-subgroup if H is.a

7-group. in the sense defined above.

" A m-subgroup H of a group G is said to be a Sylow n—subgrdup of

G if H is not contained in a larger m-subgroup of G. When 7 = {p} we
“have the concept of a Sylow p-subgroup. , :

. We state the followmg theorems (For proofs see Theory of Groups _

by A. G. Kurosh Vol. ).
(a) Every group has Sylow 7t- subgroups

()  Every subgroup of a group G that is conjugate to a Sylow

: n-subgroup H of G is itself a Sylow n-subgroup of G. In
particular, a Sylow T-subgroup cannot be conjugate to one
of its proper subgroups. : o

| (©) " The normaliser of a Sylow ‘n-subgroup is its own

nnrmallser
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- A subgroup H of a finite group G is said to be-a Hall subgroup of
G if the order and index of H are relatively prime to each other. Every

B Sylow p-subgroup of a finite group G is a Hall subgroup of G.

«9 3.12 Theorem: If H is & Hall subgroup of G and A a normal subgroup

of G then A N H is a Hall subgroup of A. - _
Proof Since A is normal in G, AH isa subgroup of G Also
- AH/A=H/(A N H)

so that (AH: H)= (A : A ~ H). Moreover H is a Hall subgnoup of AH. So
the order of H and its index in AH are relatively prime. Hence the order of
A mn H and its 1ndex in A are relatively prime. Thus A N H is.a Hall -
subgroup of A. o »

~ One of the many applications of Sylow' theorems is to determine.

whether or nor a group of certain specific order can be simple. We
* illustrate the use of Sylow theorems in this connection by an example.

9.3.11. Example': A group:of order 2540 cannot be simple. .
Forif G is a group of order '
12540=22.5.127

then G has Sylow subgroups of orders 22, 5 and 127. The number of
Sylow 127-subgroups is 1 + 127k and this number divides 2540. But it is
easy to check that, for no value of k other thank =0, 1 + 127k would -

divide: 2540. Thus there is a unique Sylow 127-subgroup whrch must be

: normal in G by Corollary 9.2.3. Hence G cannot be s1mple

EXERCISES

' 1.4 ) Show dlrectly that a group of order 93 is cychc

2. Let G be a group of order p2 q where p and q are pnmes such
that .
q<p and p2 # 1 mod q. Then G is an abehan group.

3. Show that, in a group G, a normal p- subgroup is contamed in
“every Sylow p-subgroup. (Hint: If N is a normal p-subgroup
~in G then N is contained in a Sylow p-subgroup H of G. Any |
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10.
11.

12.

other Sylow p- subgroup is gHg-1 g€ G Hence NcH
1mp11esN gNg'cgHg™M.

If N is a normal subgroup of a finite group G and index of N
'in G is prime to p, then N contams every Sylow p—subgroup

of G.

(Hint: Index of N is prime to p. So there is a Sylow p- subgroup H

of G which is also a Sylow p-subgroup of N Every other Sylow
p-subgroup is conjugate to H. Hence _

HCNlmplleSgHg 'ggNg"=N;'

‘ forallgEG)

- If a group G is the direct product. of its Sylow p-subgroup
then every subgroup of G is direct product of the Sylow p-

subgroup of that subgroup.

If ‘G is a finite group and all its Sylow p- subgroups are

abelian normal, then G is abelian.

" Find all the Sylow 2- subgroups and Sylow 3- subgroups of the

alternating group of degree 4. ,
Show that if a group G of order 56 contains eight subgroups

- of order 7 then every subgroup of G is abelian.

Show that there is no simple group of order 204.
Cana group of order 616 bf srmple"

Show that a group. of order 200 contains a Sy}ow subgroup o

which is self-conjugate and hence show that no group of
order 200 can be srmple :

Find the numberof elements of order 7 in the s1mple group of

“order 168. .
(This simple group is the group of automorphrsms of the abehan'
group :

A=<a;: a—[a al=1,1,j=1,2,3>

l’_]
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GROUP ACTIONS

~ 10.1. GROUP ACTION
Let X be a non empty set and G a group. By an (left) action of

G on X we mean a 'mapping : G X X — X which assigns, to \each -

element (g, x) of G x X, g € G, x € X, an element g. x of X as its

‘ '1mage under .’ satisfying the followmg conditions.

- 1. Foranyx € X and the identity element e of G,

eN=ex=x C10aQ)

2.1 Foranyxe Xandg,g € G

L (@ &%= (g g).x=g".(g.%) 101

The set X, together with the group action of G on X, is called aG-

space and G is called a transfomzanon group on X.

The right action » : Xx G — X, of G on X is defined as

e gy=xg 10409

forallxe X,ge G.

~ The set of those elements of G for which g. x = x, for .all x€e X, is
called the kernel of the action. '

There is a close relationship between the set G/H of cosets of a
subgroup H (not necessarily a normal subgroup) of a group G and the
action of the group G on a set X. This will be explained later.

263
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10.1. EXAMPLES:

- 10.1.1. Permutation Group Action: | LetX={1,2,3,..,n}and G = ‘2‘.

be the group of all permutatlons on X. Then, for any X€E X and ¢ € G, we
define the mappmg

o (G,X)—)X
by o
| *: (6,0)=0). - 10.1 (*)
| Let oy, cze'G.: Then ’ r | ,
e
and | :
_ I x=x | . 101 (*)’

for all x € X, I, being the identity of 2.

SoXi is a G-set under the action 10 1™ of G= ZX

. Likewise every subgroup H of X also acts on X. This action is the -

' restnct.lon

: HxG)—> X of the action of Z,on X

10.1 2 (Group Actlon on Cosets) Let G be a group and H a subgroup

of G. Let

{xH X € G}

. be the set of all left cosets of Hin G.

For each g € G, we define an action of G on'X by
. e (gxH)=g. (xH) ©10.12(%)
= (g0)H | |

xHe X, x€ G. Then, forg, g’ G,
(g ?) xH) = (g'9)x)H
= (g’ (gx)H
=(g’. (g. H)))
=g’ (g. (xH))



SECTION '10.1. EXAMPLES 265 -

‘and - _
e. (xH) =(ex)H
= xH

So (*) defines an action of G on X.
The set X, in this case, is called the coset space of Gby H. -

10.1.3. (Group Action as Left Mulfiplication ih a Group-The Regular
Group Action.): Let G be a group. Take X = G. Define a mapping
x :GxX—>Xby o ' o

°(g,x) =g.x 1013(*)

forall g e G x€ G Then (*) defines an action of G on X G, called the
left multiplication in G. Here :

‘ ° (e,x)=e.x=x

_;and, lfc_).r 8 8'€ X, '
e * (%) =(g%8).x
| | =g".(g. %

forallx € G, usmg the propeny of the 1dent1ty element and the assoc1at1ve

law in G.

10 1 4. (Group Action by Conjugatlon) For a group G, again take X =
G. Define a mapping

: (G, X) - X as follows.

Foranyge Gandxe X =G, welet

o (g, X)=g.x 10.14 (%)

= gxg“
Then for all x€ X and the 1dent1ty eof G
e. (e, x) e.x
= exe!

=X
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and, for g, g’e G,

° (8%x) =8 x
=ggxglg’!
=g’ (g:x)g’
- =g.(8-%)
Hence () defines an action of G on X.

-1

The kernel of this action on G is.the center 4(€)) ef G.

1015, (The Inner Automorphism Group Action): Let (G) denote the
. set of all inner automorphisms of a group G. Then for any I, e I (G) and x

- € X=G, the mapping ‘

E Y IG),X)—>X
- defined by
o Iy = gxg™
forl, € I1(G), x € X, defines a group action on X = G.

- This group action is the same as the one in exarnple 10.1.4.

10.1.6. (Subgroup Con jugation Action): Let G be a group and X be the
_set of subgroups (or all,subsets) of G. Define a mapping x
”t 1 (G,X) - X
‘4 _ as follows. For each He X and g€ Gwe take _
| S (g H=gH O 10.16(%)
. . _ gHg—l ‘
| Then, for the identity ¢ of G, we have

e (¢e,H)=e. H
=¢He!
=H .

s s RS U N
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* and, for g 8 € G, |

(g.8H)=(Eg H

=g gHg ' g~

[

267

=g (gHg™) g" !

=g (gH)

" Hence X is a G-set under the action of G on X glven by (*).

Note that, here also X is an I(G) — set, where I(G) is the set of all

- inner automorphlsms

4

10. l 7. (The Automorphlsm Group Action): Here for a group G, let
A(G) be the group of all automorphlsms of G. Define an action ™

of A (G) on G = X as follows.

1 (AG),G)— G

For each a€ A (G), and g € G, we put

* (a,8)=0(g).

9.1.7(*)‘ |

Then (*) defines an action of A (G) on G. Here it is easy to check that for
“the 1dent1ty automorphlsm I of A(G), .

(I g=1L 8
=I(g)=¢g

forallge G and, for ¢, ﬂe A (G),

(@P). g = a(ﬂg)

The restriction of this action to the subgroup I(G) of A(G), consi(sting" of
the inner automorphisms of G is the same as the one given in Example

10.1.6.

10.1.8. (Group Action on Polynomlal Rings): Let R be a ring and X =R
[x;, X3, X3, ... x,] be the ring polynomials in the variables x,, x5, X3, ..., X,. o,

- Let 2, be the group of all permutations on {1, 2, 3, ...,

define ar action of Z, on X as follows. '

For an f= f (x|, x5, X3, ...

» X,) € X we take

n}and o € Z,. We

|
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Gf=f(xo(x1)7 xg(x2), xt’(x3)’ --'1\xo(x")) 10'1'8(*) ’
Then, for the identity permutation I of 'Z,,, and anf€ X,

o Lf=f
Also, fort,0€ X, '
(TG')f =f (x(‘tc)(xl)’ x(to)(xz)’ x(TO)(x3)’~."" x(’fd)(xn))

"f ( T, o(xl)’ 1: o(xz)’ x‘t O(x3)? *** x.‘t.tr(x,,))

C=t@f)

(t0). f=1. (0.f),

_ Therefore_ (*) defines an action of 2z, onX.

10.1.9. The Symmetry Group Actions on Geometrical Objects: Let V
be an n-dimensional vecyZY space over a field F. Then the set Hom (V, V)
of all linear transformations T : V — V, (i.e. T has the property that T (ox

_+,By)—a’1"x+,3fy,forallx y€ V and a, B € F), is a ring under the

usual addltlon and successive apphcatlon of mappmgs as multiplication.

‘The set of all invertible mappmgs in Hom (V, V) is the general lmear

group GL, v )

There is then a group action of the group G = GL (V) on the vector space‘
A\ w1th the 1dent1ty mappmg I as the 1der1t1ty of the group.

- Similarly, the general lmear group GL (n, R) = G of invertible matnces_
~ with entries from a rmg R, actson the ring R. S

~ Like wise we have actions of groups of symmetnes of a geometncal

figures like an equ1]atera1 tnangle a square, an n-polygon and po]yhedral
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10.2. A BASIC THEOREM

Let G be a group. Then,‘for any'set X, and 2y, as usual; the set of all
permutations of X, we have the following important theorem.

10.2.1. Theorém: There is a one-one correspondence between the set of
all actions of G on X and the set of all homomorphisms of Ginto Zy.

 Proof: Let X be a G-set. Each action of G on X _cieﬁned by a mépping.

o (G X)-X, 1sg1venby

(g x)= a(g)x g% o021

X€E X g€ G. _
To see that a(g), g € G, is bljectwe on X we note that a(g") is the 1nverse.
of a(g) Here
(ag)alg™))x = ofg). (g7 x)
=g.(g %)
=@g)e |
-=e. x: e, the identity element of G
. =x |
Similarly
oAg™") a(g)x=x, forallxe G. /
Hence | o
oAg™) ofg) = Ag)otg ) =1

so that '

a(g") (0(3))'

Thus a(g) is bijective and so is a permutatlon on X. Therefore a(g) € Ex
for all g€ G. '

Next we show that a defines an action of G on X.

: First- we observe that if e is the identity element of G then afe) is
the identity mapping on X. Here - :

TR TR e RS
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| a(e).x=ex=x

forallxe G.
Also, for g, g’ € G,

* | o(g'gx=(gg)-x
| =g’ (g%)
=a@) )
=a(g). (g %)-
= a(g"). (ag) x)
, =(a(g). x (@) x
for all x € X. Hence (1) defines an action on X.
Moreover ' :
| ag.g=a@). )
forallg, g’ in G. |
Now define a mapping ¢: G — Zy as follows.
| For each g in G we put |

P@=ak

. CHAPTER-X

10.2.1 (i)

©10.2.1 Gi)

' 10.2.1 (D)

Equation 10.2.1 (ii) shows that @ is a homomorphism from G into Z. So

each action of G induces a homomorphism of G into Z,.

Conversely, suppose that 6 : G — X is a homomorphism of G into
Zx- Then, for each g€ G,o(g)isan element of X,. Moreover o(e), e the

identity element of G, is the identity permptation of %. Let
* (g,x)=0(g) . x=g.x
forall g€ G, x € X. Then, for the identity e of G,
‘ 0 (e,x):G(e).x’:x
 for all xe G.Moreover |
“ * (g2, % =0(g8): x
 =(o(g)o(g))- x
=0(g’) (o(g)- x) -

10.2.1 (*)



forall g’, g € G, x € X. So the mapping given by () defines an action of -
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= 0(g’) (g x)
=g (g.x)

G on X. Thus each homomorphism of G into X gives rise to an action of
G on X. Hence there is a one-one correspondence between the set of all
actions of G on X and the set of all homomorphism of G intq Z.

10.2.1. Remarks

1.

If H is a subgroup of G and X is a G-set then w1th o defining
an action of G on X, the restriction of o to (H, X) deﬁnes an
action of H on X. So X also is an H-set

A homomorphism ¢ from G to I,, defined by 10.2.1 (iii) in

the 10.2.1 Basic Theorem given above, is called a

permutation representation of G corresponding to the action -

of Gon X.

An action of a group G on a set X is said to be faithful (or G |

act on X fazthﬁdly) if the homomorphlsm @ of G into Z; is
1n3ect1ve

An action of a group G on a set x is faithful if and only if only
the identity element of G fixes every element of X.

In the discussion of group actions on a set X, we don’t just

look at the subgroups of Xy but also at the homomorphisms of

groups into X,.

e St T

T
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10.3. ORBITS AND TRANSITIVE ACTIONS

letXbea G-Set Define a relation ~’on X as follows:

Forx,y € X, we say that x ~ 5 y (read as x is G-e qulvajent toy’) if
thereisage G such that.

Cy=gx o 10.3. (1)

- '10 3.1. Theorem The relatlon ~ defined by 10.3. (1) is an equlvalence‘
relatlon onX. :

Proof: . . . b ' A

1. ‘ ~q is reflexive. Here, for each x € X and the identity element e of x

XxX=e. X

2 ~¢ is symmetric. For if x~; y, forx, y € G, then thereisa g € G
such that - A o ‘

<
o
o9
=

But then, as gle G,

: xX=g .y
Hencey ~;x. -
3. '~ is transitive. For if x ~ 5y and y‘--G z then there are g,, 8, € G
suchthaty=g,. xand z = g,. y. So " '
, C2dgiy |
=8,.(8;-%) ‘
=(&,81)-x
=g.x

for g’ = 8,8, € G. Hence x ~gy and y ~ gz ir nly x ~;z and the relation is
transxtlve , ‘
Thus '~ 5’is an equ1valence relatlon



SECTION - 10.3. ORBITS AND TRANSITIVE ACTIONS | 273

As is the case for every ‘equivalence relation, the relation ~5’
partitions X into equivalerice classes. These equivalence classes are called
~ the orbirs or the trangitivity classes of the action. Let an equivalence class
- determined by x be denoted by O.,. :

That is _ , ‘ o
| 0,={ye X:y~gx). 103.1Q2)

Then ' .\ _ : o

|  X=U0,:xeX. ©103.103)
and | o t 7 '

1 0,n0,=¢ e 10.3.;‘ @)

for x # y,yx, y € G. So we have an orbital partition of X.

The set O,, x € X is called an orbit ef x in "X under the action of G

or simply a G-orbit. Thus the G-orbits determine a partition of X called::-
the G — orbztal partition of X.

The set of all G-orblts is denoted by' X/G.

- Also, from 10.3.1 (2), and by labeling the orbits. as Ox,’ 0 v Ox,.’

we have the following simple relation between the cardinalities of X and
_those of the orblts of the orbltal partition of X. '

IXI—I I+| |+ +]0, | 10.3.1(5)
The formula 1031 (S) has a large number of 1mportant ;
appllcatlons - | _ |

Let us write - . ,
Gx={g.x:ge G}). ' 10.3.1 (6)

 Gxis called the G-stable subset of X and contains x because ¢ € G.

If Gx = X for some x € X then we say that the action of G on X is
transitive or Gactson X trasmvely ‘ ~

Otherw1se we say that the action of G on X is intransitive.

Moreover if Gx X for some x € X, then, for every yYE X, Gy X

~ .



274 : - GROUP ACTIONS CHAPTER-X

We then also call X a homogeneous G-space.

The regular action of G of X = G is transitive.

“Note that G acts transitively on each orbit.

Also G acts on X transztlvely if and only. if G has only one orblt
namely Gx for some x € X. . -

A subset Y of X is GftranSitive or G-invariant if Gy = Y for some
yevrt. S ' '

As a subset of X, Gx also is a G-set under the action mduce!d by the
action of G on X. Here, for any g € Gand gxe Gx

g-(g.x)=(gg)-~x€ Gx.
So ; ‘G(Gx)—foorallxe X.

An action of a group G on X is’ sald to be k-ply transitive if, for any -

_two k-element subsets , . ‘

{xxvxz’ 3% "xk)}’ {yp y2 --‘~v)_’k}
othhere isage G such that y, = g. xi‘; 1<i<k

For k = 2, such an action of G on X is_séu'd to be doubly transitive.

| To describe all G-subsets of a set X, it is enough to describe all its
orbits. ' ' ‘ :

"~ 10.3.2. Example: LetX, be the grouﬁ of permutations on X = {1, 2, 3, ...,

n}. Then the action of £, on X is transitive. Here, for any pair of elements
i,j € X, there is a permutation namely (if) of X, which changes i to j.

Similarly the natural action of A,n23,onX is transitive. For let ;

i,je X. Asn=>3thereisake Xsuchthato—(yk)eA Buttheno

changes itoj.

We now give another characterization of a transitive action of a
group G on X.
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10.3.3. Theorem: G acts on X transmvely if and only if for any x,y € G
there is a g€ Gsuchthaty=g. x.

Proof: Suppose that G acts on X t'ransitively.' Then, for any x € X,

Gx=X. =~ ' 1033 (%
Assume thatx, y € X. Then, 10 3.3 () means that foray € G. x and there
-1sage Gsuchthaty g.x.

Conversely, suppose that, for any x, y € X, *here isa g € G such

| that y = g. x. Then _ _
Gx={g.x g€ G}cX.
~ Also, for any x, € X, there is.a g, € G such that g,x, = x. So x, = g'l1 x€
Gx. Hence )

X=U{x :x € X} S Gx.

Thus Gx=X and the actlon of G on X is transitive.

10.3.4. Theorem: For any subgroup H of G the action of G on G/H (the

coset space of G) is transitive.

Proof For any g, 8 €G, ng g2H are arbltrary cosets of H in G. Take .

g= g2g1 € G. Then ,
g (&:H) = (8:¢)- (g, H)
= 82 (3-11 g)-H
=82 (e. H)
o =g H
* Hence the action of G on G/H is transitive.
OR, for any gHe G/H g€ G,

G@gH)={g' gH):g eG}
={(¢g)H: g € G}
= G/H.

3.
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10.3. 5 Theorem: Every G-set X has a umque partltlon con31st1ng of
transitive G-sets. : :

‘ Proof: Suppose that X is a G-set. Then foreachxe X,

GxCX.

" Hence

U{Gx:xe X}cX. | 10.3.5 (1)
Also, foreachx € X,
N : .
' x=e.x€ GxCcU{Gx:x€ X}.

. N e o |
‘ : Xg U{Gx:xe X} 1035
Form 10.3.5 (1), 10.3.5 (2) we have ~ -
X=U{Gx:xe X} ' - 1035(%

Next we show that the sets in the union are disjoint. For thislet x, y € X
and GxNGy#¢.

If u e Gx N Gy then there are g, g’ € G such that # = gx = g’y. So
x=(g1g)ye Gy
Hence :
GxCc Gy. - : ‘ 103.5(3)

GycGr. . 10.3.5 (4)
Form 10.3.5 (3) and 10.3.5 (4) we have I

Gx=Gy.
So {Gx xeX } defines a partition of G.

‘The equation-10.3.5 (*) implies that

IX|=" = |Gal. 103.5 (5)
=z ,
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'10.4. STABILIZERS
If XisaG-setandx € X, then the subse* A
_ ={geG:gx= x} » 104(1)
of G'is called the stabilizer of xin G or the zsotropy group of x in G.
© 104.1. Remarks: | |
71‘. - G, isa subgroup of G.
Here, for 81,82 € Gy, .
| @187 %= (@ 67 %)
: =8 x
. o=
Hence g,87 € G.S0 G, isa subgroup of G. A
< Infact G, is a normal subgroup of G because, for every g, € G and
geG, - : ;
(@88 W =(g (e &7 1))
C =a
= (318_,1)' x
o ’ =e.x=x
-because g'll. x€ Xandg.x=xforallxe X. Hence g,gg'll €G,."
It is clear that the action of GonXis fatthﬁd or regular zf and only if
= {e}.
2. IfXisaG-setthen, foranyxe Xandge G, -
' G,,=8Gg" " , 104.1 (2)
Here, for eny ue .Gg.,,' |
| B UE Gy, & u(g.x)y=g8x -%f

L e RO I
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o (g ug)x=x
& (glug)e G,
& ue gGg!
& G,,=8G,g"

Hence (2) holds.

In a similar fashion, one can prove that if G is the stablllzer of

-"’Xte )

| GS={ge G:g.s=s,seS} ' \
then C : _ _
Stab (¢5) = G, s = gG,g"‘ 104103
' = gG,g! | |

xe$

~We relate examples of stabilizers with examples of group actions.

10.4.2. Examples:

1.  LetX={1,23} andG .. Then
' G={I, 0, 0% 1, o1, 621} -
where
I=(),0= (123) 0'2=(132) T= (12) ot = (13), 6%t = (23).
Moreover the stablllzers of1,2,3 are
| ={1,(23)}, G, = {1, (13)}, G; = {1, (12)}.

Note that the orbits of 1, 2 3 are -
Gl={1,2, 3} X=G2=G3

respectively.
2. Let G = (4], %, %j, k} be the group of quaternion and X = G.
Let the action of G on X be the usual left multiplication in G,

ie,forxe A=Gand g€ G, we have

. 8 x=gx.
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Then | |
GI X=G=Gi= G] Gk
So the action of G on X = G is transitive.
Next, for anyx e X=G,
—{ge G:gx= x}~{1}
So the stablhzer of each element of Xis {I ).

3. Let G be~ any group and I(G): be the group of all ;nner
' automorphisms of G. Then I(G), as a group, acts on X = G by
, : ' L. )=gxg™' g€ X=G. \
forallxe X. - B
 The oibitof xe X under I(G)is
I(G)x {1, x: g € G}

={gxg': g€ G}

which is the set of elements of G conjugate to x ie., the conjugacy class

containing x. : \
Also the stablhzer ofxe X= G is.
KG),={g€ G:1I,.x=gxg™ =x}
={ge G:gxg! =x}

which is the centraliZer Co@ofxinG.

4, Let H be a subgroup (or a subset) of & group G and
- X={H: HcG). Under the actlon of GonX deﬁned by

‘ (g,H)—)gH gHg"geG
‘the orbit of His | |
'_G.H—{g H=gHg':ge G} . 1042(1)
_ ={gHg': g€ G} N
whlch is the set of all conjugate subgroups (or subsets) of H in G

A e e e e .

e
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' ':_’fiuation 10.4.2 (1) also shows that, for any subgroup H of a group

‘G, the number of conjugate subgroups of H is equal to the number of

elements in the orbit G.H of the subgroup H in the group G.
The stabilizer of H is ’

={ge G:gHg' =H)

- which is the normaliser Ng (H) of Hin G.

The equation G, = Ng(H) = {g € G gHg™! = H} also shows that
the stablhzer Gy is the smallest subgroup of G in whlch H is norml.

By the Orblt—StabﬂlZCI' Theorem 10.5.2_we have

Gl=lGHxIG, 10.4.2 (0-s-1) -
~ which shows that the number of conjugate subgroups of a subgroup His
. equa] to the mdex of its normahser in G

_ This prov1des yet another proof of Theorem 5. 4 8

The equatlon 104.2 (o-s-1) also shows that there is a natural ‘
' bljectxon ¢ between the collections S

{O :x€ X}
of all the orbits O, ‘of x € X and the set { gG gE G} of all the left cosets

‘ of G, given by

| [ (ng)=g~t-' ‘ _', 10.4.2 (o;s-z)

10.5. MAPPINGS BETWEEN G-SETS:

THE ORBIT STABILIZER THEOREM

Let X and Y be G-sets We denote the action of G on X and Y by
the same symbol namely *.’ ' :

A mappmg m:X—>Yis sald to be a G-set homomorphzsm if, for
eachxeXandanygeG / -

(0(3 x)= g.. o (x). --10.5 (*)

Gy={ge G:g H=H} - 104202
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1If, in addition, @ is also bijective then ¢ is sa1d to be a G-set
isomorphzsm :

In case of G-1somorphlsm between Xand Y, the two sets are called,
zsomorphzc G-sets.

We know that the coset space G/H of G over H is a transitive G-
set. . . - ’

We now prove the foilowing"

10.5.1. Theorem Let G be group. Then every transitive G set Xis G-set
1somorphlc to a.coset space G/G,of G by G.xe X _ S

. Proof: Let X bea transmve G-set Defme a mappmg ¢ G/G, - X as -
follows: o

For eachxe X and gG € G/G we put : _
PG =g.x. 105.1(1)

“Then ¢ is well defined: For if gG,, g'G, € G/G and ¢G, = ¢'G, then
"g € G,. S0 (g'g).x=x. Thatis g. x = g’. x. Hence

0(gG)=g.x=¢.x=0(G,).

»_ Next, @ is injective.
Here, for gG,, G, € G/G,, |
) b (5(G)= MG,
implies g. x = g’. x. That is, (g™'g"). x = x. Hence g"'g"€ G,. So '
8G,; = g'G,. Thus @is injective. :

Lastly; let y € X. S_i_nce X is G-transitive ahd x € X, there iS a
‘g € G such that '

y=gx=¢(G)
So @is surjective. |

Also, for each g, 8%€ G,
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g* 0(gG)=g*gx
 =@rg.x
C=g*.(g.x)
=0 (g*. (3G, )).

Therefore @ is-a G-set 1somorph1sm

“The above Theorem yields the followmg important resu}t

10.5.2. Theorem (The Orbit-Stabilizer Theorem) Let X be a G-set.

Then the sets G; and G/G, and G-set isomorphic as sets.

Speciﬁcally, if G is finite then . ; \
161=1G:G]. - 1052 (1)
That is, (The order of the orbtt of x € X = The index of the
" stabilizer of x.) . 7 . _ , 10.5.2 (2)
Or | | o
- |G|=1GA.. G S - 10:52(3)

(Order of G) = (Order of the 6rbit) (Order of the stabilizery 10.5. 2k(4)

(The relation 9 5.2 (3) is also called the counting formula for group
actions.) _

Proof: Since Gx is a transmve G-se;, it is s G-set 1somorph1c to G/G,, for

- everyy=g.x€ G, x€ X, by the above theorem.

Specifically, if G is finite then, Gx ~ G/G, implies

. | | |Gx| =[G:G].

which is equation 10.5.2 (1).
Similarly for the other forms.

From the relation 10.5.2 (1) above, we have the followmg obvious
corollary :
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10.5. 3 Corollary The order or number of elements in an orbit d1v1des
the order of the group. : :

10. 5.4 Theorem Let p:X>Y be a G—set homomorphism and xe X.
" Then

G, = G
In partrcular, if pis a G-set isomorphism then,

@ (x)

Proof: Letge G,sothatg.x=x. Then

VW=D o
=8. ().

Sog fixes @ (x). Hence g € G, So
' G, S Gy

In particular, if ¢ is a G-set isomorphism then G,, as‘a subset of
Gy and G-set isomorphic to Gy, is equal to G .

10 6. APPLICATIONS TO GROUP THEORY

In the followmg paragraphs we descnbe use of group actlons to
concepts of groups. . : '

- We have already seen that, for a group G and a subgroup H of it,
the set G/H, of cosets of H in G, is a G-set, under the action of G given by:
| | 1 (g* g —g*. gH) = @*g)H o
Also any two cosets e = H and gH have the same number of
elements. Moreover the action of G on the coset space G/H is transitive.

- 10.6.1. (Actlon of a subgroup on the group)::

The lagrange’s theorem: Let G be a finite group and H a subgroup of G.
Then the order and index of H divide the order of G

Proof: For a subgroup H of G we can define an action & of Hon G as
follows : :



!

-
(™

e e TS

284 | GROUPACTIONS ~ CHAPTER-X
' LethEHandgEGWeput ' . 7 ;
s athg)=gh ‘ ©10.6.1(1)
Then . | |
ale,g)=ge=g .
and | |

a (hyhy, 8) = g(1y1y)
C=Gh) k)
= at(hy ghy) |
= a(hza a(hy, g)) SRR
So 10 6.1 (i), indeed, defines an actlon of H on G.

For any-g € G, the stablhzerH of gis
Hy={he H:gh=g}= {e}

So only the identity elcment of H fixes every element of G. Hence the

_ actlon of Hon G is falthful

More over the H —orbitof g € G is the coset
{gh:he Hy=gH

of Hin G. Let g,H, g,H, ..., g,H be all the distinct left cosets (orbits) of H
in G. These r cosets are mutually disjoint because they arise out of an'

action of H on G. By the Orbit-Stabilizer Theorem, .

IgH1 =[H:H]
_ = |H] _ .
Now let G be of order n and H, a subgroup of G, of order m. Then,

from. -

G:UH,, i= 1, 2, weey r
* we have
‘ IGI = i=11Hg;|
or

n=|Gl=m.r. O 106.1Q2)
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The above equation shows that the order m and index r of a
subgroup H of a group G are divisors of the order of G, whlch is the
Lagran ge s Theorem.

10.6.2. Corollary: The order of an element of a ﬂnlte group G divides -

~the order of G.

~ Proof: Here the order of an element a is the. order of the subgroupl

_ generated by a and Theorem 10.6.1 applies.

. 10.6.3. Theorem (The Class Equatron).
- Let G be afinite group Then '

G| = | d . 1063CED

"Where ICX'_I is number of elements in the conjugacy class C
determined by x; € G in G and q is the number of such co’njugacy classes.

Proof: We have already seen that, for the group G and X = G the
--function

o (G, X) —X
defined by 4
°(gH)= gxg |
" is an action of G on X = G. The stabilizer ofanx € Gis
|  G,={ge G:g.r=gxg ' =x}=C5 (xy
where Cg, (¥) is the centralizer of x in G.. | o
~ The orbitof xin G is - |
| Gr={g.x=gx" :g€ G} 10.6.3 (1)
={gxg”' : g€ G} * o
‘ wh1ch is the conjugacy class C, of xin G.
So by the Orbit- Stabrhzer Theorem we have

IG41= 16| . 1063(Q)

~lGd

A as = - e

 ~
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More over, if & is the total number of orbits under the group actlon glven
above then

G| = z Ile— IJ(%_ S |c) 10.6.3 (4)

Here Gx = C,, the conjugacy class containing x. The number of V

elements in C, is equal to the index of the normalizer of xin G.

A conjugacy class consists of only one element if and only if that
element is in the centre of G.

If n, is the number of conjugacy classes of such elements and Ny M3, ey Ty

~ are the number of elements in the respective remammg conjugacy classes

then we have an equation

t .
fel=zm

=[5 @]+ Z n; 1063 (C-E-2)
wh1ch s equxvalent to lO 6.3 (C—E—l)

10.64. Theorem IfGisa ﬁmte group and H a subgroup of G then the

of Hin G. That i is

ICHI Wl%ﬂ ‘ 1064 (1)
where Cy is the conjugacy class of H and NG (H)i is the normahzer of Hin
G ‘
Proof: For a subgroup H of a group G and X {H H C G}, the function
: (g,H)—)gH gHg“geG 1064 (2
defines an action of G on X. The orbit of H is o
G.H={gHgeG} 10.6.4 (3).

={gHg' : g€ G}

T T —

_number of subgroups conjugate to H is equal to the index of the normahze ~

ettty vlmtagst e s e
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'whlch is the conjugacy class Cy of the subgroup H in G. The stabilizer of
His

 Gy= {g.e G:g H=gHg'=H} = 1064 (4)
which is the normalizer N; (H) of H in G. By the Orbit-Stabilize Theorem
. . ) G - ’
|Cul=1G. H|= IJGLI | -10.6.4 (5).
Or : :
: ol o ,
[Crl = —LLW ) . 10.6.4 (6)

Thus the number of conjugate subgroups of a subgroup H in G is
'~equal to the index of the normalizer of HinG. .

10.6.5. Theorem~ Let H, K be subgroups of a group G. Then

Er=p oesm)

|H N K]

Proof: We first note that, here we have not neceésarily taken kany of H or
K to be a normal subgroup of G. Thus HK may be just a subset of G.
However '

HK = {hK: he H) 10.6.5(2).

and HK is the union of all kK, h € H. AsKisa left coset eK of K, the orbit .
of Kin HK is given by {hK : h € H} which are all disjoint and the number

of elements in each coset is iK[ Hence the number of elements in the H-
Orbit of K is :

|0l = |HK] -
We look at the stabilizer of K in HK whlch under the (left) regular
action of H on K, is
_ {h e H:h.K=K]}. _
But hK=K & h e K. Also each element of K is in the stablllzer So the
~ stabilizer of K is
HnNnK.

~ Hence, by the Orbit,-Stabilizer Theorem, we have

T Ead ot w e i W T
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. _
Wthh is the relation 10 6.5 (1)

'10.6. 6 Lemma For any subsets A,BofagroupGandage G,
gANBg ' =(Ag) N (gBg ™). 10.66(%)
Proof: ' ’
- Here ,
gyg‘l € g(Ar\B)g"l ,LYEANB
& gy € gAg N gBg™! |
& g(AAB)g! =.gAg" N ng“

Let H Kbe subgroups of a group G. For anyx€ G the set
HxK - {hxk:he H,ke K}
is called a doubte coset of G modulo H, K,
It easy to see . that two double cosets” HxK and HykK are either

identical or disjoint. We now Hhave the following theorem about the
number of elements in a double coset HxK.

10. 6 6. Corollary: Let H, K be finite subgroups of a group G. Then
|HXK} |H A (xKx")[

= KN (xHx‘l)I

Proof: The number of elements in HxK is the product of the number of
left coset hxK, h € H by the number of elements in xK: Also, under the
usual action of H on the set of left cosets xK of K, HxK is the H-orbit of
the coset xX of K in G. Hence HxK has

 HxK] = [HxKox ) = JHK , K = Ko,

elements. We now use Theorem 10. 6.5, knowing the fact that K and xKx!
have the same order. :

So,

10.6.6 1
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\HxK| = [HxKx '}
__HIK]

TIHNK|

_ |H} xKxY|

i~ G
__lHK
T H N (xKx)|

as required.

Interchangmg the ro]e of H and K, consrdenng the left actron of K

on the set of left cosets of xH in KxH . we have

= |Kn(xHx;’)|

TIKN (xHx“‘)l

Using |HxK} = |KxH] we have the requlred result. This completes the proof
of the theorem. _

10. 6 7. Theorem: (Theorem of Pomcare) Let G be a group and H, K be
subgroups of G. Then ‘

"Proof: The factor set G/(H K) ={g(HN K) g € G} Also the sets G/H ‘
and G/K are
G/H = {gH : g € G} and G/K {gK:ge G} '
Consider the set

G/Hx G/IK = {(OH gK):g € G.}
and the mapplng @:GI(HN K)—> G/Hx G/K deﬁned by
(D(g(HﬁK)) (gH,gK): g€ G.

Then ¢ is obv1ous1y well deﬁned Moreover (0 is m_|ect1ve Thrs
follows form

[G'HmK]:<'[G-H][G-'K] - '1067(1).'

e S r - - SO
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p@QHNK))= (0(g(HﬁK))
= (gH, gK) = (&H, £K)
.=> gH=g'H,gK=¢'K
= glgeHandgl'g' ek
=glge HAK
= gegHNK) |
- = gHNKy=¢g' (HNK).
“Hence o '
| i A K< (G X GIK] Lo

But |G/Ht [G: H], |G/K| [G: K] and |G/(Hr\K)|- [G: HN K} Therefore’
[G:HNK]<[G:H][G:K]

as refquired.‘ " ,

| | EXERCISES |

1. Let X be a square with vertices A4, B, C, D'and G = S4, the

symmetric group of degree 4. Describe the action of G on X.
Is this action on X transitive?

Indicate the orbits and stabilizers of each‘ element of X uhdef
G. Also verify the Orbit-Stabilizer Theorem for each element
of X.

What are the orbits and stabilizers of the mid points of the
sides of X and of the mid points of its diagonals?

Also find the orblts and stabilizers of points x of X which
devide the sides of Xintheratio1: 3. .

2. Let X = {1, 2, 3, 4, 5} and G = <(123)(45)> be a cyclic
' subgroup of Sy with the usual action on X. Find all the orbits
of X under this action of G.

T S
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3.  Let G be a finite group and p be a prime number. Suppose

that p” divides the order of G..Show that G has a proper
subgroup of order p’.

Let G be finite group and p be prime d1v1d1ng the order of G.
A subgroup H of G is said to be a Sylow p-subgroup of G if,

 for some integer k, p* is the highest power of p dividing the
v order of G

Show, by using the concept of group actions, that G has a

Sylow p-subgroup for every such prime and that any two
Sylow p-subgroups are conjugate. - | . \
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Chapter - X1

- Various techniques are used to discuss the structure of a group. We
have already seen as to how subgroups and normal subgroups of a group
give us information about the structure of that group. In the present
chapter we discuss the notion of sub-normal subgroups of a group. This

notion leads. us to the concept of normal series® in groups. The usefulness

of this concept will become apparent in later chapters on solvable and

mlpotent groups.

11.1. ZASSENHAUS’ BUTTERFLY LEMMA

In this section we prove an important result due to Zassenhaus.
This result will be used in the subsequent discussion.
11.1.1.»Theorem: (Zassenhaus’ Butterfly Lemma) -

Let H, H’, K, K’ be subgroups of a group G with H normal in H
and K’ normal in K. Then H'(H n K’) and K’(K n H’) are normal
subgroups of H'(H N K) and K'(K n H) respectively and the
- correspondmg factor groups are isomorphic. That is

HENK g A k) s KEOB/gik Ay
Pi-oof:‘Put
| U=HNK o
V=HnNK). (KnH’)
Since ' ¢ H, K’ c K,

"HNK cHNK=U

KNnHcHNK=U

'so that H n K’ and K n H’ are subgroups of U. Also if x& H A K’ and
ue Uthen:

¥ Some authors call it subnormal series.

293
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' wale H (because x and u are in H and H is a subgroup)
€ K’ (because xé K, ue K and K’ is normal in K).
Hence wau-le H NK.SoHnN K' isnormalinU.
By symmetry, K N H’ is normal in U. So the product
HAK).KNH)=V | |

of two normal subgroups of U is normal in U. Thus we can form the factor
group U/V.

" Next since H’ is normal in H and H N K’ is a subgroup of H,
H'(H ~ K’) is a subgroup of H. H'(H N K’) is also a subgroup of
H'(H N K) because H'(H N K) is contamed in H’(H N K) aﬂ@ is a
suboroup Define a mapping ! ,

' ¢: HHNK)—> UV
by: ' ‘ A
| oWu)=Vu; e H andue HNK =U.

- Then ¢ is well-defined. For, if h'u = hl u, for hu and h,u; in
t\# \ H’(HmK) then '

%

l'ﬁ : h'lhl--uul l,quEHr‘\KCK Wh eH,

‘;' belongs to H* N K ¢ V. So u u~'e V. That is ue Vu,. But ue Vu

} Hence Vu=Viy,. So (o(h’u) @ (h uy). ‘

' Also ¢)(h’u hu) = @ (Why uu,)

Yoo = Vuu,

=Vu.Vu,
=@ (h’u) @ (b uy).

So ¢is a homomorphlsm @ is clearly surjectlve By the fundamental
theorem of homomorphism

HMHNKYW=U/V
where W is the kernel of ¢. Weé show that
| . W=H®HNK). |
Let we W. Then w = h'u for some h’é H' and ue U. Hence |

| pw)=Vu=V. ‘ 4

A
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Soue V= (HmK’) (K NH). Thus
u=a.b, acHNK',b,c KNnH’ CH’ .
=b. a, be KNnH cH. _
because K N H’ is normalised by H m K’. Hence, as K'be H’ ‘whenever
K,beH,
| w=Hu=hb.a
isin HH K. So

WCH’(HﬁK') ' 11.1.1 (1)

Converscly, let h’ue H'MHN K’) he H’ ue H NK'.AsH r‘\ K c
V,ue V SO

¢(h’u)= Vu=V. |
Hence h'ue W. Thus , ‘
H’G{mK’)gW. 11.1.1(2)
So A ' | . .
H’(HmK)/H(HmK’) V. ILLIE)

- Incidently it follows that H'(H N K'), as the kernel of a homomorphism, is
normal in H'(H N K). :

~ Since U and V remain unchanged if H and H are interchanged by
K and K’ respectively we have, by symmetry,

KEKNH/KEKNE)=UV. 11.1.1(4),

From (3) and (4) we obtain the required isomorphism.

11.2. NORMAL SERIES

Let G be a group and Aa subgroup of G. A ﬁmte sequence of

subgroups.

G=G;2G;2..2G;26G6;,;..2G,=A 111 (1)

is said be a normal series or a sub invariant series from G to A if every G;
is a normal subgroup of G, _;. :

If A is the identity subgroup E of G then 11. 1.1 (1) is called a
normal series of G. .
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11.2.1. Example

(@)

(b)

(c)

and

CHAPTER-XI .

Every group G has a normal series namely the series

G=G,2G,=E.

If H is a normal subgroup of G then a normal series for G is

GO HDOE.

Let G = <a, b : a* = b? = (ab)? = 1 > be the dihedral group

of order 8. Then
A=<a:at=1>

4 -

. is normal in G. So

‘GDADE _
is'a normal series for G.
Also, since '
B= < at:at=1> _
is normal in A, another normal series for G is
~ GoADBOE.
G,

G=Gy2G;2.. 2..2G,=E

(9]

G=H,2H;2..2H2..0H,=E

is a refinement of

GO ADE’

is example 11.2.1 (c) above.

11.2.1(2)

11.2.1 (3)

be two normal series for G. The series 11.2.1 (3) is said td be a refinement
- of the series 11.2.1 (2) if every G; that occurs in 11:2.1 (2) also occurs in
112.1(3). '
For example

-GDoADBOE

In particular every normal series of a group G is a refinement of ‘

‘ itself.

In the norma] series 11.2.1 (2), the factor groups
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G, _,/G; i=1 2,..,k
are called normal factors§ of the normal series. The number of such
factors in (2) is called the length of that series.

The normal series 11.2.1 (2)and 11.2.1 (3) of a group G are said to
be isomorphic if their lengths are equal and their factors can be put in on-
one correspondence such that the corresponding factors are isomorphic.

11 2.2. Example: Let A

: G <a:at= 1 >.

Then
H=<ad3: a6—1>andK <a’:at=1>

-are normal subgroup of G having order 2 and 3 respectlvely The series
GDOHDOE k
GOKDE ) L o

’a're isomorphic normal series for G. Here the factors for these series are
G/H, H/E and G/K and K/E | |

respectively. G/H is isomorphic to the factor K/E (both are of order 3) and
the factor H/E is isomorphic to G/K (both are of order 2).

!

11.2.3. Theorem: (Schreier’s Refinement Theorem);

Any two normal series of a group G have isomorphic refinements.

Proof: Let
G=G,2G;

v

.2G2..2G =E. ﬁ 11.2.3(1)

and ‘ : , A, |
G=H,oH 2..20HD..DH=E 11.23 2)

by any two normal series for a group G. Put - ‘
G;=G;(G_,,nH) ,

- Hy=H#H_,nH) . S
fori=1,2,..,kj=1,2,.., {Since G, is normalised by G; ;" H; and
both are subgroups, Gj; is a subgroup of G. Similarly Hy is a subgrglp of
G. Also o ' S '

G=G.. (G NHy)
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=G, (G, N G) |
- =G,.G;, 3
' .'= G, V'because GcGiy

. and

Gy=G;.(G;_,nH)
=G,.(G,_,NE)
: =G;
Similarly |
. J ;
Also, since H; is a subgroup of H;_;, G; is a subgroup of G-

Similarly Hj is a subgroup of H;_, ;. We-show that G;; and Hy; are
normal in G;;; and H; _, ; respectwely ' -

' For this we put : _
" © GuzHG=HH =K H=K |
~in Zassenhaus lemma. So '
HHNK)=G(G;,_,nH)

=G;|j
is normal in , |
. HHENK)= G(G, ,nH DGy 1230
while - S
| KK A H) = H(H,_, A 6)
ey |
is'normal in _ . _ ,
| K'(K  H) = Hy (. A, 3= H., L1123,

But then the corresponding factor groups are 1somorph1c by Zassenhaus
Lemma. Thus ,

G,;-/G; = H,,/H,, o 1236)

ij-l1
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) Now between the terms Gl _ps G and between H -1 H we insert
(/- 1) additional terms

]

Q,J%;%;G ;Ggw;qpq'

-and (k -1 addltlonal terms _ ;
Hj=Hy2H; 2 .. 2 Hy 2, 2 Hy = H

and obtain refinements

G =G = GIO 2 G, 26,2 .. 2 G =G, =Gy 26y

V D e =2 G -1 = GlO D G” =2 .7... QGII ="Gi_ D R Gk/
=G, =E . L 1123(6)

and

=H,=E S T 11.23(7)

of 11.23 (1) and 11.2. 3 (2) The length of the series in both 11.2.3 (6) and
11.2.3 (Mris

k(/ D+k=k/= /(k 1)+/
Thus the terms of reﬁnements 11.2.3 (6) and 11.2.3 (7) of the series

'11.2.3 (1) and 11.2.3 (2) can be put in one-one correspondence such that

the ‘ corresponding factors
G;;-1/G;; and H;_, ; / H;; are isomorphic.

Moreover, if a repetition G;; 2 = G;; occurs in 11.2.3 (6) then, from

the 1somorphlsm between Gl j-1/G;;and H, ; —1/Hi, jwe have
/H;=E |

. H, ., =
so that H; _,;
and 11.2.3 (7). After deletion of the corresponding repetitions we have two
isomorphic refinements of the series as required. -

A subgroup H of G is said to be sub-normal (subinavariant
accessible. or finitely serial) 1f H occurs in a normal series, that is, there is
a normal series :

G= GODGla DG =H

=H;;. Thus repetitions, if any, occur together in 11.2.3 (6)_'
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, fromGtoH

Among the -examples of sub-normal subgroups of a group G are

.the normal subgroup of G, the normal subgroup of these normal subgroups’

and so on.

A subnormal subgroup need not be a normal subgroup.

11.2. 4 Example: Let

A,=<a,b,c: a3--b2--c2'-(bc)2 I,be=c, o= bc>‘

be the altematmg group of degree 4. Then

. V=<b,c: b2=c2=(bc)*=1>
and - . , L \
| Us=<b:b2= | |
are subnormal subgroups of A,. Here, of course, U is a subnormal but not
a normal subgroup of A,.

11.2.5. Theorem: The intersection of two subnonnal eubgroups of a

‘ .’ group is a subnormal subgroup.

Proof: Let H, K be subnormal subgroups of a group G Then there are-
normal series ,

G:GOQG,;_...QGi=H;.,.;Gk=E ‘

G= HODH,D...DH Ko..2H=E

: passmg through Hand K respectlvely So

G=Gy=G;2..2G=H= HmHODHnHD _:gHmH]
=HNK2. DHmH,—‘E ,

isa normal series for H N K. Hence H N K is subnormal.

‘ Let H be a subgroup of G. The nonnal closure H® of H in G isthe - -
smallest normal subgroup of G containing H. Thus L

;H =<xhx!: he H,,xEG>—<x,Hx-l cxe G>

s0 thatv the normal closure H of Hin G is generated by elements of H and
thelr conjugates in G. :

For example the normal closure of
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. U=<b:b2=1>
in : R ‘
A4=<a,b,c:a3¥b2=c2=(bc)2=7:1,b“=c,c“=bc>'
is ‘

Vz=<b,c:bt=c= (bc)2=1>

The normal closure HS of Hin G is equal to H 1f an only 1f His
normal in G :

leen a subnormal subgroup H of G we describe a method to
construct a normal series from G to H as follows:

Let H, = G, H, = HC the normal closure of H'in G and\- SO on

" H; = H"! be a normal closure of H in H_,i=1,2, Then I-L is
: normalmH ipi=1,2,.

Let m be the length of a normal series from G to H, that is,
. G=Gy2G,2..2G,=H
We show that :
G=H,oH,2..0H,=H 1123 (*%)
is a normal series from G to H such that H; ¢ G;. The proof is by
mductlon oni. When i =0, H; = G, = G. Suppose that

I-I,_1 cG_,iz21.

-Then T ,
H;= Ht ¢ HGi‘1 = <xhx!:xe G,_,he H>CG,
because H ¢ G; and G; is normal in G i 21- Also H is normal in ’Hi _t- This
shows that 11.2.3 (**) is a normal series from G to H. :

Thus, given a subnormal subc,roup, we can wrlte down a normal .

SCI‘ICS WhOSC terms are ‘known’.

\h

\wﬁ “‘,. o
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11.3. COMPOSITION SERIES

A normal series; _
, G=G0:>Gl 2.2G;>..0G.=E

is said to be a composition series for G if and only if this series is

~ isomorphic to each of is reﬁnements

"Thus a composmon series cannot be reﬁned further, that i is, every

: reﬁnement of a composmon series is that series itself.

Since, in a composition series, we cannot msert addltlonal terms

‘between any subnormal subgroups G,_,, G;; every G, is a maximal normal

subgroup of G, . Thus we ‘can. define a composmons series in the
following manner as well.

’A normal senes
G= GODGID DGD DGk—E

is a composition series if and only if each G, is a maxlmal normal

subgroup of G_,i=12 ..k

We know that a normal subgroup H of a group G is maximal if and

Vonly if G/H is simple. Using this fact we have yet another equivalent

definition of a composition series as follows

Anormalsenes
G= GODG,3 :3G:> :)Gk—E

is a composmon series for G if and only 1f each factor G, _,/G is simple
i=1,2,.,k ‘ '

Every finite group G has a composmon series.

For if G is simple then
GDOE
is a composition series for G.
If G is not simple, then G has a maximal normal subgroup G,, say.
If G, is simple then
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G D G‘lk 2E

is a composition series for G. ' o v

v If G, is not“simple then G; has a maximal normal subgroup G,,
say. Isz is simple then ‘ -

G>o G, - G D E

s a composmon series for G. Continuing in this way, as G is ﬁmte we
end up in a composition series

G2G,2G;0..0G > 5G,=E

~ An infinite group may not have a composition series.

11.3.1. Examples: T
(2 Let A : .
' G=<a,b:a*=b2=(ab)p=1>
- Then

| A=< a:a*=1>

is a normal subgroup of G and_ -
- GDADE

~ is a composition sefies fdr G.
- (b) The series S
| A(DVD UDEU=<bb =1>
and ; V
A(DVD WDEW=<cra?=1>
of the alternating group A, given m example aftef Théo;em 11.2.5
are two ‘distinct’ composition series for A,. '

We, however, show that this distinctness is not every significant.

11.3.2. Theorem:
‘(Jordan-Holder theorem)
Any two compos1t10n series of a group G are 150morph1c
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Proof:
Let o
G=G;5G2..0GD2..0G=E.. -~ 11321

G=H,oH,>..0H>..0H=E.  1132(Q)

by any two composition series for G. By Schreier’s refinement theorem,
11.3.2 (1) and 11.3.2 (2) have isomorphic refinements and both are

- refinements of each other. So k = 1. However a composition series is its

own refinement. Thus 11.3.2 (1) and 11.3.2 (2) cannot be refined further

, Vo
The length of a composmon‘“ series of a group G is called the
composition length of G and the factors of a composmon senes are called .
composition factors.

_so that these series are isomorphic.

Since a finite group has maxrmal subgroups every f1mte group has -
a cornposition series.

Although, as already seen, every group has a normal series, an
arbitrary group, in general, may not have a composition series.

11.3.3. Example:
Let )
G=<a >

be the infinite cyclic group Smce Gis abehan every subgroup of G is
normal in G. An arbitrary subgroup of G is of the form

H, =< a*, k a natural number >

- and is itself an m~fm1te cychc group Thus we can msert additional terms of

the form |
Hymie= < aZMk :m,keZ)

in between Hk and E. So every normal series for G has a proper

refinement. Hence G has no composition senes

We now try to answer the questlon as to Wthh groups have
composition series.
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A sequence of subgroups
G=G,5G,2G,..0G,D.. 1133 ()
is called a descending normal chain if every G is a proper normal
subgroup of G_,,i=1,2,3,.

A descending normal chain 11 3 3 (1) is said to “break off” if
G, = E for some natural number k.

: For an arbitrary group G, a descending normal chain may not break

“off. | o o o

For example, the descending normal chain. : \
G=<a>>D<a?>>.. 3<a2 5.,

of an mﬁmte cycl1c group G, does not break off.

A sequence of subgroups o
E=F,cF,c.. CFC .cG 1133@2) .
of a group G is said to be an ascending normal chain for G if each F, is a
proper normal subgroup of F, ,, and a subnormal subgroup of G.

An ascending normal chain 11.3.3 (2) 18 sard to break off 1f for
some natural number n, F, =G.

‘For an arb1trary group G, an ascending normal chain may not
break off. :

1134 Examples
Let
'—a n=1,2, 3 >

ey P
G=<ayaa,,..: 1 @

be Priifer’s p™-group. G is abelian so that very subgroup of G is normal.
For a generator a, of G, let -

F-<a>

Then F, is a cyclic grou_p of order p**! and F, C FM1 for each
n= 0 1,2,3,.
The sequence

E=F,cF,c..cF c..
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-is ascending normal chain which does not break off

This is so because, for each natural number n, F, is ﬁmte while G

" -is an infinite group.

A group G 1is said to satxsfy the normal cham condition if all of its
ascending and descending normal chams break off.

We are now in a position to give a necessary and sufficient
condition for group G to have a compos1t10n series.

11.3.5. Theorem: A group Ghasa composrtlon series if and only if all its
ascending and descending normal chains break off. o \

Proof: Suppose that G has a composition series -
- G=G;2G;>..0G;>..0G,=E 1135(1)

. so that the composition length of G is k. We show that all ascendmg and
. descendmg normal chains of G break off. Let

G=Hy>H;>..O0H>.0H>.. 1135 (2)

 be a descending normal chain for G. Choose n > k. Then

G=HyoH,5.oH>..oH5E = 11350)

' is a normal series of length n + 1 > k. This contradicts Scheier’s theorem

because a composition series in 11.3.5 (1), being its own refinement,

«cannot be isomorphic to 11.3.5 (3). Hence the descendmg normal chain

11.3.5 (2) must breaks off.
 Next, let
E= Foch .CF,c..cG : 1135(4) '_

be an ascending normal chain. Take n > k. Since each F, is subnormal
there is a normal series ‘

G=Ho:>H1:>...:>Hm_,:>F,,:>F,,.’_'1:>...-:>F,:>FO=E m>1
through F, and of length > k. o |

This again contradlcts Scheier’s theorem. Thus all ascendmg

- .normal chains of G must break off after at most k steps

k Conversely, suppose that G has both the ascending chain condition

~ and the descending chain condition for subnormal subgroups. Since all the
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ascendm g normal chains break off, G and every other subnormal subgroup

“of G must have a maximal normal subgroup

For let a subnormal subgroup H of G have no maximal rlormal, '

subgroup. Then, since H is subnormal, there is a normal series
G=H,oH,>. :3 H,=H

from G to H. As H has no maximal normal subgroup, for each normal
subgroup K of H there is a normal subgroup U, of H such that

KcU,cH

So we can form an infinite ascending normal chain
EcKcUcU,c..cH=H,C..CH,=G,

for H (and also for G), which contradicts the hypothesm that all ascendmg '

_ normal chains for G break off.

Now we construct a composition series for G as follows

H,= E then
| G=H,> Hi =E |
is a compoSition_ series for G. If H, # E then H, has ma)rimal normal
- subgroup H,. If H, = E then ' '
"~ G=H,oH,oH,=E
is a conrposition series for G. If, however, H, # E then We continue as

before and find maximal normal subgroups H;, H,, ... successively. Since

G satisfies the descending normal chain condition for subnormal
subgroups, this sequence of successive maximal normal subgroups cannot
- continue indefinitely. So there exists an in*eger k such that H, = E. Thus

G=HoH,>..OoH,=E
is a composition series for G.
Suppose that G is a group with a composition series. Is it true that

every subgroup of G also has a composition series? The followmg
~ example shows that this is not always possible. .

Let G = H, and H, be a maximal normal subgroup of G. If’
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11;3.6. Example: = Let Ay be the restricted alternating group on
={1,2,3,..}. It was shown in Theorem 8.6.10 that AN is s1mple So AN
has a composition series, ,

‘ AyDE. _ ‘ _ _ o
We take the subgroup H of AN generated by all pennutations of the form
‘ an=(4m~3,4m - 1) (4m -2, 4m), m = 1,23,

Then H is an infinitely generated abellan 2- group Consider how

the ascending normal chain

- G cGc..cG,C..
of subgroups of H, where -

G -<al,a2,.. Ay >

- This ascending normal chain does not break off Hence, by theorem

11 3.5, H has no composition series.

We shall, however, show that the class of all subnormal subgroups :
of a group with a composition series has this property. Thus:

11.<3.7. Theorem: A subnormal subgroup H of a group G with a

. domposition series is itself a group with a composition series.

" Proof: Consider the normal series

Gi= G,0G;D.. D.Gi=H'D G, 2.D0G.=E

of G through H. This series can be refined to a composition series of G.
The part of the refined series from H to E is then a composmon series

~of H.

11.3.8. Corollary: If G is a group with'a composition series and H is a
subnormal subgroup then the composition length of H is less than or equal

-to the composition length of G.

Also the composition factors of H form a part of the composrtlon
factors of G

11.3.9. Corollary: If H is a normal subgroup of a group G with a |

composition series then G/H is a group with a composition series and its
composition length is equal to the dlfference of the composition lengths of
G and of H. '
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- Thata subgroup of a group with a composition series may not have
a composition series is in contrast to the existence of a normal series for
subgroups of a group havmg a normal senes

11.3.10. Theorem: Every subgroup F of a group G with a normal series
itself has a normal series whose factors are 1somorphxc to subgroups of the
factors of the normal series of G. :

Proof: Let' a normal series for G be
G=Gy2G,2..2G,;2..2G,=E. 11.3.10(1)

TakeF FN G, ThenF, ,—FmG_lDF Also, since G; 1snorma1m‘

G;_;, F,is normal in F, _; so that we have a normal series
F-FOQF,;...QFi;...QFk—_E : : 11.3.10(.2)

' for F. If we take _
| | "H=F,H'=E,K= G, ,,K' G,

-~ .in Zassenhaus lemma then

HMHNK)=FAG,_,, H’(HmK') FmG
. KKNH=GFNG.) , KKNH)=G;
and - :
H'(H  KYH(H'NK) = (F N ;) F G =F,_/F.
KK ~HYK'K ~ H) = G, F NG, /G, = G,F,_/G,
andF,_/F,=GF,_/G. N . .\

' Since G; ¢ G, and F, |, € G, _;, GF,, € G; _ . Thus G; F, /G, is a
subgroup.of the factor G, 1/G Hence F, _/F,is lsomorphlc to a subgroup
of G;_,/G;, as requnred

11.4. CHIEF OR PRINCIPAL SERIES

Another important type of series of subgroups of a group G is the

chief series (or principal series) of the group which we now define.

Asequence i
- G=Gy>G;D. :G: DGk—E
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. is called a chzef series (prmczpal series) for G if each G, isa maxrmal "

normal subgroup of G contamed inG,_

Factor groups of a chxef series are called chief or prmczpal factors
of G. :

Clearly every chief series is a normal series However a normal
series may not be a chief SCI‘]C‘S nor it may have a refinement which is a

~ chief series.

In the group of example of Theorem 11.2.5, Vis a maximal normal

“ subgroup of G. No proper subgroup of V is normal in G.

Hence' _ .
h GDVDE * -\
is a normal series for G which is ne1ther a chief series nor can be refined to
a chief series for G. -

Here E is not a'maximal normal subgroup of G contained in V. The

- subgroup U contains E as a normal subgroup and U is not normal in G

The following theorem and its proof are analogous toT heorem

- 11.3:6 for composmon series for G.

-.11.4.1. Theorem: A group G has a chlef series if and only 1f every

ascending and descending normal chain of subgroups of G breaks off.
IfGhasa chlef series then every sequence of subgroups -
G=Gy5G;>..5G,>..5G,=E o
such tvhat each G'i is normai in G can he refined to a chief series of G.

This is so because every proper normal subgroup of G is contained:
in a maximal normal subgroup of G and also contains a maximal normal
subgroup of G.

For if G, is not maximal, then there is a normal subgroup Kl of G
containing G,. If K, is maximal we are finished. Otherwise there is a

* normal subgroup K, of G containing Kl and so on. Thus we have an
“ascending cha1n

13

G,cK,cK,c..cG
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~of normal subgroups of G. This ascending chain breaks off so that the term “
preceeding G will be a max1ma1 normal subgroup of G contammg G,.

Similarly for the other case.

It should be noted that chief factors of a group G need not be
’51mple groups. (See the remarks preceding Theorem 11.4.1).

EXERCISES

1. Wnte down a chief series for S,

2. Ifall the descending normal chains for a group G break off
then show that every normal subgroup of G contams a
minimal normal subgroup. ° :

3. If H is a subnormal subgroup of G then, for any
’ automorphism ¢ of G, ¢ (H) also is subnormal in G. :

4. Let H be a subnormal subgroup of G and o any
automorphism of G. PutH= G and H; =H ', i > 1. Then
| G=H,oH,>..0H_ =H |
isa normal series from G to H and each. H; is mapped onto 1tse1f -
under ¢ ' '

5. If G is a finite p-group then G has.a chlef series such that all |
chief factors are cyclic groups of order p.

(Hmt Use the fact that the centre of a finite p-group is
non-trivial). :

6. ~ Show that the infinite d1hedra1 group does not have a
composition series. : :

7. A group G is said to be characteristt'cally simple if it has no
‘ proper characteristic subgroup. Show that the chief factors of .
a group G are characteristically simple.-

8. Show that every cyclic group C,, n = p, p, ... p,» where p;, are
not necessarily distinct, has a composition series with
composition factors as cyclic group € of order p,, 1 Si <k
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All other composmon series of C ‘have composition factors
Cc(p) where cisa permutatlon of the set. { Pu: Py ,pk}

Show that the only composmon senes for S,, n >5is
S.2A,DE |
Let G be the direct pfoduct of simple subgroups
| H, H,, ... H, B
Write a composmon series for G

What is the total number of all composmon series of G\7
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- In this chapter we discuss a new class of groups called solvable
- groups. This contains the class of all abelian. groups. Solvable groups are,
. closely related to certam problems involving the solutions of an equation
- of the form :

ax" + ax"! +. +a,=0

by radicals. This relation actually proved to be the basis of Galois Theory
In what follows we shall briefly descnbe some propemes of solvable

~_groups. '
 12.1. SOLVABLE GROUPS

_ Let G be a group and A,y B be subgroups of G. We denote by

[A, B] the group generated by all commutators [a, b, a € A, b € B.

Now we inductively define a series of subgroups of G as follows.

We put .

G® =G and Gi+ D =[GH, GO, i2 0.

G(0 is called the ith derived subgroup of G.

The group G is said to be solvable if G® = E, the 1dent1ty '

- subgroup, for some integer k. The smallest mteger k for which G® = E is
called the solvability length of G. :

A solvable group of solvability lenOth 2 is called a metabelian

group. Thus a metabehen group is one whose derived group is abelian.

12.1.1. Examples
@) Every abelian group is solvable of solvability length 1.

For if A is an abelian group then
A';<[al,az] ia,a,€ A>=E

313
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Gi)  The group Q of quaternions + I, % i, £ j, £ k is solvable of
length 2.
Here the first derived group .
Q=R Q=<[xy:xyeQ>
) = (£} | |
which is abelian and so Q” =E. Thus Qis metabelian.
(1i1) . The symmetric group S, which has a presentation‘ |
| S, = <a,b:ad=br= (aby2=1>
is metabelian. , - - ' ' \
Here the first derived group of S;isH=<a:a®=1>
which is abelian. ‘
(iv)  The alternating groups A,, n <4 are solvable. |
However, for n 25, A, beirlg a non-abetian simp]é group,
is not solvable.

12.2. THEOREMS ON SOLVABLE GROUPS

For a group G, let G’ =[G, Gl =< [g}, &), 81- & € G>.
If'A and B are subgroups of a group G then A C B implies A" C

B’. This is so because, for a,,a, € A, al, a, € Bsothat [a,, a,] € B.

We now give a new charactensatlon of solvable groups

12.2.1. Theorem: A group G is solvable if and only if it has a normal -

- senes

G=G, ;)'G, 2G,2...2G_;2G,=E
in which G,_,/G, are abelian for 1 <i<k.

Proof: Suppose that G is a solvable group of solvab111ty lenOth k. Then the

- series.

G G(O):)G(l):) ..... DG(""“DG(") E

is a normal series in G with its factors G /G as ab'elian, by Theorem -
6.4.2
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Conversely, suppose that G has a normal series |
G= Go__ ..... DGk 1DGk—E

where the factors G;_,/G; are abelian. Consxder first the factor G/G, which
is abehan By Theorem 6.4.2

Gh=G’ c G
Next, G,/G, is aelian so G,’ c G,. Hence
G(Z)CG cG2 S

Contmumg in th1s way we mductlvely find that
GO G =ECGH ‘
Hence G® =E and G is solvable, as required. ’

From now on we shall take the statement of Theorem 12 21asa
, deﬁmtlon of solvable groups

We now dzscuss the nature of subgroups and factor groups of a
 solvable group. ‘

' 12.2.2. Theorem:

o

1. Every subgroup and factor group of a solvable group is
‘ solvable. r
2. For a group G and a normal subgroup N of G, G is solvable if
~and only if both N and G/N are solvable. _

" Proof:

1. Let G be a solvable group and H a subgroup of G. Let k be
the solvability length.of G so that G(k) E.Now

HcG
implies
HcG
and, inductively,
CECHWCG®W=E
so that H® = E. Hence H is solvable.
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Now let N be a normal subgroup of a solvable group G. Con51der
the factor group G/N. Since G is solvable, G has a normal series

!

_ " G=Gy2G 2..-2G,=E

thh abehan factors. Consuier now the series B
G/N = GoN/N 2 G;N/N >...2G, NIN=E. 1222(%)
Since G; 1s normal in G_, GiN/N is normal in G,_; N/N. Also,‘\
since o

(G, NIN)/ (G;N/N) = G,_|/G;,

by Theorem 6.2.4, and G,_,/G,; is abelian, (G;_; N/N) / (GN/N) is abelian.
Hence 12.2.2 (*) is a normal series for G/N w1th abelian factors So /N is
solvable. : : : ,

2. Suppose that G is solvable. Then, by the first part of the
- theorem, for any normal subgroup N, both N and G/N are
solvable.

“Conversely suppose that for a normal subgroup N, both N and GIN
are solvable. Then both N and G/N have normal senes with abelian
factors. ~

Now consider the séries | ‘
N=N,ON;2...2N,=E . 12226
and ' k ' - , '
| /N=GyN2GyN....G/N= (N} =E 12.22 (i)
with factors N, -/N; and (G I/N)as abelian for 1 <i<qand 1 <j<p. |
So ] ' \ ’
G=G2G,2...2G,=N2ON,2...oN,=E  122.2 i)
Since o ' T '
G /G = (G_/N)/ (Gi/N),

the factors in 12.2.2 (iii) are all abelian so that 12:2.2 (iii) is a normal |
series with abelian factors. Hence G is solvable. :

| Frorrx the proof of the above theorem, it may be noted that the
-solvability length of a subgroup or factor group of a solvable group does
not exceed the solvability length of the group. |
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1223 Theorem: The direct product of a finite number of solvable
groups is solvable.

Proof: It is sufficient to prove the theorem for the direct product of two:

groups. because an easy induction on the number of factors proves the
theorem in that case. .

Now let

~  G=AXB. ,
,,where A and B are solvab]e Thefb A aﬂdB have Hqu, sa;aéc
A A2 5A,D. .2 ASEE ’
"~ and » ) : -
B= Bo 2 Bl 2..2B, =E

with abellan factors in both cases. Wlthout any loss of generallty one can

* suppose that g 2 p. Then '

G=AxXBDA;xB;2..2A,xB,DEXB, .,.:_)E'qusE _

" is normal ‘series: with abelian factors. Here (Ai;, XB,_)/ (A XB)is
“ isornorphic to (A-_1/A-) X (B;_,/B;) which is abelian. Hence Gis solvable.

Or, alternatlvely, ifG=A X B then G/A = B. Since both A and G/A are
solvable, G is solvable, by Theorem 12 2.2. : '

Note that the solvability ]ength of the direct product is equal tothe |

ma)umum of the solvability lengths of the direct factors

Theorem 12.2.3 is not valid for the direct p'rod_uct of an infinite
number of solvable groups.

, For example if, for each interger n,n=lI, 2 ‘HnAis a solvable
group of solvability length n, then - B

| . - °F 5,
is not a solvable group. .

However the direct product of any finite or infinite number of
solvable groups whose solvability lengths are bounded by a fixed integer
k, is solvable and its solvability length does not exceed k.
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12.2.4. Theorem: Every finite o-group is solvable. '

Proof: Let G be a p- group of order p*. We apply induction on n to prove:
the theorem.

Whenn =1, G is a cyclic group of order p, hence abelian and

- therefore solvable. So suppose that n > 1 and suppose that all groups of

order p™, m < n, are solvable. Let G a group of order p~. By Theorem
5.4.5, G has non-trivial centre {(G). : :

C(G), being abelian, is solvable. Also G/ (G) has order p™, for
some m < n and so is solvable, by our induction hypothesrs So, by
Theorem 12.2.2,G s solvable \

12.2.5. Theorem: A finite group‘é is solvable if and only if the factor

groups in a composition series from G to E are cyclic of prime order.

Proof: Suppose that G is finite and solvable. Then there is an integer k
such that G® = E. Since G/G’ is abelian and G is finite, G has a maximal

normal subgroup G, 2 G’ such that G/G, is abelian and simple. Then G/G,
is cyclic of prime order.

As a subgroup of G, G, is solvable and so contains a maximal normal
subgroup G, 2 G,” with G,/G; cyclic of prime order. Since G is finite, this
process of finding successive ‘maximal normal subgroups ends after a
finite number of steps so that there is an integer r such that G, = E. Then

G= G0 2 Gl 2..2G,=E
isa composrtlon series w1th G _/G; cyclic of prlme order

§

Since any two composrtlon series of G are 1somorph1c the. above
statement is true for any composition series. N

Conversely, suppose that G has a composition series
G=Gy2G,2..2G,=E
with G;_,/G; of prime order and hence abelian. Since G/G, is abelian,
G, 2 G". Next since G/G, is abelian, |
. G;2G/2G,".
Continuing is this way we find that
- E=G,2GWDE
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S0 G® = E, Hence G is solvable.

2.6. Theorém" Forn25, S, isnot SOlvable

Proof: The alternating group A, of degree n is a subgroup of S, . If S, is -

solvable then A , as a subgroup of S, is solvable But, forn>5, A, is a
non-abelian simple group and hence not solvable. Therefore S, is not
solvable. -

EXERCISES

1. If H, K are solvable subgroups of a group G w1th H normal in
G then HK is a solvable subgroup of G.
(Hint: Here HK is a subgroup of G and HK/H = KK N His
solvable. Now apply Theorem 11.2.2 (2)). .

2. Every grbup of order p2q, where p, q are primes is solvable..

The infinite dihedral group D, and the ﬁmte dihedral groups

D,, . n>2 are solvable.
(Hint: Here D, =<a, b: az—b2—1>and

» = <(ab)>).
4. Show that S, A, and S, are all solvable.

5.*  (Philip Hall). Let G be a finite group of order n. Suppose that,
- for every prime divisor p of n, n = pm and (p, m) = 1, Ghas a
subgroup of order m. Show that G is solvable.
(Such a subgroup of order m is called a sylow p-complement).

6.** Every finite gfoup_ of ddd order is solvable.
(This is a very deep result of W. Feit and J.G. Thomson proved in
one of their joint papers in 1963. As a consequence of this every
non-abelian finite simple group has even order).

O b
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NILPOTNET GROUPS

Some properties of finite p-groups were discussed in Chapter 5.

One of the characteristic properties of a finite p-group is that its centre is

‘non-trivial. A generalisation of the class of p-groups is-the class of

" nilpotent groups which will be defined in this chapter. As we shall sge, the

class of nilpotent groups lies betweerr the class of abelian groups d the
class of solvable groups : :

13, 1. NILPOTENT GROUPS
LetGbea group. A ce_ntral series in G is a normal series ,
. 6=G,5G;5..5G=E S 131
such that S |
(i) - Gjis anormal subgrbup of G,1<i<k; ,an_d'
(i) G_J/G,isa subgroup of the centre of G/G,1<i<k.

Following observations regardmo the defmmon of a central series
are worthy of consideration.

(a) Requirement (i) is deducible from (ii) because if -G l/G is
~ . a central subgroup of G/G,, then for each g; € G; ¢ .G

andge G,

[g G], g]Glj - G
sothatgg, g'gle G,, that is, gg;gte gl G, =G, SoG is
normalinG.

(b) = The last but one term namely G, _; is a cen_tral subgroup of
~ G. This is so because G,_, / G, = Gy, is a subgroup of the
centre of G/G, =G. :

321
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One of the definitions of a nilpotent group is as follows:

A group G is said to be nilpotent if G has a central series.

- 13.1.1. Examples:

S

'Every abelian group is mlpotent

‘Here a central series for an abelian group A is

A=A DA =E E
where A, is normal in A and AJA, = A/A, with
C(A/A)=AJA =A.

Consider the group - .

Q={zI, +i,ij,ik}
of quatemxons Take Q, = {£1}. Then Q, is normal in Q
and Q/Q,, being of order 4, is abelian. Hence  (Q/Q,) =
Q/Q, so that Q/Q, is a subgroup (improper) of Q/Q,. If we
take Q, = E then conditions (i) and (u) are satisfied for the
series’

Q—Q 5Q,DQ,E 1311(1)

so that 13.2.1 (I) is a central series for Q Hence Q is
nilpotent.

Con31der the symmetrxc group
S;=<a,b,=a?=b2=(ab}?=1>..

The only non-trivial normal subgroup of S5 is
H=<a:ad=1>,

So the only non- tr1v1a1 normal series for S3lS
S;>HOE |

which is not a central series for S, because H/E is not

contained in the centre of S4/E.

Here centre of S,/E (= S3) is trivial whlle H/E H. So S5 is
not mlpotent :
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It may, howéver, be noted that S, is solvable. Thus a solvable
_group need not be nilpotent. "

- Later on we shall see that every nilpotent group is‘solvable.

As before, for subgroups A and B of a group G, we put
[A,Bl=<]a, b]:ac A,be B>.
- Itis easy to verify that A; c A, B, C B implies [A|, B;] C [A, B].

'We now-define the lower central series of G as follows.

Také Y, (G) = G and put v;.(G) = [v;_, (G), G] fori=1. Then:
¥(G) is normal in G. o
This is proved by induction on i.
Fori=0, Y, (G)=Gis trwlally anormal subgroup of G For i=1,
¥, (G) =[G, G] which, being the derived group of G, is normal in G.
_ . Suppose that i = 1 and that Vit (G) is normal in G. Let z be a
generator of y; (G). Then
| z=[x Y]
forxe y;,_;(G)andy € G. So, forany g € G,
| z8 = [x8, y8]. _
By the induction hypothes1s Yo (G) is normal in G so x8 € Yi—; (G) while

y¢ € G. Hence z¢ € v(G). So, by Theorem 6.1 4, y, (G) is normal in G.
Thus we have a normal series. .

G=1v,(G)2Y, (G) 2... 2% (G)... | 4
- This series is said to Be a lower central series for G if Yi (G) =E
for some ihteger k. |

To see that

G=y,G)2Y,(G)>..0Y%(G)=E 13.1.1 (0)

is, in fact, a central series, consider the factor groups '
Yiei (G) /Yy (G) and- Gly; (G). We show that Yiop (@ /Y, (G)is a central
subgroup of Gfy; (G).
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For this lety € v, ; (G) and g € G . Then the- commutator
G, 8% (@1=1n 8l ©) |
=% @ |
because [y gl € v; (G). Hence y Y (G) commutes w1th 8 yl (G) as requlred |

In view of the above observatlons we have yet another deﬁmtlon :
of a mlpotent group. : :

A group G is said to be nilpotent if and only if it has a lower
central series (II) :

The integer k is said to be the (mlpotency) class of G and G is said -
to be a nilpotent group of class k. :

~ The remarks precedmg the above paragraph are, in fact, -easy
consequences of the following. ~

13.1.2. Lemma: Let , o , .
G=G,0G;2..0G=E = S 13.12Q1)

be such that G; is normal in G, 1 <i<k. Then (1) is a central series for G

. if and only if

[G,I,G]CG 1<i<k.

Proof: The group G, , / G, is a central subgroup of G/G,; if and Only if for

eachye Gi_l;-geG _ e

G Gl =G, .
thatis, :f «: . d onlyif [y, g] € G;, which is equivalent to saying that
[G,,,G]CG 1<i<k. |

: 13 1.3. Theorem A group G, w1th identity 1, is mlpotent of class k if and’

only if
({81 82); &3], 84l - 1, 8k s 1] = 1.
Proof: 'By lemma 13.1.2, |
G=G;DG;D..0G,={1}
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is a central series for G and so G is a nilpotent group of class k, 1f and ,
only 1f

(G, ,,G]cG,,i=1,2,...,k‘.ﬂ.
~ Now,fori=1,2, ...,k
[Gp, G] =[G, Gl Gy, & [ol’g2]e Gl
[G, Gl c G, = [lg, &) &l € G,
' [Gza GlcG & [[[gl; 2l 8l &l € G;
~and so on,
[Gk 1’G}CGk"'{1}<=>[ [[[gpgz] 83] 84] s gk+l]€ q;: {1}

. e [l &), gsl, 8l -1 gl = = {1}
forall g,, 8, g3, .-» gk+l €G.
13.14. Exaniple:
‘1. | Inthe dihedral group
D4—<a b: a —b -(ab) —1>

_ every commutator [g,, g,}, 81, & € D, is either 1 or is a%. Also [a2 gl = 1
_ for all g,€D,. Hence - '

[[817 82]; g&l=1

for all 81» 82 83 € Dy. So Dy is ni}pntcnz of class 2.

-

" In contrast the symmetric group of degree 3 having the
- presentation: : ,

S,=<a,b:d =b = (@b} = 1>
_is not nilpotent: Here: |

, each commutator [g,, &), &, & € Gis either 1 oraora™.
Hence .
[[g1 2], 8]

is either 1 oraora™, for all g, 8, 83 € S3 So

[[g1: &1 g3]¢1
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for every choice.of g, §,, 83 € S;- The same is true for

[.... [[gl" gz]’ g}] "']’, gk+ 1] # 1

- for e\}ery choice of g;, 1 <i<k+ 1. Hence S, is not nilpotent.

13.1.4: Theorem: Every suboroup and factor group of a mlpotent group
is nilpotent.

Proof:_Suppose that H is a subgroup of a nilpotent group G. Let
G=G,0G,2..2G,=E o 1314 (1)
be a central series for G. Put H;=H N G;, 1 <i<k. Then H, = Han ’

H, = E. Also H; is normal in H because G; is normal in G Moreover, as is
obvious,

[H;_,, H c H.

Since: |
H,_,cG_,.HcCG;
(H_,Hlc [Gi-l ,Gl12 G,

So

' [H_,HlcHNG,=H,
Hence the series , , . .
H=H,oH,.oH=E " 13.14(2)

is a central series for H. Therefore H is nilpotent.

Next, let H be a normal subgroup of G and consider the factor

-group G/H. Consider the series

GH=G/H2G HHD..2GWH=(H=E  13140)

Since G, is normal in G, G, H/H is normal in G/H To see that (3)1s a .
central series, it only remains to show that

[G,, WH, G/H} c G, H/H '1314(4)

For this, let y ¢ G, ;, g € G. then [y, g] € G; so that [yH gH] is an
arbitrary element of [G,_, H/H, G/H]. Also :

bH, gHl = [y, g]He G, WH
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which establlshee (4) Hence B)isa central series for G/H so that G/H is
nilpotent. _ :

In contrast to Theorem 12.2.2(2), if, for a normal subgroup H of a
group G, both H and G/H are nilpotent then it 19 not necessary that G be
nilpotent. . . ‘

A counter example in this case s is the symmetric group
- S;=<a,b:a¥=b2=(ab)*=1>

. having

H <a: ad=1>

as a normal subgroup. Here both H and G/H are mlpotent However G is
not nilpotent. :

We _also‘ mention that the symmetric grdup S, n2 3 is not
nilpotent. The reason is that S, contains an isomorphic copy of S; as a
subgroup and S; is not nilpotent. :

13.1.6. Theorem: The direct product of a finite number of mlpotent
groups is mlpotent

Proof: We prove the result for the direct product of only two groups. For a
direct -product involving a finite number of direct factors, the result
follows by an easy induction. '

Let: , _
G=HxK

where the central series for H and K are
H=H,OH,>..0H,=E 13.16()
K=K,5K,>..0K, =E. L 1BL6Q)

We can insert additional terms in the series to make the length of the series
13.1.6 (1) and 13.1.6 (2) equal. Let k be the common length of the
enlarged series.

Then,
G=G02G| 2."'2Gk_=E

where
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- G;=H,; xK, 1<i<k,
isa central series for G. Here .
[G,.., Gl = [H,, XK”,HxK] |
=[H_, HI x [K;_, KICH; xK; =G, i

One may note that the class of the direct product is the maximum
of the classes of the dlrect factors.

“ Also note that Theorem 13.1.5 does not hold for the direct product
of an infinite number of nilpotent groups. : :

Here again, for each integer n,.the group . o \
K,=Dp=<a,b:a"=b2=(ab)2=1>

of order 2m1 is a nilpotent group of class percisely n and the direct product

G=nEIK“

is net a nilpotent group.

12.1.6. Theorem: ‘Every finite p-group is mlpotent

Proof: Let P be a finite p-group of order p". By theorem 5.4. 5 P has a.
non-trivial centre. Let {(P) be the centre of P. We apply induction on n to
prove the theorem.

For n = 0 or 1, P is either the trivial group or cyclic group of order
p and hence abelian and so nilpotent. So we suppose that n > 1 and that all
p-group of order pk, k < n are nilpotent. Now take the group P of order p® -

“and centre {(P). The order of {(P)is 2 p. If the ordér of {(P) is p® then
- P={(P) is abelian and hence nilpotent. Suppose that the order p* of {(P) is

less than po. Then {(P) is nilpotent, by our induction hypothesis, (also -
form the fact that {(P) is abelian). Also P/C (P) has order p™, m < n so that
P/C(P) is nilpotent. Let

Prey=Polgpy o Pugpy o .. o Puigpy = (4P)}
be a central series of P/C..(P)" Then, by lemma 13.1.2,

[Pe.; / §@), P/epich ey 1si<k

| That is, foreachy € P,_, and x € P, C |
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[y, x]1 {(P) € Py L (P)

so that [y, x] € P,. Hence [P,_;, P)C P, 1 <i<k. Thus
P=P, 5P, D>..0P,=(P)DP,,,=E

is a central series for P and P is nilpotent. |

IfHisa subgfoup of G then alv_Qays H'c; Ng(H). The following

N theorem explains as to when H is propérly contained in Ng(H).

13.1.8. Theorem: .Let' G be a nilpotent group and H a proper subgroup of
G. Then H is a proper subgroup of its normaliser Ng(H).
Proof: Since G is nilpoteht, Y«(G) ='Efor some 1integer k. If

G= ’YO(G}D Y. (G)D...onG)Y=E, -

is a central series for G and H a propér subgroup of G then there is an
integer i # O such that , _
| YKG) CHbut YH(G) ZH. ) 1318 1)
From " ' \ " :

4@, Gl=v(G) cH

we have

.

[v::1(G); Hl c H. '

| Th_at is, for each y € v,_((G),

yHy'!lcH

so that y € Ng(H). Since y is arbitrary, v, ,(G) < Ng(H). So, from
13.1.8 (1), we see that there is an element x of G such that x ¢ Hand x €
Ng(H). Hence Ng(H) contains H properly.

13.2. FINITE NILPOTENT G.ROU‘PS

In this section we characterise finite nil_potén‘t groups.” We shall
show that a finite nilpotent group is the direct product of its Sylow p-
subgroups. First we prove the following theorem. o
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13.2.1. Theorem: Let G be a nilpotent group and H a subgroup of prime
- index in G. Then H is normal in G.
‘Proof: In a nilpotent group G, the normaliser Ng(H) of H contains. H
properly, by theorem 13.1.6. Now- :
p=(G:H)=(G: NzH)). NgzH) : H)
so that either (G : Ng(H)) = 1 or (N;(H) : H) = 1 The later equation
implies H = N(H), a contradiction. Hence (G : Ng(H)) = 1 so that ’

G = Ng(H). Thus H is normal in G.
Now we give a characterisation of finite nilpotent groups.

13.2.2. Theorem: A. ﬁmte group Gis mlpotent if and only if C§ is the
“direct product of its Sylow p-subgroups.

Proof: Suppose that G is the direct product of 1ts Sylow p-subgroups.
Then, by Theorems 13.1.6 and 13.1.7 applied in succession, G is nilpotent.

Conversely, suppese that G is nilpotent and P a Sylow p- subgroup
of G. Let' N = Ng(P). Then P is a proper subgroup of N. By Corollary
9.3.3. N is its own normaliser. If N is a proper subgroup of G then N
’k cannot be its own normaliser, a contradiction. Hence :

N =G =Ng(P)

A W

e

Thus P is normal in G.

v =am 8~ x|

=

Now if P;, P,, ..., P, are the Sylow p;-subgroups of G of order p;%,

G - s

{} “1<i<k(sothatn= it P2 o DLX = the order of G), then, for any two
elementsg€ Pandb € P;,i#], ' '

[a, ble P, P,=E.
Heuce ab = ba. So P, and P; commate element wise. Also then

P, xP,x...xP, |

is a suboroup of G having order equal to that of G and so comcnde°. with
G. Hence the theorem. ’
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13.3. UPPER CENTRAL SERIES

Given a group G, we define anothér .type -of series for G and
establish its relationship with the lower central series of G. '

We first define a class of subgrohp & (G) of G as follows:
We put | - R

| Q G)=E
and let , (G) be that subgroup of G for which
Gi ©) Gt (G) = C (GG, (G) foriz1.

Here { (H) denotes the centre of H. We thus hdve a series
| E=L@cf©c..cq{@c..cG  133()
in which €..; (G) is a normal subgroup of ; (G). '

- The seﬁes 13.3 (1) is called the upper central series for ‘G if
&, (G) = G for some integer k.

13.3.1 Example:
Consider the dlhedral group

G=D,=<a b=a*=b2=(abp=1>.
- Here Co (G)=E and
LGV (@) =G, Q) =L (G =<a?:a*=1>

so that {, (G) € (G) Now G/{ (G) is isomorphic to the non-cyclic group
of order 4 which is ableian. Hence

&(G/E, (G)r=G/E, (G).
So
|  L©@/L(@=GL, @
" Therefore &, (G) = G. Thus
E= Co(G)CC1 G cL (=G

is the upper central series for G.
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In general, a group may or may not have an upper central series.
For instance S3 has no upper central series.

* 13.3.2. Theorem: Every term (G) of the upper central series of a gfoup |

G is a characteristic subgroup of G.
Proof: Let '
E=4 @)y ©)C..cq©)=C

be the upper central series of G. We' prove the theorem by induction on i.
Fori=0,§ (G)=Eandfori=1,§ (G =¢ (G) are characteristic

subgroups of G.

Now suppose that ,._; (G) is a characteristic subgroup of G\for
> 1 and consider { (G). Let @ be an automorphism of G. Then

3 a(z;,_ (G = (G). Also, for x € & (G),
[x &y (G, ¥ Gy (BN =Gy (G), forall y€ G, .

by definition of {; (G). So, applying aon both sides of the above equation,

- we have
[a(x) Gt (G) a(y) C.- G)= a(g-l G)= C.—] (G)

As y ranges over the whole of G, a (y) ranges over the whole of G. Hence,
replacing a(y) again with y, we have,

[@() Gy G Gy ©) =L, G forallye G.
That is a(x) € § (G). Hence , (G) is characteristic.

- 13.3.3. Theorem. Let

G=G;>2G>..0G E

 be a central series for G. Then G, 2%, (G),i=0, 1,2, ..., k and

Gi SL Oy fori=0,1,2, .. k.

Proof: For i = 0, we have G; = G and Y4(G) = G Hence Gy 2 74(G). So we

have a basis for induction. Suppose that G; 2 ¥; (G) fori = 0. We have to
show that G, ,; D ¥;,, (G):

Since G;/G,,, is contained in the centre of G/G,,, we have

[g. i+1* gG.+1] Gl+l fOI‘ al] gl € G and g € G
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So E : ,
( [g. gl € G,y for all g€ Gandge G.
Hencé : - . ‘
' [Gl, G] c G,
But then”

Yi(G) =[; (G) GIcIG; Gl CGH.,
by mduct10n hypothe51s Hence, G; 2 ¥, (G) for all i 1 =0,1,2,...k

. Now to prove that G, ; € {(G) for i = 0, 1, 2, .., k, we first

observe that fori =0, G, = E C C_,k(G) so that we have a stm for
induction.

Now suppose that - -
| G, C §(G)fori=0.

We show that '

Gyei-1 € Gt (G- 133.3 (1)

For this, consider the factor gfoup G/Gy ;. _Sincé G,.i-1/Gy; is in the centre

of G/G, ,, its image, under the homomorphism from G/G, _; to G/§,(G), is

in the centre of G/{,(G). But the centre of G/{,(G) is §,,(G)/§,(G). Hence,

. for each x € G,_;_, xG,; is mapped onto the element x {,(G) of §,,(G)/

4(G). So x € &, ,(G) and this establishes 13.3.3 (1).

13.3.4. Corollary: If G has a central series

- G=GyoGD. :)Gk—E
then §, (G) = G.
(Thus, in a nilpotent group, the upper central series leads to the group
itself in a finite number of steps.)
Proof: From :
| G CL(G) fori=0,1,2, = k,
- we have, fork =1, _ '
G =Gy =G, 4 (G).
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But z;k‘(G) C G. Hence £, (G)=G.

13.3.5. Corollary: Ina nilpotent group G, the upper dnd lower central
series have the same length.

13.4. THE FRATI'INI SUBGROUP

We recall that a subgroup M of a group G is saidftobe maximal if
M is not properly contained in any other proper subgroup of G.

~We now define the Frattini subgroup of group G as folows:

The Frattini subgroup ® (G)ofa group G is the mtersectron of all

‘ the maximal subgroups of G.

If G has no maximal subgroup then ® (G) is taken as G itself.

Since an automorphism of a group maps a maximal subgroup onto
a maximal subgroup and hence permutes.its maximal subgroups, ® (G) is
a characteristic subgroup of G. Hence ® (G) is 2 normal subgroup of G.

13.4.1. Example: , , 4
Consider the group of Q of quaternions * I, * i, #j, + k. The
maximal SUbgroups of Qare {* L %, i}, {£ L, £j}, {* L, £k} sothat

e@={1},
is the Frattini subgroup of G.

" However, the Frattini subgroup of the alternating group A, of degree 4is
- trivial.

Here maximal subgroups of A, are all of order 3 or 4. So these intersect
only in the identity subgroup. . :

. The following theorem glves a characterrsatron of the Frattmr
subgroup of a group.

13.4.2. Theorem: The Frattini subgroup of a group G consists of
precisely those elements of G which can be omitted from every generating -
system of generators of G in which they occur.

That is, a € ® (G) if and only if whenever G =< X, a > for a subset X of
G then already G =< X >. -
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Proof: Suppose that a € ® (G) and, for an arbitrary subset X of G,

G=<X,a> Supposé that G # < X >. Then there is a maximal subgroup
.M of G containing X sothat G=<M,a>. But<M>= M¢Gand

ae ® (G) C M a contradlctlon Hence G=< X >.

Conversely suppose that, for an element a € G snd'any subset X of
G, ‘ '

G=<X,a> = G=<X>.
Take X =.,M, a maximal subgroup of G.
Then we have <M >=M # G so that
<M,a>#G )
(for otherwise G = < M > by our supposition) "
Hence ' \
"<M,a>=M .
whioh implies a € M for an arbitary maximal subgroup M.
| Thus a€ @ (G), as required. o
13.4.2. 'Corollary: For any subset X of G, < X, ® (G) > =G implies
‘ <X>=G. |
Let-G be a group and H a normal subgroup of G. A subgroup K of
G is said to be a partial complement of Hin G if
G=HK.

13.4.3. Theorem: A normal subgroup H of G is contajned‘in the Frattini
subgroup of G if and only if H has no partial complement in G.

Proof: Let H be a normal subgroup of G and contained in ¢ (G)‘ Suppose _'
that H has a partial complement K in G. Then

> <H,K>=HK=G.
ButHC @ (G)implies
G=<H,K>=K,
a contradiction. Hence H has no partial complement in G.
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Conversely, suppose that a normal subgroup H has no partial
complement in G. Then, for each subgroup K of G, HK # G. Choose K to
be a maximal subgroup of G. Then HK # G implies H ¢ K for every
maximal subgroup K of G. Hence HC ® (G).

13.4.4. Theorem Let H be a normak subgroup of G contained in @ (G).

- Then

® (G/H) =9 (G/H.

Proof: Under the natural homomorphism 1 : G — G/H, there is a one-one
correspondence between subgroups of G/H and those subgroups of G
which contain H. Since H ¢ ®(G), the maximal subgroups of G
(containing, of course, H) and of G/H correspond. Hence

® (G/H) = ~ (M/gg), M a maximal subgroup of G
| = (" M)/ '
=@ (GYn
as required.
In general, we have the fot}owmg
13.4.5. Theorem: Let@:G— G’ bea SUI‘_]CCUVC homomorphlsm Then
ged (G) 1mp11es a(g)e @ (G). ’

Proof: Suppose that g € @ (G). Let M’ be an arbxtrary maximal subgroup
of G'. Then there is a maximal subgroup M of G such that & M) = M".
Butthenge M 1mphes a’(g) € M. As M' is arbltrary, a(g e d (G’)

13.4.6. Corollary For any surjective homomorphlsm a: GG,
a@@Gy=2o (a' (G)).

Next we prove a theorem which charactrises the Frattini subgorup

" of afinite group.

13.4.7. Theorem: The Frattini subgroups,of a finite group G is nilpotent.
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. ] ,
" Proof: Let & (G) be the Frattini subgroup of a finite group G. We show
that ® (G) is the direct product of its Sylow p-subgroups. For this it is
enough to show that every Sylow p-subgroup of ® (G)isnormal. =
Let P be any Sylow p-subgroup of ® (G). Since @ (G), being a
characteristic subgroup, is normal in G, for every g € G,
gPglcg@(@G)gl=2(@G). .
So g P g! is a Sylow p-subgroup of ® (G) and hence conjugate to P in
@ (G). Thus there exists an x € @ (G) such that v
xPx1 = gPg1
so that x1.g € N (P). Thatis g € xNG ® c d) (G) Ng ®). Since gls an
arbitrary element of G, we have,

Gs;<1>(G)Nc,(P)s:G
G ® (G). Ng (P)=< @ (G), N, (P)>
=Ng (P) |

beéause each element of @ (G) can be ignored from any generating system
of G. Hence P is normal in G and therefore in & (G) Thus @ (GQ) is
nilpotent, by Theorem 13.2.2.

13.4.8. Theorem: If K is a normal subgroup and Ha subgroup of G such
that K ¢ ® (H), then K c ® (G).

Proof: Suppose that K is a normal subgroup of G, K ¢ @ (H) but that K is
‘not cntained in @ (G). Then, by Theorem 13.4.3, K has a partial -
complement L in G so that G = KL. Since K ¢ L, so K L n H. So
L N H s a proper subgroup of H. Now G = KL implies * :

‘H=H(\G=HF\KL.
Butx e Hn KL implies x € H ande € KL so that
Cx= k/forsomeke KcHand le L.

Hence /=k'x € H. But /e L. Hence /e L N H. Therefore x € K L N
H) SoH N KL ¢ K(L nH). ButclearlyK(Lr\H)CHr\KL Hence

"H= Hr\KL K(@LNH).

So K has a partial complement in H Thus K ¢ ® (H) by 134.3, a
-contradiction. Hence K ¢ @ (G).
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The next theorem establishes a relationship between the structure
of a group G and its commutator and Frattini subgroups

13.4.9. Theorem: (Wielandt). A frmte group G is nilpotent if and only if
G’ c @ (G). : :

_Proof: Suppose that G is nilpotent. We show that G is contained in every

maximal subgroup of G. Let M be an arbitrary maximal subgroup of G.
Since G is nilpotent, Ng(M) contains M properly so that Ng(M) = G.

- Hence M is normal in G. Since M is also maximal, G/M is of prime order

and hence abelian. So G"c M. That is
GgmM .. ' \
< @ (G).

Conversely, suppose that G’ ¢ @ (G) Let P be a Sylow p-subgroup
of G and Ny (P) its normaliser in G. Suppose that Ng (P) is properly
contained in G. Then Ng (P) is contained in a maximal subgroup M of G.
Since G’ ¢ ® (G} = M, M/G’, being a subgroup of an abelian group G/G’,

is normal in G/G’. But then M is normal in G. However, by Theorem -

9.3.2,, M is its own normaliser, a contradiction. Hence Ng(Py = G. So

every Sylow p-subgroup is normal in G. Therefore G is nilpotent, by
Theorem 13.2.2.

13 5. SUPERSOLVABLE GROUPS

In this section we discuss a new class of groups which lies in

- between the classes of finitely generated nilpotent group and solvable

groups. The groups of this class will be termed as supersolvable groups.
Before we define a supersovable group we need the following concept.

‘A series
G=Gy2G, 2. DGk—E _
of subvroup of a group G is sard to be an invariant series if each G; is
normal in G, 1 <i<k. *

~ Sucha series is clearly a normal series.
~Also it is easy to see that an invariant series is a principal series if
and only if each G, is a maximal normal subgroup of G contamed in G_,,
1<i<k.
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A group G is said to be supersolvable if it has an invariant series
with cyclic factors.

Clearly every supersolvable groupjé solvable. However, a solvable
group need to be supersolvable. ‘

' 13.5.1. Examples:
1. The alternating group A, has no invariant series with cyclic
factors. A principal series of A, is '
A, DVDE

‘ {
where V is Klein’s four-group. Here A,/V is cyclic but V/E is'not
cyclic. Hence A, is not supersolvable. However it is solvable.

2. Let C,e denote Prufer’s p-group. C, being abelian, is'
nilpotent. However C o= is not supersolvable.

-This follows from the theorem given below. -
13.5.3. Theorem: Every supersolvable group is finitely generated.

- Proof: .Suppose' that G is supersolvable and

is an invariant series with cyclic factors. Suppose that, under the natural
homomorphism of G;_; onto G;_,/G;, an element q;_; of G,_; is mapped
onto a generating element of G,_,/G;. Then ‘

G, =<Gya.,>i=12, ...k

So the elements a,, al, a,, ..., a,_; generate (3.

13.5.4. Theorem Every subgroup aiid factor group of a supersolvable is
supersovable. v :

Proof: Let G be a supersolvable group and H a subgroup of G. Since
every invariant series is a normal series, by Theorem 10.3.11; H has a
normal series whose factors (after deletion of repetitions) afe isomorphic
to subgroups of the factors of the invariant series for G. These, being
subgroups of cyclic groups, are all cyclic. But such a normal series for H
is, in fact, an invariant series for H with cycllc factors. Hence H is
supersolvable.
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Next, let K be a normal subgroup of a supersolvable gorup G.If
G=G,2G,2..2G,=E | 13.5.4 (1)

is an invariant series for G, then the natural homomorphism of G onto G/K
maps 13.5.4 (1) onto the invariant series. »
G/K=G0/KQG1K/K2...QGRK/K=K/K' 13.5.4 (2)
- of G/K. Each factor (G;_{K/K)/(GK/K) of 13.5.4 (2)is isomorphic to a
subgroup of the factor (G;_;/G;} of 13.5.4 (1) and hence is cyclic. So G/K
is supersolvable. / :

Before we prove the next result we note the well known facts that
B the factor group of a finitely genérated and also that every subgroup of a
: . finitely generated nilpotent group is finitely generated. We also assume
B the following result about finitely generated abelian groups.

Every finitely generated abelian group is the direct product of a
finite number of cyclic groups, finite or infinite.

i 13.5.5. Theorem:  Every finitely generated ‘nilpotent group is
b% supersotvable. - :
Vo Proof: Suppose that G is a finitely generated nilpotent group. Then G has
’ﬁ a central series

fi | G= G0:>G >.2G=E - 1325Q)
|>“£! .
/i and the factors G, ,/G; are abelian and ﬁmtely generated. As such each
; : G,_,/G; is the direct product of cyclic groups. The characteristic property

of central series namely that G,_,/G; < { (G/G;) enables one to refine the
central series '13.2.5 (1) by inserting only a finite number. of additional
terms so that the factors of the refined series are cyclrc and ﬁmte in
number. So G is supersolvable.

13,56 Theorem. A finite group G is supersolvable if and only if it has a
prmcrpal series whose factors are cyclic of prime order.

Proof: If a group G has a prmcnpal series whose factors are cyclic of
prime . order then such a series is also an invariant series with cychc
factors. Hence G is supersolvable

Conversely, suppose that G is a ﬁmte supersolvable group. Then
G has an invariant series. . |
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' G=Gy5G,5...5G.=E . 1356(1)
- with each G;_; /' G; =K, a cyc11c group of finite order. Now consider tite
- pair (G, G;). Let m; be the order of the cyc11c group K, =G, 15 Let
;=P Py e Pr
where p;’s are primes not necessarily all distinct. For each divisor H of m;,
'K, has a unique ,subgroup of order e Such a subgroup is thererore
characteristic. Put ' '
,LL Pj+1 pJ+2 pr’O<J<r~1 '
Then K| has charactenstlc subgroups
K;= KIODKIIDKIZD DK 13Kn E
of orders
M = Mg, My = Mg/Py, ooy My =10 I/Pr

-respectively. Each K;, being a subgroup of G 1 ! G, is of the form

lj’

H/G,0s<q < r. Also, since H, / G; is a characteristic 'subgroup of a -
normal subgroup G,_, / G, of G/G,, H_ / G; is normal in G/G;,0 g <r. So

H, is normal in G. Inserting now additional terms of the form H,/ G,
0 < g .2 r, between any two (G, G)), 1 <'i <k, we have a finite
reﬁnement of the series 13.5.6 (1) and the factors of the new series are

cyclic of prime order. But such a refinement then becomes a prmcrpal

'series Whose factors are cyclic of prime order.
A slight additional ar g nment yields the followmg

13.5.7. Theorem: Let G be a supersolvable group. Then G has -an
Jinvariant series whose factors are cyclic of infinite or prime order.
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' EXERCISES

* Prove. that if a finite group G has a unique subgroup of order
" m for each divisor m of the order n of G then G is cyclic.

A normal subgroup M of a group G is said to be minimal 1f it
does not properly contain any other normal subgroup of G. If

‘M is a minimal normal subgroup and K a nilpotent normal ;
- subgroup of a group G then show that

M c Cq (K.

A group G is said to satisfy the normaliser conditign for
subgroups if every' proper subgroup H of G is a proper
subgroup of its normaliser Ng(H). Likewise a group G is said
to satisfy the maximal condition for subgroups if every.

- collection of subgroups of G contain a maximal subgroup
-namely a subgroup which is not properly contamed in any -

. .other subgroup of the collection.

- Show that a group ‘G which satisfies both the maxxma] condmon

and normaliser rondmon on subgroups is mlpotent

IfHis a max1rnal mlpotent subgroup of a group Gand N = - |
Ng(H), then N is its own normaliser. :

- Let G be a group. The F zttmg subgroup (or nil radzcal ) of G

is the set R(G) consisting of those elements of G which lie in
some normal nilpotent subgroup of G. Show that the Flttlng
subgroup is a charactenstlc subgroup of G.

Show that every subgroup of a ﬁmtely generated mlpotent :
group is nilpotent. :

o Let H and K be normal s‘gbgroups ofa group G such that -

KcHc® (G

and H/ K is nilpotent. Show that H is nilpotent.

Let G = A'x B'be finitely generated. Show that

P (G) = @ (A) X D (B)
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Prove that the commutator subgroup G’ of a finite group G 1s -

: 'mlpotent if and only if the second derived group of G is

contained in ® (G).

Let G be an infinite cyclic group. Show that & (G) - E. Also"
show that there exists a normal subgroup N of G such that

"VCD(G/N);tE






Chapter XIV

FREE GROUPS AND FREE
PRODUCTS OF GROUPS

In this chapter we discuss, in a sense, the most general class of
groups namely the free groups. It will be shown that every group is a
homomorphic image of a suitable free group. We shall also define the
notjons of free products of groups and of the generahzed free products of

groups.

14.1. FREE GROUPS: BASIC THEORY

Let B be a collection of symbol x,, @ € Q. Let B-! be fh‘e set of
symbols x,! which correspond to x, in a one-one correspondence

Xq—> x;1. Put X =B U B-1. By a ‘word’ in X we mean an expression of

the form

'ei x2.xk ¢ +1'o£és2 1<i<k 141\(1) |
w=x, =+ 1,0 ,1<i<k .
az Ok i |

The word w in 14.1 (1) is said to be freely reduced if the symbols x and

X e = lled d
x €=t .1, ae {q, az , - O}, called associates, do not accur

consecutively.

- For example, the words.
X)Xy X7V x; x and x,7! xzx, Xy X\~ ‘x, X .
are not freely reduced while the words

~1 . '
X X% 1 X%, and xpxhx X x X,

are freely reduced.

Among the words in X we also include the émpty word which
contains no symbol, The empty word is denoted by the symbol ‘e’

345
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Any word in X can be brought into the form of a freely reduced
word or the empty word by successive use of cancellation of associates.
Thus, f0r example in the word

- -1
XXX X XX X X

cancellation of associates yields the word x,x,x,x, which is freely reduced.

Freely redueed words are uniquely determined

" Let F be the set of all freely reduced words on X. For any two
elements ‘

‘11';2‘7' x.k €, —il e Q,1<i<k, 14.1(2)
J! 82 k m :
' = =+ <j<m, 1413
w xﬂlxi Z lﬂEQ 1 <jsm, . 1 3

of F, we define the plOdl.lCt ww’of w and w “by Juxtaposmon, that is, by
writing ww” as:

,_ €] € K xax' 5m
ww =x X . .
a o 2 .Bl

and brirg the right hand express1on in the reduced form by success1ve

cancellation of the associates if any
"Also if ‘

” m . =t <i< 4.1(4
vi=x, X, ...xyr,n,-il,yle Q,lfl_r, | - 14.14)

s another element of F, then, by discussing various possibilities of

cancellation cf associates, the associative law |
Wwwiw’=w(ww’
holds in F. ' ;
- The empty word, denoted by e, serves as the 1dent1ty element in F

‘Also, for each freely reduced word w, as given in 14.1 (2),_
€k €k-1 € |

wl = 14.1(5,
wl: xa'k X oy X o1 | (5)

¥ Two freely reduced words w and w’ as given in 14.1 2, 14 1 (3) are equal if and only
if the:r corrcspondmg components are equal.

ey
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is freely reduced and satisfies the equation
- wwlz=wlw=e. o
So each element of F has an inverse in F. This shows that F is a group
under the product of words defined above
F is known as a free group on the set B and the elements of B are

ez,

called a free system of generators for F. 7
~ The set B is also sa1d to be a free basis of F.

The number of elements in B is called the free rank of F.

"Thus if B consists of n ‘elements then F is called a free group of -
rank n and is denoted by F,. -

: In fact the relation “Two words w and.w’ are equivalent if and only
if the two have the same freely reduced form’ obviously is an equivalence
relation.

_ A free group of rank one is simply the infinite cyclic group and is
. the on}y example of an abelian free group.

All free groups of rank greater or equal to 2 are non-abelian
because in such groups the words x; x, and X Xy always represent distinct

~ elements.

| We can also define a free group as follows: .

Let B be a set and F a group containing B. Then F is said to be a
free group on B if, for any group G and mapping @ : B — G, there is a
umque ‘homomorphism ¢’ : F -G which coincides with ¢ on B.

If we denote the identity mapping of B into F by i, then F i is free if
and only if, for every group G and a mapping ¢ : B — G, there is a unique.
 homomorphism ¢’ : F — G such that the following diagram is
' commutative. ; '

That is °

—>- F

p'i=¢
A freely reduced word
€] € €

w=x X~ ..X
B B %
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_as given in 14.1 (2), is said to be cyclically reduced if x:l: # X all that is,

O F O OrEyE €
X, xx70 and x,7lx, xx
1%2%3 1 X2 X3 X
are ¢ cyct.cally reduced while
xpxat g T g xy
are not cycﬁcally reduced.

14 1.1. Theorem: In a free group F with a ﬂwJ* basis B, every element
different from e is of infinite order.
\

Proof: Let

- €] €3 €k 1 B.1<‘<'k '
w—xallxa2 "1xak’€i‘—‘*xa’n€ , 151Kk,

be a non-trivial element in F. Suppose that w is cyclically reduced That is,

ak;:m L.'ekqt—e Then - '
€1 Ex €] €k ex

xQI X Koy K x@k | |

that is, w combined with w n-times, cannot reduce to the empty word.

Hence wh # e for any integer n so that w is of infinite order.

I, however, wxs not cyclically reduced, then

€1 fm MM o, €m €l
W xl Ty 71 72 s 71- am Xy

 where Y, #Y, or 7, # —1,. Put

=451 €m =x1 Ny
wy = a ...xam ) w2 xy1 ...xyr

Then w; is cyclically reduced and
w=w, w, w, b
So. for ary integer n,,

I -1
w, W,

Wit = W,y >

Since w' # ¢ for any integer n, w" # e. Thus w is of infinite order.
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~ In'view of the above theorem we see that every Jfee group is torsion
- free, that is, each non-identity element of a free group has infinite order.

_ A group G is said to be locally ir inite 1f every nmtely generated
subgroup of G isinfinite. :

The above theorem shows that every free group is locally mﬁmte
© 14.1.2. Theorem: Every group is isomorphic toa factor g-oup of a free
- group of suitable rank. :

- Proof: Let G be an arbltrary group and S a system of generators for G.
Such a-system of generators always exists. (For example one can take
S=G) Then eachge Gis of the form :

g= ga}gi%. 8ok .e=t1,8,€8, 1<1<k

Lét X be a set of symbols and of cardmahty (the number of

elements) of X be equal to that of S. Let F be the free group on X. Define
amapping @ : F— G as follows:

For

€152 €k
W= X X "'Jéa;(’_

_ in F, we put
_. €y € €y
PW) =g By - By

Then it is easy to check that. @is a horhombrphism of F onto G.

~ By the fundamental theorem of homomorphlsm of groups, F has a
normal subgroup R, say, such that

‘ FIR=G,
as required. |
The normal subgroup R of F, determmed by Theorem 14.1.2, is
such thatif .
€] €2 €k
x_ x " ..x
a & 5
isin R then the correspondmg image

El €2 €k

8oy 8oy 8y =€
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Because of this, every relation in G corresponds to some element of R. Let
R* be an irreducible system of generators for R. Then the relations in G,
.corresponding to the elements in R*, are called the defining relations of G.

If {w,: @€ A} dre elements of R*, then we write

G=<8:w,(s5,5 2 ..... ,saf),:l, @€ A, 5,€8,1<i<r> 1412 (%)

and call 14.1. 2(a presentatzon of G

' Thus it follows that every group has a preqentatlon in terms of generators
and refations. :
14.1.2 @) Examples: ’

1. 'LetX={a1,a'2,.. a,}andR = ([a,, J] a,,an)
-1

\

Here [a;, g} is the usual commutator a a;a; aJ of a, g Then g

F/R is called the free abelian group of rank n.

2. A presentation of the infinite dihedral group is
, D., —<aba2—b2—l> »
and each fmlte dihedral group of order 2n has a presentatlon as:
~ D,=<a,b= a"=b=(abf=1 '
Or: D,=<a,b a2 = b2 =(abyr =1 .

3. The group A,, having a presentation
' A4—<a,b @=bp=(@aby=1>
is the alternating group A, of degree 4. A, is 1somorph1c toa factor group
F/R of F by R. Here R is the normal closure of :
<a, b’ abab>

in the free group of rank 2 with {a, b} as its basis.

_ A free group has no defining relations. Thls fact leads to another
deﬁnmon of a free group.

A graup Fona noh-empty set X is free zf and only if the set of
relations in F is void.
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14.1.3. Von Dyck’s Theorem: Let G, and G, be groups having the same
“system of generators. Suppose that all the relations of G; occur among the
relations of G,. Then G, is isomorphic to a factor group of G,.

Proof: Let F be a free group of suitable rank such t_hat
| . G,=FR,and G,=FR,, j |
where R, and R, are determined by the defmmg relations of G, and G,
_ respectlvely ' ' :
Since every defining relation of G, occurs among the deﬁnmg relatxons of
G,, R, is a normal subgroup of R, C F. The factor group R,/R; is a normal -
subgroup of F/R,. The normal subgroups of F/R, and those .of G,
correspond. Let N be the normal subgroup of Gl which corresponds to
R/R,. '
Then . S

“G,/N=(FR,)/RYR)=FR.=G,,

as required.

14.1.4. Illustrations:
1. Let ‘ |
' G=<a,b:a2=bz=1>,_

D,=<a b:a?=h?=(abpr=1>. |
~ Then D, is a h'o'momorphic' image of G. This is so because D, has an
additional relation (ab)" = 1. :

Here G is the infinite dlhedral group while D, is the dihedral group of
order 2n.

2. Let Fbe a free group with basis B = {a,, a,, a, ..., a,}. Then the
- set of relations in F is empty. '
-Now let
| A =<a,ay, a5 .0, g, 0] =, 1<t]<n>
Let R be the normal closure of
. <[a a] 1<z]<n>
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in F. Then F/R= A
The group A, is called the free abe’zan group of rank n.

14 1.5. Theorem: (Projective propesty. of frez g o.lps)

~ Let A and B be any groups and & : A —» B be an epimorphism. Let

F be a free group and ¢ : F —> B be a homomorphism. Then there is a-
unique homomorphlsm v:F—- A such that the following diagram is
commutative. :

Thét isay=¢. . _
Proof: Let X = {x, : i € I} be a basis of F. Then
. px)=b,€ B, 1e L
‘Siﬁce ais onto B, there is an ¢, € A such that
. a@)=b,
' 'Define a mapping y : X — A by:
Y(x)Za,ie L

By the fact that F is free, y has a unique extension to a homomorphlsm
y: F— Asuch that '

xR =yY(x),i€el
Then | ' - :
(apix) = i (@)=b;=p(x)
for all x, € X, i € I Since @, ¢ and y, are hombmorphisms, for each

~ f€ F, fis aword in elements of X. So

| (@)= p(f).f€ F.
. Hence o y'= ¢, as required.
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14.2. FREE PRODUCT OF GROUPS

In this section we shall define the ordinary free product of groups.
This construction is more general than that of free groups, in the sense that

“a free group is the free product of infinite cyclic groups whereas a free

product of groups is not.necessarily a free group.
Let {G,,: e 1} be a family of subgroups'of a group G. The group
G is said to be the ordinary free product of G, a€ 1, if’

@ the subgroups G, generate G, that is, every element g#eof G

o s express1b1e as product of, a finite number of elementd from
- Glsi.e. A

£8=8182 - 8 & € G, gi#e 1=1,2,..,k -14.2(%)
and o # ¢, ,1=1,2, .., k-1
(i) the expression (*) for g is .unique for every g#einG.
If G is the free product of G, x€ 1, then we write
 G=fiG '

I _ |

If the indexing set I is finite then we use the notation
G=G,*G,*... *G,. '

~ The Subgroups G, of G, € I, are called the free factors of G

- while the expression (*) is called the normal Jorm of an element 8 of G.

The uniquely determmed mteger k in the expression 142 *) is
called the length of g.

Thus, in a free product, no two elements having dlfferent lengths
can be equal. : _ :

Also, an element g, of G, in G is considered to have length 0 or 1
according as g, is or is not the identity element of G,

- We can define the free product of groups in another way as
follows: _
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- Let {G e ]} be a tamrly of groups The frce product of
G, ae 1 isa groupP such that :

(1) P contains an isomorphic copy of each G, that is, for each
e I, there is 2 monomophism i, G, P;
(2) For every group G and every family of homomorphisms .
f2:G,G, there is a unique homomorphism ¢: P - G Wthh
. extends each fa such that the diagram

>G
is commutative. That is @i, = f,, for an,ae L

- Still another definition of a free product is as follows:

Let {G ae I} be a family of groups such that each G, has a
presentation

- G, -<X :Ry>,
where X, is a system of generators and R, 1s the set of all deﬁmng
relations of G, forall € I Put. L
X= uX R=UR,
Then the group
G=<X:R>,

~ “ with X as its system of gererators and R as the set of its defining relations,
is called the free product of the groups G, € I

© 14.2.1. Examples: |
(i) . Theinfinite dihedral group

g D_=<ab:a2=bh=1>

is the free producit of cyclic groups
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| A=<a:a?=1>B=<b:b?=1> |

(ii) LetAC* = C U {eo} be the extended complex plane. Cousider
“the mappings & : C* — C*, B=C* — C*, defined by

a(z)=_ ,B(z)--l,ze C*.

z+1°
Then a3 = 2 =1 where I denotes the identity mapping of C*, and

: G=<a,f:a3=42=1> '

is the free product of A=< @: P =1>, B =< §: ,32—I>

Here G is the group of all unimedular linear fractional mappmgs.
namely the transformations ¢ : C* — C* given by:

;o (Z)" ze C* ;ad-—bc::-l,a,b,o,dintegcrs.

(cf. Combinatorial Group Theory by Magnus Karrass and Solitar)

cz+d’

14.2.2. Theorem: If a group G is the free product of the groups G, a€ I,
then G n<Gp Bel, B+ a>=E. ~

| ‘. ‘Proof: Suppose that g€ G, N <Gy: fe I, ﬂ’# a>. Then
| 8=84 | |
=8p 8p, - 8 8sE G@,Bja,lﬁiﬁk,-
has two expressions for g€ G. Also no 8, = 8a for B, # a,1 <i<k. So, by
" the umqueness of the expressions for elements of G, g =e. Hence
G «N<Gy: e, B+ a>=E.

_ 14 2.3. Theorem: LetG=A*BandCbea subgroup of A, D a subgroup -
of B. Then the. subgroup H of G generated by C and D is the free product
“of Cand D.

Proof Since H is generated by C and D, each h € H is of the form
hy hy ... by, b € C or D. But then h is also an element of G so that the

representation
h=h hy..h

of hin Gis unique in G and so also is mH AlsoCN"DcANB=E
Hence
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' H=C*D.

14.2.4. Theorem: If an element g of G = A * B is of finite order then g is
conjugate to an element of finite. order inAorinB.

Proof: Suppose that g is an element of firtte order in A * B, Then, in the
normal form,

8=818 -8 &€ AorB. 14.2.4 (*)
We use induction on the length k of g. If k =0or 1 theng=corg = 8 is
element of A or B so that the assertion holds.

Suppose that, for all x of length less than k, if x has finite order then x is.
conjugate to some element of A orof-B. Let g in G as in (*) have length k-
- and have finite order. If, in the normal form 14.2.4 (*) of g, g; and g, are

not in the same free factor then for any 1nteger m,

8" =8182 - 8k 8182 - 8k - 8182 -+ 8k
has length > k so that gm s e for. any 1nteger m. If g,, gk are in the same
factor then

87 881=8:85 - (881

, - |

has length less than k. If g is of finite order then so is g,~! gg;- So by our
induction hypothe51s some conjugate g of gl‘1 88, and so alsoof xisin a

free factor. But then g”and g are also conjugate and are in the same free
factor. _

Hence the theorem.

As an 1mmed1ate consequence of the above theorem, we have the'
~ following: -

14.2.5. Corollary: The free product of torsion free groups is torsion free.

14.2.6. Theorem: Suppose thatge A* B and both a and g a g™ belong_
to A, a # 1. Then g € A. In particular, 1fgeEAthen :

gAg'NnA=E

~ Proof: Suppose that o . .
| 8=81 8 8o S 1426
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8 € A or B but not to both, 1 <i <k, is the normal from of g € A * B. We
apply induction on the length k of g to prove our assertion.

- Suppose that k = 0 or 1. Then g = ¢ or g = g; is in A or B. If
g =g € A, we have nothing to prove. If g, € B, with a and g, ag,”! = a”
~in A, then the length of a”is 1 whereas the length of gl ag,”! is 3.
~ Hence 8 € A. That is,g=g,€ A. -

Now suppose that k > 1 and that, for all elements x of length <k,
both @ and xax~! in A imply x € A. Let g, as in 14.2.6 (1), be an element
~ of A*B of length k and, fora € A, both a and gag™! € A. Suppose that g,

) -1 _ :
€A Then gag'=gg, 8 ag gy 8 g

~has length > k and so is not in A, a contradlctron to our SUppOSlthﬂ that-
gag' € A. Thus g, € A and 1 # gk ag-le A Now by our mductron'

hypothes1s,

- gag™! = &1 82 . 8x-1 (8r ag™") (gk-l) - 82 81”1,-
in A implies g, g, ... g, in A. But then
g8=(8i & - 8-1) &

- isin A as required
Next suppose that g & A. Then for any a € A, ,gag'l € A, for .
otherwise g € A, by the remarks given above. -

Hence o
gAg“hA:E

14.2.7. Corollary: The centre of a free product is tnv1al

- Proof: Lete#£ge A* B. Ifge A then g € B, and, by the above theorem
"gBg ' "B =E. Sogh+bgforanybc B.Hence g & { (A * B). Similarly -

forge B. | , _ , 7

‘ However, if g is neither in A nor in B then also similar conditions -

like gAg ' N A =E, gBg'l n B =E are satlsﬁed Hence g & 14 (A B).

Thus the centre of A * B is trivial.

Next we mention, without proof, the most important result about
‘subgroups of a free product ,
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14.2. 8 Theorem (Kurosch Subgroup Theorem)

Let
G HG

ael

be the free product of its subgroups G, o€ 1. Then a subgroup HofGis
itself a free product

H = F* H (xG x“ﬁH)

where F is a free group and H (x G x‘l N H) is the free product of

- xG,x'NH, el

\

A dlrect apphcatlon of the above theorem yields the followmg' :

' result

14.2.9, Theorem. Let G be the free product of periodic groups A, @€ I,
and H a subgroup of G. Then His free if and only if it is torsion free.

" Proof: Since every free group is torsion free, the condition is necessary.

r To prove the sufficiency of the condltlon suppose that H 1s a
torsnon free subgroup of

G;:al;I]Aa

* By Kurosch’s subgroup theorem,

- H= F* H xA, x“r\H)
where Fis afree group and

xg} x Aarl A H)

- isthe free product of x A, x ' " H, € L Since His torsion free,

y l -_— <
_I"I(}(anr NH)=E--

Hence H= F is free.
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The situation is different if the condition that the free factors be
periodic is removed. In such a case, a torsion free subgroup of a free
product need not be free, by corollary 14.2.5, each free factor, although a

 torsion free subgroup, need not be a free group. '

EXERCISES

1. What kind of free groups are commutative and why?

2.. IXF is a free group of rank n and H is a subgroup of F generated bj
‘o squares of all elements of F, prove that H is normat in F. Also find
the order of F/H. Is F/H abelxan"

3. Show that the operatxon of forming free products of groups is
commutative and associative, that is, for groups A, B, C

A*B=B*A, (A*B)-*C A*(B*C)

4, ~ Write down two automorphlsms of order 2 and 3ofa  free group of |
‘ - rank 3. ~ .

5. IfG=A*B andN = BS, the normal closure of B in G, i.e., the
smallest norma] suboroup of G containing B, then prove that
G/N = A.

6. Find the rank of the commutator subgroup of the free product of
two cyclic groups, one of order 2 and the other of order 3. Can you
generalize this to the case of free product of two cyclic groups of -
order m and n respectively?

7. | Using Kurosch’s suboroup theorem for free products, prove that
every finite subgroup of the free product of finite groups is
isomorphic to a subgroup of some free factor.

8 .~ Forany two groups A and B, show that A * B is a free group if an
C only if A and B are free groups.

9. Let A * Bbe the free product of A and B and [A B} be the normal‘ '
' subgroup generated by all commutators of the form [qa, b] = aba"

" blae Ajbe B.
- Show that (A * B) / [A B] is isomorphic to the direct product
AxBofAandB.






Chdpter -XV - | |
SOME OTHER GROUP
 CONTRUCTIONS

A In this cilapter we discuss some other constructions of groups.
These are the generalized free products of groups, the permutational

products of groups and generalized direct products of groups. Thege are

_ relatively new topics and there are still many unsolved problems
concermng the nature and propesties of these products.

' 15.1. GENERALIZED FREE PRODUCTS OF
. GROUPS

- The concept ,_o_f generalized free product of groups is a
generalization of that of the free product of groups. Main contribution to
this topic was made by Hanna Neumann, B.H. Neumann and their
- students. To describe this concept we first define the notion of an

amalgam of groups.

_ An amalgam A of (for convenience only) two groups A and B with
prescribed subgroups H and K respectively, is a quintuplet (A, B, H K, ¢)
where @is an lsomorphlsm between H and K.

Usually the 1somorphlsm @ is taken as the identity mapping so that
‘H = K is regarded as a subgroup of both A and B. In such a case the
amralgam A of A and B with a common subgroup H is an incomplete
- group whose elements are those of A and of B with elements of H as
thought of identified in the two groups. The product of two elements of A
is defined if and only if they both belong to A or both belong to B, and its
value is. as in that group. A and B are called the constituents of A and His
called the amalgamated subgroup. A is written as _

~ A=am(A,B:H) _
and read as ‘the amalgam of A and B with the subgroup H amalgamated ’

261




e

362

SOME OTHER GROUP CONTRUCTIONS CHAPTER-XV
| “ 15.1.1. Example:
Let
A= <arat=1>
 B= <b bs=1>.
Suppose that the 1somorphlc subgroups
H=<a?:a*=1>
Hy=<b3:b6=
both of order 2, are identified so that | ' o
H=<a:a*=1,a2=b3> o
Then the multlpllcatlon table for A = ain (A, B: H) is \
x | 1 a 2| & b| b2 3] ¢ | B
1 a al a’ b 2|3 B | b
a a a2;b3 a’ lq», * "d:“ R M
@ |a=p| & |1 a (|5 |1]| b | B
- a3 a3 1 a a2=b | x| * a| * | *
b | b | * || * || || 55| 1
b2 | - p2 * bs * Bl bt | b5 1 : b
LR @ |1 a |l b5 1] b | b2
R x| 5| * |&5| 1 |0 82| 83
b5 | b * g | # 116 | 2| B® | &

Recall that a monomorphxsm ofa group A mto a group G is said to
be an embeddmg of Ain G. If A is embedded in G then G contains a

subgroup A’ isomorphic to A

For the sake of convenience we usually 1dent1fy A’ W1th its
preimage A and regard A itself as a subgroup of G. -

Let A =am (A, B H). We say that a group G embeds the amalgam

A if G contains subgroups A’ and B*isomorphic to A and B respectlvely
such that A’ B’ = H is isomorphic to H.
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Again if A =am (A, B: 'H) is embedded in a group G then we
identify the subgroups A’, B’ and H' with A, B and H respectwely and
regard A, B and H as subgroups of G '

15.1.2. Example:
o Let’ - -

A=<a b:a?=b3=(abR=1>

B=<c,b: c2—b3—(cb)2— 1>

‘ H=<b:b=1> . | |

so that A = am (A B H) Consider the group G having the presentatlon

G=<ab,c: a2—b3—c2—(ab)2—(cb)2—[a c]-1>

The group G contams Aand B as subgroups and
ANB= H
in G Hence the amalgam Ais embedded in G.

In general there can be many groups Wthh embed a certain -
- amalgam. : o

For example 7 :
Gy=<a b c:a=b=c2=(ab)?=(chp = (ac)’ = 1>

is another embedding. G is of order 12, whereas G, has order 18.
(G, is isoniorphic to an extension of S, by a cyclic group of order 3._)'

Among the groups embedding an amalgam there is a ‘largest
group’. This group is such that every other group which embeds the given
amalgam is a homomorphic image of that group. Such a group is known as
_ the generalized free product of the groups. which occur as constttuents of
an amalgam, , :

- For the amalgam A described above
G*—<a bc:at= c2—b3—(ab)2—(bc)2— 1>

is such a group, that is, G* is the generalized free product of A and B
amalgamatmg H _

 We now define this coneept. |
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Let { G : € 1} be a famity of groups and G the free product of
G, a€ L Suppose that each of the free factors G, contains a subgroup
H,,p isomorphic to a subgroup Hﬂa of Gg

Let G* be the group obtamable from the free product G by
introducing all relations hys = hg, @ # [, that is, identifying. pairs of
etements of H,zand Hg, which correspond under some fixed isomorphism
between these two subgroups of G, and Gy respectively. This makes G* a
homomorphic image of G in'a natural way. ' :

If, in G*, the images of subgroups G, of G still are isomorphic to
G, for'each o and their intersections, in pairs, are precnsely (the 1mageék of) .
the subgroups Hgp = Hg,, then G* is called ‘the generahzed free product

of G, with amalgamated H,5'.

We shall write G* as
G*=<IT*G,: Hyp=Hp, & Be 1, a#p>.

Clearly the "existence of the generalised free 'product of an
amalgam A implies the embeddability of A.in a. group namely their
* generalized free product.

Let A be an amalgam of the groups G, with amalgamated Hep &,

£ € L Let H, be the group generated by all. Haﬁ, a, fe 1, afixed., The = -

amaigam A’ formed by the groups H, with Haﬂ amalgamated is called the
‘reduced amalgam’ of the groups Gu_, ael : '

A necessary and sufficient condition for the embeddability of the
amalgam A is that the reduced amalgam A’ is embeddable (cf. Hanna
Heumann {49, 50}).

Apart from this no nécessary and sufficient condition for the
embeddability of an amalgam is known, not even in the case of an
amalgam of three groups.

An amalgam of more than two groups may or may not be
embeddable. This is equivalent to saying that the generalized free product
of an amalgam of more than two groups need not exist.’
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15.1.3. Example:
Let
A= <abcd az—bz-(ab)z-cl—dl (cd)z—
c¢=d,d=c,cb= dd=c>
B=<ab,f:a?=b2=(abR=f=1,a’ ab,bf=a>,
C=<cdf:=d= (cd)Z—ﬁ—1fcf=cd,df=c>.'
Here " gr=xgx! denotes the conJugate of g by x.
If we write . :
K—<a b'az-bz—(ab2—1>
L=<c¢d:ct=d?= (cd?=1>
M=<f:fi= 1>,

then A, B and Care split extensions of L by K, K by Mand L by M
respectively. The amalgam in question is that of A, B and C with their
corresponding intersections as =

| AnB-K,BnC-M,CnA:L

Take “ -
F=<abcdf:RiUR,UR;> ‘

where R,, R;, R, are the sets of relatxons of A,B andCrespectxvely If the

amalgam is embeddable then this group, ‘being the group freely generated
by it, must embed it. But in F we have,

ca=d, that is, acad = 1.
Therefore
 1=(acad)f=a’c ! fdf—ab cdabc 15.1.3 (i)
Since_ 4 " AR :
ab.cd.ab= (cdy® = cd,
~ we have, from 15.1’.3 @)
l=cdc=d.

“From df = ¢, with d = 1, we have ¢ = 1, so that, in F, the group C
collapses. Consequently F does not embed the amalgam. That is. thc
generalized free product of this particular amalgam does not exist.
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In contrast, an amalgam A = am (A, B : H) of two groups is always
embeddable and one such embedding is the generalized free product of A
and B amalgamating H. That is, the generalized free products of two
groups always exists. ~ S

This result is due to Schreier. We omit 1ts proof

The generahzed free product of the groups A and B amalgamating
H shall be denoted by: ,

 G=(A*B:H) |
If G = (A * B- H), then the subgroup A’ and B’ generated by A and B in G

are isomorphic to A and B respectively, with A "B =H’ isomorphii to

~In general the subgroups A’, B’ and H’ w111 be identified w1th the
groups AB and H respectively. :

Let A =am (A, B: H). A subset S C A is called a transversal of H

| in A if every element of A is uniquely expressible as
| a=sh,s€ S, he H.
A transversal S of H in A is also called a cose representative of A modulo
| For example if.

| A=<ab: a3~b2—(ab)2—1>
and

: H =<b:b2=1>
then |

. S={l,a,a)
is a transversal of Hin A.

In general there can be more than one transversal of H in A. For
instance, in group A, S’ = {b, a, a2} is another transversal of H.

Let S and T be transversals of H in A and B respectively and G be
the free product of A and B 'amalgamating H. It can be shown
(cf: Magnus, Karrass & Solitar [39] or B.H. Neumann [46], [47, [48]) that

‘for an arbitrary choice of the transversals S and T of H in A and B

respectively, each g € G can be uniquely expressed as
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8=818 - &b, g€SorTandheH. 1513 (1)
As before the 1nteger k is then umquely determined and is called
~ the length of g. _ « :
'~ The expression in 15.1. 3 (1) is called the normal form of g.
- The length of an element of A or of B is taken as one. 7
Two elements havmg different lengths are always distinct. |

As in the case of free products of groups we have the followmg
theorem about elements of finite order in the generalized free product of
groups amalgamatmg a single group. We rest.nct ourselves to the case

involving only two groups
§

15.1. 4 Theorem: Let G=(A *B :H).If gis an element of ﬁmte order in
Gthengisina conJugate of A orB. : '

Proof Let g € Gandbe not ina conjugate of A or B Let

8= 8182 - 8kh

. be the normal form of g. Then k > 2 because otherwise g is in A or B.
Suppose that g;, g, belong to dlfferent constituents. Then :

8™ =8182 - 8xh 8183 - . &h - 81 & - &h ,
= 8182 - (8xh) 182 - (&) 8182 - (8ch)
~has length mk > 1. Thus gm # e.
" Now Suppose that g, and g, are in the same constituent. Then

k > 2 for otherwise g € A or B. Suppose that every element of finite order
and of length <k is in a conjugate of A or B. Let

8=8182 - 8.hy k>2
be of finite order. Then
-1 -1
8, 881=8 - &hg,

= 82 gkh gkhg 1 gkh’

is also of finite order and has length < k. So, by mductlon hypothcs1s
. 8! gg, is in a conjugate of A or B. That is, for some a € Aorbe. B,

‘there is an x' € G such that
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grlgg =xar!  or  glgg =xbrl

‘That is,

g=G@MalW! o g=@EMbEY
So g is 1n a conjugate of A or B, as requlred

.15.1.5. Corollary: The generalized free product G = (A * B H) of |

torsion free groups 1s torsion Free.

Proof: By the above theorem, an element of finite order in G must be in a

~ conjugate of A or B. But A and B are torsion free and so contain’ no.

elernent of finite order. Hence G has no element of finite order. .

The centre of a free group is trivial. The centre of a free prdduct is

also trivial as has been shown in Corollary 14.2.7.

However the centre of the generalized free product is not always
trivial. ' co : ,
~ For example, , .
G=<a, b:at=bb=1, az—b3>
is the generalised free product of
A=<a:at=1>,
‘B=<b:bb=1>,
amalgamating the subgroup
T H=<a2={b3‘:a‘.=l>.

- Here the centre of G is'H

The generallzed free product of two or more non-trivial groups
amalgamating a single sub-group is always infinite.

For instance, 1f G = (A * B : H) then, for non tnvxal

 a€ A\H, be B\H, ab is of infinite order.

However the situation is -cifferent for the generalized free product

of more than two groups with more than one subgroup amalgamated. That

is, the generalized free product of 3 or more groups may by finite. .

To substantxate th1s statement we first make the followmg

: observatrons

R e
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LetK,L,M be groups and A, B, C be the groups ‘generated by K, |
L ; K, M and L, M respectively. The intersections K N L, L A M and
MnK play an important role in the discussion of embeddability criteria.
A necessary condition for the embeddability of the amalgam of A, B, C is
that K "L, L " M and M. N K are all isomorphic [cf. H. Neumann,
[50]. We identify these intefsec_tions under the given isomorphism.

In our case we take these intersections to be the identity subgroup.

15.1.6. Theorem: Iet A=<K,L>B=<K,M> C=<L,M> with
M normal in both B and C. The generalized free product of A, B, C exists
if, and only if, there is a homomorphism of A onto the group generated by
the automorphisms induced by K andLin M.

" Proof: Let K’ , L’ be the groups generated'by the automorphisms induced
by K and L in M respectively. Then there exist homomorphisms
¢, : K=K, ¢ : L - L’ There is an extension homomorphism ¢ from A

" to A’=<K’, L’ > such that g coincides with @, on K and with ¢, on L.
-We form the extension G of M by A determined by the
homomorphism ¢, that is, the group of pairs (a, m), a € A, m € M, where,
(a1, mXay, my) = (a1a35, m%@ my)

a,a,€ A,m;,m€ M. We show that this group embeds the amalgam.

Since oIk = o, oL = (bz, in G the subgroups B,, C; consisting of
the pairs (k, m), ke K,me Mand (I, m),l € L,me M are isomorphic_ to
B and C respectively and intersect precisely in the group of pairs (1, m),
.m € M, isomorphic to M. That these groups have the right intersections
also with the group A, consisting of the pairs (g, 1), a € A, isomorphic to

o A, is obvious. Thus G embeds the amalgam of A, B, C.

Conversely suppose thai the generalized free product F of A, B-and
C exists. Since M is normalised by K and L, and F is generated by K, L
and M, therefore M is normal in F. Moreover F/M = < K, L > = A so that
F is an extension of M by A. Hence there is 2 homomorphism of A into
the group generated by the automorphisms mduced by K and L in M. The
proof of the theorem is now complete.
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- 15.1.7. Corollary The generahzed free product of the groups described
_in Theorem 15.1.6 is finite provided that the groups A, B C are finite.

Proof: Here the generalized free product is an extensmn of a ﬁmte group
Mbya flmte group A and s0is fxmte '

‘ Whether or not every embeddable amalgam of three or more ﬁmte
~ groups is embeddable in a finite group is an -open question (cf: B H.
- Neumann and Hann Neumann (51D). :

Both B. H. Neumann and Hanna Neumann (in a personal latter to
the author) conjecture that there exists an embeddable  amalgam of three
finite groups which is not embeddable in.a f1n11e group. v

"Asa pamcular case of an amalgam of three ﬁmte groups, consider
the dxhedral groups, :

A=<a,b:a>=b=(aby= 1>
 B=<bc:B=c2=(bcym=1>
C=<ca:c2=a?=(caPr=1>.
It is known that the generalized free product F of am (A B, C)
exists (cf Majeed [42)). F has a presentation
' F=<a,b,c: az—bz—cz—(ab)’ (bc)m—(ca)“—1> (*)

and is the group of reflections in the sides of a spherical triangle with
angles /1, m/m, m/n; F is krown to be finite 1f i+ 1/m 4+ 1/n>1and
infinite otherw1se :

Put bc=g,ca= h Then another presentauon of Gis .
F=<gh,c: gm—h“—(gh)’-cz-(gc)z—(ch)z— 1>
ItiseasytoseethatFisa split. extension of '
P= P(m,n l) <gh gm—hﬂ—(gh)’—1>
by acyclic group of order 2.
| P belongs to the well- known fam:ly of groups called the - J
polyhedral groups or the generalized trzangle groups

It is not known whether or not, for arbitrary I, m, n, the.amalgam '
am (A, B, C) described above is embeddable in a finite group.
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Some  questions related to the range and nature of finite
embeddings of an amalgam of three finite groups can be found in Majeed
[42]. | e

15.2. PERMUTATIONAL PRODUCTS OF GROUPS

The concept of permutational products of groups was first:
introduced by B.H. Neumann [47]. This group theoretic construction is
based on a method given by him in his famous essay [46], for the
~ embeddibility of an amalgam, with a single group amalgamated, in a
permutation group. Use of this construction was made to answer various
questions about -embedding theory of group amalgams We now glve a
brief description of this construction.

Let A =am (A, B : H) be an amalgam of the groups A and B w1th |
the subgroup H amalgamated. We choose transversals SofHinAand T
of H in B. Form the set theoretic product

 K=SxTxH.

‘The elements of K are ordered tnplets (5.t h),s5€S,te Tand h € H For
eachae A, we define a mappmg pla):K—-K by

-~ (s5t, hp@=(s" t, k)
where s’ € S,h € Hare determined by the equ'ation
| sha=sH
Similarly, for b € B, we deﬁne a mapping p(b) K—-K by
(s, t, hp®) = (_s v, h)
where ' -
tb=tW,fe T,WeH |
It is easy to verify that, for a = b € H, no ambiguity arises in the
definition of p. Moreover the mappmg P :A— p(A)witha — p(a) for all
ac A, 1s a homomorphlsm .

For if a, a”are two elements of A, then
(5, 1, R)P@P(a") = (s, t, WY = (s, 1, K")
“where S o '
" sha= shi sHd =s" W

‘sothat ST '

L
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.s;haa' =s5"h"
which means that
Gt h)ﬂ(a“ =(s",t h).
estabhshmg pa). pa’) = p(aa’). The proof for p(b)p(b’) = p(bb') is
‘similar. It, therefore, follows that ‘
pA)={pa):a€ A}
PpB) ={pb): be B} _
are groups. Moreover, the homomorphism a — p(a) a e A tumns out to be '
- an isomorphism, for if p(a) = i, the identity mapping of K, then ’
| (5 8, YD = (5,1, ) . | \

for all (s, 1, k) € K means that sha. = sh for all s €S, he H. Therefore
a=e.

The above remarks show that the mappings p(a), o(b); a€ A, beB
are in fact permutations of K. Furthermore the intersection of p(A) and
P(B) is p(H). For if p(a) € p(B) for some a € A, then p(a) leaves the first
and second component of each triplet (s, ¢, &) fixed and so

(s, 1, BP@ = (s, t, ha).
Therefore ha € H, that is, a € H.

The permutation group P of K generated by o(A) and p(B)
contains isomorphic copies of A and B with p(A) ~ p(B) = p(H)
isomorphic to H. Therefore P embeds the amalgam A.

The group P is called apennutational product of A= am (A, B:H):

We use here the mdeﬁmte article because P depends not only on A
but also on the choice of transversals S, T of H is A and B respectively.

Thus we shall denote, by P (A : S, T), the permutational product of
A corresponding to the transversals S, T of H in A and B respectively.

As mentioned above the isomorphism type of permutational
product depends upon the choice of transversals. It was shown by B. H.
Neumann [47] that if the amalgamated subgroup is central (i.e. a subgroup
of the centre) in one of the constituents then the isomorphism type of the
permutational product is independent of the change of transversals in the |
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other constituent. The following theorem shows that this is also true if the
amalgamated subgroup possesses, in one of the constituents, a transversal .
which it centralizes. The proof follows the line of argument g1ven by
B.H.Neumann. ‘

15.2.1. Theorem: Let A =am (A; B: H) and S be a transversal of H in A
~which is centralised by H. Then the isomorphism type of the permutational -
product P(A; S, T") is independent of the choice of transversals T in B.

" Proof: Let T and T’ be two distinct transversals of H in B. Let P(A; S.,T)
‘and '-P'(A; S, T) be permutational product corresponding to the
transversals S, T and S, T’,Qf H, Sin A and T, T" in B. We define a one-
one mapping ¢ fromK =S xTXx Hto K’ =S x T" x H as follows: \

For (s, ¢, h) € K, we put
(s, W=(s, 7, K) _
where (s, 7, W)e K' andth=th" Leta€ A. Then, since ¢! eXIStS,
(s, £, H)pewe = (5, 1, ByRe
=(5 1, hi)(ﬂ
= (s, ¥, hyhy)
where .
sha =sh;, th="rtH, th = ’h’ —t’hzh that is,t=rh,.  15.2.1(1)
Also, for p’(a): K’ = K’ | | |
| (5,1, P @ = (53,7, 1)
where , _ :
sHa=sh, o O 15212)
Now form th = ¢h’ we have ¢’ = th m-1. Puttmg it in ¢ = *hy, we: get
t=thh"-1h, s0 that hh'~1h, = e. That is A" = hoh. Therefore ’ :

sh'a = shyha = h, sha, *." H centralizes S
=hyshy, . byls.21(1) .
= s;hgh, _
=s/hy,  by1521(2)
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Therefore s; =8y, hoh; = h2 and olpa) ¢ = p’ (a) forall a € A. For
b€ B, we have, .

(s, 7, h)¢’"ﬂ(”)<" (s t, h)ﬂ(b)(ﬂ

=(s, t r)?
| =G5, 7, k)
where | ;
| O =thb=th=rh - 15210)
and | ' o o
| G0, HPO= (5,0, ) ,
with o o | \
tHb=t/hy 1531

- Since th =1}, we have, |
thb =rKb=1t/h
=th,
by (3) and (4) respectively. Hence
ty’ =t and h," = h,’ so that ¢! Kb)p = p/(b) for all b € B. Thus
¢ Po=P . PandP are isomorphic, as requ1red

+15.2.2. Corollary: If H is a direct factor in A then the 1somorphlsm type
of the permutational product is independent of the change of transversals
inB. : :

Proof: This is immediate. Choose a complementary direct factor as a
transversal.

' 15.2.3. Corollary: If H is central in both A and B, then the josmorphism
type of the permutational product is uniquely determined. -

" Proof: Obvious.

Keeping in view the effect of change of transversals when H is not
central in both the constituents and the above corollary, one may, quité -
‘naturally, ask whether, in all other cases excepting the one mentioned
above, that i is, of H bemg central in both the constltuents, permutatlonal_*
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product of A and B depends upon the choice of transversals of the
amalgamated subgroup. That this is not the case is shown by the following
example constructed by B.H. Neumann [46], in a different context. =

15.2.4. Example:
Let 4
H=<hy, by, by, b2 =, B1=1,1,,=0,1,2, .5,

be the restricted direct product of (countably) infinite copies of cyclic
group of order 2. Take'

A= <aH a2—h2 :[h, Bl = h2,+1,h2,+1—h2,(11-0 1,2,.)>
\

\
.,

B=<bH:p?2=h2= [h ]-—,-1,_1_10 "hm h2i+1,—h2i+1rh2i+2-h2i+2,
G,j=0,1,2,.)> |

Let P be a permutational product of A and B amalgamating H. Then, in P,
~the element ab is of infinite order because, for any non-zero posmve
integern, |

hy@" = ho(ab)(ab)"" = hpar) ) =™ = = = iy # o,

If F is the free product of A and B amalgamatmg H then, by
definition of the free product, there is a homomorphism of F onto P. To
show that F and P are isomorphic it is enough to prove that it is impossible
to add an additional relation in F different form. those already implied by
the relations of A and B, w1thout makmg any of the groups collapse.

In F, every element can be expsessed uniquely as

r=ha 'bab ...ab 2

€,=0or1,i=1,2 and h € H. Hence a relation r = 1 gives

h=a babad ...ab 2

| If the right hand side is equal to-1 then this is a relation in H; hence
- we assume it to be different from 1. Then €, €, cannot be simultaneously
1 or 0. For the right hand side in such a situation becomes (ab)mor (ba)m+!
for some integer m according as €, = €, = 1 or €; = €, = 0 and both ab
and ba are elements of infinite order in P. whereas h is of order 2. Thus

<
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¥ ' o
either €, Or €, is zero. Without any loss of generality we can suppose that
€,=0.Then €, =1land 7 ; ' ,
h=abab .. aba - o 1524 (*)

The number of factors ab precedmg the last a on the nght hand s1de of

15.2.4 (*) is either even or odd so that

h=gag! or gbg!

| where g = (ab)¥ or (ab) accordmg as the number of factors ab in (*) is

even or odd. Here g € < g, b >. Since H is normal in A and B, H is normal
in F so that eithera = g1 hg € Hor b =g hg € H. but this is 1mpos51ble
because it leads to the collapse of the amalgam of A and B Thus no
proper homomorphic image of F- embeds the amalgam of A and B. Since a
permutaional product P of A and B amalgamatmg H also embeds this
amalgam, P and F are isomorphic. Thus there is unique permutaional
product of A and B amalgamatmg H ~

Remarks: Both A and B, being extensions of a solvable group by a

solvable group, are solvable. Also F is a split extension of H, a solvable

group, by the infinite dihedral group, again a solvable group. So F is
solvable. Thus the generalzsed free product of wo solvable groups can be’
solvable.

Can the generahzed free product of two solvable groups dlfferent
from those given in example in 15.2.4 be solvable? '

This problem is still unsolved

15. 3 GENERALIZED DIRECT PRODUCTS
- OF GROUPS

~ The concept of generalized direct product was first introduced by
B.H. Neumann and Hanna Neuamnn who proved an existence theorem for
such products [(46)]. Different existence theorems of such products for
given amalgams of groups have been discussed in the l:terature [62]. We
now briefly describe this type of product. :

A-group G is said to be the generalzzed dzrect product of its

- subgroups G,, G, ..., G, amalgamating a subgroup H if

@) " Gis generated by G, G,, ..., G,;
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@) G, Gj' are elementwise permutable for all i, j, i # j,
,j,;=1,2,..,m ‘
(i) G nN<G:j#i>=H,i,j=1,2,..,n

G is then denoted by: 7 ,
G=(G;x G,y X... x Gy 15.3 (%)
The subgroups G,i=1 2; ..., n, are called the generalized direct
factors of G. ‘

It may be noted that the subgroup H must be contained. in the
centre of G,, i = 1, 2, ..., n and her a also of G.

If H = {e) then we have G as the usual d1rect product of G z 1,
2, ., 1 .
~ Moreover the factor group G/H can be written' as.
| G/H=G/HxGJHX...xG/H,
the direct product of the direct factors G/H , i= 1,2,...n

If ‘G cannot the written as in 153 (*) then G is said to be
indecomposable as the generalized direct product of its subgroups.

15.3.1. Examples:
o (Dlet .
A=<a:a*=1>B=<b:b=1>
and ,
H=<a=b2>
Then

G=<a b, at=b=[abl=1,a=b>
is the generalized direct product of A and B amalgamating H.
I | ‘
Dy=<a b:at=b2=(ab2=1>,
D;=<c, d:A=d?=(cdp=1 >=D,
and ' , |
H=<a?= c2 >,
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and
H < a2 (:2 >,

G1—<abcd a4—b2—(ab)2—c4 &= (cd)z—[a c]
: =[a,dl=[bc]=b, d]-1a2-02>
is the generahzed direct product of D, and D, amalgamatmg H ‘

then .

Take o
Q=<ab:at=1,@=W ab=ba'>
D;=<c¢d:c*=d?=(cdP=1> "~ - {

and ’ 3
H=<a=c2>.

Then

G2=<a b, c, d'a4=c4-€dl=(cd52=[a cl=la d]
 =[bcl=[bdl=1,ab=bal, a2—b2-c2>
=(@QxDyy
is the generalised direct product of Q and D, amalgamatlng H

One can similarly have _
G;=(Q "Q)H - | -

where Qs the quatemlon group of order 8 and H the centre of Q.
_. Tegroup Gi1, G; and G; all have order 32.°

The following problem has been discussed by C.YATang [62].
“Given a group G, do there exist subgroups A and B in GwithANB=H
such that G is the a generalized direct of A and B amalgamatzng H? Also
are the subgroups A and B unzquely determined?”

It is worth mentioning that the generalized direct products

D, x D4)H and (Q X Q)y

when H is the central subgroup of D, and Q, are isomorphic. However
D, x Q)H is not isomorphic to (D, X D,y (of (Q X Qy)-
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15.4. CARTESIAN PRODUCTS OF GROUPS

In chapter 6 we defined the direct product of a finite number of
groups. Here we generalize the notion to one involving an infinite number
of factors. In this situation we obtain two types of products one of which
will be called the ‘Cartesian product.’

Let {G ae Q}bea farmly of groups indexed by a set Q.
Consider the set C of all functions
f:Q— UG, ’ | | |
 suchthatfiay€ G forall ae Q. - o
VWe define the grOup operations in C as follows: '
Forf, ge C, we put _ _
(X D=fo). gy 154
and L | j ‘ :
(@)= Ry, | | 1542
for all e Q. It is easy to verify that, under the mult1pl1cat10n and
inversion defined by 15.4 (1)-and 15.4 (2), C is a group.

The unit element in C is the mapping e : Q — LG, such that
e(@) = 1, the identity of G, for all a € Q. |
Cis ealled the Cartesian product of G, a€ Q.

For any fe C, we define the support o(f) off by

 op={ae Q:AA)=1).
(Only the unit element of C has empty support).

Take a fixed o € Q and let H, be the set of those functions f in C for

- which .

| a‘(f);{a}.
Foranyf,ge H,:f#g, .

oz c{a)
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so that J&' € H, Hence H, is a subgroup of C and is, in fact, isomorphic
to G, under’the mapping f — a, where @} =a,€ G, ' :

'Ha is called the component or coordinate subgroup of C.

| It is often convenient to identify H, with G,. Then the subgroup of
C generated by all the component subgroups G,, o € &, consists of all

functions with finite support. This group is known as the (restricted) direct
product of the family {G, : a € Q} while C itself is called the

unrestricted direct product or the Cartesian product.

- The direct and Cartesian products coincide if the index set is finite.
If Q and each G, o€ Q are countable then the (restricted) direct product

~of G, is countable. However, this is not true in the case of Cartesian

product of an infinite family of groups G,

Thus the Cartesian product of non-trivial G, & € Q, with Q
infinite, has order the cardinal of the continuum even if the order of each
Ggisno lar_ger than 2. :

We also have a special case of the above construction. In this case
all the G, are isomorphic to a single group G and the corresponding
Cartesian product is denoted by G2 and is called the Q-th Cartesian power
of G. Thus G2 consists of all functlons f: Q -G w1th mult1p11cat10n and

inversion defined by:

(fg)(a) =fla) . g(q), FU) =)
For any ae Q, the component group
H, = {fe G, off) c {a}}

is isomorphic to G. The subgroups H,, & € Q generate the direct power
G@ of G and consists of all functions from £ to G having finite support.

Both G* and G® are different unless Q is finite or G is the trivial
group. , ,
' Tt is known that the center of a direct product is the direct product
of the centers of the factors. It is an unsolved px;oblem whether the center
of the Cartesian product is the Cartesian product of the centers of the
constituents of the Cartesian product.
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'15.5. WREATH PRODUCT OF GROUPS

In this section we discuss .another important group construction
called wreath product of groups. This concept has proved to be a principal
tool in the solution of many interesting problems in Group Theory. We
shall see that a wreath product of two groups A and B is a semi-direct

~ product of the group AB by the group B.

For arbitrary non-trivial groups A and B we denote by AP the
[B|-th Cartesian power of A. AB consists of all functlons f B — A w1th
multiplication and i inversion defmed by: :

fR)(B)=fb) g®) , f:l(b)=(ﬂb))f1
forallf,ge ABandb € B. | »

As seen in the prev1ous section AB isa group

Let a be an arbitrary but' fixed element of A. For any b€ B,
consider the function ¢;, : B — A defined by
a,(b) = a and a(x) = 1 S 15.5(1)

forallxe B, x#b. If bis ww ﬁxed and a is allowed to vary over ‘A,<_then
~ the set A, of all functions ¢, @4, @), ... defined by equations like in
'15. 5(1) is a subgroup of AB. Here for o and o/ in A,, and defined by

db) () =d, a’b(X) =1
~forallxe B, x;tb a’ € A, we have,

(G, b)) = a, (B, 7 ®

=a a"',

while’ - ' A
()X = o (x) . oy () = 1, x# b,
for allx € B. Hence &y, € A,.
, - The subgroup A, is called the coordinate or component subgroup
of AB. Clearly A is isomorphic to A under the mapping defined by

a’b—>a, a/b—>a’,
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Also, for a fixed a € A, the set A* of all functions a; :B— A
defined by

forallbe B isa subgroup of AB. Here, for 0:1 , afz € A* with
0:1 (b)=a,, o (b) = a,
for all b € B, we have,
(" az" NOEA ®. a1 (b)

=a,a,1 € A.

J—
«

- Hence o* azrl € A*, (We have writ'ten”"al,a; for,\a;l, a;z).
The subgroup A* also is isomorphic to A, the mapping &* — a
“Being an isomorphism.

A* is called the diagonal subgroup of AB,

Next we tum B mto a group of automorphlsms of AB as follows |

For each b € B and any fe AB we define the action of b on f by

ffo) f(yb‘l) for all y € B. = 15,5(3)
It is easily verifiable that ¢, : AB — AB given by ¢,(f) = P, defmes an
automorphism of AP, The set
| .~<I>B={(pb:beB}"“
io a group of automorphisms of A® and is isomorph@o 'to B under the

isomorphism given by ¢, — b.

Thus we have the following equations: -
() =f'g" - 15.504)
evp=p.p2 15505
forallf, ge AP and b, b, b, € B. o B
| For example, 15.5 (4) follows from

(20 = (fe)yb™h)

a(b) a 1552
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=fob™) . gob™)
- =£0) . 80)
=(*.8H0)
for all yE B while 15.5 () is verlﬁed as follows
£o1%2 () = fobyba)- noo
R (A
=0k
0N (icle)) S
= (Fofhy) T .
forallye B.- ' S :

- Because of - the isomorphism between ®g and B we identify, for
each b € B, the corresponding elements’ ¢, and b in Pg -and B
respectxvely SoB 1tself can be regarded as a group of automorphlsms of

AB,
| Consider now the set P of all formal products'of the form: -
. £y : : .
fe AB,be B, with multiplication defined by: o
 feb W =ffbY 15.5(6)
~In terms of this multiplication the action of elements of B on elements of
AB becomes the transformation

fb=bppr.
P is a group under the multlpllcatlon defined by 15.5 (6), the

‘inverse of each f* being (fH)

The group P is called the standard understricted (or complete)
- . wreath product of A by B and is denoted by

A WrB.
AWr B is thus the semi-direct product of AB by B, as defined in 7.6.1.

The subgroup AB of AWr B‘is called the base group
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The direct power A® is easily seen to admit the action of B
defined by 15.5 (3). We can, therefore, also form the semi-direct product

-Q of A® by B. Q is called the standard restricted wreath product of A by

B, andis denoted by
- AwrB.

If B is finite then both the unrestncted and restrrcted wreath
products coincide.

15.5.1. Example:

Let = | -

A= <.a tat=1>, B=<b: b= 1"_>. . d‘\q_
“Then AB = V,and A wrB =D,, the dihedral group of order 8. '

'Next we consrder a generalization of the standard wreath product’

_ of the non-standard wreath product as follows

We take B as a permutation group on an arbrtrary set Y and then
the semi-direct product of AY and B, in the unrestricted case, and of A(Y)
and B in the restricted case. : :

The corresponding wreath products are called the non-standard un-
restricted and non-standard restricted wreath products respectzvely

‘ Suppose now that A also is a permutation group on a set X while B
is a permutation group on a set Y. Then the wreath product, which is the
semi-direct product of AY (or AM™) by B under the action of B on AY (or
A®M) defined by 15.5 (3) has a natural permutation representatron on the
- product set X X Y as follows:

Forany(x yeXxYandpfe AWrB(orAer) we write -
G =0, - | 155 (7)
where ¥ and y* denote the images of x and y under fy) and b
respectrvely

It is then easy to verify that this permutational wreath
- multiplication is associative. Indeed, if C'is a third permutation group on a
set Z, than

AWrBWrC)=(AWrB)WrC
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- and, as permutation groups of
Xx(Y xZ), XxY)xZ,

- they are not only isomorphic but even 1dentlca1 The same is true for

restricted wreath product '

~ Standard wreath multiplication, 'however' is not associative'

For example, take A, B and C all of order 2 Then AwrBand B
wr C both have order 8 while , :

A wr (B wr C) and (A wr B) wrC

y have orders 2823 =211 and 82'x 2 = 27 respectlvely and hence are not
tsomorphtc

One of the many uses of the wreath product was given by B.H.
Neumann and Hanna Neumann in 1959 to prove the following important
embedding theorem:

Every countable group can be embedded in a two generator group.

In fact if G is a countable group and is embedded in a two
generator group Q generated by a and b then we can impose condltlons on
the generators of Q.

It has been proved by Frank Levin in 1968 that the orders of a and -
b can be taken as 2 and 3 respectively.

EXERCISES

1. Find the pennu,tétional produet of A =am (A B: H) where.
A=<a b:ab=b=(abp=1>" | |
B£<|d,o:a4=czi(ac'2= 1>
H=<a:a*=1> ‘ ) ' '
S={1,0},T={l,c}

Also find its order.

2. IfA=<a b:a*=0b2=(ab)® = 1>B=<cd:ct=d?=(cd?
= 1> and H = < a2 = ¢2 >. Find all the permutational products
of am (A, B : H).
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Show that every permutational product of a finite amalgam .
am(A, B : H) is finite. Hence show that every finite amalgam
of two groups is embeddable in a finite group.

Let A = am(A, B : H). If H is central in both the constituents
A and B, then show that there is a unique permutational

- product P (A ; S, T) which is the generahzed d1rect product of

A and B amalgamating H. A
Let G be the generalized free product of two groups A and B

amalgamating H. Let N be a normal subgroup of G such that

AmN {1}, BAN={1}
Show thatN is a free group and G/N embeds am(A B: H)

o (Hmt Use theorem 15.0 on the str_ucture of subgroups of a

FXLL

generahzed free products in [49]

(Unsolved Problems). Can the Frattini subgroup of a
generalized free product be larger than the amalgamated
subgroup? Do such groups necessarily have maximal
subgroups. [cf. Higman, Neumann & Neumann, J. London

. Math. Soc. 29, 94-88 (1954)].

T kkk

(Unsolved Problem). Can the generalized free product of two
solvable group be simple when the amalgamated subgroup is .

‘not central in either?



Chapter - XVI |
LINEAR GROUPS

Linear groups are important from the point of view of their.

application in physics and other sciences. They are easy to deal with in the

- sense that many of their properties can be discussed by ordinary

computation. They have been found useful in giving counter examples to

answer various group theoretical conjectures. In the present chapter we

give a brief description of linear groups. and discuss some of the
"elementary but salient features of this beautiful branch of group theory. -

' 16.1. THE GENERAL LINEAR GROUP

Let V be a vector space of dimension n over a field F. The set
Homg, (V, V) of all linear transformations of V is a linear associative

" algebra, Homg (V, V) has both the vector space and ring structures. The
identity mapping I of V is the multiplicative identity of HomF V, V).
An element @ of Homg (V, V) is said to be mvertlble if there is a
mappmg u/m HomF , V) such that

TQy=ypep=L ~
The-set of all mvertzble elements of Hom (Y, V) forms a group.

- \§;~ S If \'% has dlmensmn n then th1s Jroup is denoted by GLn (V) and is

AN
-

= called the general linear group of degree (or dzmenszon ) n.

' Closely related with Homy, (V, V) is the set M, (F) of all n x n
" matrices with entries from F. Both Hoing (V, V) and M, (F) are isomorphic
‘as linear associative algebras. In M, (F), those matrices which have non-

zero determinant (such matrices are also called non-smgular or invertible)
form a group under multiplication. This group is denoted by GL(n, F) and
is isomorphic to GL, (V). GL(n, F) also is called the general lmear group

- of dimension n.

- 387
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~ In general, if R is a ring with identity and M, (R) is the ring of all
'n X n matrices with entries from R then the units of M, (R), that is, those

matrices whi‘chv are inv_ertible, form a group GL (n, R) which also is called
the general linear group of dimension n over R.

- Among the subgroups of GL(n, F) there are some which are very
important and need special consideration. One of these is the special
linear group SL(n, F) of dimension n. It consists of those mamces in
-GL(n, F) which have determinant 1, the multiplicative identity of F.

Since, for any Pe GL(n, F) and Q€ SL(n, F),
det (PQP-1) = det P det Q (Det P)-!
' =detQ : \ |
=1 ’
50 PQP“E SL(n F) Hence SL(n, F)is a normal subgroup of GL(n, F),

Another subgroup of GL(n, F) is the group TL(n, F) of all n X n
(upper) triangular matrices A = (au), a; =0 for all i > j. Such matrices.can

be written as
(a“ ap, a; . . . aln-\
0 " Ay Ay . . .oy
0— 0 a33 N . . a3n

k 0 0 0 Coe e ay, ) '

" In TL(n, F), those matrices whose determinant is 1 the multlpllcatwe
identity of F, form a subgroup STL(n, F). This group is known as the
special (upper) triangular group and is normal in TL (n, F).

A diagonal matrix in GL(n, F) is a matrix of the form
A=(;a;), 0#a,eF.

~ Here 8, is the Kronecker delta, that is, §; = 0 ifi#] and §; = 1.

The diagonal matrices in GL(n, F) form a subgroup, called the
diagonal subgroup of GL(n, F). It is denoted by Diag (n, F). Among the
diagonal matrices there are matrices of the form A = (a §, J)=al0#ae
F, and I is the n X n identity matrix. Such matrices are known as scalar
“matrices. The scalar matrices also form a subgroup of GL(n, F); This
subgroup is abelian and constitutes the centre of GL(n, F).
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The algebralc operation in all these “subgroups- is matrix’
multlphcatlon
The factor group of SL(n, F) by its centre {x I} is called the
projective special linear group and is denoted by PSL(n F). Except for a
few cases, PSL(n, F) is a simple group. : '

A matrix A€ GL (n, F) is said to be monomial if A has exactly one
non-zero entry from F in each row and each column '

It is clear that all such matrices from a group Mon (n, F) under the

usual multiplication of matrices. Since every diagonal matrix is monomial,

so Diag (n, F) is a subgroup of Mon (n, Fy and is, in fact, a normal
subgroup of Mon (n, F).

A monomial matrix in which-every non-zero entry-is 1 € F, is
called a permutation matrix. Permutation matrices in M, (n, F) form a
group Perm (n, F) which is a subgroup of Mon (n, F). '

In fact every monomial matrix is umquely expre551ble asa product
-of a diagonal matnx and a permutatlon matrix.

Hence ) _
Mon (n, F) = Diag (n, F). Per (n, F)
Moreover - . S
‘Diag (n, F) m Perm (n, F) = {I}.
For a vector space V of dimension n over a field F and a fixed: ’
basis v, v,, ..., v, of V, the mappmg p: V>V glven by .

@ (v) = ¢(I=ZI ai f-;/‘iJ: l=21 ai Vg(i)

o I 2 ..
where q):(o(l) 5(2) .. on ))1sapermutat10n (p(v)—vc,(l),l—-l 2,.

n, is a linear transformation of V.
, , (i
Restricted to {v,, _Vz, ..» Vo }, © 1s_just the permutation G = L o'(ﬁ\ a

Vi Vay eeey Vo ‘
The matrix ¢, associated W1th @ is 51mp]y the permutar o matnx

with 1 at the [i, o(i)]th place and. zeroes elsewhere, i = 1.2,
Therefore corresponduig to each such matrix, there is a

permutation ( o(i )) of the basis v;, v, ..., v, and conversely.
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There is thus a one- one correspondence ‘between Perm (n, F) and '
the group S, of all permutations of degree n. S
This correspondence is, in fact, an 1somorph1sm between these
. groups.
| Note that here we have written the 1mage of i under C as 0'(1)
‘instead of (1)0' as mentloned in chapter 8

16.2. REPRESENTATIONS OF GROUPS

" Finite groups are easy to handle if these are expressed as groups of |
. matrices. Representation Theory of groups is an important technique to | |
express finite groups as such. Representing groups as groups of matriges - %
helps us in making applications of finite groups to crystallography, |
physics and to geometry. In this sectlon we drscuss this theory and some. -
of its properties.
A subgroup of GLn (V) is called a linear group of dlmensron n
_overF. A subgroup of GL- (n F) is called a matrix group of dimension (or
degree) noverF. N
Because of the isomorphism between GLn (V) and GL (n, F) we
~sha11 call a matrix group also a linear group.
Let G be an abstract group. A homomorphrsm pof G into GL(n F)
is said to be a matrix representation of G of degree n over F.

Thus a mapping P : G — GL(n, F) is sard- to a matrix
representation of Gif

P88 =p &) p(gz), forall g, g, € G.
With each ge G, p associates an n X n matnx P (g) = (g,,) say,

.8ij5 F. ) .
~ Let G* be the subgroup of GL (, F) generated by all p (g), gEG
Then p: G — G*is an epimorphism.

s The representat1on p is said to be falthﬁll 1f Ker p= {e} e the
identity of G.

Here - _ , __
-Kerp= { g€ G: p(g) =], the identity matrix}. |
Likewise, a homomorphism v : G — GL, (V) is called a linear
- representation of G. , : R o -
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V is called the representative space and the dzmenszon of Vis
called the dimension of the representation.

Thus a mapping p : G - GL(n F) is said to a (matnx)
: representat1on of G if '

p (8 8)=p(g) p(g) forallg, g, € G.

In the general case we also consider representations of G over an '
 arbitrary ring R. These are hOmOmorphisms of G into the group GL (n, R)
of all n x n invertible matrices over R. We then have the following spec1al‘
cases: v , '
1. IfR=Fisa field of charactei'istic Zero, then the representations-«
over R are called ordinary representations. - - |
2. IfR =F, is a field of characteristic p # 0, and if p divides the order
' - of the group then the theory of representations over K, is called

modular representatzon theory (or Braller theory). This theory

leads to the application of finite group theory to. crystallography
and to geometry.

3. Representatlons over mtegral domains are called mtegral
' representations. :

Although some basic definition and other coneepts of the above
mentioned types of representations are s1rmlar in detail these are quite
-different. o S A
16.2.1 Example: | '

) Let |
: G=<a,b:a?2=p=1>
be the infinite dihedral group. The mapping

p (10 B = L 1)
Eo -1 70 -1
of generators of G into the generators x, y of

reexeft O, (! 1
=<*=lo -1l -1)”

can be extended to a homomorphism, also denoted by p, of G onto
G* so that p is a 2-dimensional representation of G.

p1s of course, falthful

(i) Cons1der the symmetric group G of degree 3 given as

s
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‘ | G=<ab:a®=br=(ab)2=1,

and the group of matrices , .

0 1\ (w 0) o
_GI*=<X=(1 0),)):(0 Wz)'w‘3?1>;
- Then the mapping . =
’ o w 0 bp _ 0 1)
=0 w220

~can be extended toa homomorphlsm also denoted by p, of G onto

G * S

In thlS case also pis faithful

:(iii)'. Let G be a free group of rank 2 w1th free generators a and b
“Then the mapping :

a—)—o 1 b~—)~2 1

can be extended to a homomorphlsm, again denoted by p, of G
OntO ’ . ——

| 10y (1 2y
It is well known that G2 is a free group of rank 2 (cf. [(153)]). So
G,* and G are 1somorph1c and pis a falthful representation.

Also the mapping

o (1.0) o (1 -1}
a> ‘(1 1) b5 ‘(0 1)
of the generators of G into
1 -1
oocrol} (s
~can be extended to a homomorphlsm of G onto G5*.

(Both G and G3 are two generator groups and Gis free). .

But the. representation P/, in this case, is not faithful, because G *
- is not free of rank 2. In fact, Gy* 1s the unimodular group and

(yy=-1= (yx)3

So G;* is not isomorphic to G. This representation is not faithful.

) Two representations p and p”of a group G into GL (n, F) are sald
" to be equzvalent if there exists a matrix P in GL (n, F) such that . 4
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P’ @) =P p ()P

for all xe G. - ’ , _
It is easy to verify that the relation of equivalence among.the

representations of a group G is an equivalence relation.

.~ For a vector space V of dimension n over a field F let G be a
'subgroup of GL, (V). A subspace W of V is said to be G-invariant (or
mvanant under G) 1f ' ~

g (W)C W .
for all ge G. Clearly the null space { 0} and the vector space V itself are'
G-invariant. . :

; A two dimensional representatlon of the oroup (R +), reals under *
addltlon is given by: ~

' 1 r .
p: r——)(o‘ 1),r_e R,
and the subspace generated by (1, 0)T is inva'riantlunder p. -
A group G € GL, ‘(V) (equivalently, a representation p of G)is

said to be irreducible if the only subspaces of V wh1ch are G-invariant are
the null space {0} and the space V. : : ~

Otherwnse Gis sa1d to be reducible.

Thus G (or the representatlon p of G) is irreducible if and only ifv
. hasno non-trmal G- mvanant subspace.

G is said to be completely reducible if there are G-invariant
subspaces W,, Wza v W 1 <m<n, such that V is the direct sum of
N Wl, W cery W . A o 7 A

From this deﬁmtzon if follows that every trreduczble group is
completely reducible. , .

~ Here takem = 1.

m

A group G c-GL (V) is said to be decomposable 1f there exist non-
trivial G-invariant subspaces U and W such that ' '
V=U®w : :
Let p be a representation of a group G into GL_ (V). Let W be a
G-invariant subspaces of V. Then each ge G induces linear -



394 ‘  LINEARGROUPS - CHAPTERXVI
transformations g;» to be denoted by g/W, and g on W and the quotlent
space VIwW respectlvely These are defined as follows; - '

ForanyweW gweWandg(v+W) gv+We VIW.

If d1mens1ons of W and V/W- are m and k respectlvely then
‘k+m=n. :

The mappings | T o
| 9:G— GL_(W), y: G— GL, (V/W) -
givenby ” o |

@@= yandy@=F

respectlvely are hornornorphlsrns of G So, both ¢ and v is are also
_ representations of G.

The representation u/is called the factdr ,repr_eseritation of pon the -

t quotient space V/W. :

' G is said to be indecomposable 1f no such pa1r of non-tnwal G-
invariant subspaces of V exists.
‘ . The same definitions apply to the subgroups of GL (n, F)

A (linear or matrvc) representation p of a group G is said to
reducible, irreducible, decomposable, indecomposable or completely
reducible if and only if p (G) is reducible, irreducible, decomposable,
, mdecomposable or completely reducible as a subgroup of GL, ( V) or
GL (n, F). : _

A representation p G — GL,,(V) is said to be a tnv1al'

. representation if
p(G) =1 the 1dent1ty mapping of V,

16 3. GRQUP ALGEBRAS AND
- REPRESENTATION MODULES

By a linear associative algebra over a ﬁeld F we mean a non- -
" empty set A such that , .

() Aisa vector space over F
(ii) Ais aring




. Subalgebraof A if:- _ \
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(i) foralla, be AandAe F, '
| O @)b-= a(k b) = AMab).
For example the set C of complex numbers is a linear assocmtlve
algebra over the field R of real numbers.
Smularly the set Q of all quarternions
al+ait+a,jtazk
a,e. R i=0, 1,2, 3, is a linear associative algebra over R under the usual
addltlon and multlpllcauon of quarterions. - '

A subset S of a linear ass001at1ve algebra A over F is said to be a .

!

1. fors,, 5,€ S, 5, —s,€ Sand s, 5,€ S -

2. for s€ Sand fe F, fs€ S. .

_ The centre Z(A) of an algebra A is defined by
’ Z(A) {ze A:za= az,Vae A}

Z(A)i isa subalgebra of A _ :

We now briefly describe the eoncept of a group algebr‘a

LetG be any group and F a ﬁeld Cons1der the set FG of all formal
expressions of the form. .

a= ¥ aJlr x,a,€ F
x€G - _ . : _

with the provision that only a finite nufniber of a,, x€ G, are differer_lt fr_om
OeF. /

For two formal expressions a= 2, a x, ﬁ Eb x, we say that

" xeG

a_ Eax—sz B

if and only 1fa =b, for all xe G

We define addmon scalar multxphcatlon and multlphcatlon in FG
by: _ ,
)Y axx-l: X bx=X (a+b)x - 16.3(i)‘ |
xG xG xG o o

2
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xzax_ Y hayx o 1632) |
xG : - ‘ i
Eax 2 byy=2 Eaxbyocy) 16303
yeG - xG yeG . E

for all a, b A€ FE.

"The equat1on in 16.3 (3), after wntmg u for Xy, becomes

Yax Xby=2Y Ya

a xGG yeG ~  yeG x€G

=Y (Z auy—lb)

ueG \yeG

=2 cu <163 (@)
ueG» : . . . \

A

where

yeZG auy_l b

In the multrpllcatron of ¢ and B defined by 16.3 (3) the product x ,B is
‘ called the convolution of ccand S : / ;

Under the addition, scalar multiplication and multrplxcatron defmed
by 16. 3(1) - 16 3@4), FG has both the ring and vector space structures.

In fact FG is a linear associative algebra over F and is called
_group algebra of G over F.
Here the subset
G*=({l.x:x6 G}
isa basrs of FG. |

G*is 1somorph1c to G as a group so that we can 1dent1ty G*and G. -

For any finite group G of order n, let FG be the group aloebra of G .
over F. Then, as stated above, Z(FG) is a subalgebra of FG. If we take the _
elements of Gas _ ;

e—gl,gz,. ’gn
then, as these form a ba31s of FG, for each ze Z(FG)
z= Eaigi,aiEF . 16305

Also, for each g€ G
2 a,g=27= gzg“— 2 a; 88 g
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=gue B gl 1636

So a,=a/ in case g; and g/ are conjugate e]ements

. Hence, if two elements of G are conjugate then they have the same
coeff1c1ents in 163 (1). :

-Summing up the coefficients of conjugate e]ements in 16.3 (5),
equation. 16.3 (5) can-be written as ‘
2=¢,C +¢,C +.. +ckck-' o 16.3(7)

where d is the sum of elements conjugate to one another and k is the
number of conjugacy classes - :

. Clearly, for each g& G,

| gdg‘—5 ; ,
because the terms in the sum g d gl are srmply a rearrangement of the
terms of o So, from 16. 3(7) we have. (

z=gzgl= E c -

_ Equatron 16.3 (7) shows that the sums C', C2, ..., C* of elements of
- conjugacy classes of G form a basis of the subalgebra Z(FG). o

This proves the following theorem.
16.3.1. Theorem: Let G be a group of order n. Then a basis of the centre
Z(FG) of the group algebra FG of G oyer ¥ is the set
L, CY |
- where k is the number of conjuoacy classes and each Ciis the sum of
conjugate elements of an element gof G, I <i<k

Let A be an a]gebra over a freld F and a€ A and frxed Define a
mapping a; : A — A by: S
) aL(x)-ax, xeA. -
Then. o
a(x+y)= aL(;) +a,(y) and g, (rx) = ra;(x),
forall x,ye A, re F.
Thus ' ‘
Ay ={a, :a€ A}
is a set of F-homomorphisms of the vector space A.
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Each element of A, is called the left regular representation of A.
B Sinﬁlml& the mapping ag : A—> A defined by:

ag (x) =xal,x€ A,
_is an F-homomorphism,
Each element of the set |

e ={ag:ac A}

1s called a rzght regular representation.’

o Let Al, A, be linear associative algebras over F A mappmg‘
Q: A1 — A, is said to be an algebra homomorphtsm if - - \

1 4 (7t -ay + AQ az) }\1(0- (a) + }“2(0 (ay)
Q@  paa)=¢@) p@ .
for all q,, aze A, A, e F
For any group G and a ﬁeld F,a representatton of degree n of the

group algebra FG over F is a non-zero homomorphism p from FG into
Homg (V, V) for some n-dimensional vector space V over F.

A representatlon p of FG is said to be fauhful if pis m_;ectwe

If we replace Homg (V, V) with the ring M, (F) of all n X n
matrices over F, then we speak of p as a matrix representatton . ‘

LetR be a ring w1th identity 1. A non-empty set M is sald to be a
" (left) R-module or a module over Rif _

(1)  Mis an additive abelian group,
(2) Foreachme M, reRr.me Mand
(@ r.(mi+my)=r.m+r.my,
) (ry+1y). m=r,. m+ry.m,
() (rry).m=r.(ym), |
x (1v) 1 .m= m
‘forall m, my, me M1, n, rze Rand 1, the 1dent1ty of R.
 From the above deﬁml:on, one can unmedxately see that every vector, ’

space V(F) overaﬂeldF:samodule overFand we denotethxs module
;_-alsoasV(F) 2 :
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If R is a ring with identity then R can be regarded as a module over

- tself. :
~ Similarly, the group algebra FG is a module over F.

~ A subset N of an R-module M is said to be a subrnadulé of Mif
@) foranyn,meN,m-meN

(i) foranyreRandnEN r. nEN

-We now prove a theorem which shows that the study of
representations of a group G is equrvalent to the study of representations
of the group algebra FG over F :

16.3.2. Theorem' There is a one-one correspondence between the
‘representations of a group G and the representatlons of the group algebra
FG over F. : . :

Proof: Let p be a representatron of G of degree n, that is, a

homomorphism of G into GL,, (V) where V is an n-dimensional vector
space over F. We extend pto a mapping

p’: FG — Homg(V, V) 2 GL, (V)

by putting S =
L p’(E ) Z a, p(x)

x€G
Then it is easy to verify that p isa homomorphlsm of the group algebra
FG into Homl= v, V). ,

So, for every representatlon p of G, there is a representatlon p’of
the group algebra FG over F of G.
. Conversely, suppose that p”is a representation of FG of degree n

over F, that is, p”is non-zero homomorphism of FG into Homg (V, V), ‘

where V is an n-dimensional véctor space. Restnct p ’to the subset
{1.x:x€ G} B : :

n. \ B
Thus to each representation of G there is a represmtatmn of an FG-

module V and conversely, for each representation of a non-mvml FG-

N
-

' module V,thereis a reptesentatxon of G.

 16.3.3: Theorem: The study of representations ofFo(or'G nfdesmen‘ |

s eqmvalent to the study of non-zero FG-modules

of FG. This restriction p, say, of p is then a representatxon of G of degree '
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Proof:  Suppose that pis a representation of FG (or G) of degree n and V
is the underlying vector space. For any ve V and g€ FG, define the actlon
of gon V by: : . Q
g-v=.p(g).(v) o 1633(1)
Then it is easy to see that the equations '
g tv)=g.vi+g.v,

(81 +8).-v=g,.v+&.v

(818) - v=28 - (82-v)
. follow from the equations -

8- (v + Vz) p &) (V1 + vz) _

=p@E)+p®. ),
(81+8) . ) =p (g +8)V '
=) +p &)V
=p(g).v+p(g).v
and o
(818)-v=p(88) -V
=(0(81)-p(8)) v
=p(8) - (,0(82) v)

for all v;, v,, ve V 8i» 82 € FG.

‘Thus V is an FG—module determmed by the representatlon p

Conversely, let V be a non-zero FG-module. For a fixed g € FG
consider-the mapping p,: V—>V defined ‘

, M=g.v
forallve V. Then PE HomFG (V,V) because
pg(v tu)=g. 0, )
=£.V, +g V
=p V) + 0 v)
Pglav) = g-av
=ag.v
: ) =a pg(v)
So - p,& Homgg(V, V).
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Next define a mapping 0 : FG — Homgg(V, V) by:

_ p@8)=p,
- forallge FG It is easy to verify that
p(81+82) pg1+pg2

p(ag):apg. :
and
P& &)= pgl Pg,

for all g, g,, g FG, a € F. Thus pisa representation of FG and is, of
‘course, uniquely determmed ‘

7 If p is a representation of FG of degree n and V is the underlym0
vector space of dimension n then V is an FG-module under the action
defined by equation 16.3.3 (1). :

- V is called a representanon module of p while p is a
representation of FG ajforded by V. :

Here for each x € FG: P (%) is an element of ‘GL,{ V)

: A representation p (or the representatlon module V) of G is said to
be zrreduczble if the only FG-submodules of V are {0} and Vitself.

Every trivial representation is irreducible.
Also, every one dlmensmnal represnwtion is irreducible,

Otherwise p (or V) is said to be reducible. The represe"nt.a'tion. p (or
the representation module V) is said to be completely reducible if V is the

direct sun of its irreducible FG-submodules, that is, if there are FG- ‘

submodules Vl, Vz, ,V, of V such that

V=V, @VZO...(%Vm,mZ 1.
It, therefore, follows that every ' irreducible - repreSentation (or
representation module) is completely reducible.. - ' o

A representation p (or the representation module V) of FG is said to be
indecomposable if V is not expressible as the d1rect sum of two proper
FG-submodules of V. -

Otherw1se p (or V) is sald to be decomposable
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If- the representation module is FG itself or isomorphic to it, then
-the representation p or the representation module is said to be a regular
representation: :
‘ Two representations p and ¢ of FG of degree m and n respectively
are said to be equivalent if and only if their representation modules are
isomorphic. :

In such a case m = n.

We now determine a condition for the equivalence of the

representations. We shall show that this definition of equlvalence of
representations is similar to the one described earlier.

16.3.4. Lct V and V' be the representatlon modules of thp -

~ equivalent representation 0 and o respectlvely Then V and V' have the
same dimensions because they are isomorphic. -

Let
{v,,vz,.. Vabs (V15 V20 e Vi)

be bases of V and V"’ respectively and 0 an FG-:somorphlsm between' V

and V’. Suppose that

- ‘a(vi)-j%l v i=1,2 omaeF 1»6.3.4(1)
Also , ' . ‘

| 1) (vi')=x.vi=§l - 16.3.4 (2)

and . ' : ‘ o :

o) =x. v’i=j§§l My meF  16340)

forx € FG,i=1,2,...,n. Then, forall x € FG,
OL/O(x) W) =a(x.v)
=x.(a(v)) ,aisan FG-homomorphlsm

n ’
=Xx.2X av
. J=1

At o
M= LMz
=

Lol
[}

—
-
1

—

i
L
AL
R~

M=

=
fr

<

> -
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"J=1 a; xv), by S 163403)

—

j_ﬁ a; P () ) by , 16.3.4 (3)
=0 (), .'El a; V,j . -

- =p0).aM) - 1634(4)
for all i=1,2,. o 7

Since 16.3.4 (4) holds for all v;, i= 1 2,. n, itholds for all ve V. Thus

- apx)=pgx) o
- Thatis e ‘ 7 o :
f@=ap@al . 1634(5)
forallxe FG. : ' :

-Equatxon '163’4 (5) is the required condmon for two
representations of FG to be equnvalent _

Thus the representations o and o of FG-modules V and V' are
equivalent if dim V = dim V’ and, for some FG-lsomorphlsm o between V
and V’, equatlon 16.3 4 (5) holds. ' .

16.4. MASCHKE’S THEOREM

_ _ Let F be a field. The least positive integer m such that ma = 0 for
all 0 # a € F, is called the characteristic of F. If the relation ma = =0 holds
only form= 0 then F is said to have characteristic zero.

.~ ~Now we prove an improved form of an 1mportant result due to
H. Maschke (1898) :

16. 4 1. Theorem

(Theorem of complete redu01b111ty) S
Let Gbe a subgroup of GL, (V) where V is a vector space overF

and of dlmensmn n. Let Hbe a 'subgroup of finite index ki in G Suppose
that

(i) - characteristic of F is either 0 or else is prime to h.
(ii) - His completely reducible.
The G is completely reducible. . -
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Proof: Since H is completely reducible, V- has H-invariant subspaces U
and W such that '
V=U®W:

,Th‘e ptojection mapping 7: V — U ’define'd By:
zW)=x@+w)=u
forallv=u+we V,ue U, we W, is a linear transformation of V.
Let ) ' '
: GégyiH,yie G,
be a I\eft;coset decemposition of G. Define a function o : V.— V by:

o (V)= (1 S 3y )(v.),ffor allve V, 164.1{1)

- which makes sense becauseﬁ € F because of 16.4.1 (1): Since G ¢ Homg

(V. V), y, e HomyF (V, V) so '€ Hom; (V, V). Also, U is an H-space.
If x and y are in the same left coset of H in G,, that is,ylxe H, then "
(xnx-‘) V=xz(V)=x() ‘ :
' (Uis H-invariant and ylxe H so that (y“x) (U) U)
=@y 7y ) (V).
=y(U)
So a(v),ve V,is mdependent of the choice of coset representatlves of H

in G.
We show that a(V) is a G-space of V with W as the complementary space.

< Forany x € G, the elements XY1s XYgs e , xy, form a set of left coset
representatives of Hin G. So ' ' |

1 .
a(V)= (‘ 2 () @ (xyi)") V)

=(}; 3 xy, 7yt rl) V)

=x.a(V), (‘x(V) = V since V is G-invariant)
for all x € G. So ¢ (V) is a G-invariant subspace of V. Also y(W) = W for
- allye G and z(W) ={0}. So we have, from the definition of @, '

o (W) = {0}.




'SECTION = . 16.4. MA‘SCHKE’STHEORéM . 405
- Thus . : ‘ -
' (- ) Wy=w-a(w)=w o : 16.4.1 (2)
for all w e W. However the definition of 7 shows that
| I-mV)=V-z(V)=V-U=W.

" Hence o

i I=yt(V=A -y, 2y (V)
» =V - (yl 7Z'y ]) \Y
=V - (yl (V)= V-U= W 16.4.1 (3)

.So - S .
1!
(I a) v) = ( Ey ﬂy,“)(v)

| = (,1‘1 Z - ﬂ)yr‘j O

(,is arrelement of W. So ‘ o ~

I-o)y(V)=W. - 1641 (4)
But then o ‘

V=a(V)+(I-0)V ‘ ,
=a(V)+W. . 16.4.1 (5)

.. To see that' the sum in 16.4.1 (5) is direct, let, for some ve V,a(v) e W,

That is, o (v) € o (V) N W. Then, using the equation -

Cal-oy=(I-o)a

we have ~ .

' a@W)=I-a)a(v), byl64d.l1(4), (see 16.4.1(2)also)
=a (- a) ). |

So : o o _

} o€ ald-o)(V)y=o(W)={0}.
Thus - o
W Ao (V)= {0}
so that o ' -
o V=a(V)®W.

- Hence Gis completely reduc1ble

- A trivial representation O of G 18 1rreduc1ble if and-only if it is one
dimensional.
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LY

. When His the trivial subgroup with 1ts index in G finite, then G is *
a finite group and we have the ori iginal formulation of Maschke’s theorem.

: Thus we have:

16.4.2. Corollary: Let G be a finite subgroup of GL (V) of order g.
Suppose that the charactenstlc of F is either O or e]se is prime to g. Then G
is completely reducible. ~ .

(Remark: If G is a ﬁnite group and p is a completely reducible matrix
representation of G into GL (n, F), then, for-each g € G,
Alg 0 '
pe =( 0 B(g)) , |
where A (g), B (g) are square matrices of dimensiori k and m respectilvely
andn =k +m).
Proof (Mashke’s Theorem) Let G be a finite subgroup of GLn(V) Then

G is isomorphic to a subgroup p(G) = G1 of GL(n, F). The complete -

. reducibility of G, implies that of G.

If G, is 1rreduc1ble then it is completely reducible by definition and

* . we have nothing to prove. So suppose that G1 is reducxb}e so that each
“matrix in G, is of the form : :
Ax) C(k)
p(x) =( 0 B(x) » X € ;G,
where A (x), B (x) are k X k and m X m matrices with k + m = n, while
C (x) is a k X m matrix and 0 is the m X k zero matrix over F. We shall
determine a non-singular matrix P over F such that
Ay 0

';P_p (x) P! =( 0 B (x))z‘d =) ' 164.2 (1)

for all x € G. Choose

(I, D
. P':(J Im) .
where D is to be determined $0 as to satisfy condition
Po(x)=p'x)P,
that is, . A ,
AXD=Cx+D.B(x). . 1642(2)
" Now, forx,ye€ G, ' '

| A CE\(AQGY C®u)
”.""”‘”( 0 chJ( 0. B(y))
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=(A (xy) C(xy))

0 By
= p (xy)
gives’
A A=Ay 16.4.2 (3)
‘B(x)B (y)~= B (xy) _ ; I6n4.2 4)
~ and ‘ : E
A(x)C0')+C(X)B(y) C (xy). ' 1642(5)

In01denta11y the relations 16.4.2 (3) and 164.2 (4) show that
x> AX),x—>B({x)are both representatlons of G -

Multiply equatlon 16.4. 2 (5) by A (x-l) = (A (Jc))'l and sum over

allx € G, we obtam -
8-COHFACICOBON=Z, AGNC ()

" That is ' -

C(y) +( E AxHCx)B (y)) =" E A(x“)C(x)’) 16.4.2 (6)

Put z = xy in the express;on on the right hand side of 16.4.2 (6) and note
that, as x ranges over G, z also ranges over G and the right hand side

“expression is:

éxgﬁA(rl)C(w)—— 5 A6T)CQ

= = 1
| . mA(}J}ngGA(Z‘)C(Z) |
Now take »
1 L ’ o
) D=7 E AERC@ 16.4.2 (7)
Then, for x replaced with z, 16.4.2 (6) becomes | B
: CH+D.BG)=A®). D :
which is 16.4.2 (2) and holds for all y € G. Thus, if D is chosen as in

16.4.2 (7) then equation 16. 4 2 (2) always holds.
Consequently

(A 0 |
.Pp(x)P-lz(‘ éx) B(x)),xe G

~ So'G is completely reducible.
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Masckes’s theorem deals with the decomposmon of a reducible

representation of a finite group into irreducible sub representations. For
any finite group G and a representation p : G — GL, (V) of G, V,a
vector space over a field of characteristic 0, every G-invariant subspace U ,

of V has an invarant direct complement W so that p is completely
~ reducible. Specifically if the characteristic p of the field F does not divide
the order of G then every finite d1men51oned representatlon is completely
‘reducible..

A representatlon o of a group G over a fleld F may or may not be
reducible over a subfield of F. '

Next ‘'we prove another important result called Schur s lemma first
proved by Isai Schur in 1905. Maschke’s theorem and Schur’s lemma are

_ regarded as the two main pillars of the whole representation theory. |

The version given here is in terms of representation modules

- 16.4.3. Theorems (Schur’s lemma)
For any group G suppose that U and V are irreducible FG- modules

over F. Then an FG- homomorph1sm

¢:U—-V
- is either the zero map or is an 1somorph1sm :
- Proof: It is enough to prove that if @ # 0, then @is a buectlon For thlS we
have to show that Ker ¢ = {0} and Im ¢ = V. Now Ker ¢ is always a
submodule of U. Since U is an irreducible FG-module, Ker ¢ = {0} or
Ker ¢ = U. But Ker ¢ = U implies ¢ is the zero map, that is @ maps every

~_element of U onto the additive identity of V, a contradiction.

Hence Ker ¢ ={0} so that Qs injective.

Next consider the set Im ¢ whxch is an FG-submodule of V. Since
V is irreducible, either Im ¢ = {0} or Im ¢ = V. But Im ¢ = {0} implies.@.

is the zero map and Ker ¢ = U a contradiction. Hence Im (p V Thus @ is
surjectlve Therefore (p is an 1somorphlsm :

" The ongmal matrix version of Schur S lemma is as follows.

" 16.4.4. Theorem: (Schur s lemma).

‘Let p, 0 be two irreducible representations of degree n of a group
G over F. Suppose that there is an n X n matrix P over F such that

Pox)=p )P
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for all x € G. Then either P is the zero matrix or P 1s invertible so that P )
and p’ are equivalent. '

Afield Fis algebrazcally closed if every polynormal equauon
aox“+ax“1+ +a —anF :
has all its roots in F.

For example the f1eld C of complex numbers is algebraically’
closed while the fields R or Q of real or rational numbers respectlvely are
not. Here the equatxon x? + 1=0has no root in R or Q.

- For algebraically closed fields, e.g, C matrix versmn of Schurs
-,lemma is an follows. o

- 16.4.5. Corollary:’ Suppose that p is an irreducible repreéentation of a.
group G over F where F is algebraically closed. Then the only matrices -
which commute with each p(x), x € G are the scalar matrices.

Proof: Clearly every scalar matrix eommutesAwith all p(x),x € G.

Conversely, suppose that S 1s a nen-zero matrix such that
Spx)=px)S
for all xe G. Then for any A € F.
(S =AD px) = px) (S-AD) *
- for all x € G. By Schur’s lemma, S — Al = 0, the zero matrix or S — AFis
invertible. Suppose that S — Al is invertible, then S — AI # 0 for any A € F.

Consider the characteristic equation 7 : ]
 det(S-AD=0 | o 1645(D)
‘of 'S — AL Since F is algebralcally closed, equatlon (D has a solution A,
say, in F. Thus : ’
S- 7\ I=0 - ‘
for at least one Xg € F, a contradiction. Hence S —Alis not invertible. But
then S — AI = 0 for some A € F. Thus S is a scalar matrix.

16.4.6 Corollary: Let V # {0} be a comp]ete]y reducible FG-module.
Then V'is irreducible if and only if Homgg(V, V) is a division ring.

Proof: Suppose that V is a non-zero irreducible FG- module and
o € Homg; (V, V). By Schur’s lemma, either & = 0 or & is invertible.

Hence Homg; (V, V) is a division ring..
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7

. “onversely suppose that V is a non-zero completely reducible FG-
modulé and" ‘Homgg (V, V) is.a division ring. Suppose that V is not

1rreduc1ble Then
| V=V,®V,

for some non-zero proper submodules of V. Define 7: V —> v by
' _ W)= 7[("1 ti\‘vz) =V .
Then # € Homg(V, V) is non-zero but is not a» bijection

(here Ker 7z # {0}). Hence 7 is not invertible, a contradiction to the fact -
~ that Homgg (V V) is a division ring. Hence V is irreducible.

16.4.7 CoroEEary If V is a non-zero irreducible FG module and F is
a.lgebrarcally closed, then HomFG (V V)isa f eld. '

‘Proof: First note that, by deﬁmtlon every 1rreducrble FG-module is

completely reducible. In such a case we have already shown that

Homgs(V, V) is a division ring. Let 0 # o.€ Homgg (V, V) and A be the

matrix corresponding to @ under the natural isomorphism between
~ Homgg (V, V) and the set M, of n X n matrices. Then A — Al is not

invertible so that, by Schur’s lemma, ‘

A-Al=0

for some eigen value A € F, because F is algebraically closed, Hence A is

a scalar matrix and so ¢ is a scalar linear transformation in Homm(V, V).

Since &-! is also a scalar linear transformation and any two scalar

transformations are permutable, Hom,;G(V, V_) is a field.

165. GROUP CHARACTERS

In this section we discuss another 1mportant concept which has
been extensively used in obtaining information about finite groups. This
"concept is closely related to the theory of representations of groups The
very first proof of the solvability of groups of order p* gb, p, q distinct
‘primes, and ¢, P positive intégers, was given by Bumside (1904) using
character theory. This theorem has now been proved by J. G. Thompson
wrthout using group representation theory.

Similarly, a large part of the intricate calculatrons in the proof the ’

- Feit-Thompson Theorem about the solvability of groups of odd order [20],

involve character values.
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Many of the important theorems about the structure of fmlte
groups use characters of modular representations.

Let G be a group and p-a matrix representation of G of degree .
Then, for each x € G, p(x) is a matrix. We define a character of G
- afforded by p as a function x?: G — G given by: , SO

XP) =t p(x),
~forallxe G. '

Here tr P (x) is the trace ie. the sum of diagonat elements of the
matrlx ox). — .

- x?is then also called the character of ,0

The degree of a character is the degree of the representatlon wh1ch
affords it. .

- The kernel of d character xP is the set
Kerxr={ge G:x* (@) =y (e)}

where % (e) is the value of ¥7 at the identity element e of G.
" Thus S
¥ @=ulp@]=t(,)=n=degreeof p,
I. the multiplication identity of GL (, F) o

We also have xP () = P @ :

Here z denotes the complex conJugate of z..

, A function f: G - Fi is said to be a class function if, for any x €. G
‘andalla e G,

£ = f @),

It is easy to verify that the set CI (G, F) of all class functions from G to F '
is a vector space over F under the usual addition and scalar multlphcatlon
of mapplngs : : ’

Here we take F to be the field of complex numbers unless stated
otherwise. ; :
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16.5.1 Theorem: Chdracters are class functlons That is, for each

character x#, /

P () =y (axa),a€ G,

Proof: Suppose that x# is the character of a group G afforded by -a

replesentatlon pof G degree n. Then, forany xanda € G,

tr(p(a) p(x) p @) =tr (o (axa)).

Let det (Al — p(x)) be the characteristic polynomial of p(x) Then

trace of p (x) is the coefficient of An-! in det (AI — p(x)). However since
- det (AL - p (axa™)) = det (0 (@Al - p (X))} p (a1))
=det (AI - p (x)), '
the coefficient of A»~! in both is the same.
_ Hence
: tr p (axa‘l) tr p (x).
Thus
X x)=trp)y=trplaxal)= xf’(axa-’)
for all a, x € G. Hence % is a class function. That is, a character has the
same value for elements of the same conjugacy class.

16.5.2 Corollary: Equivalent representations have the same character..

Proof: Suppose that p and ¢ are equivalent representations"of G of degree '.

"nand x? , x¥ are the characters of G afforded by p and o/ respectlvely R

Then there is ann X n mvertlble matm( P such that

P (x) = Ppx)P-t
so that P N '
X (@) =te Px)=tr P p P =trp )=y (x)
forallxe G. ' ‘ '

16.5.3. Corollary The. number of irreducible characters (representatlons) ‘

of Gi is equal to the number of conjugacy classes of G)
Proof: Left as an exercise

A character X of G afforded by an 1rreduc1b1e representatlon pis
called an irreducible character.

The character %” is called a linear character if the representation p
has degree 1. '
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For two class function f1» f» we define an inner product in CI (G, F)
by: ' '

<f1,fz>=l‘g[f1 (). ,fz(x)’X_E'G. S 1653(%

; Here F is the field of complex numbers and f(x) ,xe G denotes

~ the conjugate of f (x) in F. :

So we have the following orthooonalrtv relations. o
<x,,x,> S;» ~ ' S 16.5.3 (%)

where §; = 1 if i = jand §; = 0 if i # ] Thus the set of all

irreducible characters form an orhtonormal basis of Cl (G, F). Moreover
the equations 16 5 3 (*) and 16 5.3 (% %) he.p us in fmdmo the order of the
group G.

For x,y € G, let x; (x), %, (¥) denote the values of irreducible -

characters x; and X; at x-and y respectrve}y Then
I 0= ]C_‘G(x)}, if x and y are conjugate in G
Ny ‘ 7 dte con,
=0, otherwise
- Here the sumrnatlon is taken over all the 1rreduc1ble characters of G
Also Cg(x) is the cenralizer of x in G and the sum is over all the
irreducible characters ¥, of G.

Note that the above relation also deterrnmes the number of
elementsin the conjugacy classes of elements of the group.

- 16. 5.4. Theorem: Every character afforded by a reducrble representation
ofa group G can be expressed as the sum of 1rredu01b}e characters.

Proof: Suppose that.p is a reducible representation of G of degree n. Then
there is a'matrix P.€ GL (n, F) such that

' Pp(x)P—l-i[’O‘(x) - J o 16.5.4'(1)'

0 P2(x)
for all x € G. Here ,bl(x), p,(x) are square matrices of degree k and m such
that k + m = n, 0 is the rectangular m X k zero matrix and * denotes a
rectangular k X m matrix. p,, o, are the constituents of p.
‘Thus . ' o A
XP(x) = tr p(x) = tr (Po(x)P-1)
=tr p)(x) + tr py(x)
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=x0) + xP2(x) ” 16.5.4(2)

“Thus the character of a reducible representation is the sum of the
characters of its constituents.

We continue this process of expressing a reducible constituent in~
the form given in 16.5.4 (1) and, after a finite number of steps, arrive at
irreducible representations. po;, p,, .., P, ‘and a coresponding
decomposition of x# as the sum of irreducible characters X1, X2, -.., X’s. '

So every character x7of a group G can be expressed as the sum of
irreducible characters. :

'16.5.5 Corollary: The character of a reducible repres_entatiori is the sum
of characters of the irreducible representation oy, p,, ...., O '

Proof: The trace of p(x) is sum of the traces of P10, P05 v ps(x).\ :

Note: Let x” be a character of G corresponding to the representation 0
and let Hbe a subgroup of G. Then the restrlctlon of xp to H is a.character
of H :

16.6. ‘CHARACTER TABLES

Let G be a finite group. We like to know about all the characters of-
G. This information is usually displayed in the form of a table, called the
(Frobenius) character table of G. The table contains a listing of values of
irreducible characters of all the elements of G. Since the characters are
class . functions we need only write down the values . of irreducible
characters of representative elements in the conjugacy classes of the

group.

Y

: The character table is always a square table and the first row of a -
character table consists of ones and correspond to the trivial representation.

sending each element of G to the n X n matrix with the first entry as 1 and
zeroes elsewhere. : :

The first column of the table is labeled according to representatives
of conjugacy classes of the group. The entries of the first column represent
the values of the irreducible characters at’ the .identity element of the
group. These are just the degrees of the irreducible characters. :

‘Before we define the character table of a group G we mentlon
without proof, the followmg results. (cf. Ledermann’s book [34]). -

- 16.6.1 Thecrem A: Let G be a finite group of order g. Suppose that Fis
- a field of characteristic O or a prime p where p does not divide g. Let n,,
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, N denote the degrees of the distinct irreducible representatlons of G »
- over F - :
Then

L g=n2+n2+..+n2
Every group G has the trivial 1rredu01b1e representatlon given by

p (x) = 1, the identity of the field F, for all x € G. Heuce, if 7, denotes the
degree of this representation, we always have n, = 1
16.6.2 Theorem B: If Fis an algebraically closed field of characteristic 0
or p where p does not divide the order of a finite group G, then the number

of distinct irreducible representations (characters) of G over F is equal to
the number of distinct conjugacy classes.

Theorems A and B can be applied to show that all representatlons :
of a finite abelian group K are of degree 1. For if k is the order of K and ,
ny, n,, ...n denote the degrees of s irreducible representations then

k=n2+n2+..+n2

Since each element of K determines its own conjugacy class consisting of
only that element itself, there are k distinct conjugacy classes so that
s =k. But then, as each n; is a non-zero positive integer,

. my=1,fori=1,2,.., k'
We now define the character table of a group G as follows: ‘
Suppose that a finite group G has k distinct irreducible characters .
XD, x@, ..., x®. Let C,, C,, ..., C, be all the k conjugacy classes, equal to
the number of irreducible representations or characters, of G and h; the
number of elements in the conjugacy class C;, i = 1, 2, ..., k. Then the k X
k matrix table, /

13

h, h, hy | ... | h
M| oxt=1 'le'-"l X' =1 X%l =1 |
XP | X2=np | %P Xa? oo y A
@ |xt=n | % | % | - | w
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where XJ‘ = 7J1(x) the value of /0) at the clement x in C, 1s called the

- character table of G.

Here the entries in the first column of the matrix (x;))-indicate the -

degrees of the irreducible characters and the values of the characters at the
identity element e'in C|.

Thus the character table of a group G is a mdtiix whose rows
correspond to the different characters while its columns contain values of
all irreducible characters for the particular respective conjuwacy classes

| A brief outlme of a method of computmc the character table of a
finite group G is given below \ U

v

1. Write downall the comugacy classes
C,, Cz’ e Cp
of G and also determine the number h; of elements in each
conjugacy class C,i=1,2, ..., k.
2. For each class C,, write down the formal sums of all the' elements
in C.. That is, form S, where . ' .
. _ Si:ﬂ:z xi1=1,2,. l(’ T e
3. Express the products S, S; as a linear combination of the class sums

S1. S, ..., Sy and determme the corresponding coetf1c1ents in

ijm “m >

SS—ZsS 1]—12 S K

4. Fmd the k matrices _
| '_(Sum i=1,2, ..,k
. Thus A; = (Sijm)’.l’ =1,2, ...,k and so no.
5. Determine the degrees n;, n,, ..., nk of the d1stmct 1rreduc1ble
representations of G. These are obtained by the formula .
n2+n2+..+n2=g
where g is the order of G. _ _ ,
5. Find the charactenst1c roots of A . =1,2,.., k If the c‘haract_eristic
roots of A;are '
_ wil, w2, .., wk
then the corfespondin character values are glven by:
wp=h i/, ™
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The choice of roots must be made in such a say that the
orthogonahtylelanons , S

g .tz-g—ﬁi."

El o and

]
. Z V(X) 7 @) =8,

where 8 = 1 1f C congists of the inverses of the elements of C; and
zero 0therw1se are satisfied when h; and n; are as given above.

7. _ The matrix X = (XJ) where ,(J are obtamed from (*) gives the
-requlred character table.

The case of cychc groups is particularly simple. Here, all the
irreducible representation are of degree 1. So all the characters of
such a group are of degree 1. (Recall that such characters i.e.,
characters of degree 1, are called linear).

“Thus if C is a cyclic group of order g and
) W) = elﬂ:mg
isa gth root of unity, r =0, 1, 2.8 l, then "the character table:
of Cis the matrix (X,") where - .
AT = %O (W) = wrs = g2 Tire, s—O 1,2,3,.,g~1.
The fact that y is infact a linear character of G is clear from the
equation ‘
x(r) (Ws) x(r) (W‘) WIS - wit = wils+t) = xr (ws+t)
,s=0,1,2, .., 8- -1.
- Here we denote the tr1v1al character by x((’)

Informatlon about the structure of the group is  more easﬂy
available from the character table. For example, the order g of the group G
is: : Co

2 N
g= n1 tny .t n,~ = sum of the entries of the f1rst column

If the valug y(e) = 1 for all characters ) of G then G is an abelian
group and conversely if G is abelian the_lr x (e) = 1 for all characters %.

16.6.3 Illustratlons

I. Lét G =<a: a = 1> Then there are three conjugacy classes and
consequently three irreducible representations, _all of degree 1. The
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- corresponding characters are all linear. So the character table of C
is determined by the matrix (x,f) = (e2rin3) 1, s =0, I, 2.

c, | ¢ | ¢
OR 1 1 1
T e T
7@ 1 w2 w

2 Consider the group
| G=<a,b:dd=b2=(abp = 1>
which is the symmetnc group of degree 3. The conjugacy classes of G are
_ C,={1}, C2 {a, a3}, C3-{b ab, a?b}. o
~ If h; denotes the number of elements in the conjugacy class C then
; hy=1,h,=2,hy=3.
Also there are three (equal to the number of - conjugacy, classes)

irreducible representations of G. Let n,, ny, n; be the degrees of these
representations. Then, as remarked earlier, n, = 1 and

: 1+n22+n32=6k .
sothatn,=1,n;=2.

The formal sums of all elements i in the con_;ugacy classes are
S, = E x=1,S,=a+a%S;=b+ab+a’ N

The expressions S; S;, as the linear combinations of S,, S,, 'S3, are

$18;=1=8,,5,85,=5,5,S;=8,.

* Thus _ :
‘ S,S, = 1.Sl +0.5,+0.5,
5,5,=0.5;+1.5,+0.5;. ‘ ,
R . 8;5;=0.5,+0.S,+1.5, ‘ 16.6.3(1).
so that A =L, - | | |
Next{ ‘

S,8,=8,=0S, + 18, + 0S;
S,8,=(a+a? (a+a?)
=2+a+a?
=28, +8,
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| =28, +8,+0S,
S,S; = (a + a?) (b + ab + a?b)
= 2b + 2ab + 2a%
=28, | |
| " 205,+0.5,+25, 1663 ()
Lastly - | | ~ |
S3S,=38,4
| =0.5,+0.5,+1.S;,
S3S2 - 283’ :
=0.S, +osz+2s3 o | \
S,S; = (b + ab a?b) (b + ab + a?b)- 3
- =23+3@+ad)
=38, +38, .
| =3.5,+3.5,+0S;, | 16.63(3)
Thus, from the equations in 16.6.3 (1) and in 16.6.3 (2), we have

.. (o020 (003
Aj=L,A,=|1 1 0|,A;=[00 3]
002 120

_Here we have taken the columns of A,, A, and A, as the coefficients as the
S;, S, and S5 in the systems 16.6.3 (1), 16.6.3 (2) and 16.6.3 (3).
'The characteristic roots of A,, A,, A, are-
Cwl, w2, W) =(1,1,1)
-(le, W22, W32) =(2’ 27 1)
(whs, Wy, W35) = (3,3, 0) |
So, as the order n of G is 6, using the equation w iz h, X, / n;, we havc
: 1
: 1-—wl —h1 & , thatis zf; =1
l=w2 =h,— thatlsx21=1

A -3
l=w3=h"T- X thatlsx3l =2

Similarly  x,=1,%x%= 1, X2 =-1
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. .XISI__‘:I’X23=—1,X33=O
So the character table of Gis

. C, C, - Cy
() 1 11 1
x| 1] T
X(3)- I I ' ' 0

: It may be remarked that two non- 1somorph1c groups may have the
same- character table. For example, the - dihedral group D, and the -

" quaternion group, both of - order 8 are non-isomorphic but both have the
same character table. ' S S

16.7. LIFTED ) CHARACTERS

, Supposc that G is a group of order g and N is a normal isubor'oup of

G.
Lct ,00 G/N = GL (n F)be a representatxon of G/N. Then "
. PN ) ﬂo(YN )= ﬂo(xyN)
forall x,ye Gand
Po(N) =T,

Let x, be the character of Py, that is,
' Xo(xN) _=‘tr PoxN), x € G.
‘Define a mapping p: G — GL (n,’F) by:
P (x) = py(eN) , for all x € G.
Then p is a representation because,
| | P () = PylyN) = p(xN) . yN)
= pq(XN) Py(YN)
=p(x)p Q)
Also » '
Xo () =%g XN),
forx € G, defines the character of p.
Since the matrices 0 (x) and Py (xN) are the same, p is reducibie or
not accordmg as p0 is reducible or not. ' ' '
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The representation 0 is called a representation of G lifted from the
representation g, -of G/N while the character xp is called the szted
character of p.

If p: G- GL (n, F) 1s 2 representation of G with 1dent1ty e and
K= Kerp then, for any.x € K, oK)= In Hence

Xp( ‘) n X ( e)

forallxe K.
o Conversely, suppose thai, for a finite group G and a representation
pof Ginto Gb(n F), : o

X%) = X (e) R B CRAT
for some x € G. Since G is finite, p (x) is an element of finite order in
GL(n, F). The cyclic group <p (x)> generated by p (x) is a finite abelian
group of matrices and so is completely reducible. Each irreducible
comporent of p restricted to the cyclic-group generated by x is of degree
1.So p(x)is diagonalisable in the form

dlag (W1, Was ooy W)
where Wy, Wy, ..., w, are the nth roots of unity. Thus

xp(x) Wy + W,y + ...+ W, =n,

- from 16.7.1 (1) But _
=|wp+wy+ W, |<[W11+IW2I"' -+ w,[=n

and the eq'uahty holds only if w; = w, = ... = w, = 1. But then p (x) is
equrva]ent to the 1dent1ty matrix and therefor p&)=1.Thatisx € ker p

We therefore have: : : }
16.7.1 Theorem: Suppose that G is a fmlte oroup and p is a
representation of G of degree n w1th character X, Then

, Xp(X) = X 5(€) |
~ if and only if x € ker p. | ,
Recall that the character of a one-dimensional representatlon is
-.called a linear character and that all characters of an abelian group are

linear. If % is a character of an abehan group A then, since Y(«¢), a € A is
a field element, -

x(ab) = y(@) x(b)
- =x(B) x(a)
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for all a, b € A. |

If. G is an arbitrary finite group then the number of linear -
characters of G are given by following theorem: : ’

16.7.2 Theorem: Let G be a group and G’ its commutator subgroup.

Then there is a one-one correspondence between the linear characters of G .

-and of the quotlent group G/G’.

The correspondm g characters have the same -value;
Moreover, the number of such characters is the index of G’ in G.

Proof: The characters of G/G’ are all linear because G/G’ is abelian. Let
X, be a linear character of G/G’. Define a mapping x: G—> Fby

()= xo(xG’) xe G _ . 16.7.2 (1)
Itis easﬂy seen that X is a character of G. Since X, is lmear, x is also linear
on G. ( <

Conversely, suppose that ¥ is a linear character on G. Consider the
- mapping ¥, : G/G’ — F, defined by: ,
% OGN =x(),xe G. | 16.7.2 (1%)
We ﬁrst show that ¥, is well-defined. Let x’ '€ xG. Then X’ = xgq for some
qe G’ and .
A =% &)= Xo 60)
= x(xq)
= X0 x(q)-
But, for any commutator [g,, g,] € G,
X8 82)) = X8 82817 87"
= X(2,) X(&,) X(gl) 1 x(gy)!
=1
because lmear characters:commute Hence x(q) =1 and
% WG =x) =2y 6G) = x(x)
so that , is well-defined. .~

Since x is linear on G, ¥, is a linear charécter'of G/G'.

Thus to every linear character of G there corresponds a lmear character of
G/G'. :

——
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Hence there is a one-one cOrrespondence between the linear characters of
G and those of G/G’ and equation 16.7.2 (1) or 16.7.2 (1) shows that the:
correspondmg linear characters have the same value. - :

Next, since G/G’ is abelian, all its characters are linear and their

" number equals the order of G/G’, that is, the index of G’ in G. Hence the

: theorem : ,
#

In this last paragraph we mention some of the applications of -
characters. ‘

1. The character table of a finite group G indicates the presence of
_ normal subgroups of G. Thus, if X, is the character of G afforded

by a representation pand

AP =X |
for some x € .G then, as shown earlier in Theorem 16.7.1, x € ker p
and all such elements form a normal subgroup.

\\
N

2. The character table helps one to detect whether or not a certain
- finite group is simple or not. :

. This is seen from the fact that the character table of simple groups
are such that, for every non-linear ireducible character xo,
X0 (g) # XD (e)
for any non-trivial g € G. -

'For if G is simple then G has no proper normal subgroup so that
x® (g) # x® (e)
(otherwise ¢ # g € ker p for some representatron p and ker p
would be a propcr normal suboroup) ‘

Conversely if, for every non-linear 1rreduc1ble character X,
X9 () =X (e)
for any g € G and N is a proper normal subgroup of G then
- consider an irreducible representatron P of G/N of degree n.

Define a mappmg p: G- GL (n, F) by
p(x)=p, GN), x€ G.
Then p is a representation of G. Since both G and G/N are
represented by the same matrices, p- is irreducible. Also ker p
contains N. However, for every x € ker p, x # e, ®=X (e), a
contradiction. Here G has no normal subgroups.
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Theory of characters has been used to prove some important results
about finite groups. For example, Bumnside’s theorem about the
solvability of a group of order p2 q, p, q distinct primes; was
proved by using characters. The problem of giving a group
theoretic proof remained open for more than sixty years. Such a

+

EXERCISES

Let (R +) be the additive group of real numbers. Show that the\

mapping p: R — GL (2, R) defmed by:

10 L |
p(r)z(r.l)z rER’ ’ . A i

is a faithful representation ofR.

© Show that the mapping 0: C, = GL (2, R), where C; = <x : x4 =1
>, defined by :

=S 1]

-is a faithful 1rreduc1b1e representatlon.of C,. Show that p is

' irreducible.
[Hint::  An irreducible . representation of C, must be one

- " dimensional. The only one-dimensional faithful, representation of

C4‘is' £ :C, = GL (1, C), C, the complex field, given by
x — i,7* = 1, and no such representation exits over R.}:

'Show that the matrices

0 -1y .. (0 -l
a=1 ¢ ) and b = (1 0
generate the dihedral group of order 8. Write down all 1ts elements

Let D, =<a, b: a*=b?= (ab)* = 1 > be the dihedral group of

-order 8. Show that the mapping p : D, — GL (V), where Visatwo
. d1mensnonal vector space given by

p@)=T, pb)=T),

- where T, T,: V— V, are defined by

_ T, %, ») = (=9, %), T, (%, ¥) = (¢ %),
is a faithful representation of D,. _
[Hint. Here the matrices of the linear transformations 7, T,are
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ool sl
=lo -1JadB=[y o

of order 4 and 2 respectively.
5. The representation p : R — GL (2, R) of R given by

, pW= [0 1] xeR
is two dimensional. Is this a reducible representatlon" Explain.

6. Let §; be the symmetnc group of degree 3. Show that the subspace
| space ’
U—{u=(z,,z2,z3)'ueC z,+zz+z3-0} ,
is an §; — invariant subspace of C3 and is a two dimensional
irreducible representation space of §3. {
7. Write all the irreducible representatlons of degree 1 and 2 of the
dihedral group -
D4<a,b:a4=b2=(ab)2=1
of order 8.
[Hint: The only irreducible representatlons of D, of degnee 1 and
of degree 2 are the following ones.
@) The trivial representation p: x — 1, x € D,. and

_(ii) The two dimensional repi SN T TE. Ly -5 CL ( 2,R) -
defined by ‘ o o
1 07 0 1 L
’ (")=[0 -1]’p o= of

8. Consider the symmetric group
S;=<a,b:a2=b2=(ab)’= 1>

of degree 3. Take a mapping p S3 —GL (2,0 mappmg a and b

to

1 -1} 01

(o -1) ~and (1 o)k
respectively. Show that p is a faithful representation of S; by
proving that p (a), p (b) generate a group isomorphic to S.

9.  If TL(n, F) and STL(n, F) denote the (upper) triangular and special
(upper) triangular groups of degree n over G respectively, show
that. the commutator subgroup of TL(n, F) is a subgroup of
- STL(n, F) while STL(n, F) is nilpotent of class n — 1.

10.-  Show that the commutator subgroup of GL(n, F) is SL(n, F).
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13.

14.

15.
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Let G be an irreducible subgroup of GL(n, F) and A an abelian
normal subgroup of G. Show that A is conjugate to a diagonal
subgroup of GL(n, F). '

Show that the symmétﬁc group S, of degree n has exactly two

linear characters. -
(Hint : Here the Commutator subgroup of S,is A, Wthh has index

2in S,).

_ Prove Burnside’s theorem : A group of order p¥ qﬂ P and q distinct
primes, is solvable. . '

‘Show that the numbers h; i / n;, i, j = 1, 2, ..., k are algebraic -

integers. (A root of any polynomial equation of) degree n with
integer coefficients is called an algebraic integer.

Here, for any x € Cj, <p (x)> is completely reducible and so p (x)

is diagonisable. ThUS‘Xb(x) = tr o (x), as the sum of diagonal entries
- which are algebraic integers, is an algebraic integer}. )
- Show that the non-isomorphic groups D, and Q have the same -

character table. Here D, is the dihedral group of order 8 and Q is
. the group of quatemlons of order 8. :
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" INDEX

abelian group, 65 |
accessible, 299

~addition, 48 7
adjacency matrix, 24

algebra homomorphism, 398
.algebraic integer, 426
algebraic operation, 47 /
algebraically closed field, 409
alternating group, 222
amalgam, 361
-.amalgamated subgroup, 361
anti-symmetric relation, 19

.. ascending normal chain, 305

ascendmg sequence of subgroups,
- 230

associates, 345
- “associative algebraic operation, 51
associative law,9 =~
. automorphism, 165
base group, 383
bijective mapping, 32
binary operation, 47 -
~binary relation, 47
- block, 238 _
canonical hemomorphism, 161
cardinal number, 32
cartesian n-space, 13 .
cartesian power 13, 380
cartesian product 12
cartesian product of groups, 379
Caley’s Theorem, 80 -
Cauchy.Theorem, 246

Cauchy Theorem (non-abel'ian

- case), 247

algebraic operation table, 55

centralizer of an element, 132

central series, 321
centralizeér of a subset, 131

* centre of a group, 133

centre of a group algebra, 394
chain, 25

character of a group, 411
charac'ter'of a representation, 411
character table, 414, 416
characteristic of a field, 403

characteristically simple group,
.. 178,311

characteristic mapping, 44
chief factor, 310 .

~ chief series, 309

class of conjugate elements 135
class equatlon 137
class function, 411

closed under algebraic operatlon
47

code, 106
code words, 106 -
commutatlve group‘, 65

commutative al gebraxc operatmn
47

commutative diagram, 34
commutative law, 9
commutator of elements, 173
commutator subgroup, 175

comparah!e “cts, 25
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complete wreath product, 296
completely reducible group, 393

completely reducible

‘representation, 393, 401
complex in a'group, 113

complement of a binary fclation,
‘ : 18

complement of a group, 203
~omplement of a set, 6

component of a Cartesian product,
- 385

components (ordered pair), 12
composition length, 304 '
composition series, 302
congruence relaﬁo‘n, 118
conjugacy class; 138, 397
* conjugate subgroup, 138
conjugate element, 138
conjugate of a permutation, 217
;:onjugation, 158, 195
connected elements, 234
constant mapping, 29
_constituents of an amalgam 363

-constituents of a representatxon,
: 413

conyolutioni 396

coordinate or component subgroup,

; 380,381
coordinates or components, 12

coset representative of a subgroup,
‘ 366

* coset space, 265
ccaung formula, 282
cycle, 214

_cyclic group, 88 |

~ dlagonal subgroup ‘of GL(n, F)

. INDEX
cyclic'permutation, 214
cyclic subgroup, 88
cyclically reduced word, 348

~ decomposable group, 193, 393
- decomposable represcntation, 401

defining relation, 84, 350
degree of a character, 411
degree of symmetric group, 210

- derived group, 175, 330

descending normal chain, 305
diagonal of a cartesian power, 12 ,

388

(alhedral group, 86 101

dihedral group of order 2n, 105
dimension of a representation, 391
direct factor of a group, 187, 189
direct factor of direct product, 187 .
direct power, 280 '
direct product of groups, 187
direct product of subgroups, 189

| disyoint sets, 6

distiibutive law, 9

~ divisible group, 54

domain, 17
domain of operators, 177

- double coset, 139

doubly transitive, 274
element of a set, 1
embedding, 77

empty relation, 17
empty. set, 3

empty word, 345
endomorphism, 165
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~ epic, 77 ‘ \

epimorphism, 77, 158

equal mappings, 28

equal sets, 3.

equal words, 346

equivalence class, 20

equivalence relation, 20, 272, 393

equivalent set, 32 o

equinumerous, 32

-equipotent, 32 _ ,
equivalent " representations,

» 392,402

even permuta_tion,'221

exponent of a group, 87, 93

extension of a group, 195

extension of a mapping, 33

. factor group, 156 : -

factor representation, 394
“factor'set, 20 o
faithful representation,
233,390, 398
~fatihful group action, 271
- Format’s theorem, 121
 fiber over an element, 36
finite cyclic group, 88
finite group, 65
finite p-group, 137, 246
finite set, 32"
finitely generated group, 83
finitely presented group, 84
finitely serial subgrou_p,‘ 299
finiiary permutation, 209
first derived gfoup, 175 ‘
first isomorphism theorem, 160
Fitting subgroup, 342
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 fixed point subgroup, 184 -

Frattini subgroup, 334
free basis, 347

free factors, 353

free group, 347 .
free product of groups, 353

free rank, 347

free systemof generators, 347
freely reduced word, 345

full relation, 17

fully invariant, 177 -

‘ ~ function, 27 '
 fundamental theorem of homomorphism,

158
FG-modules, 399 |
G-set, 272

G-stable subset, 273

G-invariant, 393

~ G-set homomorphism, 281 -
- G-transitive, 274 -

Group action

~ -on sets, 363 o
-on polynomials, 267
-on cosets, 264
-on geometrical objects, 268

' -as left multiplication, 263

-as conjugation by elements, 265
-as subgroup conjugation, 266
-by automorphisms, 267 -
-by inner automorphism, 266

group of quaternians, 70

general linear group, 382, 387

general linear group over aring,
: ' 382

general product of group, 203
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- generalized d1rect product 376
generalized d1rect factors, 377
~generalized free product, 363
generators, 88 '
greatest element of a set, 26.
group (under addition), 65 ‘
group (under multiplication), 65
group algebra, 395, 396 ‘

group axioms, 64 -

group of mobiiis transformations,

- groups of permutation, 209
" group with trivial centre, 133
groupoid, 52 | .
half transitive groups, 236
Hall subgroup, 260 =
Hamiltonian groups, 150 -
Hasse diagram, 25.-
holomorph of a group, 203
homomorphic image, 79
homomorphjSm, 17
idempotent element, 65
idempotent laws, 8
_identical relation, 85
identity, 53
identity element, 53
identity mapping, 28
identity relation, 18, 28
identity subgroup, 72 ..

- image, 27

~ improper subset, 4
‘inclusion mapping, 34
“inclusion relation, 3

inclusion symbol, 3

70

: ‘ INDEX - |
indecomposable group, 193, 394
indecomposable representation,

394,401
index of a subgroup, 118

| indexing family, 5

indexing set 6
induced algebraic operation, 49
infinite cyclic group, 88

- infinite dihedral group, 181
‘inﬁni_te. group, 65 | R
‘infinite p-group, 305 : i
infinite set, 32 | '

injective mapping, 31

inner autOmorphi_sm, 166

integral repr_esentationk,‘39l
intersection of sets, 5

intersection of sub_groups, 73
intransitive group action, 273
intransitive permutation gfo_up, 236
invariant element, 135 |
invariant series, 338 -

invariant subgroup, 150

inverse image set, 35
| inverse of a binary relation, 18

inverse of a mapping, 35

inverse of an element 53 63

involution, 75 -

irreducible character, 412

irreducible group, 393

irreducible representation, 393

irreducible system of generators,
83

isomorphic G-sets, 281 -

1somorphlc normal series, 297
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A; isomorphism, 57,77 |
- isotropy group, 277

Jordan-holder theorem, 303
k-transitive, 238 .
kernel of a group action, 263

- kernél of a homomorphism, 158

k-ply transitive, 273

Klein’s four group, 86,99 -
Kurosch subgroup theorem, 358
Lagrange’s theorem, 119
lattice, 75 |

law is a group, 85

least element, 26

left coset decomposition, 116
leftinverse, 53 |
left inverse of a mapping, 37
left regular representatlon, 398
left unit, 53

length of a cycle, 215

length of an element, 353
length of an orbit, 234

. length of series, 297

lifted character, 420, 421

~ linear associative algebra, 394

linear character, 412
linear group, 390

linear relation, 25

Linear representation, 390
locally cyclic group, 97
locally finite group, 97

- locally infinite group, 97, 349

loop, 55
lower central series, 323

Mashke's Theorem, 403, 406, 408

| mapping, 27

mathematical 1hduct10n 26
matrix group of dimension n, 390 .

matrix representation of a group,
' 390, 398

maximal condition, 342
maximal subgroup, 182
membership, relation 3

- metabelian group, 176, 313

minimal normal subgroup, 342

" module over a ring, 398

modular representation theory, 391
module, 398

monic, 677

monoid, 53

monomial matrix, 389
monomorphism, 77

Monster, 149

n-ary algebraic operation, 47

natural homomorphism, 161
nil radical, 342

- nilpotency class, 324

nilpotent group, 322, 324
nilpotent group of class k, 324
non-trivial action of permutation;
' 213
non-restricted wreath product, 291
non-standard unrestricted wreath-

‘product, 383

normal chain condition, 306
normal closure, 300

“normal factors, 297 -
of an element,

normal form

353,367

normal product of groups, 197
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normal series, 295
normal subgroup, 150
normaliser condition, 342 -
normaliser of a subset, 130
- normaliser of an element, 131
nth term of a sequerce, 30
~nullset,3 '
- nullery relation, 17
neutral element; 53
‘odd permutation, 220, 221
projective spate, 22
one-one correspondence, 32
- one-one mapping, 31
onto mapping, 30
optic group, 101
orbits, 234, 273
orbit-stabilizer theorem, 282
order of permutation, 219
- order relation, 24 '
ordered pair, 11, 27
ordinal number, 32
ordinary free product, 353
‘ordinary representation, 391
ordinary subtraction, 49
- outer automorphism, 167
- overlapping, 6
p-subgroup, 246

partial complement of a subgroup,
335

partial order, 24

partially ordered set, 25
partition of a set, 6, 20
periodic group, 66, 259
permutable complexes, 113

INDEX
permutation group action, 264
permutation matrix, 389

permutational product of an
amalgam, 372 :

permutational representation, 233

| permutational wreath

multiplication, 380

phi orbit, 214

pi group, 259

pi subgroup, 259
pigeonhole principle, 32
Poincare’s theorem, 126
polyhedral group, 370

power set, 4,26

presentation, 84,350
- primitive permutation groups, 239
{ principal factor, 310 ‘

principal series, 309

principle of finite induction, 26
product of relations, 18

product of mappings, 33

_projection mappings, 29, 79

projective special linear group, 389

 proper subgroup, 72

proper subset, 4 - .
Prufer’s p-group, 87,305

quasi group, 55
* quaternary relation, 18, 47

quaternions, 70
quotient of a group, 156
quotient set, 20
R-modular (left), 398
R-relative, 17 -

relator, 84

range, 17
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reduced amalgam, 364

~ reducible group, 393 ,
reducible representation, 393, 401
refinement, 296 | '
reflections, 98 '

| reflexive relation, 18

reguiar group action, 265

regular permutation group, 237

regular reducible representation,
401

~ regular representation, 213

relation, 17
relator, 84
representatxon module, 401

representation of a group algebra,
' . 398,401

representation space, 391 '
representative element, 20, 116
“restricted alternating group, 231
restricted direct product, 380
- prestricted symmetric group, 209
restriction of a mapping, 33
right coset, 116 _
right coset' decomposition, 116
right inverse, 53 - |
right inverse of a mapping, 37 '
right regular representation, 398
right transversal, 116
right unit, 53
rotations, 98
Russell’s paradox, 15
Q-admissible subgroup, 177
~ standard wreath multiplication,
o T 384
scalar matrix, 388 |
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Schreir’s refinement theorem, |

‘ 297
Schur’s lemma, 408
second isomorphism theorem, 162
self-conjugate element, 135
self-conjugate subgroup, 150
semi-direct product, 197 ’
semi-group, 57 -
sequence, 30 ,
sequence of real numbers, 30
set, 1 »
set of imprimitivity, 238

| simple groups, 150

singleton set, 8

‘ sblution set, 2
solvability length, 313

solvab_le group, 176, 313
special linear group, 388
special triangular group, 388

split extension, 203

spOradlc simple group, 149

“stabilizer subgroup, 234, 277 -

stability subgroup, 234

standard -~ restricted wreath

product, 384 -

standard  unrestricted - wreath
| product, 383

subalgebra, 395

subgroup, 71

subgroup generated by a complex

83

subgroup of finite index, 118 -
subgroup of infinite index, 118
subinvariant series, 295

subinvariant subgroup, 299
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submodule, 399
subnormal subgroup, 299
subnormal factors, 297
subnormal series, 295
subnormal subgroup, 299
subset, 3
sum, 48
- super set, 3 :
super solvable group, 238
surjective mapping, 30 |
Sylow p-subgroups, 248 |
Sylow m-subgroup, 259
Sylow’s 1st theorem, 248
Sylow’s 2nd theorem, 249
symmetric diffetence, 7
symmetric group, 97, 209
symmetric relation, 19
symmetry, 97 _
system of defining relations, 84
system of generators, 83
system of generators of S, 225
. ternary relation, 18
ternary operation, 47
 third isomorphism theorem, 163
torsion free group, 66
totally ordered set, 25
transform of an element, 134
transformation group, 263
. transitive action, 273
' transitivity classes, 273
" transitive permutation group, 236
transitive relation, 19
'transposition, 220
transversal, 366

INDEX
' trivial action of permutation, 213

trivial block, 238

-trivial subgroup, 72

type of a permutation, 216

types of binary relations, 18 -
types of mappmgs 30 ’
unary, 47

union of sets, 5

unit element, 53

unit subgroup, 72

unrestricted direct product, 380
unrestricted symmetric group, 209
unrestricted wreath prbduc't, 383
upper central series, 331

usual addition of vectors, 48
Venn diagram, 7 '
vacous,3

variety, 85 ,

variety of abelain groups 87 B
variety of groups, 85 |
-of exponent n, 87,93

vector product; 50

von Dyck's theorem, 351
well-ordering principle, 26

well ordered set, 26
Wielandt’s theorem, 351

word, 83, 345

wreath product, 381 _
Zassanhaus butterfly lemma, 293
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